Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Browse
Search
Address Info: 1150 O Street, P.O. Box 758, Greeley, CO 80632 | Phone:
(970) 400-4225
| Fax: (970) 336-7233 | Email:
egesick@weld.gov
| Official: Esther Gesick -
Clerk to the Board
Privacy Statement and Disclaimer
|
Accessibility and ADA Information
|
Social Media Commenting Policy
Home
My WebLink
About
20140897.tiff
WILSON iSON Albuquerque Colorado Springs & COMPANY Denver El Paso Fort Worth Houston Kansas City 999 18th Street, Suite 2600 Las Cruces Lenexa Denver, Colorado 80202 Los Angeles Phoenix 303-297-2976 Office Rio Rancho 303-297-2693 Fax Salina San Bernardino Wichita Drainage Report for PAAP Niobrara Weld County, Colorado November 2013 Prepared For: L . G. Everist, Inc. 7321 East 88th Avenue, Suite 200 Henderson , CO 80640 Wilson Project No 13-400-065-00 Prepared By: Wilson and Company, Inc. 999 S . 18th Street, Suite 2600 Denver, CO 80202 WILSON Page ii &COMPANY 999 18th Street, Suite 2600 Denver, Colorado 80202 303-297-2976 Office 303-297-2693 Fax I. ENGINEERS STATEMENT I hereby certify that this report for the drainage design of PAAP Niobrara was prepared by me (or under my direct supervision) in accordance with the provisions of the Weld County storm drainage criteria for the owners thereof. Matthew W. Kozakowski Registered Professional Engineer State of Colorado No. 43289 For and on Behalf of Wilson & Company WILSON & COMPANY, INC. ENGINEERS & ARCHITECTS WILSON Page iii &COMPANY 999 18th Street, Suite 2600 Denver, Colorado 80202 303-297-2976 Office 303-297-2693 Fax DRAINAGE REPORT FOR PAAP NIOBRARA TABLE OF CONTENTS I. GENERAL LOCATION AND DESCRIPTION A. Location 1 B. Description of Property 1 II. DRAINAGE BASINS AND SUB-BASINS A. Major Basin Description 2 B. Sub-Basin Description 2 III. DRAINAGE DESIGN CRITERIA A. Development Criteria Reference and Constraints 3 B. Hydrological Criteria 3 C. Hydraulic Criteria 4 IV. DRAINAGE FACILITY DESIGN A. General Concept 5 B. Specific Details 5 V. CONCLUSIONS A. Compliance with Standards 7 B. Drainage Concept 7 VI. REFERENCES 7 VII. APPENDICES See next page for listing WILSON & COMPANY, INC. ENGINEERS & ARCHITECTS WILSON Page iv &COMPANY 999 18th Street, Suite 2600 Denver, Colorado 80202 303-297-2976 Office 303-297-2693 Fax PHASE III DRAINAGE REPORT FOR PAAP NIOBRARA LISTING OF APPENDICES Drainage Map Location Map NRCS Web Soil Survey Hydrologic Calculations • Rainfall Calculations • Rainfall Maps • IDF Curves • Runoff Coefficient Calculations • Time of Concentration Calculations • Peak Discharge Calculations (10- & 100-Year) • Design Point Summary Table • Retention Pond Sizing Calculations Hydraulic Calculations • Culvert Sizing Calculations • Ditch Sizing Calculations Background Data • Previous Site Drainage Report WILSON & COMPANY, INC. ENGINEERS & ARCHITECTS WILSON Page 1 &COMPANY 999 18th Street, Suite 2600 Denver, Colorado 80202 303-297-2976 Office 303-297-2693 Fax I. GENERAL LOCATION AND DESCRIPTION A. Location The proposed project is located in the Northwest and Northeast Quarters of Section 35, Township 11 North, Range 67 West of the 6th P.M. The project site is located at the southeast corner of the intersection of Weld County Roads 124 & 21 just south of Carr, Colorado. The parcel is adjacent to Lone Tree Creek to the northeast, which collects and drains the surrounding area. Drainage within the parcel as it exists today is collected and infiltrated by means of a large retention pond. The existing use of the parcel is a gravel quarry which contains a rail spur. B. Description of Property The proposed project will take place within the northern two quarters of Section 35, which has an acreage of 318 acres, and the owner of the project has a lease boundary of approximate 165 acres. However, for the purposes of drainage analysis, it has been recognized that the existing retention pond facilities collect and treat runoff from a total drainage basin of approximately 175 acres. This is the area used for analysis in this report. The ground cover of the site is very well draining material, apparent by its historic use for gravel mining operations and native grasses. According to the NRCS Web Soil survey (in Appendix), the site consists of Hydrologic Soil Types A & B. For the purposes of the drainage calculations, Type B soil was assumed throughout. The proposed project, known as PAAP Niobrara, is to consist of the continuation of the existing rail spur to include a rail car loading facility for raw petroleum products. The developed site will contain a truck offloading facility, four (4) large storage tanks, and a covered rail car loading platform with a capacity of 26 cars. A system of existing ditches collect and deliver runoff to a site retention pond in the SE corner of the site. The proposed drainage design has been developed to integrate new track- side ditches, industrial waste (IW) holding ponds, and culverts to integrate the new site into these existing facilities and maintain historic drainage patterns. WILSON & COMPANY, INC. ENGINEERS & ARCHITECTS WILSON Page 2 &COMPANY 999 18th Street, Suite 2600 Denver, Colorado 80202 303-297-2976 Office 303-297-2693 Fax II. DRAINAGE BASINS AND SUB-BASINS A. Major Basin Description The PAAP Niobrara site is not located within any the limits of any known major drainageway planning studies such as flood hazard delineation reports or major drainageway planning reports at the time this report was prepared. The proposed site is not located within any known floodplain. A FEMA Flood Plain map could not be obtained for the site as it is within FIRM Panel 0802660175C of Weld County, which is not a printed panel. B. Sub-basin Description Historically, the drainage pattern for this site is comprised of a relatively flat, uniform slope of less than 1 % draining to the southeast and the existing retention pond for the site. The site's location between the drainage infrastructure in County Road 21 to the west and Lone Tree Creek to the east results in almost no offsite drainage being delivered to the site. Furthermore, the existing system of drainage ditches and retention facilities adequately collects and treats runoff generated on-site. The proposed design maintains this concept and pattern. Use of retention facilities for treatment of stormwater volume not only is a logical choice for the well-drained soil, but it minimizes potential for off-site impacts caused by drainage. WILSON & COMPANY, INC. ENGINEERS & ARCHITECTS WILSON Page 3 &COMPANY 999 18th Street, Suite 2600 Denver, Colorado 80202 303-297-2976 Office 303-297-2693 Fax III. DRAINAGE DESIGN CRITERIA A. Development Criteria Reference and Constraints The primary development criteria used for this design is the Weld County Engineering & Construction Criteria, Chapter 5 - Drainage Criteria, (henceforth referred to as: Weld County Manual). During the permitting process for the site's previous use known as "Carr Gravel Resource" (USR# Am-USR-840), a drainage study was prepared. The site's retention facilities were already in place at the time this study was prepared, but the volume of the facilities was estimated at approximately 37 acre-ft in that study. B. Hydrological Criteria Design rainfalls for the hydrologic analysis were obtained from the NOAA Atlas 2: Volume III - Colorado. The NOAA Atlas provided 6-hour and 24-hour precipitation totals for theoretical storms as well as a numerical method by which to use those values to calculate 1-hour design storm precipitation rates. Refer to the Appendix for copies of the NOAA maps as well as calculations for 1-hour rates. The 1-hour precipitation values were then utilized in the Urban Drainage Flood Control District's (UDFCD) equation to plot an intensity curve for use with the Rational Method. Runoff Coefficients for ground covers with a Type B soil were also obtained from the UDFCD Manual. The Rational Method was then utilized to obtain peak flow rates for sizing of the hydraulic conveyance facilities. Both the conveyance and treatment (retention) facilities were sized for the 100-year storm event. Because the site utilizes a concept of retention for stormwater volume control, the pond sizing was done by calculating the total runoff volume expected from the contributing basins. This number was calculated by using the 24-hour 100-year precipitation values obtained from the NOAA Atlas and multiplying by the contributing area and the runoff coefficient for the ground cover. The retention volume was then adjusted by 150% as standard practice for sizing of retention facilities. Refer to the Appendix for the retention pond sizing calculations. Finally, because the proposed design utilizes a retention concept, a historic drainage analysis was not performed. Historic drainage analysis is necessary for detention facility concepts because the historic rate must be quantified, but for retention facilities, it is only necessary to quantify the full proposed volume of runoff that WILSON & COMPANY, INC. ENGINEERS & ARCHITECTS WILSON Page 4 &COMPANY 999 18th Street, Suite 2600 Denver, Colorado 80202 303-297-2976 Office 303-297-2693 Fax need be treated. The retention pond also results in no theoretical discharge from the site for events up to a 100-year storm, so need for downstream impacts are negated. C. Hydraulic Criteria Two types of hydraulic facilities were utilized and analyzed in the proposed design. Those are swales/ditches for overland flow and culverts. The analysis methods for these facilities were Bentley FlowMaster and UDFCD's Culvert Design Spreadsheet respectively. Sub-basins and design points in the hydrologic analysis were strategically placed to quantify peak discharges using the Rational Method for use in the hydraulic analysis. Refer to the Appendix for the outputs of these computer models. Because the stormwater treatment design storm for the facility is the 100-year event, conveyance facilities were also sized for the 100-year event. Proposed swale sections were developed using the peak discharges and minimum running slopes encountered in the swale's course. Quantification of the existing retention pond volume was not necessary because the previous study identified its volume in 2010 as 37 acre-ft, and the facility has not been altered since that time. Also, staged-storage charting is not required for retention ponds, only detention. Finally, a permanent erosion control feature is proposed as a means to maintain the integrity of the site's retention pond. A sedimentation basin has been placed immediately before the runoff's discharge to the existing retention pond. The purpose of this feature is to reduce the amount of sedimentation which is able to get to the pond and increase its performance with respect to infiltration. WILSON & COMPANY, INC. ENGINEERS & ARCHITECTS WILSON Page 5 &COMPANY 999 18th Street, Suite 2600 Denver, Colorado 80202 303-297-2976 Office 303-297-2693 Fax IV. DRAINAGE FACILITY DESIGN A. General Concept The general concept for the drainage design of the PAAP Niobrara site is to utilize the site's existing drainage swales for conveyance to the existing stormwater retention pond. Track-side ditches for the new rail facilities will collect runoff and convey it to the existing facilities utilizing culverts were necessary. The facility will follow its historic drainage pattern to the southeast to the existing retention pond, whose volume has been confirmed to be adequate for the retention of the 100-year event. Prior to the discharge to the pond, the majority of the runoff produced by the site (Basins A, C, D & E) will be treated by a sedimentation basin at Design Point 2. Within the Appendix of this report the design calculations have been divided into two sections: Hydrologic & Hydraulic. The Hydrologic Calculations contain the precipitation maps and calculations, Rational Method calculations (C-coefficient, time of concentration, basin/ design point peak flows, and summary table), and the retention pond sizing calculations. The Hydraulic Calculations section contains the sizing of the swale/ ditch sections and the culvert analysis for the project's four (4) culvert locations. Also included in the Appendix is the Drainage Map which has hydrologic basin locations and locations of hydraulic features. B. Specific Details Basin A (Peak Q1o0=13.20 cfs) Consists of the 12.86 acre area in the northwest corner of the site. The peak runoff produced within this basin will continue its historic path to the southeast by means of a culvert (Culvert 1) under the proposed track. This is the design flow for the culvert at Design Point 7. Basin B (Peak Q100=11.95 cfs) Consists of the 9.38 acre area by the entry to the site on its northern side. This basin contains the truck on-loading area, which will have a small IW ditch that collects the runoff and directs it to a Culvert 4 at Design Point 6. Basin C (Peak Q1oo=27.18 cfs) Represents a 23.88 acre portion of the area draining to the site's main retention pond. Basin C is predominantly undeveloped land. The peak design flow produced within this basin is quantified at Design Point 5. WILSON & COMPANY, INC. ENGINEERS & ARCHITECTS WILSON Page 6 &COMPANY 999 18th Street, Suite 2600 Denver, Colorado 80202 303-297-2976 Office 303-297-2693 Fax Basin D (Q100=35.80 cfs) Consists of a 34.83 acre area draining to the site's main retention pond. The peak flow produced within Basin D will be conveyed by means of a culvert (Culvert 2) at Design Point 4. Culvert 2 also serves as a means to direct runoff produced above the rail car loading platform away from it and its IW containment facilities to minimize the sizing of the IW facilities. Basin E (Peak Q100=58.97 cfs) Is a large 59.76 acre area within the proposed track loop. Basin E consists of predominantly undeveloped land and runoff produced within this basin is conveyed to Design Point 2 and the sedimentation pond via overland flow. Basin E also contains the rail car loading facility as well as its IW facilities. Basin F (Peak Q1oo=27.65 cfs) Is a 34.53 acre area of predominantly undeveloped land on the southern side of the area draining to the site's main retention pond. Runoff produced within Basin F is conveyed to Design Point 3 where a track-side ditch is conveyed into an existing ditch to the existing retention pond. Design Point 3 (Peak Q1oo=32.32 cfs) is placed at the point where new a new track- side ditch discharges to an existing drainage ditch which routes to the existing retention pond. Refer to Appendix: Hydraulic calculations for design of ditch section at this point. Design Point 2 (Peak Q1oo=91.63 cfs) is placed where runoff produced within the new rail spur passes through a culvert (Culvert 3) to the existing retention pond. Refer to Appendix: Hydraulic calculations for design of this culvert. Design Point 1 (Peak Q1o0=102.48 cfs) is placed at the discharge point to the existing retention pond. The necessary 100-year retention volume calculated at this point is 32.2 acre-ft. The existing pond has a volume of approximately 37 acre-ft, and thus the existing pond is adequate for the proposed development. WILSON & COMPANY, INC. ENGINEERS & ARCHITECTS WILSON Page 7 &COMPANY 999 18th Street, Suite 2600 Denver, Colorado 80202 303-297-2976 Office 303-297-2693 Fax V. CONCLUSIONS A. Compliance with Standards The report has been prepared in accordance with the Weld County Engineering & Construction Criteria, Weld County Code and UDFCD. Any deviation from these standards is not intended. B. Drainage Concept The drainage concept presented within this report is effective in the control of damage due to storm runoff. The existing site's relatively flat nature and well- drained soil are utilized in the conveyance and retention concepts that are both existing on site and incorporated into the proposed design. The retention pond concept also reduces (or eliminates) the site's production of runoff to offsite basins or facilities and thus reduces its potential impacts in the development of future Weld County Master Drainage Plan studies or recommendations. VI. REFERENCES 1. Drainage Report Information Fact Sheet, USR #Am-USR-840. 2. Weld County Engineering & Construction Criteria - Chapter 5: Drainage Criteria, dated April 2012. 3. Urban Storm Drainage Criteria Manual, Vols. I, II, III; 2001 and 2010, Urban Drainage and Flood Control District. WILSON & COMPANY, INC. ENGINEERS & ARCHITECTS Drainage Map wEisvro &COMPANY 1 2 3 4 5 6 7 8 9 10 LEGEND BASIN RUNOFF SUMMARY SURFACE FLOW BASIN O1O (CFS) Q1OO (CFS) DESIGN POINT SUMMARYZ>N o EXISTING GROUND CONTOUR . n DESIGN POINT O1O (CFS) Q1OO (CFS) o PROPOSED FINISHED CONTOUR 5910 A 4.14 13.20 j o n MO E H - - B 5.15 11.95 1 31.35 102.48 PROPERTY UNES 2 24.02 78.47 N I j ° C 8.33 27.18 >- rt 4 o DRAINAGE BASIN BOUNDARY - M M M D 11.22 35.80 3 9.87 32.32 ¢ I- °'r7 O 3r1to0 E 17.79 58.97 4 11.22 35.80 Hi z r r) m SURFACE FLOW DESIGN POINT L.,_ O N, 5 „n • F 8.36 27.65 ww SUB-BASIN ID 6 5.15 11.95 Oz = p LI 3 I BASIN IDENTIFIER A 7 4.14 13.20 U Fl D_ \ \ AREA IN ACRES 1.000.30 X10 YEAR RUNOFF COEF. r7 \�� , \ I g001Ig -X100 YEAR RUNOFF COEF.NN\\ . SCIIS 14t►1- N: y... — —x x - =- - ��- — - - y — � X x • _ —�l_ � -- ill \ \ J I \.. -MEM\ —OHU— % ,N._.ti. � ' ` , ' 'MEr- L- i- Ma .X70, , \._ f`a\ 1 "�� / `- i7 c/ +ss ( / zK`\� (1 I _ — ( ����\\`� ` 5630. r, :�, \ / /, . � ii — , \` '. A ` ,I;, , B tat_� t ! , � 1 � � , ' � , —� ` % ;� �-, N\� ���`.:�11, �____ �� 5 / \ '` _ 12.86 0.18 ,_ _ r ® r f it 670 I f \ ` \\• N / ` ` 0 _�- 5620__ � \ \ \ z,\1 ) V�� ® �' 13.431 0.18 ® gh is ' S ��= 1� ! .-� _ �� �� 1 \ . ` A 0.37 ` - // AC. 0.4 I r ,,_ --3- I- 1 1 �� o . r \ - s-r / 1 a ssSp�. 1\t„, --cc,-. It 1 \ 5660 / =� $65�'F \-\.' \\ 'I. \ „or..,/, I , ...., \ \ ---- o \i k -- -----------\-______H - '�!-'- -_ — 56641 5662 — 5..� ® - . - :5 � - r .. \\\ � \. /�\\ `Y��1/��� .,\\ Gp� � r ` r �s r — ,r 'a , ` 1` I \� �il I , EXISTING DRAINAGE SWALE / V\ co }} ! 1 •,'.,A 561 %� ��l ��l��f d �� i? Y� �i i ' TO REMAIN m' ! \ \ \ �\ y610 y� / f CULVERT 4 ,. �� �� JI ! —r / ! / --- ` / , ,\ ' -- % 3360 = I i ,\1 r Z 56�p qty \ , `�l - \ ♦ —= f 1 I _ _, 1 1 c\'\ �� ,:,i - ,rte_ : \� , $ E \ / / / ? 23.88 0.18 , \ \\ Q �� \ r `� — / AC 0.3• _ _ STORAGE TANK b, \ LLi U , ` ' / 11 CONTAINMENT AREA ` \1. . 4 , \\\\ \\ _ 444) .\ \ 1 - ] .e \A A1 ` r I c $6 T 'i 4 1 A _ l \SO 1 ; REMOVE EXISTING ` O Q = I 1 I 1 \ '�' �/r g } ut°i l 21" & 10" CULVERTS l \ \\ft �� \, CULVERT 1 i - \SO 1 1' I l `� Z O O , 1�� rq F i I E \, a_ J U ,\ Ill $ / Ul J0 , 1aa i D ` I 59.76 0.17 / — —1 40.4 \`�\\ ` `' NI 34.530.17 I j I \ 113 0.3 J to ACI 0.3 I 34.83 0.18 % 11 sss / AC. / , — — —' W LU D \��\ �� AC. 0.37 �� �o 1 --- REMOVE EXISTING • z 11 �4\ ` 1 ___ __--- --- . , __________„._ . 21"& 10"CULVERTS o / EXISTING RETENTION POND w 11 \ / ` •••• : -1/44144A, i .1 I I ! — STORAGE VOLUME =37 ACRE-FT • O\....414\ . \ ,i\11 oG50 ' t ti30. ' y"/ r ./ Y \\\ \q' _------,IU11111111L' O ', /_,7-- ; ' = \.lam/��I m � J , \ \ i 'We 1 O ___ r .�!.. 5638 , / Ill \\ 1 CULVERT 2 t^, 2 ,_ t' 111 \ , �o� .2 ♦ \ �� . —fir"�,�' \ j / I�� • - I- z O \\ 1- 1 1 .,..\\ \; / ♦ ♦ \ / _ 5640 CULVERT 3 / / '\��'' % cr _ � w \ \ II, ` \ \ / \ ` � � �_ / I / REMOVE EXISTING' 111 O 1 \ 1 \ i11�#�� 1` l_ i 36" CULVERT , \,,, 3 \ 4 ` �; ♦ _ ---,sal ' 5 i �� • RE-ROUTED DRAINAGE DITCH 'J 1 1 / ♦ mos mum _ Dom_- y liall...m4.06j6, __-,c------_- _a) \ 2 \ t\ C C .- - ,, %............ 440,, -11:11— :1-3......49.-I y \1� `Y /� _ ----c _, RE-ROUTED DRAINAGE DITCH ` ' 0 1� V� v ' ' \-c-cL `� �� Al \ ' \'. , -� y / / J PROJECT NO: 13-400-065-00 u — I - - \'‘A_ �'-\,` (� I _ _ r \ - - -� -� '� -j -r /" - - ----- L ¢ — —cz 1 ) DESIGNED BY: MWK i r \ J - ill DRAWN BY: MWK R- CHECKED BY: JMG co co DATE: OPEN 3 SHEET TITLE a. • 8111 , �A� DRAINAGE IMPROVEMENT MAP DRAINAGE 3 � � SCALE: 1" = 200' IMPROVEMENT MAP U A .. � . zoo _ _ o zoo 4OO co m o Know what's below. �� � SHEET NO: Call before you dig. SCALE FEET C8 1 2 3 4 5 6 7 8 9 10 NRCS Soil Survey WILSON &COMPANY USDA United States A product of the National Custom Soil Resource a Department of Cooperative Soil Survey, Agriculture a joint effort of the United Report for 4 States Department of N RCS Agricultuz:c :tte d VVe I d C o u n ty , Federal Natural agencies including the Colorado Northern Resources Agricultural Experiment ' Conservation Stations, and local Service participants Part PAAP Niobrara ,, _ Y y. . ., 4/ , ' itel 4-. %b. an ---#a te 07/ fit de . , t'it F -il k . f ii . ;Jr _ nalltilTh- awanwan yr , is--p---4-4„," , tl 4, ‘, • .. ..-Itr... . 4 r,- It - _. . ,.... ifii; .- .._:_ „. - . _ ' It -s ,, I M Iq;It ..c..' -I' _ -- 1`' . ,rN*7 r y it • - t - j 1. I.° "fr /Asa 1:::,‘" ... ..2. •• ._. 1,‘ 16', ,mow •f ••. Of . g 8,000 ft " `� ti`.�' '`' November 1 , 2013 Preface Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation , waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment. Various land use regulations of Federal , State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations. Although soil survey information can be used for general farm, local , and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://soils. usda .gov/sqi/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda .gov/locator/app? agency=nrcs) or your NRCS State Soil Scientist (http://soils.usda.gov/contact/ state offices/). Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations. The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey. Information about soils is updated periodically. Updated information is available through the NRCS Soil Data Mart Web site or the NRCS Web Soil Survey. The Soil Data Mart is the data storage site for the official soil survey information. The U .S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin , age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation , genetic information , political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program . (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means 2 for communication of program information (Braille, large print, audiotape, etc. ) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W. , Washington , D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. 3 Contents Preface 2 How Soil Surveys Are Made 5 Soil Map 7 Soil Map 8 Legend 9 Map Unit Legend 10 Map Unit Descriptions 10 Weld County, Colorado, Northern Part 12 1—Altvan fine sandy loam, 0 to 6 percent slopes 12 20—Cascajo gravelly sandy loam, 5 to 20 percent slopes 13 23—Dacono clay loam, 0 to 6 percent slopes 14 References 16 4 How Soil Surveys Are Made Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length , and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity. Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA. The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model , of how they were formed . Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape. Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries. Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the 5 Custom Soil Resource Report individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research . The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned , onsite investigation is needed to define and locate the soils and miscellaneous areas. Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil- landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined , a significantly smaller number of measurements of individual soil properties are made and recorded . These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape. Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented . Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties. While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil. Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date. After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately. 6 Soil Map The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit. 7 Custom Soil Resource Report Soil MapIll iN ° ° 511000 511100 511200 511300 511400 511500 511600 511700 511800 511900 512000 512100 512200 512300 512400 512500 512600 512700 512800 40° 53' 11"N I I I I I I � I I I I I I I I I I I I 40° 53'11"N 8 'Ya _ I "1r'> t + illitts s o iii r NJ Tr - a w•_ mil/?r a r� rr - - -' 4I !� * - •1 r _ — N �• (. • , *. ill • ` _ f^ '�_ — .— — - County Road i ....ter " +' "` Tr '1 r. r'`F iA tr. sr 8 I T•. . 8 a, 11 1 . ! !•J LA I' » l'F .rl .µ1l .t.. ; I• In L�QQfQ� '""' ..TTT ___ •��w.► - - •�i�lan- ---c------5.„--:_ - _�t' • li i] +rte ( x iTr n rr -•tk �. • 1 1 � y � � 4: • .. "fL• ✓ -�C�.:�'. .•fr '-T/�riwt_ 1 1. sr st y in VIr 7431- t\HT: ! V� 4 tili romplipsitv -, _ , _ _ luig ams -�4 � • a v C _ J _ _ 111{!! N ! - s _ as . �y _\` ,.may „.- 0.ry 40° 52'32"N `rI '1 " '`J it 40° 52'32'r N 511000 511100 511200 511300 511400 511500 511600 511700 511800 511900 512000 512100 512200 512300 512400 512500 512600 512700 512800 N Map Scale: 1:8,440 if printed on A landscape (11" x 8.5") sheet. Meters g N 0 100 200 400 600 $ A Feet 0 400 800 1600 2400 Map projection: Web Mercator Comer coordinates: WG584 Edge tics: UTM Zone 13N WG584 8 Custom Soil Resource Report MAP LEGEND MAP INFORMATION Area of Interest (AOl) -# Spoil Area The soil surveys that comprise your AOI were mapped at 1 :24,000. Area of Interest (AOl) > Stony Spot Soils Warning: Soil Map may not be valid at this scale. ;',• Very Stony Spot Soil Map Unit Polygons Wet Spot Enlargement of maps beyond the scale of mapping can cause :... Soil Map Unit Lines misunderstanding of the detail of mapping and accuracy of soil line Other p Soil Map Unit Points placement. The maps do not show the small areas of contrasting Special Line Features soils that could have been shown at a more detailed scale. Special Point Features V Blowout Water Features Streams and Canals Please rely on the bar scale on each map sheet for map C4 Borrow Pit measurements. Transportation X Clay Spot Rails Source of Map: Natural Resources Conservation Service Closed Depression ti Interstate Highways Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov X Gravel Pit US Routes Coordinate System: Web Mercator (EPSG:3857) ;. Gravelly Spot Major Roads Maps from the Web Soil Survey are based on the Web Mercator Landfill Local Roads projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Lava Flow Background Albers equal-area conic projection, should be used if more accurate 4k, Marsh or swamp - Aerial Photography calculations of distance or area are required. ft Mine or Quarry This product is generated from the USDA-NRCS certified data as of ® Miscellaneous Water the version date(s) listed below. O Perennial Water Soil Survey Area: Weld County, Colorado, Northern Part v Rock Outcrop Survey Area Data: Version 8, Apr 30, 2009 + Saline Spot Soil map units are labeled (as space allows) for map scales 1 :50,000 •.• Sandy Spot or larger. • • o Severely Eroded Spot Date(s) aerial images were photographed: Apr 22, 2011—Oct 19, ® Sinkhole 2011 Slide or Slip The orthophoto or other base map on which the soil lines were 0o Sodic Spot compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. 9 Custom Soil Resource Report Map Unit Legend Weld County, Colorado, Northern Part (CO617) Map Unit Symbol Map Unit Name Acres in AOI Percent of AOI 1 Altvan fine sandy loam, 0 to 6 196.4 85.5% percent slopes 20 Cascajo gravelly sandy loam, 5 2.5 1 .1 % to 20 percent slopes 23 Dacono clay loam, 0 to 6 percent 30.7 13.4% slopes Totals for Area of Interest 229.6 100.0% Map Unit Descriptions The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit. A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils. Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting , or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting , or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used . Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each . A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments 10 Custom Soil Resource Report on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas. An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities. Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series. Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups. A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example. An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha- Beta association, 0 to 2 percent slopes, is an example. An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example. Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation . Rock outcrop is an example. 11 Custom Soil Resource Report Weld County, Colorado, Northern Part 1 —Altvan fine sandy loam , 0 to 6 percent slopes Map Unit Setting Elevation: 3,500 to 5,500 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 48 degrees F Frost-free period: 130 to 150 days Map Unit Composition Altvan and similar soils: 85 percent Minor components: 15 percent Description of Altvan Setting Landform: Plains Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous gravelly alluvium Properties and qualities Slope: 0 to 6 percent Depth to restrictive feature: 20 to 40 inches to strongly contrasting textural stratification Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 15 percent Available water capacity: Low (about 4.6 inches) Interpretive groups Farmland classification: Farmland of statewide importance Land capability classification (irrigated): 3e Land capability (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: Loamy Plains (R067BY002CO) Typical profile 0 to 6 inches: Fine sandy loam 6 to 22 inches: Sandy clay loam 22 to 27 inches: Sandy clay loam 27 to 60 inches: Gravelly coarse sand Minor Components Ascalon Percent of map unit: 5 percent Cascajo Percent of map unit 5 percent 12 Custom Soil Resource Report Peetz Percent of map unit 5 percent 20—Cascajo gravelly sandy loam, 5 to 20 percent slopes Map Unit Setting Elevation: 4,000 to 5,000 feet Mean annual precipitation: 11 to 13 inches Mean annual air temperature: 52 to 54 degrees F Frost-free period: 120 to 160 days Map Unit Composition Cascajo and similar soils: 85 percent Minor components: 15 percent Description of Cascajo Setting Landform: Breaks, ridges Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous gravelly alluvium Properties and qualities Slope: 5 to 20 percent Depth to restrictive feature: More than 80 inches Drainage class: Excessively drained Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 25 percent Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm) Available water capacity: Low (about 3.9 inches) Interpretive groups Farmland classification: Not prime farmland Land capability (nonirrigated): 7s Hydrologic Soil Group: A Ecological site: Gravel Breaks (R067BY063CO) Typical profile 0 to 3 inches: Gravelly sandy loam 3 to 24 inches: Very gravelly loamy sand 24 to 60 inches: Very gravelly sand Minor Components Stoneham Percent of map unit 14 percent 13 Custom Soil Resource Report Otero Percent of map unit 1 percent 23—Dacono clay loam, 0 to 6 percent slopes Map Unit Setting Elevation: 3,500 to 5,500 feet Mean annual precipitation: 14 to 18 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 140 to 160 days Map Unit Composition Dacono and similar soils: 85 percent Minor components: 15 percent Description of Dacono Setting Landform: Plains, stream terraces Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous loamy alluvium Properties and qualities Slope: 0 to 6 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 15 percent Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm) Available water capacity: Moderate (about 8.7 inches) Interpretive groups Farmland classification: Prime farmland if irrigated Land capability classification (irrigated): 3e Land capability (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: Clayey Plains (R067BY042CO) Typical profile 0 to 4 inches: Clay loam 4 to 21 inches: Clay 21 to 26 inches: Sandy clay loam 26 to 60 inches: Gravelly sand, sand 14 Custom Soil Resource Report Minor Components Nunn Percent of map unit: 8 percent Haverson Percent of map unit 7 percent 15 References American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing . 24th edition. American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00. Cowardin, L.M . , V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U .S. Fish and Wildlife Service FWS/OBS-79/31 . Federal Register. July 13, 1994. Changes in hydric soils of the United States. Federal Register. September 18, 2002. Hydric soils of the United States. Hurt, G.W. , and L. M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States. National Research Council . 1995. Wetlands: Characteristics and boundaries. Soil Survey Division Staff. 1993. Soil survey manual . Soil Conservation Service. U .S. Department of Agriculture Handbook 18. http://soils.usda .gov/ Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U .S. Department of Agriculture Handbook 436. http://soils. usda.gov/ Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U .S. Department of Agriculture, Natural Resources Conservation Service. http://soils.usda.gov/ Tiner, R.W. , Jr. 1985. Wetlands of Delaware. U .S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section . United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual . Waterways Experiment Station Technical Report Y-87-1 . United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual . http://soils.usda.gov/ United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.glti .nrcs.usda.gov/ United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI . http://soils.usda .gov/ United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean , and the Pacific Basin. U .S. Department of Agriculture Handbook 296. http://soils.usda.gov/ 16 Custom Soil Resource Report United States Department of Agriculture, Soil Conservation Service. 1961 . Land capability classification. U .S. Department of Agriculture Handbook 210. 17 Hydrologic Calculations WILSON &COMPANY COMP. Mi1k ' DATE. 1 Nil. oN LOC. )3- L100- 0 C v o FILE N COMPANY CK. DATE. PROS.I sus,. - He gird r4LL (Attu/ 4 r2-G-t) SHEET OF I a OA i IOUS I O r1 / )0/4-A- A7 L/4-S „2 - Vo0/9F 3 -�� QEG,raA) A- (sire Arri4LH D m40, SEE A n Aci4V A44-P3 t 2 A410 100-vste 1- 1-1014e RA:C(3174 LL_ 1 - O ) Je I- 0. 709 6(1 ) (>4 )7 I , c7 t o. L/ 35 X (K3 a oo '' ) ? Too ( 3 4 a2- ye, die L s71-64 4-i =.D vA w E Y,0 ' 100-ye� l-- ifI 2-sir,- 4-rfl) VA-LAf i 2 - Y2 , tout Feo14 MAP =a 1 . 3(2-- 2- ye, 2L/,NR -god X44 P 73 X - IG6- v2 6 - 0 rE044 /14_p => a 1_ y /06-Ye -- ► eo M k P /1, 4,2_0 2 - Pare x`zcJ 04) n ' "? 69 Vvim = 2. Z/ 5 y4 Sic MtAcYFO Ptoi OA) AAA MIAs G,u2E(Q 1-- J-1- e RA-TA) FALL 2 - Ye clfe 10-ve 25-- ye cc(-2-YR O) -- Ye 0, 92 1, 31 m 1 , 822 2, ) 7 2 , LK- HIGHER volfriptd- SNULD LYAUHSilw iCA IAEDUTKYI INTO JTY•DISCItLifiL MOTIONS i Y 109 108 107 106 105 104 103 102 ?0 41 • 41 9 r 9 T --T— — ----- -- — -- — 9 _i Q 10 9 9 1� 1 1a _� , 1. -- —• — --- .— .—Dr — — 16 18 -- -- ----r — —___7 — — — } 7 1 I 1 6 65', 7 / 1 1 J 1 1 r ( r 7 r , `..� ` � ,S,�i, ' ,' �tJ �.(.. ) _d . , �..8, ~ * v)t. l0 C�� I /\`\( I f 1 - 1--: .__ H i • ar ( I.,\ t . I �� ) '` � ; �� .� �, 1i ; )72:•1• �S 6 I1\ PROJECT I�� 7i 1 ..t/ �:) t' ' _ > 11 V LDEN • t " . . .. ... C` 1 - - l STERLING ,e ; ' I (- . � ,:.� t • �„= --- s LOCATION 1 1 • 1 I f ' 1 , 7 e l( '' J C. r f lii f• \ Q '�' C� l I. 4 8 ,.. ,`, )} CRAIG r ' �, Jig \Z ),� • - 'I� ( : �� ) 13 6\ L N -t ` {i `i' % ( 6 I • f ^,� �, _, �1 1 �l 9REELEY �. — �_ _ ^i� — ri.�,. I , ffff . 7 r • r:`' • r: ,.., �; �, • 1 ., r•10 � �1 , �;`.�.' Li* ��• I .:. 8 � 'ARTESIA; . , .) • ( =:g 3 9 l / X10 0' ,` 1/ 6 ) r r . , 11 �- •r'• - -p ,l �. . , .i .. ,), #, '.��� .e � ') \(. r`-5i .. ` /'�J,•� g, Irl ,)�, • ) �• ,I ' 1 �SI/ ^ !' ' 1 l , ,• a ( r,....14!.__.,,,- f' \) , ,'11,, a , 1210 E Iiii} is, I I AKRON l ECKLL 1 r i7 'tl• . . ., r•.. 4., ) 2 / ; I� 1 •eJ J aJ , e 1 a 10 ( a , • „' 11— ( 1 ;. l_.. r 1 • I r • 1 1 } 40 -i--H- 1 '- . -- t -<- / ' t '\`6 �- . 1 ci • f�"-, 2 tT t • t'rtN� s � A ?LJYEr/ + ✓ `` • ' 1 , ; ; ; 1 , • 40 • • 1 �" 1- -- �}^- 1--�_ ; - "T } � ' , ; f T-� \a. I. _ 9 6 (• i• U \ "' — , .54. :) � '� r )1 ' 1 1°11 1, 1 , 1 I /2- 1 .} I r' \ '4'42- i . , . 4- , , 5i :, r ��117 16 I _ i� ) - -1 ,., A',iON I '� 1! ', r 1 `""'7``L -f v-- ` 10 J� (1 41------7dUrik 9 w'/1 gam , _ail ENv R _. '1?_- — .... ( ; ;`8 ���` c torn 81ate�L a c '.. - (s , - 1 • 1 1..�' c1L il ' I . t i , J;.. - - } • 8 •-... ' 10' Th_ n 13� -� ) I • • ' ' :� iv i�•' `',� ,..) ): 1•� ,/. ! . ` , .` "� r�2 i , b\tip il 3 rr �j� ~ ~ I7.. • • \ L' �!`. • • ) - -)1 \ % 72SY1 •NI 8 _• -- �1 Q ,.,./_' .11 . 1 r.f , 1• ---2—__ 11%22.. "1ip . )1 i < '` ' �) l6 BURI .cG1U.J l 1 • } -� IS )( S f 1° �� 1\ 1 /•� ' — „?j g ( r' 10 1 r I s /,,, i { 1 '�- ) \ S \y .` �. C • ..� ;• 1.,r S\),.; 10 St ( cc f e �� 14 r !i. , .• �• 6 ' �� . `- io • ' II 2 �' ' j i t\ �a ' /• \ _1S `Z %I.j jr) �—' ri r HUG ) 1 -I. 3 9 8 ' ---� `_� l �r1—x-312 ! ;c VI' `�. t Jt, �` HARTE , '1' lr 7t S' 1_ `? F-- -- — -- _ 39 Is ./... , fir' • !•109 7 • i1 (� t 1- Cj Vir1 C. > 6 I;. , �, I Ai I e .i e `CS 6 1 7 �)} .) ?, 10 1+ n '� 1 < \ I ' t _ — .- .I l \ CHF [NNE J ' r. t g r. `' ,ice `• °�c 11 =� i • ) t COLORADO , ' 1 • WELLS ' ) ,_ , I .;; ` ' .-----9 ')S� S. -- \ • ��f p r • r 11`C7 lz ' ` < .6� 1 s { • ,�/ �.... r 1i ii lo' ' I S 1NGS I 's rb (i\-,...-.) 6 s f t - f, 9 -- I �; I a I ,zs ,18 1 • '' 1' `� , �; • Ji1 7 •—...••mss.-t- ,, 12 l I' 111 C ,C(,� f,l� �' _ r —'1��"�"Y. ,o r I , `, II '��� ' (/p -�' 1 �•, 1r, r , + I� '1 I: _ �`) 12 ` 11 1 s S" • IS I 1 --- 1-- t al 1, 1• -1 ';• o (-- L''.�1 . MO 1 ( • 10 .i I) 9r, ` a te. I :'�, + `'S�� � (1 /v; —. _ .. — .-� -�`-- -- — -- T � tIAS1'lELL c /Li, 1 7 ,• �9� ( ��L' o ' 1' •�� ��,�111 , `.NON% � ,_ r L . i f�; \..,, 10 ‘118.. .C\1 c)-' • p : \f-s-,--- 5\._ 11 ' -8 i L ) , )i. • .r 11-10 I ? .II S176 `.3\` \,,\ 747,,_ ) \ , . io 'I flr . -1 10 1 `�1 E \`6 I is 5 P 1EBL0 f - 1 _ — _, _ r A---( .7 - _. _ _ r _ �� . I � L LAi1A 7 • - 1H � ` : 7 Nor�W 1D, ) \-�\8 !s\ :c 'M 1 GiiE . i S `, .-' _ - r•• -. 1 1 11 _ I 1 • 6 rS `�' ,� t. , 1 r t o , ' r ,,EA K--1 10 c?� _� . , I ---t — 3 8 s . ' 6 • , 5 I) 1i� t:J .... r r— i2 — t I1., 8? �] • s. 11/ _ ; . — • LA • 1, ) {i � l • -I' 101 ) :11. Ill 1t v 1�./tl �9 / _ '��' � / 11 • t s t> JUrJTA;., ,� �.I ' S `•l,` (;•ti J: -� I i ,41(.:.‘1 r, -i.-7110 ' ! / )2 . ��,. ' x �''4, , �• 2?- �' 1� _ t 1 4, .• ' 1 ( ' , 11 ••.'f- 12 11� J 8 6 I• - / 9I. - -16 14', 1 ,�, ( ��I V I • , ,a i, � ; ` 1 \f 1 1 1 5 rS J ' �.1 fI 6 '`(` 14 . �s I l o -40- -- _ -r ._ _ —\ V -"i-� 16 �' _ . -= L6 V- v _ }, , �__ -- Sa I U r 11 \ WWII s, NBU L — — — -- r \ ) � 1 1 -44 n- 8 �1� ,I 16'�:�. \� �r ,�`1 Lui �� � � � , 6 , :::(:./(1118 I ` /) 11 �• r ',p 1 1 �� ' � ; l di �I ) '' 1 '. AL . YI0SA I 1 8 ' L,, - ' " . 1 SPRINGEtULU 1 J ! + ��f) I U ) ) 16 ,j�.1 216} l l " ' I I 8 g ,t L.I )� 1/'/ .... ,5 ' �` ` (l 'r 8 f �. . ICbRIEI, : I, �� l ^{� ' e ‘ V� ' (� t —j VaI IP ' 'li' t' an /� 16 \ n. ba j) / I I ' ' f•/ ip /#:..9 I. it, , ; . ..,• (. \ t (� ( ' 11- 1 16, g 1 - ./ l ` Z, ,'� I 1 s j,. .S ,.�.>l.. I 1 S 7 r, , n �1 Jll S-e 1�, ! J �R,INI D — -- ., a • � I 2 \ __ fill ) 1 - ‘ 1 . . 1 . ,.....<)::•((....s\._\17_,..c? s o ( }1is 7 1 ( J ' e, c. l `� i82 1 2'1 ; • r __ { 5 •` 3 7 ,�, `i i' 7 S (Th a 8---s- C - 8! .0 f ,, 8 { 8�� \ 1 ' L. ._ .-4 - -I .-4 -.- r r , -"' • 3 } 8 8 1.- •<:—.7— I— 1L--r---i-- r-- I r + -I--r I--'i -i -��--( � �..{- r-Lt- F -'1 LY '1 �I-,- 1----I-- /,,(iy ' 18 i—_t-- 1.,.. `+— I--l s—f-•—ice `1 --t �-�-E— --i --r•�--- , 9 • 9 9 10 11 11 10 .9 9 10 11 1415 15 15 16 18 .. . 18 20 . COLORADO NOAA ATLAS 2, Volume Ill • - Figure 20 , . 10 0 10 20 30 40 Prepared by U.S. National Oceanic and Atmospheric Administration C• --' '- '!- 1 Y MILES. National Weather Service, Office of Hydrology - • TENTHS OF AN INCH • Prepared for U.S. Department of Agriculture, Soil Conservation Service, Engineering Division . . . - ----- 109 108 107 • 106 105 104 103 102 ' • � ._ , . —` , oe — ' 107 106 105 �, � � 1� , , ,. .. , � ;u '��, ��< , 109 104 103 102 :t� . . ,�;, ; � �. � ��4� � ,� � , -� 41 . v � � 20 � � , i , „ . . „ , : �?��� i , � Y0 , --r- - ���� _ �_ _ 20 12 2P201h 1820 2 • 2-02fi 26 30 �j � Vii ��if �l� � iit , � i � � _ _ _ _ _ 34 _ 38 41 , �i� � _ , fI h � — r- - - - - - - - -�—r �T — I �� �., � e . l io '�, '-b 3 G `` n �- �.� lira {� 1� i�i� 1 / . 1. �� . � � 8 `$ L � J �' . ( 6� 5 - _ f � } n4 ~tl i ' �i b `e �iJ b i. ,t \ ' ( t � . _ r J . il � �l,/' I B C �1 /� r � i F � . � . �i'� , � � 1 � ,�a ¢f- ' a. A 2B 3 � � I � ! � � �— — , t � � ti o M � ,i � � �� I C � � � �� ♦� � � �i B � � � I � 1^� nS � 1 i� ���� /�' � � . r k � �'� ` t� �8� ��A : �l) LUZ� ' � . : , ��� � �LDEN � _ � u � � ) �jd � PR�.� E�iT � $TE2LING� �'� � � % � I� i���r ! � ', , �� � -� � I� cl 1 < �v � O � A� °� S v " 9 � , �, LOCATION � /� f A ` a' 'q' ' � IB t. c l �- � � ! CRAIG r i��� tB 1 . " � � � y 24 . ., � ib\ — — — —� � / _ � �- .�. .. �� � .._ i n. ,. , _ ' . � ��. . ti . �iLl� � - 1 � I � � i � � � �o � �� �� .. -....i _ _ ` .8 � . �� �� L4 � '� . S' .. . �� GREELEY � — _ _ _ _ — _ 1:- - - - - � . � � IB r� (�� � � �"-� v �' �� I ` .)i' , .e�� �� �2F � , = ''�� � � ' � - - Ti i i �� r � a , a 7/ �I�, � 26 . 2 , )i, �: e �� • ' I i . . RNTESIAi n �.) � �S� v - i. �_:( c, � 'i �\ �L� ��" q..irt. � i \ t. � 6 � � h ? . , � � I ' I �-. ' (� 9 O � �\ � i �� -:Zl � ) t I . L4 (, � a b \ 1� � \ 1� ' \ 4i1 . I IB , —7 ' , n �+ �-�t ,l � �, � a .�,r � �� � � � , 20 v�� _ L .l � �I . -'�� V � ' � _ � f T* IB � I 'S , � �,, a '�/ �) � , � �- �� � �� �S ' 18 � � � ; !'Lo� _ > _ I' 9 � - � � � � . �a L7B„ _ a2 � � � . o. 1 � r, ) - a (1 yl - ,. L .— I � .- ;_ , � . _ . r . AKRON . CKtEY � , J e �i Z� � ���tv�F�Ef �:i�4 ' , � R M1 e" � ! � - � Fc , � � . _ � _. i. - � � • � � - . 40 , � . � 1 , � �, � , 18 ti� � , , _ � , � � �> 20 • � zB e oe � � , � � i � 40 � � � �S (� ��� r � � � � � �: � u � —�7 +rF -i - � .,� _ — • i ��I s 4-'� i . . '�'��F �T t -I-'-F-1 -�-'� �. -r� , . � B � ' � ���� r �A��e�16 � � 1�� � . -a � ' - � — - _ .. � . � . I � . d Jr� �1 C,�' � �. ' � v S r � � � �� 'J �kl 1 '�� � 110� � �1� � " � ' �� . � �j�� � � � � J 7 . _ . ' ; ' � f . � � ��� �r " � ' .�� 26 � 9� 30 " � 2210'�`� � , ` � 10 �� � ,� {' e.��-d ' �R2� � _ ,�!n � . I � � ' t \ i �,� -l� A�� ON � .`� i J � ��/� y� � �N�ld � .r ` � � � 22 ] 1 . . ' � ��' �. - �u,. � � � � � 381 R _ � � _ .� •� .� _ � y .— � � . ' 1� . e �� ( �'n �gPelale��� a �q - .,20 , < . � �22 ` . � iz _I�y'7 �f� , -�� - i - - � — — � — — — —� � _ _ I . �� .��Ll� ��) ��c.�r>� � L � � :. _ � �� i �� ! t �� � � . � � - '� � �d � �� � � � � � � �� � c � n' 1 L . - e . � (s � zo ;,� , . >> `� . ,. � � � . � .� , , � � � , ���—�9-y��9 , ,� F � � - - �- - - , — T � �. ( . � i � 'p ' . � lr � � , , < � y ! � � � � 1 I; 4� �.J� '�lc� ., � ��, �ii � . ,�-2 � r . pp "� IBio � 22? \` i J � . , _ d ' . , . �[6 �p '162 V �3 `� - —k � .I I - � ' I .� , � l . / � _ IB �. � � �i°�- - - i " 22 ,. ------��� _ ` � - .ua : � `- 4� I � f � r � o� , � �5 1� � `� .'- � . � I0i�O -'� '� � 4 � � 1 -� ' �;E� � � 22 � .. r�� � k �� � � � i �� - � � � � �" 1 � �� .� � '�6 � Z� �� i �l1RLIN�TO�. .. � 4 � l �uN' � ' ^ r ` ,, o� ~ l � n � 'o j ; . . � � d. � , � � : _ _. � � 1 r , � � , S '�� � I9 5 � 'v . •_ � � � . �� / ��.`l�� �,� �, �� .`/���` � BI ZB �ID �� � � oe %,� � � �`-��� � � ' � i . 1 �� HUGO � � L � `�� � 5 � �>> � ( � � .1 i � , � , L � -� �-. - � 1 � `i > � i 39 � , 10...,. , � :� � ----�ia � , ' `�. � � �� Jt�,�6"� � �S .. . � � . .�� � ( BS 14 ��U ��. 7 � � � � �� �; I � �V � - - -� —� S � — i � �-� � �_ , � � `-_ F • — - - - - - 39 is l � 34 ' �'r� 14-� — 26 1G f_— — \ \ g .� `� , � � , 1 '� � e 20 � / � �'i ) �l� , i ,.1 4U �i � 4 p � 0, 41 � e ,- �r . I �i � � i . I � � �. �,. �� c Z2 I � _ J ENNE � �� � s �- , � io . - � t 1 t r . , _�.. � , � `o C , �a' 1 e _ � 4 �� ' coioaaoo t� v l - i cHe � �I . > � � _ � e. , � � � P � �w � '� � _ . � �i 28�t 96 � ' s INcs ,s �� - - J � � � P • weu5 �. . �� �54 . � 2Y ��'—� . <^i � — � t/( ?� �� i� � � � • ) �� 2224 � ' � , - '28 � ��! � ' � � 38 � I � . � ; ` 2 8 . _`� , '1� � I . le 1s�1(l. � G =, i. L, . � � ��� � a J � 24 , 1 J -'t � . � • 2ti �8 6 , �_ �- �ie � . � � � ` - - - - - - _- - - -,..i - - , �,{� . ��o �.� � � - � �� � �� � 2 � , �� cu I � � . 28 � ` �� l fi��, . � - - - - - - - -� . -I (� f '�� . , � .. r ;ll ;, �, --� z- M� , �' � , . �- � / i �h � , , _ � , • � L`� � '� ��� >,, �� �� ' • yp �' -� � )Ul_ '�,� �r � � .. ° � � - �. ` - � } � � f � �� T HniW LL � � � � l� � t � s _ A � ) ! ' I a . , c�_�� ��f� — � �g 1°i� 1 2� <.24' � `� � _ 12B 34� (/�� � �_ � � � • � / � � � � ` j J��� 6 . l- '� �� l r- � � � � � 1 � �:��J i � �� 3 % � 1 � �� � � i� \ �1 �� �� J a �' �;� .. \ `�� �d/N �, i T� �. ,, Jv� 20 ._ _. _. . �4-' � . � ] � �., " 4 � I ( � e ' i a� • � � ', � ��onio. I � I l � 21� ,�(Ij'74 � V � a I s � PUEBLO � � _ _ � —j � - - - = _ `? - � �� •- _ �e, J I : � ��� � �, �i ,,� a , � '' � � v.iz -, � T , —� i - ! - � — ;3 i � , .�, � � �, � , ,�. ; � , ; „ � , �� �.r - .J _ ` � � � `' �' � rr r�w � �� 10 �, � � �a o ^ ",� C ��- , , � �� � , �� sR Z � � � , '� ; �� - , �'�'� � � _ ' _/ '� �nnina � S 24 � � o \ I � 38 � � r � a ; �P� �' � � � � �x ' s - „ /`i17 ,� 20 �� �i e V I � — _ 38 : , � � s , 1 �' � _r � � � i � � � - o. � � �2 -� ' � . • A �— � � , , ' 18 \ � _ , z ` '�`�. � �t) � �j, 0 26 ! � � � iuNTnl! � ,�i`. �_ � � � 1 , , _-.t � � � � � �� ��= ��6� �a� � � , � _ ��_ � r � - - 2 � , g�� � - - , /l, — , � � r c ,. � , 28� ��� � P4 _ � a � _ _ � � �1d i�s. - �7; � a � � � � f' � �J ' i � �` f1�4 � �� 31 30 , 1� , ' _ 20 > � ° � � � '° l36 T r � � I � � I � � � � � �3Q " � �3 t`�, � ' .�7. io � 2 ` - tio- — — =� �- . . ' 7 � V � � �)�� - - I _� � �, i „ li'r, � ,gp , �� , � � : � � , � f-�- - -r � . � ,, �- , . � r � — �`, � ,-, .y � 1/1 . -�� � � San I _ _ � � ���0 0 � fN LS� BU ' _ L — _ I � s ` .. / /r . � . � . o �i �4 �,1 . � � . - -�C Luis y a. � � , Q. �� , � � � �5 � � _ — � — r � � �, -� � ,� <e . ' 1fi <B � �30.0`� iz � �_ � I ' - J � �� ° r � L-� �-. ) � . � i � � � -, -> /"? � L� t ' I, f" � � � , � � �� 1 , 18 28 � , 4� � . U � 30 � r �,a� 8 � � � � I . _ a'mosA � � � � e � � _q � �1 � �� r � , 0 ' �� �0j � Jq ' �, � , p �;,� p ` ` � �� � _ <, I svaiNCFiao i inie P. Cbi 7E7.� I '3 1 �� I i , . �''— 1 � 1 ) i " i �� C. � v � .r � � � � � ;� � • � � � L � � � , , � I �, -, � S {�i I � t�Ile � i_ ' � �Jl� C� s �` � I ' ; .I .. / 1 ' ' �� `: �' ` � � � � ' � � � � —"I—Y—' � . I r 3�•�' {/� � � � � I ' � I 1 t � I) � � A 'ill��1�. � - , (_ � ��l �9 ( „ n C ` � 21- ' � � �' � �•' I i t' � ' ( ,� '� 38 ? � I I ` o� 1. � n S �� ; , . � 2k' ��l i � �.� � � � � �, 8 � � s, � s � � - i � ' ;I. -.�1L � -- , �f -: : 90' �� � .� a � c � -�l �RINI F ` � � ; � � � TP� 5 a Ia „ � . � L � ( __. 1 � � 37 T'Y' I_ L-r—.— ��. . 8 ° � �� � ( � � ... .. 0. .�-� d � 6 � . .�� �-, � � � � t I � � n� . ��� i r ' � ' S � J i z'1 � - I � i . ��. � . , � e ' / ` � � �� � J . S � � � ,� �. � i32 � '� ° �_e1 ' ' _ ^_ � � � 22 12 I I- ! � t . i'—" - i �,�r ,r � o e-I� - ' 26 � � � � 18 I i .� - ; . ,� �A `- � � _ ��_ �, �L '_�{ � - 37 � � 12 24 � '-h +-l- I- I � - + -+ �-- �� � ! �eo � o � Ml � � �� �Nonn ar A�s z, vomm�e i� g 3�3� 30 3842 �� Figure 25 �� SO � .. . . � � � � � 2� 30 40 PreDared 6y U.S. Department of Commerce ' NetlonalOceenlcandAtmosphericAdminlstretion ISOPLUVIALS OF 1OO-YR 6-HR PRECIPITATION f.-_-��-�� MILES. � Netionel Weathar Service, Office of Hydrology IN TENTHS OF AN INCH , , I Prepered for U.S. �epar[men[ af Agdcoltura, � Sall Conserveilon Servica, Englneedng Uivision I 109 100 107 106 105 104 103 102 � _ . i _._-_-- . - __...._.._ e__._�__ _._��._��... 109 108 107 106 105 104 103 102 _- % its)I 41 I2 2T • ------�-- -- - .- 2 ,1 ':'14, `_ �_. 1"4.12 _ ..111.-- 111.,17,.... „E4 �. ,_16 • �� . J �.. _ 3 l l _ 1�J @_ . _ _ ._-_ _ 10 2 2 1 - ------ 2-1- 1 - - 41 i •1 ! i s f , �, , ... 7 j Nc S-� I ;'\ f i 1 ! a a 71 �, ( 7 r • •••• . 1 } ',1 �I ( 10 i a `�N ,L ► 10 c� -✓\ r—` I1 — —• c :,... . 115/ ,{ �,,,/`'� 7) i,7J c.. , .Z` :116113 V DEN 1 " .. , JG \ivri R E T — - STERLIN:10 L3 18 � • ti • J\NLOCATION1 • l 4) s:C• > > • °� , : a �; ! f 10 J 1e CRAIG r — Sl• r , _.. Z 1, � I I — — .1 /;. ' •1;. _ ^ • 10 , ;,� 12 1 \' • i -.r ` X \GREELEY I _ — _ — -- _t ' , Ls r '; ,• 20? ca I H 10 • A �, y•••- _ \--, \-.. I 1 •, ' -• 7; I ]2 <:-.i 116 �1 ' ,. 'f '�' 11 �, ', , a 22 \ 1 • • . j •10 A.-.yin 10r � C t � � . # ; r /� j ,�,;' ,.,: -o ,�,,r J��,' �Bi` .vl / it�lt.. �� r J � S'�" • _> . _ .-�It . _ . V _ .. I 1 .c • ../ 1,1a ., , 1..r. ' . \ 'N l '1 ( �s •, 1 C 6 i ` S -,- rI 9; .- ._.. . ) ( AKRON 1 Er Y,IE 1 1 > > , ';� 14 0 , , to t. 7 . ��= 'I _�- .1'� ._..... ' • • i'• /I t'v J� ti( , .' i6 �12r u•^ ► 10 S ©� Y.. 1r ; \ / I ' ' 1 '., l .7 . 'a ... 1(1h 1 . CKE 16 . t t10,1 'I al `c 1, �> , = ac ULDE1 � ' f , _� i i I --� 40 4O . — — .�. I >, / �� ! lilt,� ! 1 ' — r �� + c i I ' l I I I �" '1 ( ' IT "r—' -t , I 1-I--i•-- I.' i . I I _ _ ! I .-," 7 , —{ (• .— i f i, et 'f' 1-" i"'\.6 _'I_.., .4.. .4' (4 , 1 , I ` 2 • t 1 •a 1• r fJ ' 11 ``, �/' —e 4 r-,,( _ , \ 41- -J _ _ I + ; I • ' , 1_ -J1 ,) , ' a 1i 't s' i • ... __ 1`l, oy $ l 1� 1 . .. 1 120:1 j a � 4 ,i„ /;U' , (�: -)• to' ' • �l :� II k f ,. �i • f i6 18 ; 1' ii - A� i ON CIE.I.:�, , ' 7 , I ..ti r� �) 20 20 '16 c, .....:.t ' -t , : 12, ' _ . } ` • u` +ENVER t? _ . — — - --' - - I, s 1I .eI'h t Moan , .. .Polaleau Via ,, l.? • 14 d , ,� - . 1' • 1 ` ' c Z. ,f ._f14! , .e20 • - `1 • tin city '1.) . . . . . r ; �� 1� ``�.,� • 1 6 'i 1 p )./--- ' •`� •�Z 2 �' 1 •- -- . . '....1, ,;,3'.�:}5\ F.-�i`..r• — �� 1 c ,r `: X11;i' :: ' i E w > -, "' J U i1 ‘'. 1 , r l2� a �s s ' V)+ - �_. . ' 11 , 12. r J- 1 N1 C., I) , 16 ,t �, l '� 1 , t,a, ;.I`'• 8 , .. a'I > 12 r • , 1 `\ - a 1 ' � 14 • 12 R , !14 .1. 9-,..: . � \ ( 1. I •l ^ - i� 1 � - -- ^.- ,',j. ..._ _ _ ,14 - • ' • 7 :, �to � 16 f'. (- ' L f16' 16‘54-11/4. �: ,2 ' , "'" ` ` 7 / J • s ' - - - J • �l. • I '''-18 ./ /2 BURLINGTON • 1 is � r1 sf t 10 1. le �. , 5 to ,. { • ' F 'J .LE , C" 1• , , �t.• I . 1 II ,• '� : / .,� ,1.:, � \• �, , I 1 l," \� �S� .! , \� • l(lo ' / A I� '. J HUG ? 171_ G AN / / .... • • ,,o . • c Q �.} 1 �f pd I 10 a 1�1Ci r ' , G t TOIz 1 E 1 ) 10 , t S ; ' I r ,�,(1 ' , — ) " i , f ( 1 1 39 � C. _ 1 c 1•0 !' i r� /`,r �� . _ _.1Y. . • �;- HARTS 18 ,,9 1 i 11 ?(., 1 , j , ! • ) 1_, .__________i _ — 2 39 I` r - : is - • !-- 16'.. JELL _ la;, -14,W (8 f i 1 �1 c. 12 �'� '• ,jr r // 14 •,o' _:1) �, t . ?.rr-1.�1 " .- c .. \• , • 16 II ) I, r ` a l- '- I ; 1`` - 1 f A: 1 a ..i ,,`7 �.s � .` . 7%• •� �; ,to n_ z � � � - �,�J � � _ ,J (--1c CHEY !„E '� COLORADO c,r 12 1 to :� 10lfi IZ ' 4)� S C lfi i s INGs t4 [1, d t • • ��:, J( • ���. S�i6. \. 5 '' 14 ^" c -Ir. - 6 $ 10 J 1 , t 1 1 a 1 `S 1 Sr V,.,�r ; «... __ I {JS '7•� �I N' l � ' f 12 i6, (1 , . ^ , i - • I i S I - -- • 1 • a <<11. c% 1 14v , ') • 1• ___, �;� / 1 ) ,� ' L \i �, ) 16 9 a I'' . _ �\_) E-' ^10 Q, 7 \ 1 ) itli—A-)8 i i 1.7 � •� \ % ).,j, \ l 1bCID � ' l c� \. 6 f 7 HAS41ElL I .�. 7`.. 2,- , lr ` , ,o ,-1 1 '=, •`SJ • ANON , 1 I 1 i ` 1 • ir = t c t� 7 (( l2 2` c _ s'� 181 — , f 16 • CI t'�. -• N),•..1iN a _ .�..- _ J 1 - / .� 12 e r" \ I J \ - -IN 41 ` .��� - < i-4. I P EBL , _ _ _ _ _. - • k a ( :,_.� Q • t '14 . 2.0101 l 1 • �14J6 • •,'ifi 1 -N • T _ -j �' . -, } - r" :, .•1. ill 4 s1 ) 0, • ,'i 1 n' X14 — — _. ., .a 1 1 AA1AR ?) ("*;:"-"1.•:- .;.. � > 17 NOW Dt ; v�' i0 ,t} UNC{ 1f ' E 14r ` �%J Skl t - ' r20 , ._ �` 1' 1=-- , . i 3II 11 a � 15 t E, I. / \ 1 l � -- _ 38 f 1` , 1s . 1 r 1 a ) — 1 c . / 7 J 4 �� 0 t 7 , �r. 1 ‘10 ..) -\ 8 1 , , r C i \-• ,• 1 a , 16, ..1 . (t < <'; a ' r 1 18r s_ v17� .� ,�.., ! \\/6 1 1 r. �, 2 182p.Cr s •. ' . Li r -lir- 2 19 ru , C 1 20 , �.. - r . I i l... 12 I \` ?r''/ ; , 1'.. 1;25 12 120 �2 }, -/t F'1' i 7 ,s` 7r � .__ - - - a -1 5/ , q r `- San �i - , :,i \ &S NBUFt - -- - r ` I . ,..,./ (� V v` , l Luis 7} .ALL �:.. 6 1 I , ;I/15\1.11°7 i r - - V�LO 0 >2..1, i3 f a- �l � 2 c / �._/ 1 1 t `J � .16 ''. C 0 1 V/4-' ,, d,� �t .r - - MOSA' l .a c _ C ... •(1 C-." I SPRING} IEID I (� �' , 1 OJ � ' ` 3� 12d)/25• �" + 221 1, ', -1 `2Q• 18 16 I • f f 1 f v1 �l 1 ' ! ` (fie. _''' .. .!`. 't�TT , t} 25 . / ../ii...; �,L 9 ' . t , -I ` V\3' / , I J --.4. i �'•-'a� `, % �... 1 ,.( cry!). ( .7.;ve trA) _,29./2.---.: :. ..., ; c ce, AS . 1 C•N --/ c • 'c't/i, cO c? • 2.Q7---) 1 ' .1 ' ,/ ' LS\ , . t(.._ , r, V' ) ,16,� ` I \ RINIs , D 4 - Di 1 it , � lac -� I , j S 5 . )\ it ` '� 7 . • 1 1 J� / 8 r �f r� flp` ( c , \ t-- c 5 - c s ? -` 11l1I2' o a / Fl ,—t • ' ' ` __ c _..c, J 3 7 37 �, ' ' " ) ' . I 1Y ) 1 ' \; , .J\,-a''. \�. `A_ • ,.� '- ,:'•�--� , / ' "•, I— I L- F-1--- I- 1--1-• -I— I7 {'` --1 : -II- 44.4 ,-- — �.t, a ( . 0 .�,� • c ; >'1 ; .' — _ f— i i � .-7—�- 10 10 12 -� ` }—i--4"- I I . ,- , . , , ) ' 12 12 14 14 1 _ 121416 20 20 22 24 24 22 22 24• I COLORADO - - NOAH ATLAS 2, Volume ill Figure 26 • 10 0 10 20 30 40 • Prepared by U.S. Department of Commerce . National Oceanic and Atmospheric Administration ISOPLUVIALS OF 2-YR 24-HR PRECIPITATION IN `-= MILES. National Weather Service, Office of Hydrology ,vies TENTHS OF AN INCH Prepared for U.S. Department of Agriculture, Soil Conservation Service, Engineering Division • I• •} 109 108 107 106 105 104 103 102 I • t 1O9 1O8 1O7 • 1O6 105 1O4 1O3 1O2 41 26 26 _. •_______ ^ _ - 26_ 8 0 30 2826 24 2. 828 30 . 34 . 38 42 42 38 38 41 --- — 46 - —%'5a ---7_______—• `11< \ - ji8 ff-X 1 8 y??. 4 . -C' \, ,c 7 4- - --47-\ -‘7____Th . . • ° q 6-.t" (/(.; r . �� 1. S f f -� . "'' to J I /V '`- { / I -- I ` ) `�. • � ! , -7 \3/4. c:: , lns —� 1 l,$ S () J 4 r L— - -- -8.\ ' i V13- 46 I PROJECT ERLIN J , 8 • Y4 � . '‘..c.2,, '1 • •'7...` !< .. CRAIG 1— a i .{ C •i {S - to' ' �6 �' 'S LOCATION _ l• C7 �� � ` tJ — - 1 \1 / _\ EEUY R24 1� �~ . ;. , ,I , ` c §5O II I • . _ _ -- — T. —' t , I t s i ) ., cr C t ` `���� ( j � 6 I1 24 �Y 4.—/•..' CJ ., �.__ -- , < $■■pp'))�Rn�� ' > >� 34 7.. ' ._.3i` to - I � ' I'I ) r \Zp >` , t J . ` .1 , , , ' ` ;2 28 c .�' r. .,� .._. - - I I .S I ) <i , c. � 1 i, 1 , I 2 r34 .��� — � , : 1z ONt� . .; I!" I• fi t 1 r..�t� C !� —.a�., 3Q `' ' 2$ V -. ; . j . . t�� _ 1 AKRflN I / ICKIIY// I +; 1 ( I ON I lc ' ►0 . ' , `� Ptt 1i 1 _, a n ' 1 . . . ( 4O t 1 6, l••• f" 38 ' , •, BOULDEO, • I . - _. -i ► ± 4O S-'( ' •r t � �1 ' t-•l--I I I - �F -r1 I I ! i 1 " 6 �� C/..m. f h , _ L `r . i e� f. .�� _ t -,N} - i f6tr. . • ` ' ` ` 1.-h2; �-, % , �,±(3r4 _ t 1 '1 • r I r . '. 38 r,� 42 \ �� • z; 3 ! �, 0\ '� �' _ .' f. . j t: ` r 7 \ ,: q ,y - -- r f/ ANION ' Jr 0 ' i•� 1/el/ f l'1."n"•_,.1-. '7 �.or., \ , .1\ i 4 `6, C4-[ ' I'' 3 i Nx .; ��inn � -a ". EWER _. ._. _ . .. .. — .. . . --- — 8 � �/ `,. [1 tCi("I - 3 )• I I ,l "1V - i c• 2 •' 1 it . . _ - ( `5 • I 4 ( I �. , 7 JJ I � : _ 6 .n.....„_. . 2:/ 1 • 26 �� rte` C�� ,�a\�� 1'f r 31 2 ' /. I . 2 ' .1 \ ,. ) �� 1 1 i I { I .J _26 : a. �_ ._-•��� �J � . ,' .r.��•S � I • ..,_. — ...... _. .�. J ' ° 2T 'S'• —' — — 'hJ �jj1, , , ti �. 18 OP, �� 1,• 1 _ o , l �' t 1 . _ V- 1 P _ 1Q S _ • - �.. , . 6� 0 _ _ _ wf, � 7 \ °��._ 34: a c , AO . 36¢ r— •. �� 4f� I . . . . i � • — 42 I ~ ) 1� t i I . l,' C. • 1 ,Th l. BURLINGTON � s 7( Z,..\ ( 1 (..\ c: .• , 3 , . q---(Ch . `112 C� _ �,� } • • I. �� \'� .� ) ( ��� ) l �� _f 10.. � _ ' � 2k t0 \\\f ` ( /.(22,r; . r^ - i 26 f•.. crtaNd �. 283 f " r (...- d V � jr,\ U VI' 1 _r . tlUc{ (f1_ 4 • I \s 0 6 \• � r .''' , 11,x: i1 J ( `� , ' l ' - ' 3 N `• - _ - -I-- ._ _ - -�( I 1 28 ► 1 * � _• + ( ��_ '' �� �i 34" 7 I • • t P . 39 C 8 is 1 .-7,.5,2 , �l Nr Ir ' /.// + `/7 ' t •) • ► ••-• -11`87 ,,- 1 C '10 Jt � �� t y 1 $ g �/ / ' '- ' ` sr. \�.__. , i24 `�6;-; -/ , :' ,f V. m- 1 �� 4 t c 4 . 34 I z C I` 46 — 50 I CHEYE ;NE I I . • 1 1\ / t I ' 12. 46 OLORADO 1—_ .. v� I !ELLS } 7. - 's--" c ' 41�N 0 �= �4 8� s ' INcs S I., {S. 6. (j\ r� :, .� t , J.� I 1 ,i 6 I 3 I ` • 't 32.5 2 r• �.{ r , I 13 > ' r , a8 L'' o I �� I . . 8 i,s \(< (\l G,�\ r7/�f G ��• Z 1 / ' �,�$ , r �S I J � t o g / _t t� • CI I ( ( 11 7 pi) , 4. 7`'=��1 --at,7 �� �i39r 1 ( ' �1 . ' „ s • g • `t i � 4- 42 ,f tb I — •T HASWELL ,4 `t C����� �`z; }���.3 � I 126 34' •g 41Ttt cI` 6 •7 ��\ 4{., \ �• 1 s PUEBLO _ ii I -w j ilftr‘) 1, / •IJ `� 7 `� NO �� g t rl1 -) • 42 S frit> L I -' I An,AR J C r I I J .b cy�`�`. 7 O !N c) ) ) �\ �•� roc/t / , z �� sir . I , ` • 38 7 6 . \ lS c ! t :�Thi ,� , c cr.12 , fr.A 3 I 5, _ i� I (1-La- 6.7—•:—.---1 _ _',• I /± 38 • a\. ,, • , r 1 ...-t f../ : .\ ��.1I `, , '•�i r ;C \z -' � . 1�• ` •- .t ����� � , ' to • // � . • • 30 11'' ��. .c—L ,� ;) \ �, . -'1 • �51 G_ 35 • ' ,!� zi. 1 �/ 35, - �1k-.1. . • — I Jut�1AU 4, _��' J 1i 35 a �` Y!)r40" Cr 8 , - . '`';1 s M -}� 6 I •• I (..l ' \ J `?. I . i •1 7 5 2 11 .4 A 10 ). i E . i (� ,S\1 q .- 45 r r 45 i, _- .- , L , -4,,,_°-_,1� _ _ -f. _ ` _ • 38 �) ��` • f I J -- _ _... 1, 1 6f�(�,5 , y, -• r' 5fl ` 1 c.-. /,1 I , � / 3p , L I ,. ,r;, � . san I ' ' Luys I ^�1° .� �L.sEJ`IBuR �: -�5 � _ _ _ -. _ _ . . 6 �, ` �;8`- - ' / Li + r �. 5' l 4� r r7 ,� ' i I - l . '-- o • `�,� , r. 1 / �_. I 1. 1 6�' 1_ain ..I i r-y . 2n12 A ,� S`-\ 405 .. ,v ( e0� j/ 0 fitt5q51 •J•/7 . i•' 12 I - - MOSA o e c /7-c-)-- • ` !� 7 1 �. I SPRINGI• lELD I ' 1:� I at A ' cap B•� ,V , - - Iley� • I � , ' 6 --- s�"• 6 ' __ '1 I ' I a 1 ) (!. -51315 �' �S� t• ' ' ± ^g a, i. I I S 3 7 -f---I—u —6 a � .7 o , ) 5i a a! • '� , s I-- I(--I—f- r� \ I 2826.2618 i`_I �' 17� I-7i� I = T --}- e-f• -{sa--I-- 1 _ �- -{•-\I-- , t r . '1/ ' •' *,, I_• I� j N ' 0 6r\ . • \ I I �;,__• ___I__+ ' - 3 7 -I _4—i- t- r '-.-'� -' 28 28 30 30 2,_ 26 2628 34 41 4246 50 55 55 60 65 I COLORADO - • • NOAA ATLAS 2, Volume III Figure 31 - 10 0 10 20 30 40 Prepared by U.S. Department of Commerce - • National Oceanic and Atmospheric Administration ISOPLUVIALS OF 100-YR 24-HR PRECIPITATION I: I MILES. National Weather Service, Office of Hydrology IN TENTHS OF AN INCH i; Prepared for U.S. Department of Agriculture, - • Soil Conservation Service, Engineering Division J I 1 1O9 108 107 106 105 1O4 1O3 1O2 r--1 imam I' .--i — - M N-1 T-1 - 4 cri i L i ~ • ------ a • N — j imam_ w 1(w■ rte_---_ •. - -. Imo. - -. J.-- Y - - imam.. .--g—.. . . -. . 12.45 c - a _ 1 .31 0 2. 17 1 .56 c .- .o - �o imam. 'c. 0 0.93 .C) as n. 2 5 10 25 50 100 Return Period in Years, Partial-Duration Series Figure 6. Precipitation depth versus return period for partial-duration series. Intensity - Duration - Frequency Curves 2-Yr 5-Yr 10-Yr 50-Yr 100-Yr 0.93 1.31 1.56 2.17 2.45 Time 2-Yr Design 5-Yr Design 10-Yr Design 50-Yr Design 100-Yr (min) Storm Storm Storm Storm Design Storm 5 3.15 4.44 5.29 7.36 8.31 6 3.00 4.22 5.03 7.00 7.90 7 2.86 4.03 4.80 6.67 7.53 8 2.73 3.85 4.58 6.38 7.20 9 2.62 3.69 4.39 6.11 6.90 10 2.52 3.54 4.22 5.87 6.63 11 2.42 3.41 4.06 5.65 6.38 12 2.33 3.29 3.92 5.45 6.15 13 2.25 3.18 3.78 5.26 5.94 14 2.18 3.07 3.66 5.09 5.74 15 2.11 2.97 3.54 4.93 5.56 16 2.05 2.88 3.43 4.78 5.39 17 1.99 2.80 3.33 4.64 5.24 18 1.93 2.72 3.24 4.51 5.09 19 1.88 2.65 3.15 4.38 4.95 20 1.83 2.58 3.07 4.27 4.82 21 1.78 2.51 2.99 4.16 4.70 22 1.74 2.45 2.92 4.06 4.58 23 1.70 2.39 2.85 3.96 4.47 24 1.66 2.34 2.78 3.87 4.37 25 1.62 2.28 2.72 3.78 4.27 26 1.59 2.23 2.66 3.70 4.18 27 1.55 2.19 2.60 3.62 4.09 28 1.52 2.14 2.55 3.54 4.00 29 1.49 2.10 2.50 3.47 3.92 30 1.46 2.06 2.45 3.40 3.84 31 1.43 2.02 2.40 3.34 3.77 32 1.40 1.98 2.36 3.28 3.70 33 1.38 1.94 2.31 3.22 3.63 34 1.35 1.91 2.27 3.16 3.57 35 1.33 1.87 2.23 3.10 3.50 36 1.31 1.84 2.19 3.05 3.44 37 1.29 1.81 2.16 3.00 3.39 38 1.26 1.78 2.12 2.95 3.33 39 1.24 1.75 2.09 2.90 3.28 40 1.22 1.72 2.05 2.86 3.23 41 1.21 1.70 2.02 2.81 3.18 42 1.19 1.67 1.99 2.77 3.13 43 1.17 1.65 1.96 2.73 3.08 44 1.15 1.62 1.93 2.69 3.04 45 1.14 1.60 1.91 2.65 2.99 46 1.12 1.58 1.88 2.61 2.95 47 1.10 1.56 1.85 2.58 2.91 48 1.09 1.53 1.83 2.54 2.87 49 1.08 1.51 1.80 2.51 2.83 50 1.06 1.49 1.78 2.48 2.80 51 1.05 1.48 1.76 2.44 2.76 52 1.03 1.46 1.73 2.41 2.72 53 1.02 1.44 1.71 2.38 2.69 54 1.01 1.42 1.69 2.35 2.66 55 1.00 1.40 1.67 2.32 2.62 56 0.98 1.39 1.65 2.30 2.59 57 0.97 1.37 1.63 2.27 2.56 58 0.96 1.35 1.61 2.24 2.53 59 0.95 1.34 1.59 2.22 2.50 60 0.94 1.32 1.58 2.19 2.48 L w CB = a) ti ti co it-t0 tO t- d ?,+ M d' M M M M M U O 0 0 0 0 0 0 O 0 m o ,,._ O y� s_ o y co N O CO h t- CO C >, r en r r r r r O 0 0 0 0 0 0 O cc o a) r-+ Cl). o s_ a as o in O O CA CA O E J+ r oil r r O o r O i 0 0 0 0 0 0 O o to m N a) a) c o = och ° o o 0 a O M o N N M t0 M M N N N O 4) U a E CJ o 0 0 O O O 0 O a O O O O O O U O O O O o O O r r r r r r r 0 o O ' 0 0 0 cp. 0 cp. 0 o o ti g) r (O N to V) 0 d' Ni ti d' o) O M O) N O) O O) tT 6) -O a) N m a co > m r N h o N to o ri D c co r N N co lo f) cO co D Q 0 0 0 0 0 0 0 c 0 O O O O a O O N O 0 o o o o o c.) a) m o_ ' CB O (!) ID m " C O o 0 0 0 0 0 0 Q J O o 0 0 0 0 0 CO co 0 0 0 0 0 0 O ER a) Q Q I a) ' U) J CD O CO In o o ....9 :, 0 ...4:2 0 O c 0 O M I` CD CO 'It o o 0 0 o to CO IC No C O t to .) > 2 In- 0 L to o 6N CO) CO rr r CO N CD O N N C • U 6 0 0 0 co o f- O N O O r m Cl) Q C O -�▪ . O O O O O O O O) co 0 0 O 0 0 0 0 o o O o U O O O O 0 0 06 0 0 O c L O Ca m ._ ci E O U (n E c4 - -Qullt? M2 w w O t0 'Th r Z c4 -Es N i Z 9 O O W d Q o c4 V o 0 0 0I o O O N V c4 o 0 N C) I (0 0 0 0 O ; O O O 0 i to Y -Q 0 r (0 0 0 0 0 0 0 0 > O o Q INPL COm u) < Q M 1 O > L Li Q > CL r = r W c O - m a) o co o -c LL O a Q 0 CO coC.,) CO°O CO coM. COh CM N = Z m L E @ COB (Ni O N M to co r Cn �/ Ocn LL D c H r = O to E N H Q , ( c1 CB f6 •O J m Q • ca. oc c r z E o a ° O Ts aU) 0 m 0 cn .0 Q CC O 0 W tL O a -O :Q ai g n c'BD � w Q I- 1O O i O J Co A O co L c co (B C/) a -, . cnO m 0 1OD _I CO I t; U H. C N r O r CO Lf) C E in LN 4in O in N- it I . I 1 _ C CO O r o r O O O M O ' . O E co O 4 O Lo 6 6 r 6 N 6 T 0 U) CO O d O N O f- O N O CO O ° Q, r O r O N6 r O N6 r O a) a o co Lf) N r N CC) 0 O O r r r O (7) C 3 .-. O N Lo V M (0 d' (h (O (O r CO r o) d' CO , CO co (r) to > O (O CO N. CO Lo "Cr (O 'Cr Lo (O CO C) ai C in up CO CO CO> Lo OLU CO 0 Lo in in to E — a - D a O O co co O O O r O N C) cD co L� co r o N U a) N" CO CO r r CO 0 J CO o Q7 r Q) r E - E co o0 0 c0 r ,,r V co co co V a) a o M V co 4 r O O o •o O r r r r r_ a DM co N V to CD co V co. > Q (O (O N-N. W LO CO CO CO N (O (O CQ C > 0 L O to 0 0 LO to r d+ a3 O o - O O O O O O R C 4 O O O O O O L O CV U CD L() Lo Ls-) OLC) (13O U H- O O Z n NI— .r) o Lo O O a) rn x d p p r N r r o O Q st N Y Q O o 0 0 0 6 0 co ca _ o d r 2 r c Z o 79 W >, 0 CO co M co co Co I On Z coate) U CO CO CO co N- Lc) C) O m Q d N C) Qi 4 N Co L!) co (a o �, U -� Z Z • • to N- V v V C O O N- m • • O .O •N W .� Q m O O w LL_ 0 0 0 0 0 0 H m LZ U U O � (1) 0-) C (73 -5 N— co C9 N LO N N N CO r r O 0 CL I CC • E CO CO LO CO C r I-- E O) r LC) t7' 06 H Co r N U• O (o Co (o to CO co E O r r r r r r I— Q)> (6 o co co O co O O Q r r r r r r 0 o L O O O O O th O O co O co 00 c Co co in co N 0 CO r N r J (I) , in CO NJ N ~ O CO r r (o (O CJ In CO (J7 N r. co t__ N- CO 0) CC) 0 CO CO t — ti ti 0) N- N r 0 4 E r r r r r r r C D .CO O CO N CO r LO 0r-- a)O 2 Co C30 r CO N ~ O 06 d COCO D N N N N CO lc C N r 0 r LC) 07 O H H O 6> C7 NO In In in CO 0) r r i lf) CO N CO 0 4- r r CO CO In CO rr 00 N- CO 0) CO r — N— I` o) N- ti r r r r r r 0 0 Q CO f` CO r N N C 7 O r CO C) U H H 4 (O 0 Lb ... W - - • C 2 ti O J a) * C N r 0 r (fl LC) Q Q O N N O r O itsLn In Ln LC) N o 0 . CU AI o U Q o CO N CO CO 1 L r co r r r r Cl)V M O O O O a O X Ocfl 'fi r on z O O O u. _ 0 �- o n Y 0 ® O (.0 co CO CO N- co D M2%.j p Z Q °� CO COLOn CO _ 0. r2r a) • C/) C (� +- a> Q in W a) o N- CO in CO N r r-- N-- Co O 5, o- C w CO Z Z . . ce o c Q C D . UJ co O .O � .� Q CC) 0 w w .Q- L L = CO Q) O COa. CI. CO 0 0 r 0 O C o 0) C .w •p N- co Co N Le N L N N CO r r O CL 0 I Cr F- co o') Lo CO r I-- E O r LC) t7' CO H co 4 r N U(J Co Co Co Co Co co Er r r r r ‘--- I= o o > Ca 2 o O O O O O O Q r r r r r r 0 o L O O O O O 0) 0 0 0 0 0 E CO O LC) co N o CO r N r J 0 LC) CO 0 N N- CO U) N 0) r CO CO O t C\I CJ CO r f� n N L O r r N Co co N . t__ 0) N CO 0) CO N 0 t — N- ti r N- CO CO N- o £ N H CO H r r C D Cr Q . C6 O 0) (5) CO O CO CO CO N0 Ni— D CO H r Co r r C/) lc C NLC) "St 0 r L 07 6 H H O O c7 to Ln NO l 4- lf) CO 0) r . r r 0 LO CO 0 N- Lf) N O) r a) O) CO r ti LC) CO N r r N CO LC) N O) N CO (3) N - , N- ti r ti ti N £ H N Cr) H N H 0 . 0 Q ti � COO CO LO 'KY I- OC O 4 CA H r H W D r N N-- II C 45 OJ 0 * c N r 0 r CD LC) Z Q Si' N N O r 6 its in Lf) in N- = 0 V CoCI° Q o C` N- CD N- CD CC) O O Ce r co co co co CO U) v in O o o 0 0 0 0 a CO r LL cn 0 90 O LL O N 0 CO CO CO CO CO CO 2 � Y Z o 0 COCO co CO N-- Lc) Mj, � = Q rn N Lor) CO _ r 2 r C Ce CD Cl) Q c ei Wn a _o cocD Ln CO N r ti N-- co O CC O wco Z Z . . O' p _ o j j V C III 3 'p co 'p +� �� c Q m O O w is. Q- L L = co o O C= aacno0 r -- O O U- -cr. M M O ON N co N ti r- M — Ca O N- co CO N r t.. r O I— ■ r. O O LL to COCN O ti N CO tf) �i- ie CO CO r- y o co N O r M t d �.J 0 I- U) 0 O N 00 6) CO N 6) = O N M M ti N C) r r r- N Cr) N N -4w a ■ , , , T to -v) a co cc c) co rn Co ti r O •1/4"-- N t� 6) N N 4) „ r .4_,, C ► , - E = a) E 0 V LT) O r N CD M • , • , - C 0 O Ca CO CN CO 0 CD (NI CO O M I` N c0 4 4 = Q CO r- a' U w a to to co C N- CO Cr O ≥ . M O N CO r O CO N N CO c0 4 N N 0- U w oa toc M -71-- 0) C - cn - N -N CD N C � C d oz$ CO c LL c) CL CY) C N C �+ cu cn Oa Co °a _c O w C DO Q -0 c p C c c = p o co c`"a CD Co a U CO o CO CO CO a co a ) co M co N r CU O U ca D }c—, m C ocn O t0 �, v w U U U ZO O O ce ca. ca 0 0 0 0 0 O N Q d O t� C/) Cl)) 0) 0) 0) 0) O i Y D CO N- as U CD CD Q M >% O = CO con u) co con L. r 2 r • I— 0 co "a w o m o o I LL I— r Z LO c~ Z - W z C N CO d tID CO N- 0 - C O� Z p 0 _ a .p 'O = 03 C)) W L. 0 0 0 C 6 COMP. M kA) DATE. 425113 MESON LOC. /^3-401) C OD FILE CK. DATE. & COMPANY PROD. PA AP P 4rflAM SUBJ. ,'44T AJ ,jr 0-7/.077-&4 PeAD SHEET OF TO ► J, ! PE-A- gA_sw A: 1 .2 A ars 37 ab• A-_,s_TA) 6 ; q, 3F Acez---5 0 , 7 QA .mrA) C AGRs <_ 0 . 3 63A-31-4 D - 3 83 ALe�"� 0 , 3 s E S9, 6 4c (DES 0 . 3 Co �49 sz) it 3 Alcie (' D , 3 ioTA L_ - 1751 _24 Acers p✓ r leo _1.00 - YEA 2 , _Jagl k( e A) A e �- / � T 1- .20 -rica/1ES ( Feud WoAA Ai [,Q .2 : Vol- otle= ) 1O- v A-a pi/wort: orp_t__/}2 ): -1/ t„ O (/ 72q (t/ 0 :TA i J (o37) TI71O() 7 keg - .0 re-Ty rAcT02 r-(e{ etTrAn._o_.a) PU/lift () e 02..? , J /CO c% -\clk 3 O Ac_ 06- ry— �f HIGHER ' SittliOMINRSWP COllABORAbONTY-O5(1' Hydraulic Calculations WILSON &COMPANY CULVERT STAGE-DISCHARGE SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS) Project: PAAP Niobrara Basin ID: Culvert 1 - 100-Year Flow Analysis Status: Onto taken xsecdei cli ert%stain W11111111111 I w ID COWS. Cc Val } L .a X minims l.. a : OS• ----->, V La TINS a LA 14q. S. Design Information (Input): saint Sas2 Circular Culvert: Barrel Diameter in Inches D = 24 inches Inlet Edge Type (choose from pull-down list) 1.5 : 1 Beveled Edge OR: Box Culvert: Barrel Height (Rise) in Feet Height (Rise) = ft. Barrel Width (Span) in Feet Width (Span) = +ft. Inlet Edge Type (choose from pull-down list) Square Edge wl 90-15 Deg. Headwall Number of Barrels No = 1 Inlet Elevation at Culvert Invert Inlet Elev = 100 ft. elev. Outlet Elevation at Culvert Invert OR Slope of Culvert (ft v./ft h.) Slope = 0.015 ft vent. / ft horiz. Culvert Length in Feet L = 56 ft. Manning's Roughness n = 0.013 Bend Loss Coefficient Kb = 1 Exit Loss Coefficient KX = 0.5 Design Information (calculated): Entrance Loss Coefficient Ke= 0.20 Friction Loss Coefficient Kf= 0.69 Sum of All Loss Coefficients Ks= 2.39 Orifice Inlet Condition Coefficient Cd= 1.03 Minimum Energy Condition Coefficient KEis,,,,,= -0.1235 Calculations of Culvert Capacity (output): Water Surface Tailwater Culvert Culvert Controlling Inlet Flow Elevation Surface Inlet-Control Outlet-Control Culvert Equation Control Elevation Flowrate Flowrate Flowrate Used: Used ft cfs cfs cfs (ft., linked) (output) 100.00 97.00 0.00 0.00 0.00 No Flow (WS < inlet) N/A 100.25 97.00 0.30 8.02 0.30 Min. Energy. Eqn. INLET 100.50 97.00 1.30 8.34 1.30 Min. Energy. Eqn. INLET 100.75 97.00 2.70 8.82 2.70 Min. Energy. Eqn. INLET 101.00 97.00 4.70 9.49 4.70 Min. Energy. Eqn. INLET 101.25 97.00 6.50 10.21 6.50 Regression Eqn. INLET 101.50 97.00 8.80 10.53 8.80 Regression Eqn. INLET 101.75 97.00 11.40 11.58 11.40 Regression Eqn. INLET 102.00 97.00 14.20 12.55 12.55 Regression Eqn. OUTLET 102.25 97.00 16.80 14.30 14.30 Regression Eqn. OUTLET 102.50 97.00 19.20 15.85 15.85 Regression Eqn. OUTLET 102.75 97.00 21.40 17.28 17.28 Regression Eqn. OUTLET 103.00 97.00 23.40 18.58 18.58 Regression Eqn. OUTLET 103.25 97.00 25.30 19.80 19.80 Regression Eqn. OUTLET 103.50 97.00 27.10 20.95 20.95 Regression Eqn. OUTLET 103.75 97.00 28.80 22.04 22.04 Regression Eqn. OUTLET 104.00 97.00 30.40 23.08 23.08 Regression Eqn. OUTLET 104.25 97.00 31.90 24.08 24.08 Regression Eqn. OUTLET 104.50 97.00 33.40 25.03 25.03 Regression Eqn. OUTLET 104.75 97.00 34.80 25.95 25.95 Regression Eqn. OUTLET 105.00 97.00 36.20 26.83 26.83 Regression Eqn. OUTLET 105.25 97.00 37.50 27.69 27.69 Regression Eqn. OUTLET 105.50 97.00 38.80 28.52 28.52 Regression Eqn. OUTLET 105.75 97.00 40.00 29.34 29.34 Regression Eqn. OUTLET 106.00 97.00 41.10 30.13 30.13 Regression Eqn. OUTLET 106.25 97.00 42.20 30.89 30.89 Orifice Eqn. OUTLET 106.50 97.00 43.20 31.64 31.64 Orifice Eqn. OUTLET 106.75 97.00 44.10 32.38 32.38 Orifice Eqn. OUTLET 107.00 97.00 45.10 33.10 33.10 Orifice Eqn. OUTLET 107.25 97.00 46.00 33.79 33.79 Orifice Eqn. OUTLET Processing Time: 00.29 Seconds Culvert1 - UD-Culvert_v3.01.xls, Culvert Rating 10/11/2013, 9:13 AM CULVERT STAGE-DISCHARGE SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS) Project: PAAP Niobrara Basin ID: Culvert 1 - 100-Year Flow Analysis STAGE-DISCHARGE CURVE FOR THE CULVERT 108 I 107 • p '_ d/ ❑ 106 -- 1 ❑ A 105 p ❑ ❑ 104 /S a) 4- ❑ C) ❑ cn 103 - 1 dt Li 102 - q —, F f A 14i A 101 A A A A 100 0 10 20 30 40 50 Discharge (cfs) Stage-Discharge Inlet Control Outlet Control j 4 Culvertl - UD-Culvert_v3.01 .xls, Culvert Rating 10/11/2013, 9:13 AM CULVERT STAGE-DISCHARGE SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS) Project: PAAP Niobrara Basin ID: Culvert 2 - 100-Year Flow Analysis Status: Onto taken xsecdei cli ert%stain W11111111111 I w ID COWS. Cc Val } L .a X minims l.. a : OS• ----->, V La TINS a LA 14q. S. Design Information (Input): saint S.ds2 Circular Culvert: Barrel Diameter in Inches D = 24 inches Inlet Edge Type (choose from pull-down list) 1.5 : 1 Beveled Edge OR: Box Culvert: Barrel Height (Rise) in Feet Height (Rise) = ft. Barrel Width (Span) in Feet Width (Span) = +ft. Inlet Edge Type (choose from pull-down list) Square Edge wl 90-15 Deg. Headwall Number of Barrels No = 2 Inlet Elevation at Culvert Invert Inlet Elev = 100 ft. elev. Outlet Elevation at Culvert Invert OR Slope of Culvert (ft v./ft h.) Slope = 0.008 ft vent. / ft horiz. Culvert Length in Feet L = 91 ft. Manning's Roughness n = 0.013 Bend Loss Coefficient Kb = 1 Exit Loss Coefficient KX = 0.5 Design Information (calculated): Entrance Loss Coefficient Ke= 0.20 Friction Loss Coefficient Kf= 1.12 Sum of All Loss Coefficients Ks= 2.82 Orifice Inlet Condition Coefficient Cd= 1.03 Minimum Energy Condition Coefficient KEis,,,,,= -0.0794 Calculations of Culvert Capacity (output): Water Surface Tailwater Culvert Culvert Controlling Inlet Flow Elevation Surface Inlet-Control Outlet-Control Culvert Equation Control Elevation Flowrate Flowrate Flowrate Used: Used ft cfs cfs cfs (ft., linked) (output) 100.00 100.00 0.00 0.00 0.00 No Flow (WS < inlet) N/A 100.25 100.00 0.60 12.91 0.60 Min. Energy. Eqn. INLET 100.50 100.00 2.60 15.96 2.60 Min. Energy. Eqn. INLET 100.75 100.00 5.40 16.47 5.40 Min. Energy. Eqn. INLET 101.00 100.00 9.20 17.32 9.20 Min. Energy. Eqn. INLET 101.25 100.00 12.80 18.45 12.80 Regression Eqn. INLET 101.50 100.00 17.40 19.83 17.40 Regression Eqn. INLET 101.75 100.00 22.80 20.42 20.42 Regression Eqn. OUTLET 102.00 100.00 28.20 22.01 22.01 Regression Eqn. OUTLET 102.25 100.00 33.40 25.52 25.52 Regression Eqn. OUTLET 102.50 100.00 38.20 28.59 28.59 Regression Eqn. OUTLET 102.75 100.00 42.60 31.36 31.36 Regression Eqn. OUTLET 103.00 100.00 46.60 33.91 33.91 Regression Eqn. OUTLET 103.25 100.00 50.40 36.28 36.28 Regression Eqn. OUTLET 103.50 100.00 54.00 38.51 38.51 Regression Eqn. OUTLET 103.75 100.00 57.40 40.61 40.61 Regression Eqn. OUTLET 104.00 100.00 60.60 42.59 42.59 Regression Eqn. OUTLET 104.25 100.00 63.80 44.52 44.52 Regression Eqn. OUTLET 104.50 100.00 66.80 46.34 46.34 Regression Eqn. OUTLET 104.75 100.00 69.60 48.10 48.10 Regression Eqn. OUTLET 105.00 100.00 72.40 49.80 49.80 Regression Eqn. OUTLET 105.25 100.00 75.00 51.44 51.44 Regression Eqn. OUTLET 105.50 100.00 77.40 53.03 53.03 Regression Eqn. OUTLET 105.75 100.00 79.80 54.57 54.57 Regression Eqn. OUTLET 106.00 100.00 82.20 56.09 56.09 Regression Eqn. OUTLET 106.25 100.00 84.40 57.55 57.55 Orifice Eqn. OUTLET 106.50 100.00 86.40 58.96 58.96 Orifice Eqn. OUTLET 106.75 100.00 88.20 60.36 60.36 Orifice Eqn. OUTLET 107.00 100.00 90.20 61.73 61.73 Orifice Eqn. OUTLET 107.25 100.00 92.00 63.05 63.05 Orifice Eqn. OUTLET Processing Time: 00.21 Seconds Culvert2 - UD-Culvert_v3.01.xls, Culvert Rating 10/11/2013, 9:18 AM CULVERT STAGE-DISCHARGE SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS) Project: PAAP Niobrara Basin ID: Culvert 2 - 100-Year Flow Analysis STAGE-DISCHARGE CURVE FOR THE CULVERT 108 A 107 • - 1 ❑ ❑ 106 -- - L ❑ F ❑ 105 — ❑ CD a) ❑ 4S 0 104 1 •-ca L ❑ as 103 - I n 10 2 - /hv A 101 y A A A A 100 0 20 40 60 80 100 Discharge (cfs) ale Stage-Discharge Inlet Control Outlet Control j Culvert2 - UD-Culvert_v3.01 .xls, Culvert Rating 10/11/2013, 9:18 AM CULVERT STAGE-DISCHARGE SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS) Project: PAAP Niobrara Basin ID: Culvert 3 - 100-Year Flow Analysis Status: Onto taken xsecdei cli ert%stain Wlllllllllll IC W J ID Calla.Vali 0 In } L .a X minims l.. a : ei• ----->, V La TANS a LSe 14q. S. Design Information (Input): saint S.ds2 Circular Culvert: Barrel Diameter in Inches D = 36 , inches Inlet Edge Type (choose from pull-down list) 1.5 : 1 Beveled Edge OR: Box Culvert: Barrel Height (Rise) in Feet Height (Rise) = ft. Barrel Width (Span) in Feet Width (Span) = +ft. Inlet Edge Type (choose from pull-down list) Square Edge wl 90-15 Deg. Headwall Number of Barrels No = 2 Inlet Elevation at Culvert Invert Inlet Elev = 100 ft. elev. Outlet Elevation at Culvert Invert OR Slope of Culvert (ft v./ft h.) Slope = 0.02 ft vert. / ft horiz. Culvert Length in Feet L = 133 ft. Manning's Roughness n = 0.013 Bend Loss Coefficient Kb = 1 Exit Loss Coefficient KX = 0.5 Design Information (calculated): Entrance Loss Coefficient Ke= 0.20 Friction Loss Coefficient Kf= 0.96 Sum of All Loss Coefficients Ks= 2.66 Orifice Inlet Condition Coefficient Cd= 1.03 Minimum Energy Condition Coefficient KEis,,,,,= -0.1091 Calculations of Culvert Capacity (output): Water Surface Tailwater Culvert Culvert Controlling Inlet Flow Elevation Surface Inlet-Control Outlet-Control Culvert Equation Control Elevation Flowrate Flowrate Flowrate Used: Used ft cfs cfs cfs (ft., linked) (output) 100.00 100.00 0.00 0.00 0.00 No Flow (WS < inlet) N/A 100.25 100.00 0.80 29.71 0.80 Min. Energy. Eqn. INLET 100.50 100.00 2.60 41.98 2.60 Min. Energy. Eqn. INLET 100.75 100.00 6.80 51.41 6.80 Min. Energy. Eqn. INLET 101.00 100.00 11.80 59.33 11.80 Min. Energy. Eqn. INLET 101.25 100.00 18.00 66.41 18.00 Min. Energy. Eqn. INLET 101.50 100.00 25.20 72.73 25.20 Min. Energy. Eqn. INLET 101.75 100.00 32.00 78.57 32.00 Regression Eqn. INLET 102.00 100.00 39.80 83.95 39.80 Regression Eqn. INLET 102.25 100.00 48.60 89.04 48.60 Regression Eqn. INLET 102.50 100.00 58.20 92.53 58.20 Regression Eqn. INLET 102.75 100.00 68.20 94.80 68.20 Regression Eqn. INLET 103.00 100.00 78.20 97.06 78.20 Regression Eqn. INLET 103.25 100.00 87.80 101.21 87.80 Regression Eqn. INLET 103.50 100.00 97.00 105.55 97.00 Regression Eqn. INLET 103.75 100.00 105.80 109.61 105.80 Regression Eqn. INLET 104.00 100.00 114.00 113.57 113.57 Regression Eqn. OUTLET 104.25 100.00 121.60 117.34 117.34 Regression Eqn. OUTLET 104.50 100.00 129.00 121.02 121.02 Regression Eqn. OUTLET 104.75 100.00 136.00 124.60 124.60 Regression Eqn. OUTLET 105.00 100.00 142.80 128.09 128.09 Regression Eqn. OUTLET 105.25 100.00 149.20 131.49 131.49 Regression Eqn. OUTLET 105.50 100.00 155.40 134.79 134.79 Regression Eqn. OUTLET 105.75 100.00 161.60 138.09 138.09 Regression Eqn. OUTLET 106.00 100.00 167.40 141.21 141.21 Regression Eqn. OUTLET 106.25 100.00 173.20 144.32 144.32 Regression Eqn. OUTLET 106.50 100.00 178.60 147.34 147.34 Regression Eqn. OUTLET 106.75 100.00 184.20 150.26 150.26 Regression Eqn. OUTLET 107.00 100.00 189.40 153.19 153.19 Regression Eqn. OUTLET 107.25 100.00 194.60 156.01 156.01 Regression Eqn. OUTLET Processing Time: 00.21 Seconds Culvert3 - UD-Culvert_v3.01.xls, Culvert Rating 10/11/2013, 9:21 AM CULVERT STAGE-DISCHARGE SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS) Project: PAAP Niobrara Basin ID: Culvert 3 - 100-Year Flow Analysis STAGE-DISCHARGE CURVE FOR THE CULVERT 108 9 C 107 -- • At I LI it 106 -- • ¢ C 1 On J ❑ 105 , ❑ • in a� 104 - 44- A cn 103 - / c /I 102 - 1 . — 101 I -. li H LI 1 100 0 50 100 150 200 250 Discharge (cfs) ale Stage-Discharge Inlet Control Outlet Control j Culvert3 - UD-Culvert_v3.01 .xls, Culvert Rating 10/11/2013, 9:21 AM CULVERT STAGE-DISCHARGE SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS) Project: PAAP Niobrara Basin ID: Culvert 4 - 100-Year Flow Analysis Status: Onto taken xsecdei cli ert%stain W11111111111 I w ID COWS. Cc Val } L .a X minims l.. a : OS• ----->, V La TINS a LA 14q. S. Design Information (Input): saint Sas2 Circular Culvert: Barrel Diameter in Inches D = 24 inches Inlet Edge Type (choose from pull-down list) 1.5 : 1 Beveled Edge OR: Box Culvert: Barrel Height (Rise) in Feet Height (Rise) = ft. Barrel Width (Span) in Feet Width (Span) = +ft. Inlet Edge Type (choose from pull-down list) Square Edge w/ 90-15 Deg. Headwall Number of Barrels No = 1 Inlet Elevation at Culvert Invert Inlet Elev = 100 ft. elev. Outlet Elevation at Culvert Invert OR Slope of Culvert (ft v./ft h.) Slope = 0.02 ft vert. / ft horiz. Culvert Length in Feet L = 76 ft. Manning's Roughness n = 0.013 Bend Loss Coefficient Kb = 1 Exit Loss Coefficient KX = 0.5 Design Information (calculated): Entrance Loss Coefficient Ke= 0.20 Friction Loss Coefficient Kf= 0.94 Sum of All Loss Coefficients Ks= 2.64 Orifice Inlet Condition Coefficient Cd= 1.03 Minimum Energy Condition Coefficient KEio,,,,= -0.1235 Calculations of Culvert Capacity (output): Water Surface Tailwater Culvert Culvert Controlling Inlet Flow Elevation Surface Inlet-Control Outlet-Control Culvert Equation Control Elevation Flowrate Flowrate Flowrate Used: Used ft cfs cfs cfs (ft., linked) (output) 100.00 100.00 0.00 0.00 0.00 No Flow (WS < inlet) N/A 100.25 100.00 0.30 6.62 0.30 Min. Energy. Eqn. INLET 100.50 100.00 1.30 9.36 1.30 Min. Energy. Eqn. INLET 100.75 100.00 2.70 11.45 2.70 Min. Energy. Eqn. INLET 101.00 100.00 4.70 13.23 4.70 Min. Energy. Eqn. INLET 101.25 100.00 6.50 14.16 6.50 Regression Eqn. INLET 101.50 100.00 8.80 14.91 8.80 Regression Eqn. INLET 101.75 100.00 11.50 15.61 11.50 Regression Eqn. INLET 102.00 100.00 14.20 16.30 14.20 Regression Eqn. INLET 102.25 100.00 16.80 17.60 16.80 Regression Eqn. INLET 102.50 100.00 19.20 18.80 18.80 Regression Eqn. OUTLET 102.75 100.00 21.40 19.92 19.92 Regression Eqn. OUTLET 103.00 100.00 23.40 20.99 20.99 Regression Eqn. OUTLET 103.25 100.00 25.30 22.01 22.01 Regression Eqn. OUTLET 103.50 100.00 27.10 22.97 22.97 Regression Eqn. OUTLET 103.75 100.00 28.80 23.91 23.91 Regression Eqn. OUTLET 104.00 100.00 30.40 24.81 24.81 Regression Eqn. OUTLET 104.25 100.00 32.00 25.67 25.67 Regression Eqn. OUTLET 104.50 100.00 33.40 26.51 26.51 Regression Eqn. OUTLET 104.75 100.00 34.90 27.32 27.32 Regression Eqn. OUTLET 105.00 100.00 36.20 28.11 28.11 Regression Eqn. OUTLET 105.25 100.00 37.50 28.87 28.87 Regression Eqn. OUTLET 105.50 100.00 38.80 29.63 29.63 Regression Eqn. OUTLET 105.75 100.00 40.00 30.35 30.35 Regression Eqn. OUTLET 106.00 100.00 41.10 31.07 31.07 Regression Eqn. OUTLET 106.25 100.00 42.20 31.75 31.75 Orifice Eqn. OUTLET 106.50 100.00 43.20 32.44 32.44 Orifice Eqn. OUTLET 106.75 100.00 44.10 33.10 33.10 Orifice Eqn. OUTLET 107.00 100.00 45.10 33.75 33.75 Orifice Eqn. OUTLET 107.25 100.00 46.00 34.39 34.39 Orifice Eqn. OUTLET Processing Time: 00.25 Seconds Culvert4 - UD-Culvert_v3.01.xls.xlsx, Culvert Rating 11/1/2013, 11:54 AM CULVERT STAGE-DISCHARGE SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS) Project: PAAP Niobrara Basin ID: Culvert 4 - 100-Year Flow Analysis STAGE-DISCHARGE CURVE FOR THE CULVERT 108 A 107 -- • 1 11 ° F ° 106 - ° I ° ❑ 105 / ❑ CD ° aS D 104 p ❑ cD 4- ❑ C7 Ca t 103 - Li 102 '_f A A A 101 �� A j/1 A Ei n 1002! 0 10 20 30 40 50 Discharge (cfs) Stage-Discharge Inlet Control Outlet Control j 1 Culvert4 - UD-Culvert_v3.01.xls.xlsx, Culvert Rating 11/1/2013. 11:54 AM Design Point 2 Ditch - 100Year Flow Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.040 Channel Slope 0.00800 ft/ft Left Side Slope 2.00 ft/ft (H:V) Right Side Slope 2.00 ft/ft (H:V) Bottom Width 10.00 ft Discharge 91 .63 ft3/s Results Normal Depth 1 .72 ft Flow Area 23.09 ft2 Wetted Perimeter 17.68 ft Hydraulic Radius 1 .31 ft Top Width 16.87 ft Critical Depth 1 .26 ft Critical Slope 0.02416 ft/ft Velocity 3.97 ft/s Velocity Head 0.24 ft Specific Energy 1 .96 ft Froude Number 0.60 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1 .72 ft Critical Depth 1 .26 ft Channel Slope 0.00800 ft/ft Bentley Systems, Inc. Haestad Methods ScfeSit j kta*laster V8i (SELECTseries 1) [08.11 .01 .03] 10/11/2013 9:48:09 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Design Point 2 Ditch - 100Year Flow GVF Output Data Critical Slope 0.02416 ft/ft Bentley Systems, Inc. Haestad Methods ScfeSit j kta*laster V8i (SELECTseries 1) [08.11 .01 .03] 10/11/2013 9:48:09 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 Design Point 2 Ditch - 100Year Flow Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.040 Channel Slope 0.00800 ft/ft Normal Depth 1 .72 ft Left Side Slope 2.00 ft/ft (H:V) Right Side Slope 2.00 ft/ft (H:V) Bottom Width 10.00 ft Discharge 91 .63 ft3/s Cross Section Image Q 1.0 -1 1 Bentley Systems, Inc. Haestad Methods ScfeSit j kta*laster V8i (SELECTseries 1) [08.11 .01 .03] 10/11/2013 9:47:42 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Design Point 3 Ditch - 100Year Flow Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.040 Channel Slope 0.00800 ft/ft Left Side Slope 2.00 ft/ft (H:V) Right Side Slope 2.00 ft/ft (H:V) Bottom Width 6.00 ft Discharge 32.32 ft3/s Results Normal Depth 1 .23 ft Flow Area 10.40 ft2 Wetted Perimeter 11 .50 ft Hydraulic Radius 0.90 ft Top Width 10.92 ft Critical Depth 0.87 ft Critical Slope 0.02763 ft/ft Velocity 3.11 ft/s Velocity Head 0.15 ft Specific Energy 1 .38 ft Froude Number 0.56 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1 .23 ft Critical Depth 0.87 ft Channel Slope 0.00800 ft/ft Bentley Systems, Inc. Haestad Methods ScfeSit j kta*laster V8i (SELECTseries 1) [08.11 .01 .03] 10/11/2013 9:46:20 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Design Point 3 Ditch - 100Year Flow GVF Output Data Critical Slope 0.02763 ft/ft Bentley Systems, Inc. Haestad Methods ScfeSit j kta*laster V8i (SELECTseries 1) [08.11 .01 .03] 10/11/2013 9:46:20 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 Design Point 3 Ditch - 100Year Flow Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.040 Channel Slope 0.00800 ft/ft Normal Depth 1 .23 ft Left Side Slope 2.00 ft/ft (H:V) Right Side Slope 2.00 ft/ft (H:V) Bottom Width 6.00 ft Discharge 32.32 ft3/s Cross Section Image Q � .• i Bentley Systems, Inc. Haestad Methods ScfeSit j kta*laster V8i (SELECTseries 1) [08.11 .01 .03] 10/11/2013 9:45:22 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Design Point 6 Ditch - 100Year Flow Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.040 Channel Slope 0.00800 ft/ft Left Side Slope 2.00 ft/ft (H:V) Right Side Slope 2.00 ft/ft (H:V) Bottom Width 6.00 ft Discharge 11 .95 ft3/s Results Normal Depth 0.71 ft Flow Area 5.22 ft' Wetted Perimeter 9.15 ft Hydraulic Radius 0.57 ft Top Width 8.82 ft Critical Depth 0.47 ft Critical Slope 0.03245 ft/ft Velocity 2.29 ft/s Velocity Head 0.08 ft Specific Energy 0.79 ft Froude Number 0.52 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.71 ft Critical Depth 0.47 ft Channel Slope 0.00800 ft/ft Bentley Systems, Inc. Haestad Methods ScfeSit j kta*laster V8i (SELECTseries 1) [08.11 .01 .03] 11/1/2013 11 :58:30 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Design Point 6 Ditch - 100Year Flow GVF Output Data Critical Slope 0.03245 ft/ft Bentley Systems, Inc. Haestad Methods ScfeSit j kta*laster V8i (SELECTseries 1) [08.11 .01 .03] 11/1/2013 11 :58:30 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 Design Point 6 Ditch - 100Year Flow Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.040 Channel Slope 0.00800 ft/ft Normal Depth 0.71 ft Left Side Slope 2.00 ft/ft (H:V) Right Side Slope 2.00 ft/ft (H:V) Bottom Width 6.00 ft Discharge 11 .95 ft3/s Cross Section Image � � T I -6.O0ft 1 1 ISh H Bentley Systems, Inc. Haestad Methods ScfeSit j kta*laster V8i (SELECTseries 1) [08.11 .01 .03] 11/1/2013 11 :59:35 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Background Data WILSON &COMPANY WELD COUNTY SITE SPECIFIC DEVELOPMENT PLAN AND USE BY SPECIAL REVIEW (USR) DRAINAGE REPORT INFORMATION USR #: Am-USR-840 Site Name: Carr Gravel Resource Applicant: L.G. Everist, Inc. (LGE) Summary: The applicant is applying for additional uses at the Carr Gravel Resource, AmUSR-840. The proposed use would be in addition to the approved mining and reclamation plans that are already permitted . This application is not making any changes to the mining/reclamation operation. The proposed use we are applying for is a transload/storage yard within the site. The transload projects would all take place within an approximately 300-acre transload area, and would be temporary - 6 months or less. See the Weld County Site Specific Development Plan and Use by Special Review Questionnaire for more details on the proposed use. The proposed transload yard is an overlay use on an already permitted USR. The USR has drainage structures in place that have been working for years, and will continue to be more than adequate for the additional use by the transload/storage yard. See the map titled, "Carr Transload Area, Exhibit A" for drainage structure location. Because this is a permitted site, and adequate drainage structures are already in place, we are not being required to do a Preliminary Drainage Report. We are submitting information on the site and the existing drainage structures for your review. As noted in the Weld County Site Specific Development Plan and Use by Special Review Questionnaire: 8. Explain how the storm water drainage will be handled on the site. Sufficient drainage control and capacity is already in place for the Carr USR. No new drainage controls will need to be constructed (unless the rail spur loop is completed). Various drainage controls include man-made and natural controls. The ground at the Carr site is highly permeable and stormwater soaks in to the soil before it can "run off" A large detention pond which has been used as a stormwater detention pond for the mining operation is available and will be used as a detention pond for the leased areas. The pond is located in the southeast section of the proposed leased area. This pond is shown on the Carr Transload Area map. This pond is more than large enough to accommodate any storm water flows from all of the leased areas. The lease areas are not new acreage, but acreage that has been part of the permit since it was approved, so the drainage controls have already been working for these areas — they will just be designated as transload areas. Any storm water within the leased area will flow and drain naturally from the northwest to the southeast — where the detention pond is located. All of the leased area south of the original east-west rail spur has been mined and graded and is therefore lower than surrounding areas. To the west, and outside the property, is the Union Pacific Rail line — stormwater flows from west to east, so the rail line will not be affected by the leasehold area. To the east there is a interior haul road just outside the leased area that is higher ground, so this road will prevent any stormwater runoff from going father east to Lone Tree Creek. To the south, this area is mined , and partially reclaimed, and any stormwater flows that happened to come this way would be welcome to help with vegetative growth. If the proposed rail spur loop is constructed, a culvert will be constructed under the southeast "corner" of the loop, which will allow stormwater run-off to naturally drain to the detention pond from the leasehold areas to the west. If and when the mining operation processing plant and settling ponds are removed and the area to the north of the rail spur is leased, one of the settling ponds will remain as a stormwater detention pond. Additional information regarding the site, additional transload use, and drainage: The sand and gravel deposit is shallow - only 10-12 feet -- and all of it is above groundwater level. Therefore, no groundwater de-watering is needed. The mine is operated as a dry mine. This is not a change. The transload/storage use will not need any water operationally, nor any water storage. C-WELD-SiteSpec&USR-Drainagelnfo-2010.doc WELD COUNTY SITE SPECIFIC DEVELOPMENT PLAN AND USE BY SPECIAL REVIEW (USR) DRAINAGE REPORT INFORMATION Using the formulas in the Drainage Criteria Manual and permeability number that we received from Weld County, we can show that the detention pond in the leasehold area is more than adequate to contain all stormwater flows. 1 . Permeability = 40% , which converts to a Total Imperviousness Ratio (i) = 0.6 2. Figure SQ-2, Water Quality Capture Volume (WQCV), 80th Percentile Event - has formula for WQCV and multiple drain time variables. WQCV = a*(0. 91 i3 - 1 . 1912 + 0. 78i) = 1 *(0.91 *.63 — 1 . 19*.62 + 0.78*.6) = 0.23616 Note: 40-hour drain time = a = 1 .0 3. Required Storage = [WQCV / 12] * Area = (0.23616 / 12) * 300 acres leasehold area = 5.9 acre-feet The calculations above show that a detention pond of 5.9 acre-feet would contain the flows from 300 acres. The surveyed limits of the detention pond in the leasehold area at the top slope equals 3.53 acres. Assuming a 3 to 1 slope at 13 feet deep, this equates to a storage volume of approximately 37 acre-feet, more than adequate to contain stormwater events. C-WELD-SiteSpec&USR-Drainagelnfo-2010.doc
Hello