Loading...
HomeMy WebLinkAbout20140945.tiff SITE SPECIFIC DEVELOPMENT PLAN AND USE BY SPECIAL REVIEW (USR) APPLICATION FOR PLANNING DEPARTMENT USE DATE RECEIVED: RECEIPT#/AMOUNT# is CASE#ASSIGNED: APPLICATION RECEIVED BY PLANNER ASSIGNED: Parcel Number 0 8 0 5 _ 3 3 2 0 0 _ 0 1 1 (12 digit number-found on Tax I.D.information,obtainable at the Weld County Assessor's Office,or www.co.weld.co.us) Legal Description NE 1/4 of NW 1/4 , Section 33 ,Township 6 North, Range 66 West Zone District:Ag , Total Acreage:39.1 , Flood Plain:no , Geological Hazard: no Airport Overlay District: FEE OWNER(S) OF THE PROPERTY: Name: Duran Excavating do Ellie Duran Work Phone# 970-351-0192 Home Phone# Email ellied@duranexcavating.com Address:418 N 9th St Address: City/State/Zip Code Greeley CO 80631 Name: Work Phone# Home Phone# Email Address: Address: City/State/Zip Code Name: Work Phone# Home Phone# Email Address. Address: City/State/Zip Code APPLICANT OR AUTHORIZED AGENT(See Below:Authorization must accompany applications signed by Authorized Agent) Name:Ellie Duran Work Phone# 970-351-0192 Home Phone# Email ellied@duranexcavating.com Address:418 N 9th St Address: City/State/Zip Code Greeley CO 80631 PROPOSED USE: New location of Duran Excavating operations and possible storage units and outside storage in the future I (We) hereby depose and state under penalties of perjury that all statements, proposals, and/or plans submitted with or contained within the application are true and correct to the best of my(our)knowledge. Signatures of all fee owners of property must sign this application. If an Authorized Agent signs, a letter of authorization from all fee own2t's must b�'ncluded with the application. If a corporation is the fee owner, notarized evidence must be inch i dic tiff at the signatory has to legal authority to sign for the corporation. 11-1S-1 ignature: Owne or Author) ed Agent Date Signature: Owner or Authorized Agent Date DEPARTMENT OF PLANNING SERVICES 1555 N 17'" AVE GREELEY, CO 80631 PHONE: (970) 353-6100, Ext. 3540 COLORADO FAX: (970) 304-6498 L AUTHORIZATION FORM c. represent v�cLr� �kCG cJirr or the property (Agent/Applicant) (Owner) located at �y/ ti �e rte �-�y CO LEGAL DESCRIPTION: SEC 'n TWN ' RNG (O SUBDIVISION NAME: SLOT BLK I can be contacted at the following phone#'s: Home 9 )U- S.�7- 2_6 S C� Work Fax# The property owner can be contacted at the following phone#s Home 9?0 -S"3 9- Oqn Work Fax# Correspondence mailed to (only one): Agent/Applicant ,1( Property Owner DATE f/ /S /� OWNER'S SIGNATURE USR QUESTIONAIRE RESPONSES FOR DURAN EXCAVATION 1 . The existing site was once home to Lowell Paul Dairy which had several buildings and lots for the dairy cattle. The owner of the property prior to Duran Excavating (DE) had begun to demolish a portion of the facilities. DE intends to move their operations to the site and add an 8000 s.f. office facility for their own personnel. (Please see the USR map for locations.)Two of the existing 60' X 120' buildings are less than 10 years old and DE intends to store equipment and vehicles in them. The remaining existing buildings will be used for storage for support of DE business. There will be a pad used for washing vehicles and equipment that will drain into a vault that DE will have to empty. South of the existing buildings DE may stockpile concrete and asphalt so that at a future time a crusher could come in and produce recycled asphalt and concrete for DE's use. It is not the intent of DE to sell recycled asphalt or concrete from this facility. DE intends to use existing access's on the property. The main access will be off of O St. which will be enlarged from the present condition. The other existing access is on the west side of the property and will also be enlarged to handle semi trailer access. On the eastern side of the site DE will in the future place storage units. There may also be outside storage RV's etc south of the future storage units. At that time an additional access on the east side of the property be requested for the storage portion of the site. Also at that time of storage unit construction an additional office will be constructed that will have restroom facilities available to customers. An additional leach field will be designed and constructed for the storage unit office restrooms when it becomes necessary. 2. The land use is consistent with the code due to the fact the land could not be used for agriculture purposes in it's present state with debris on the site. DE will have similar operations as the previous dairy use. DE will have probably have less trucks visiting the site per day than the dairy. DE will have fewer loader hours operating around the site than the dairy. 3. Per section 23-3-40 the location can be used for business via a Use by Special Review process. 4. The property is surrounded by agricultural use for the western and southern borders. The east side borders an industrial facility Loveland Industries. The northern border is a residence. 5. a. DE anticipates there will be less than 5 visits per day by people not employed by DE b. DE anticipates up to 10 office employees at the site daily. DE anticipates 2 additional truck drivers may be on the site intermittently. Most of DE's employees will not come to the site on a daily basis and will go directly to the job sites. c. DE will operate between the hours of 7 am to 6 p.m. Monday through Saturday d. A 8000 square foot office building will be constructed on the site for office personnel. e. A guard dog may be on site. f. There may be up to 15 trips a day with a tractor trailer vehicle entering and leaving the site. There may be up to 20 passenger car trips to the site daily. g. Fire protection will be provided by Union Colony Fire Department h. There is an existing Central Weld water tap on the site previously used by the dairy operations. A new leach field is planned for the facility. The existing leach field will not be used. j. Storage of vehicles and equipment is planned. No hazardous material is anticipated being stored on the site. 6. Landscaping shall be submitted as a separate submittal. 7. DE does not anticipate any reclamation to be required. 8. Storm water will be routed around the site and detained in a pond along the southern boundary. 9. The site should be constructed in the next 12 months and Landscaping should begin in 9 months. 10.There will be not wastes stored on site, a dumpster on site will be emptied weekly. Waste Handling Plan. A dumpster will be on site for normal business refuse and will be emptied weekly. Waste will be disposed of at Waste Management North Weld Landfill 4000 Weld County Road 25 Ault Colorado 80610 Phone Number 866-482-6319 Waste oil if generated (not anticipated) will be collected by DE service truck and disposed of at an oil recycling facility. A possible vendor for used oil removal is SAFETY-KLEEN 2801 SOUTH TEJON ENGLEWOOD, CO 80110 Phone Number: (303) 761-8614 The pad that is used for washing equipment and vehicles will drain to a concrete vault and will be pumped out as required. A possible vendor for tank pumping is All-Pro Septic Wellington Colorado Phone # 970-566-9892 Duran Excavating does not anticipate storing chemicals in the buildings at this time. Duran Excavating has service truck(s) that contain all of the chemicals that are required for their operations. If chemical storage becomes necessary in the future a list of chemicals will be provided. Dust Abatement Plan During the construction phase of the project Duran Excavating will utilize water trucks to maintain dust suppression. The storm water management plan will be followed to mitigate soil erosion during the construction phase. Duran Excavating will provide dust abatement for the temporary crushing operation when crushing is done. A water truck will be used to treat on-site areas (haul roads, crushing area etc.) to suppress dust. A water truck will be used to control dust in circulation and material handling/ stockpile areas. Vehicle speeds will be reduced on-site and posted at 10 mph on the access road into the yard and 10 mph within the crushing area. All loaded trucks will be required to tarp/ cover loads when exiting the crushing area to aid in dust suppressions. On a daily basis prior to starting crushing operations all access roads and stockpiles will be inspected to determine if wetting the surfaces is required. If the roads or stockpiles are dry they will be wetted with a water truck. The same areas will be inspected again at mid day to determine if the additional wetting is required. If at any time during crushing operations begin to generate dust Duran Excavating will have the water truck available to wet dust generating areas immediately. After construction is completed the site will be stabilized using native vegetation and compacted gravel surfaces. Vegetation will not be allowed to grow over 12" high. Additionally Duran will maintain the gravel drives and entrances. A water truck will be provided as necessary to maintain dust suppression. NOISE ABATEMENT PLAN During temporary crushing operations Duran Excavating will provide straw bales approximately 8' tall around the west and north sides of the crusher. Duran will stockpile material along the south side of the crusher to provide a sound barrier for the properties to the south. Duran will conduct crushing operations in the south east quadrant of the property to alleviate noise to the north. Duran Excavating will limit hours of crushing operations from 8:00 am to 4:00 pm Monday through Friday. ,4a ti,, Weld County Public Works Dept. -t 1111 H Street ACCESS PERMIT :-' _ Uj P.O. Box 758 9,%C W�Q� Phone: (970)304-6496 Greeley,CO 3APPLICATION FORM Fax: (970)304-6497 Applicant 11 Property Owner(If different than Applicant) Name 1�;P �'�r ~r— Name Company �,,t��,r•,�/ �I Ccwc. n� Address Address y le /V `1 f�n St- c City State Zip City G rc .'Le. State CO Zip 80(0.3 I Phone Business Phone 20 ;57- 0) 1Z Z Fax Fax `303 — (((n 5I - .\≥ 3 E-mail E-mail -e , p c . UII vra.r, ex Gc vcf . co„--\ ♦=Existing Access A= Proposed Access Parcel Location&Sketch The access is on WCR e-oLi Nearest Intersection:WCR 99 &WCR 7 g WCR C. Distance from Intersection ," Parcel Number 08 05 2_()Y)O I I Section/Township/Range 33/ I& cy T 3 Is there an existing access to the property? ES NO N Number of Existing Accesses Road Surface Type&Construction Information Asphalt_ Gravel X. Treated _ Other WCR Culvert Size&Type 151 /71P Materials used to construct Access Roo-d f?„,,se e Construction Start Date 143_Finish Date /Z--//(/ Proposed Use o Temporary(Tracking Pad Required)/$75 ❑ Single Residential/$75 ❑ Industrial/$150 o Small Commercial or Oil&Gas/$75 Large Commercial/$150 o Subdivision/$150 o Field (Agriculture Only)/Exempt Is this access associated with a Planning Process? ❑ No 1(USR o RE o PUD o Other Required Attached Documents -Traffic Control Plan -Certificate of Insurance -Access Pictures(From the Left, Right,&into the access) By accepting this permit,the undersigned Applicant,under penalty of perjury,verifies that they have received all pages of the permit application;they have read and understand all of the permit requirements and provisions set forth on all pages;that they have the authority to sign for and bind the Applicant,if the Applicant is a corporation or other entity;and that by virtue of their signature the Applicant is bound by and agrees to comply with all said permit requirements and provisions,all Weld County ordinances,and state laws regarding facilities construction. Signature Printed Name Date Approval or Denial will be issued in minimum of 5 days. Approved by Revised Date 6/29/10 A,),,,--.1-1-, 3 ;� �� � i, - r F.....,.:.-_-_.,..:....._._.- 3�-•• f'T4 \� f`� � _ .fib_.„ , i ` r - A e , n > *aWl ` ,.--:,,.-,,-,I....- i 11 If- f� .• -1 L7.. r Y � , tom •4 6.�.s �' '' 'i - T +• •;�.: fi_y' iu 4 • Pti0 `X ; - s t-[ ii„t . r f i • 4. ar� u., a Ya y rr �' / �'JJ _, �t�3t•s,. �,, Till �. 1i _ }� O.,-,4%- y 1 �Gj t ''.4.74•131"-- Ki f Y s��*k w L .y,P d Ft,.:ii.,, [F,�r 14,-'Pi,' Z s t' y yi7-:,:-'.;,•. 1 "4''`I ~' a't •4 S��+ :4•2y*� t•. -� ? t.:.;'.:i'..• 1,,.. r t 5 3 F'c-?r5'.t/S� }3`ttY.,�T, Itt y 't1 r f ` .�yp1 v1.(k Ny� S. f. + �, y }� tv kr a�i� z • 3 MM �� fir} f ' • r.i -T. g,\•4y., •.lu.•_yam s - " .f- • _{.?', k.., . . ,,, . . . 1,fir} y;i�w j�i• .•'�'�,;'mod F3i l x -_lx i.qy��{3 `f .. • . . • r:y J 17r7-y •* s,5.y r.'tr� 'sr,,rr3an �4 1 $......,s,.,1 d•.r, USy 7..%,�,...�i y` ,,,..,..r,. t Ytkii, ..Ifiy`' ...,..,..7..;44-t...;.;,..,11.;!5' a •tiA:1.1,0617, > S S4,/%3•,:„n "}!a.�.1 i.'vS- • , ‘ ,-,./.. !;:$.F:-.i.•;,,..: •-i<-9.(;!•:.�a .1<r � e1tha• ;;. e.f +d jat r 7 V")`)Py'},At f.r 5o�ir�.e$ 41.11lv�W ' i s1y s d r y }.. .'r Y i✓<4$�S. ; Sk Zz:t 2 `0- -t t....4,...?41r�E,K))1 . ;at f�"= i,.ktA, :, } .1 ','.••:I.,-••..r c;f••nti y' i -Vo j} '; ..::•••••,.'‘4...... '. :,''•-14..i.;',,.--.k' 'x n: :;744.�'r { s f•+•e?rs++ , p > r.u{t• . � • .'::*'•'•;:"..Y.-;:;,40'14,-'2%.,'-.6 1 .;',:,;;-:,,,-;,'.!•:g•-•:::,,- /L€ �d5My yC .1 . • r,i-,/,.z.;"•::.-T.r. - .. �Y .,7,.'n..... 4�o.:cr_♦}l;.irt.5 X5 r•M ,.r. :•J.z..:7'.,,• :••, - ,J i.., _ , .. x= 41r Y4•.% J 44.1:-.1',•::•q0'. ."." / i{ 1� rti may`I ty +. ' I •.---0+- - � 7 mod•rj : • 4.J it a_ s - 1 f .. • .• . , . . ..... . .. •. . • • • " .ti.r =: n,.t. +.� � c..` + r • -' •`„�. y• ..-N..-..:' iC 1G' L i _ - c'y:� S, + T A � � !'K, - '• - !.(., �: 1 .,.;:.....f;-- : 1: t+ i • • • • • if .. .. . • w✓•: ? t. • . .• . . . . ,•,v- ttr . . . - .. , . . , . . • • uli-rk ' a^ ". ••• • . f . . . . . • .. . . . . . . • . . • _ . ..,. . . • . . .• . . .. • • .. . . ... : • , . . .. • •. . •• . . . .....• ... ,. • . . • • • . . . . . ..... .,....,„....,„.„,„.,.•, •• .... . . . . . ., . : .: .. . .• .. . ._ . , . . •. . . . ......„,......•:„.. • . . . . . . • • .. . 1r� i2=.,�•r ,•,,,....,,. . 1 • . , . .4.......,.....„.. ...„.:3 • .• • • • • • �-.,� ,f.. y. . . • . • ... - •., . . ••... . . ,. .. , • , ., • • • .• • . • . _ ..,. . .... . . . . . . • • • .„,„.....".„.„,..„.„...,_.,„„„,.....,.7.". . .. . - . . f .....„..,....,..,„,,......,_......„,....v.„.„.,..,. .,....,....rr - -.. .. . • . . ..• . .:. . . .. . ... . . . . . .4„.%,..,:.„..„:„....„„..,,,:•:_.._ ,.,,... ..) : 4 $ .. . . ..• . ..• . .. ... . . . . .. .. .• . .. ‘ . . . . .„.„....,.,:,„....„.„.,,.. .. ... •1v .. • . . •. . ,. . , . . • , . • .. . . . . . • " • . ,,..„.„.„,..,:,..„:„„f•,...,.„..„....,.... ., .... .,.....„ .•, . .....,,....: • • • • • •r_ :;',.7..; ,.'.. y, _ . • • " lr 4 r . • , - '`.?,--.--lekl. -, •7.,4,,,,.,li... ,..., ,... ...--..7•,:,•,...._:-..4. .,-;i,.., •_. ,,a _ r � 7 w 4: �: [�• _.„ t . r f' 9� n. . y Fes, en.;y1 /� • • + `{ J Lw v> ,:1 x tit 7 {.` t� �'+ k �a s--,...-'1Airamaik•- • ,P..,,,e" . rt..' ,tom ' .. fr',ti Va k.r . 1O.'4A:f14"-- •.:.' -•••••:' - •4".• 2-.•••:,'"'''•-;.''''-• ' • -. ''....5 1...-',c• -. : - '- - . - -:-....... - --, - . 7'•-- - - • ...--•-•- • •' .. : . • - . •••• ..,' ._ k.-- • _ _ J� ,. - • • • • '' -" , • `?•t :a . i 1.4: "F,f.:.7+a.. . .;:1s ...?_• '1. J.' '• ..7‘ . •:fP._,,...at. n. . + ;`... "_\ - •`:•.':q4,••••'“ ,.0.a' l•traw__w , . ...... ...: _.: : ,.., ... ,... i" 1 ........r___ . ., .. ., _t__ 4i _ . . . '. : i I III�I >rl l I,.I�I1,f I, �y , .1...\ .:,,..,.. ._ . •.tI •1• --••'"----': r:rt. - ..•-..--,,,r 1$i ::(•••,,,, � � '.. - -_=iJ-- _ �' M•.: III ` 1 III I. ` S �4 1. -r,+G i / 't I t t by` , • • -ti ".F . te.H>¢ *le r• JT�� �:t1 1.{ 01•S,'---;.4 y€'!,..i.: . _:,, 'f a -, , +,t • VIG�w. • __.--- -- ___. T- Z_»t z•y.�st Yr P••d a'.r- li. ',�1' . • K • trN' ' 1:J.!,yof `1 y4r .,$,„{ ,7. - `.r t ...i l.r if. v •,13, • .� 1r. 1 '�• i,r;;;,,,c'.,;•?-1; `.4+j{(?„�,'b'`ri , . _ _ C..i ..{a -•`4F` >6 •-:-e: .'...-Ft: t w,"�= � •ki -." 11.,., ivy t,ti�r l `"' 1 ;y tip. • p31 .-) •• _ vr --./1,�s.r�.' f rCr (, ,t I ti; S <t ., r.G7{rrl,.'l' k r»,; -,-,.---_,,:,, -..,?,--.4-k-`$ � i r •- �! ¢ 1t r •-ry)Y. +ttd+�.dYY "' '\ L tf T tY �~:z r`f1 t� sh ;'• ' , isn _ `r f yl,?=rxP .De,>; t, .y. 4 L�r..s } A Y ` � b7 ti{r:£{• '�`F a C 1 •� a^ r .. ..yy,5z 1,a� 14'�•�{j:y� ,,,t • f.tie, ~/ ' ;.''�'TI.•- Y T.•. rL,1' Y ry'[."I,y'.,�v;��,.,+►•���•( TS•. � i N l^ k l l l!�� {•fyl�r .J,sy i 1 n r -41_,5.y _✓, .r ...,.*..:4;"• .. . i' 11�°Ilr .4 e?: j , .�,. .c�')r,r Y (' •I(�- i �f7', y tf{7y r�' C )7'� R t.' •'rrtiiiiir •It.r t, �!}Y S�,.. ,p I ran •'"''Y . .. a..' J r lJI 1 1 1 0 RI,_J/, r ip a, r8 ' I , (' i �� :C. . r _.5:':110,' '...J - i";'. '. APR �e`o, ,r. . . . . .'.14{h Se: •4 di', '.. ....V.. , . -,.,. FOR COMMERCIAL SITES, PLEASE COMPLETE THE FOLLOWING INFORMATION BUSINESS EMERGENCY INFORMATION: Business Name: .1)L x( L' u•N L X2L\s//441-✓U 1C LA C. Phone: (cino)35 1 -6\A 2 Address: 11-0;5a ,,L(}( t (o L` City, ST, Zip: (%re e!t' ( ti�.Business bU�Jy Owner: 1 I I%-e OLVrv1.4,1 Phone: 0,-)0)5 9 -0`in Home Address: S'153 .60 741 f _ City, ST, Zip: uJ two . Fs-04,7g List three persons in the order to be called in the event of an emergency: NAME TITLE ADDRESS PHONE c fur/ A (( 70)53(1-6 � L cs i1 7cam.tn (1o) S.°1 - CD46� Business , ` Hours: 1`.0-0 �e'fb C.O C, Days: IA e U 1� — , '-ec.tf[� Type of Alarm: None Burglar Holdup Fire Silent Audi•le Name and address of Alarm Company: Location of Safe: ********************************************************************************************************************************* MISCELLANEOUS INFORMATION: Number of entry/exit doors in this building: 3 Location(s): E SA) SE Is alcohol stored in building? N 0 Location(s): Are drugs stored in building? IJb Location(s): Are weapons stored in building? Location(s): The following programs are offere�-�s,a public service of the Weld Coun riffs Office. Please indicate the programs of interest. I I Physical Security Check J Crime Prevention Presentation UTILITY SHUT OFF LOCATIONS: Main Electrical: 5O-w '41\14.'1-1\ i-,\k61opn.c_f--. Gas Shut Off: 5 C5 Z -� Exterior Water Shutoff: 5 c4 Interior Water Shutoff: � � STATE OF COLORADO John W.Hickenlooper,Governor Larry Wolk, MD,MSPH �oF.co� Executive Director and Chief Medical Officer ye Dedicated to protecting and improving the health and environment of the people of Colorado �n,,c�� * r r 4300 Cherry Creek Dr. S. Laboratory Services Division l" ' *,r�. 87 6 Denver,Colorado 80246-1530 8100 Lowry Blvd. Phone(303)692-2000 Denver,Colorado 80230-6928 I 1.16 ;21011S Colorado Department Located in Glendale,Colorado (303)692-3090 of Public Health www.colorado.gov/cdphe and Environment 11/13/2013 Larry Duran,Secretary Duran Excavating Inc 418 N 9 Ave Greeley,CO 80631 RE: Certification,Colorado Discharge Permit System Permit No.,COR030000,Certification Number:COR03L440 Dear Mr./Ms.Duran; The Water Quality Control Division(the Division)has reviewed the application submitted for the Cleanup of Existing Cow Lots facility and determined that it qualifies for coverage under the CDPS General Permit for Stormwater Discharges Associated with Construction Activities(the permit).Enclosed please find a copy of the permit certification,which was issued under the Colorado Water Quality Control Act. Facility:Cleanup of Existing Cow Lots Weld County Construction Activities:Cleanup of an old Cow Lot, Legal Contact(receives all legal documentation pertaining to the permit certification): Larry Duran,Secretary Phone number:970-351-0192 Duran Excavating Inc Email: 418 N 9 Ave Greeley, CO 80631 Facility Contact(contacted for general inquiries regarding the facility): Larry Duran,Secretary Phone number:970-351-0192 Email: Billing Contact(receives the invoice pertaining to the permit certification): Larry Duran,Secretary Phone number:970-351-0192 Duran Excavating Inc Email: 418 N 9 Ave Greeley,CO 80631 Any changes to the contacts listed above must be provided to the Division on a Change of Contact form.This form is available on the Division's website at coloradowaterpermits.com. The Annual Fee for this certification is$245.00,and is invoiced every July. Do Not Pay This Now.The initial prorated invoice will be sent to the legal contact shortly. The Division is currently developing a new permit and associated certification for the above permitted facility. The development and review procedures required by law have not yet been completed. The Construction Stormwater General Permit,which will expire June 30,2012,will be administratively continued and will remain in effect under Section 104(7)of the Administrative Procedures Act,C.R.S. 1973,24-4-101,et seq(1982 repl.vol.10) until a new permit/certification is issued and effective. The renewal for this facility will be based on the application that was received 11/13/2013. Please read the enclosed permit and certification.If you have any questions please contact Rik Gay,Environmental Protection Specialist,at(303)692- 3575. Sincerely,1 r) ct,y0 Karen Harford,Administrative Assistant II WATER QUALITY CONTROL DIVISION Enclosures:Certification page;General Permit; Highlight Sheet;Termination form xc: Permit File /keh cert s••,. CERTIFICATION TO DISCHARGE �a c°i°"d°r?ep want UNDER orr,�c�fi��, and Environment CDPS GENERAL PERMIT COR-0300000 STORMWATER ASSOCIATED WITH CONSTRUCTION ACTIVITIES Certification Number: COR03L440 This Certification to Discharge specifically authorizes: Duran Excavating Inc to discharge stormwater from the facility identified as Cleanup of Existing Cow Lots To the waters of the State of Colorado, including, but not limited to: Cache la Poudre River- South Platte River Facility Industrial Activity : Cleanup of an old Cow Lot, Facility Located at: 71 Ave and 0 St, Greeley Weld County, CO 80634 Latitude 40.4506, Longitude-104.7858 Certification is effective: 11/13/2013 Certification Expires: 6/30/2012 ADMINISTRATIVELY CONTINUED This certification under the permit requires that specific actions be performed at designated times. The certification holder is legally obligated to comply with all terms and conditions of the permit. Signed, Nathan Moore Construction/MS4/Pretreatment Unit Manager Water Quality Control Division Page 1 of 22 WERNSMAN LIN ENGINEERING 1011 42nd STREET • EVANS, CO 80620 Phone (970) 353-4463 Fax (970) 353-9257 November 12, 2013 Ms . Jen Petrik Drainage Engineer Weld County Public Works P . O . Box 758 Greeley CO 80632 RE : Final Drainage report and plan for Duran Excavating new facility. Dear Ms. Petrik : Attached is the Drainage Report and Plan for the Duran Excavating new facility. This report addresses both the on-site and off-site hydrology that affects or is affected by the proposed development. If you have any further questions or comments regarding this matter, please contact this office . Sincerely, Eric Wernsman P . E . " I hereby certify that this report for the final drainage design for the new Duran Excavations new facility was prepared by me (or under my direct supervision ) in accordance with the provisions of the Weld County Storm Drainage Criteria for the owners thereof" Registered Professional Engineer State of Colorado No . 33371 Index Page 1-7 DRAINAGE REPORT 8 IDF TABLE AND FOR ZONE 1 FOR STATE OF COLORADO 9 RAINFALL DEPTH FOR ZONE 1 FOR STATE OF COLORADO 10-21 RAINFALL MAPS FOR NOAA ATLAS 2 VOLUME 3 22 BASIN AND SUB-BASIN IMPERVIOUSNESS CALCS 23-24 PEAK RUNOFF FOR HISTORIC CONDTIONS 25-26 PEAK RUNOFF FOR DESIGN PT ONE AND (SB1) 27-28 PEAK RUNOFF FOR DESIGN PT TWO AND (SB2) 29-30 PEAK RUNOFF FOR DESIGN PT THREE AND (SB3) 31-32 PEAK RUNOFF FOR ENTIRE DEVELOPED SITE 33 SWALE CALCULATIONS SECTION A-A 34 SWALE CALCULATIONS SECTION B-B 35 SWALE CALCULATIONS SECTION C-C 36 SWALE CALCULATIONS SECTION D-D 37 SWALE CALCULATIONS SECTION E- E 38-39 DETENTION VOLUME REQ/ D( MODIFIED FAA METHOD) 40-41 DETENTION VOLUME PROVIDED 42 WQCV ORIFICE AND VOLUME REQ' D, OVERFLOW SPILLWAY 43-44 5 YR HISTORIC ORIFVICE PLATE 45 CULVERT CALCULATIONS 46 RIP RAP CALCULATIONS 47-48 NORTH AMERICAN GREEN SPILLWAY CALCS 49 VICINITY MAP 50 FLOOD PLAIN MAP 51-54 NRCS SOIL MAP AND INFORMATION 55 REFERENCES General Description : The proposed site is located on the east side of Weld County Road 29 (WCR 29 ) (a . k. a . 71St Avenue) and the south side of Weld County Road 64 (WCR 64) ( a . k. a . "O" St. ) . WCR 64 and WCR 29 are both paved and have roadside ditches along both sides . The proposed site is located within the North East 1/4 of the North West % of Section 33 Township 6 North, Range 66 West of the 6th Prime Meridian . The site borders WCR 29 along the entire west side of the property. The site is adjacent to WCR 64 along the entire north side . ( Please see sheet C1 for a vicinity map . ) In the past the site was the home of Lowell Paul Dairy and some of the existing buildings and concrete remains . There are no major waterways, water holding areas or water resources on or adjacent to the property. The Cache La Poudre River is approximately 500 ft to the south of the southern side of the property. The project site contains approximately 39 . 1 acres . Approximately 26 acres of the site is planned for a proposed building, concrete surfaces, gravel parking lot, gravel driveway and future storage unit buildings . (All of the future buildings and gravel surfaces were taken into account to determine detention requirements . ) A detention pond with an extended detention basin is proposed to hold developed flows from the remainder of the site and release at a reduced 40-hour drain time and a five-year historic rate, respectively. The ground cover on the existing site consists of mainly weeds with some concrete and gravel areas . The soil types present are Ascalon Loam 0% to 1% slope (#8 on map), Otero Sandy Loam 0% to 1% slope (#50 on map), Otero Sandy Loam 1% to 3% slope (#51 on map)and Otero Sandy Loam 3% to 5% slope (#52 on map) . See NRCS soil report in the appendix for location of both soil types . NRCS classifies both soils in hydrologic group " B" for runoff purposes . There are no major open channels on or adjacent to the property. The topography of the existing areas around the site suggest flows travel from the northwest to the south east. However, very minimal offsite flows from the north travel to the site due to a railroad track north of the site that is raised above existing ground approximately 2 ft. If any flows south of the railroad track travel south towards the site there are roadside ditches along both sides of WCR64 to carry flows toward the east. WCR 29 is raised and creates a similar buffer to prevent flows from traveling from the west to the east to the property. Most of the runoff generated by the proposed development will be collected via swales and concrete pans and directed toward the on-site detention pond . The remainder of the on-site flows will sheet flow into the detention pond . The detention pond is located in the south side of the property and releases developed runoff through a staged outlet. A water quality outlet will release minor storm flows over a 40-hour time period and a major storm orifice opening will release flows at a five-year historic equivalent rate . The released flow will be directed to the south . Riprap is placed at the end of the pipe outlet to protect the ground surface from erosion . During a geotechnical investigation, soil borings were drilled up to 16 feet in depth . Groundwater was encountered at 14' deep . Drainage Basins and Sub- Basins : There is no Weld County Master Drainage Plan for this site at the current time . The closest major basin is the Cache La Poudre River, which lies approximately 500 ft to the south of the southern end of the property. This 7 project site is not located within the Cache La Poudre River 100-year floodplain . The site is located on Fema Map 0802660609C. Historically the site slopes generally to the south east at approximately a 1 . 2% slope . If the site was totally undeveloped, the 39 . 1-acre site would produce five-year and 100-year runoff rates of 9 . 28 cubic feet per second (cfs) and 78 . 2 cfs, respectively. The area to the north of the site drain south towards the site but a railroad track creates a buffer directing flows east away from the site . WCR 29 creates a similar buffer directing flows west of the site south away from the site . Off-site flows do not enter the site . The on-site developed flows are directed to the detention pond in the southeast corner of the property. Sub-basin SB1 contains 0 . 61 acres and represents the flows generated from a portion of the gravel parking lot east of the new office and some of the landscaping areas . The outfall of the sub-basin is designated as Design Point #1 ( DP #1) . The five-year and 100-year runoff rates are approximately 0. 61 cfs and 2 . 06 cfs, respectively. Sub-basin SB1 was used to calculate flows in swale sections A-A, B-B and C-C. Sub-basin SB2 is located in the center portion of the site and contains 2 .43 acres of building, concrete surface, and gravel drives . The five-year rate is about 2 .49 cfs and the 100-year rate is approximately 7 . 98 cfs . Sub-basin SB2 was used to calculate flows in swale section E-E and verify freeboard depth to the existing building. Sub-basin SB3 includes SB2, with a total of 2 . 78 acres, is located in the center of the site and outfalls to a point, DP #3, located at end of swale section E- E and outfalls to a 6' x 6' rip rap pad . The five-year runoff rate is 2 . 75 cfs and the 100-year runoff rate is 8. 78 cfs . SB3 was used to calculate the rip rap requirements at the end of swale sec E-E . `1 Drainage Design Criteria : There is no Weld County Master Drainage Plan or project master drainage plans for this site at the current time . Using the NOAA Atlas 2 Volume Ill maps an IDF table was generated . Please see calculations sheet 1. A one hour rainfall depth of 1 .47 inches and 2 . 79 inches was determined for a five-year and 100-year event, respectively. The rational method was used to calculate runoff and release rates . The detention pond was sized using a 5-year historic release rate . An extended detention basin is designed within the pond to release minor storms over a 40-hour period to maintain water quality. The on site features (swales, culverts etc. ) were sized to pass the 100- year events . The runoff for specific design points was calculated by inputting the area, imperviousness, soil type, one hour precipitation values, slope, length of travel and conveyance into the peak runoff spreadsheet. Please see the corresponding peak runoff and feature design for each point. The release rate and developed runoff amounts were calculated using the rational method . The detention pond volume was determined using the Modified FAA Method with one exception . The discharge rate did not use the soil type value . The discharge rate was determined by finding the total historic runoff rate for the site and then dividing by the site area per Weld County recommendations. This value was then input into the detention pond spreadsheet to determine the volume required . Drainage Facility Design : The 100-yr storm volume required by using the Modified FAA method was determined to be 203, 626 cubic feet. With a pond flowline of 4694.5, the 100- L) year high-water elevation is 4696. 20 . The available volume provided is approximately 232,457 cubic feet. The water quality capture volume (WQCV) can be included in this volume per the Weld County Addendum to the Urban Drainage Manual . An extended detention basin is designed to provide the water quality volume . The minimum WQCV allowed for the site is 0. 700 acre-feet. The water elevation of the WQCV basin is due to the minimum required orifice plate height is 95 . 62 . The proposed detention outlet has an initial orifice plate to provide water quality capture volume in an extended detention basin . The first stage orifice plate shall have three (3 ) 1-3/4"-inch holes to release the water quality capture volume runoff. The top of the orifice plate is set at elevation 4695 . 62 due to the minimum height requirement in the WQCV worksheet . The WQCV provided is approx 82,412 cubic feet. The second orifice plate with a 12-1/2" high opening releases flow to a 24-inch diameter CMP that directs flows to the south . A eight-foot by eight-foot bed of Type L riprap will be place at the pipe outlet at a depth of one and a half feet. An emergency spillway is designed to allow on-site flows to leave the detention pond in the event that the pond outlet is clogged . The emergency overflow is provided at elevation 4696. 20 . The spillway shall be a minimum of 100 feet wide and will limit the flow depth to 0 .52 feet at a discharge rate of 117 cubic feet per second . The spillway shall have erosion control blanket placed on the downstream side of the emergency overflow. Please refer to the appendix for the calculations regarding the spillway. Swales and concrete pans are designed throughout the site to direct stormwater flows to the detention pond . Flows from sub-basin SB1 are collected by a concrete pan along the east side of the proposed building, designed at a 0.45% slope. This pan is designated as Sec A-A in the design calculations and on the drainage plan . The Sec A-A pan empties into the Concrete pan Sec B- B . The pan designated as Sec B- B is designed at a 20% slope and empties into a concrete pan shown as Sec C-C. Sec C-C pan carries flow along the south side of the proposed office and empties onto an existing concrete pad . All of the swales were conservatively designed for the 100-yr event for the entire basin . Sec A-A was designed to verify freeboard to the existing building west of the pan . Sec B-B was designed to transition flow from Sec A-A to Sec C-C. Finally Sec C-C was designed to carry the entire 100 yr event on the concrete pan with the landscape and gravel areas adjacent to it providing free board . Sub- Basin 2 is collected in the concrete pan Sec D- D . The channel has a slope of 1 . 5% and was actually calculated as gravel to verify capacity but will have a concrete pan to assist the site functionality. Sec D- D empties into the concrete pan Sec E-E . Section E- E was calculated as concrete to handle the entire 100 — yr event on the concrete with the adjacent gravel surfaces providing the freeboard . The section also provides 1 ft of freeboard to building along the east side of the pan . At the downstream end of Section E-E, a 6 foot by 6 foot pad of Type L riprap is placed to mitigate erosion . The spreadsheets included in the report detail the physical requirements to provide adequate drainage ways. Please refer to the spreadsheets for the specific design . Once the site vegetation has been re-seeded very little maintenance should be required for site operation . Care should be taken to keep trash and debris out of inlets and pipes to prevent excess water from building up on the site . If complete blockage would occur in the detention pond outlet the water would release through the emergency spillway. If blockages occur they should be immediately cleaned . All storm water pipes shall be kept clean to maintain full capacity. Conclusions : The proposed site will control developed storm water flows through an on- site detention pond . The allowable release rates from the detention pond include a water quality release rate that allows minor storm flows to release over a 40- hour time period and a major storm release rate that is equivalent to the five-year historic runoff rate . Off-site flows that drain toward the site are directed through the property and the detention pond spillway. All of these storm water flows are conveyed to the south . This report and design will meet the Weld County Code without any variances . This design should be more than adequate to prevent either on-site or off-site runoff flows from creating damage . The site is not part of any Weld County Master Drainage Plan . Please see the reference sheet for a complete list of references used for this design and report IDF TABLE FOR ZONE ONE IN THE STATE OF COLORADO Zone 1: South Platte, Republican, Arkansas, and Cimarron River Basins Project: Duran Excavating Enter the elevation at the center of the watershed: Elev = 4,710 (input) 1 . Rainfall Depth-Duration-Frequency Table Enter the 6-hour and 24-hour rainfall depths from the NOAA Atlas 2 Volume III in rightmost blue columns Return Rainfall Depth in Inches at Time Duration Period 5-min 10-min 15-min 30-min 1-hr 2-hr 3-hr 6-hr 24-hr (1 ) (2) (3) (4) (5) (6) (7) (8) (9) (10) output output output output output output output input input 2-yr 0.30 0.47 0.59 0.82 1 .04 1 . 16 1 .25 1 .40 170 5-yr 0.43 0.66 0.84 1 . 16 1 .47 1 .62 _ 1 .73 1 .90 2.25 10-yr 0.51 0.79 1 .00 1 .39 1 .76 1 .91 2.02 2.20 2.60 25-yr 0.62 0.96 1 .21 1 .68 2. 12 2.29 2.41 2.60 3.20 50-yr 0.72 1 . 11 1 .41 1 .95 2.47 2.61 2.73 2.90 3.60 100-yr 0.81 1 .26 1 .59 2.20 2.79 3.00 3. 15 3.40 4.00 Note: Refer to NOAA Atlas 2 Volume Ill isopluvial maps for 6-hr and 24-hr rainfall depths. 2. Rainfall Intensity-Duration-Frequency Table Return Rainfall Intensity in Inches Per Hour at Time Duration Period 5-min 10-min 15-min 30-min 1-hr 2-hr 3-hr 6-hr 24-hr (1 ) (2) (3) (4) (5) (6) (7) (8) (9) (10) output output output output output output output output output 2-yr 3.60 2.80 2.36 1 .64 1 .04 0.58 0.42 0.23 0.07 5-yr 5. 13 . 3.98 3.36 2.33 1 .47 0.81 0.58 0.32 0.09 10-yr 6. 13 4.75 4.02 2.78 1 .76 0.96 0.67 0.37 0. 11 25-yr 7.39 5.74 4.84 3.36 2. 12 1 . 14 0.80 0.43 0. 13 50-yr 8.58 6.66 5.62 3.90 2.47 1 .31 0.91 0.48 0. 15 100-yr 9.71 7.53 6.36 4.41 2.79 1 .50 1 .05 0.57 0. 17 9RAINFALL, Z-1 11 /14/2013, 10:22 AM S One-Hour Rainfall Depth Design Chart 3.00 J 2.79 2.50 2.474 2. 12 2.00 I __ 1 .76 ♦ i 1 .50 1 .4 / ♦ i - - N a 4 - 4- c 1 .00 1 .04 t _. 1 1 0.50 0.00 - 2-yr 5-yr 10-yr 25-yr 50-yr 100-yr Return Period 9RAINFALL, Z-1 11/14/2013, 10:22 AM 9 k • ^. _ _ _ . _— • 3 ..� • w • s -�_ ! z / v �• • O .... .. 1 —` -.. . .. ... _ a mei ---� x• • N\ . 4, •-N..„,... ' rx •. fV U ` \ • _ o h • .. o aociF • \ — DW . j i :� . . j / r -• • F . } = �` � fi -ti r�• ^ Ir) 3 ... .M A. c'e —Yr' ' t.. \ .- - t.6 O O 1 • r/ �� O LL! V ' F //'' Z 7 J ' 1' ii. ,. K T Wit. ..J /• J ---.� .L.y �'/ �.f� 6.ZZ �i 1 .__,,..c•---/r-- , /e•-) 4c. �▪ . mil• 7 } f (_ _- ,\I �.r" /V (--,,,-„..„7„� c,., ,__ , eu /� 1 / • o,� 1 \ \ \., 1' « 4TZ1 'c (wit • /• i� u )_melt-C. fj ;_ s .•�' r,� N f p, ,. .i r /o. ld z--:•<?/. �`) TC@i.^��.iiJJ (tr' • v„... . , ._? J"� 1 ''' -- . 4 ••••••-• .../// 6J\ +er\. 7,5 �t� • ( -1.-m I ^ , o..l- -F it k^� .�1 IN t• g1.,`` f •••.7-.,• •/� r-. I„__ . ...„.....„_,..Ni. ) /... . ` / ` Cl-J • 'I (� "'�i / / •`� , � .1 /o t.`. .i ar -+V'J / (Nam �: ' r\ 1 -. - ;ad" % \\\1lr-z • \ G 4!.- - --7' ' ,:::,-,-,-;-_-•;'..-4--7-___nj i a sf - r / / c' ,r' �, �-�J t.,JIr•- � `i;1: jAr 1i .. ) "! -, �'`J 1 ..�...� , I 1 , i _� 1. _II ,' ~_- wit ^\\, O 9 1- /I . .:..1/4, ..N.H., ...j, t. i i:1 4), V\rt....4..ams, • ty, I fr . I c r_ .., ?' ....." J i 1 r^". ( ,,,_ _,O ! ... .......................... ... ............ ..............._................... .... r /0 7 4 r n _ - ' \\<........L • i f\ ,... • . 1 . £ , ' O ce IT , .. .ith • \ C • N. .....,..• : \il \ CD • . —N j 1 \ DA Ow �� E. y y e i • • --�... tEv . . _1 q • i • t .... " ` \`1 -. ...),--A , . _ _ ... .. i \ i ;I 1 C , 1 .._. -- �� =__ =�..�—. �;•--'�:`�� � X1'--f t�J �__-, , l N'3 / /v-\ cl ` j ,—...-----.:1/4:-..,.. r." .' �t\l>� N J • Q. rte.- efi/ -, > 0-2a y a�E/aE �/�?"! - ��\�� %-)�) 1i1^��\ i��� �rti-i^>� '.4.. taiE �/ � it , lr i / sr cs• ...�" !C".y� ...r -�/ , 1-' r `'� .e!\\ �'�'- , /-• a v� \. "' Kc '-n •88-__ r ' / -•,:-.) th..,.,..... C.C.c, Cl.:1_,_57r-;,s it-- ‘::,,,-.)- •-:::> ir. , • c, ...f -- c2„,_ -, e.',,--C,mkei ..... ,, .21,cim 1 ( reTh-..--ie . il . c-,n III/- •2) _ i _ r r— \ a1. � • �; ' i, \ - j _ , 'ra.H`� L'1? M� ,...:::.4 4.,��"; _ J /�• -- ,t1 2 \I.- - i -• .1%'1'2 (car' r) C I (------ -„,,,r- �(,/ ,"f , >1/� N.:2 F —a f' \` - l e.0 - I \---' I J.;~ \. , 1 rd >.4::'-e.L! ..vNiJi Al - y—_- 7.�� 7 r / # tit.,C-1 -11 AE (�� �r-_ \ i µ,' ''' '• \rm�_ -.-----.r._,J J / 'i Y , I-1 - 111 1 r . `l , r, t.! . ...m,' _ •-•� c I ) ., 7 `=r E I N — S — ---Y- \ t \\ .�Sa-— .. _ —__ \ - Lt ._ n L r ' w 3 Iwn....x.rxx.l — I I r _. .' ` _ �- z '� _ z \ \ o . Q a- b a --� \\ a ....,X, ,.. us U `_ �`J ,-• z \ O _Au_ ... i -Iv y J2 3 \ _ ` aZ // \ \ 1 1 1 • 1 i ) o: .. • \i‘ „__-----r-fr-,__________.-- • - 1\ / \ - Z II I / L ^ r_rt i�"- \\�-.'�\ 1�� 1 \' /�� -1�. Y 4c p fi ,��`;._\fI.......a..6_,_-,-......... .a_ ��'�-` �''9" m}!J _ f_,% x r ! �� ��\•e`r mac" . �^' 8' o 2s ti _ ,i .,, .,y•/iI . �_ _ 1+ r5--_ ,•; /"-__ � : gyp.{ :5••••-, `t • / -_"/-'_- � -,4-77,, ,. S1)) /II .4.,t2,-;'• \� J ----et (- e / �!i jN� �'� •\ •—.... ? t\ ~ t^y !i IL - ter,\. , ter_ � , ,�. . " 1l_ Aa - . __..„ a ,... r• -7-3'iic i-- ."1..... : ::: .4i3og r ` rzt r7' - -1�"- - c--1--r\-- I; k )=?^��/ /`\ //' ^' '..r�' `[i 1—r I' ' ` i, \'11 / l te„ , rf��� _�..�,� �_r�f + •— 1 G ---'�..\ t_ /f� ka� \1iY.lif /Nit(' . \ II-`\ �\ .-il��l tv\ , i• l f • i e \--11I t _ —^ /\ ,.. . / i `, (...,. ‘"' -:"1"--- /, -..c- •:-..•..f.:1 ,'— ---) -% ‘ `2, N.-NJ( ( _,, ..., ,e, . . 1.--•-1 v. . ) :-.----.4„9„,t1. i . i I Z I ) T I? sr-, �r_ c• /— , r ~ •�� I•-v I i�ry )) if tom... in'tk 1 (—N. i i al ..±.2:•:,1,—.4 ' • /// , r - c‹...:\.: ' ) '/ / li �� `-, / ' / \1 ( r..1 �y'+,y t i rte•,. v K . ^ ._ .L - a, r • _ a ............... 7r , • q! J o fr . 1 t Z 1 Kt - 1 ' J { tact 1 i rto y 1 'N H • I _ - \ • 1 . - • • \\\ , \ _ '� �s • J ` _ - r in J/�_`l� i ! i (...:17 .--... . ^ _.. '—"` � //i _! /-� 1,' iJX41 ,44...,- a. vg.�I—m j /�� ( ,. ...rte } . ..4 - -. xN -- -- C� �v Yy < .r\r ♦ .�- .r . `.. tee• , . = C� •�� \mo t i; aQii -- 1i. -`'\ -'i �-'` .N.. . v ' r 1. __,..,. _,._., • ,... .,...;. .-'_` .1 r ^ \�� 3 lGig Q ..-,\ ._..„,,:., ..,. ,....... ii.�.. / .ice w: (, ) -�mr\ -J. - r^? J .�:Tr�r'T`7\.- • t Ji' 4 o Ef.{/./� ` (.<� t• ACS C..r�N+J)i� 's.:� u".� �� � 'y.yv ,/� Ili $g ... 1/lal� •mil / ��- \��.,`��i "/ •-+ •J ^�`—•••, , /' r/ = z kis� ar9 • ,I / '} /P�glee' 1./`� -:74 yr� 1 : ��''/%� 1 •� r\ • _ /��`�7 i� � � J 3. 9.„. 1 -i1 ej C J \I.- i�� 0/V -1,',1)._ x. /' `7 i 7 /• 1, .rte .-,•'_J Is -:". �` ��'. \ _-----2) m f \ y<\' -_'! J _/ � .,.°m\ Q•\f•1�,, ! �( �e. •fir \.�) \.,�--~`�' �t .t14 ,,) :1 , ur` .... .. /I. - . (.l .75 , i ,,"") i l \ (,' liC f c — -= / �:/pF' 1 .\ 1r ='�-- lam. • (^J •, % . ' n. -.1, 4-.,,,, / >-+�'_;)r r v . I t • 10. . ]eal ' J ° ` r• ' 1 1 // ' /� F'l 'u. �j '�- �,\' ~I /`� �� // - e// i \ ' -y- ;! 1 I` 1. 11. • �`�w.. J 11 r / �'~` `�__ ``� .-` S`\� i\n..,`, `\,���. ..!'y �i�r -.J I / •_•• lid``} '�re`- - < ( `• , \..� f1. .`;,.� -�% �\I .. .n.- .Y •,/ 1 / , - • )}}rr�� ', • "-mom/) ) \air l �.a0d �,�.�r.x ,,,.r' / l 1111! ] J " \_ '/lam, \ t'''' - / ,, , ,1 _ - . ) _ i ' i i c'"• J ,J \r I 1 \ � ',r - ! = , • - 0 Us • mlµ • Z z • • • I- C Ei cc I \ Q th g= o w a n • N g to • 1 ) . • „ r--• r 1, • � '�`=`Its • ,;, `(�C_� / i „ .... t27 ,rte ,:.,. + ! I' 2../ •_ c`^ Y 1%' �R /•/ 4�N'n/"I�Y'i •,,• - _ �`� -\ J'%"`�J�I /_.�• \,n -t E I J tatll oil ....�-. `���•1`` 15\3 ._/ Lei J ,...'`\ ` ` �- i• i l�/ �% •-r.e. Ir" K Iii Erg� , 6_ d � / `e ,',/ ,% l/ 1 ( o - r •�, ..+. ) / r~\ LLB.,�y / r ��^ ' lC .p . r( rr ge.�!.. - - �, r =pflv - 1 131 /{ {, . ,,J �,--- I ✓. `- ,.SC ��--�}• a`'X`;C;?,f ^:......11i1,,,..1� e c y. �:-"1 Jf i/,�C •• ��1` ' l� '.� 'tl � � tir ' �` t ' J—,r/ / \tom i; \ ` ,ACC, x;� )) r r:s --/ )! ie l\ ' ;!� 0% . I (1 'rR i \7 /- U }~ff/e2�s\'l `,/Vf�� 4`\...,\ 11 \� '/` Ire cZ ..e,\.. r . �� 1 / Si; 1 1. ( ( fry.\ l ,�—fl j e'Tr/ l -/••/ �� �l == - 2 1 \ 4 .e s . mr. ILI . I -------%\,.%,....... ) ; \ . . , •........_ . I to co i a • ce ' . . ; Dr X• ...... \\.. .. _.. .. e -- oz ., JN s • Ca 0 /'r• • • if \j, •.- „,- r '� r - -=R 1\l., — .,e —�,�y - , :<- yes �a ....�_�•�. \ ' " .at �=.i i �. �•---1 ( -....i� �� .,�j1�� - -.�'v._. �o' fag j: m.�•�- '�l 1 --'�.__ •/-- /tom", "..1.' A. ( j,e y'� t• ,�.��_ •I.,;-"'•-:.•47-4z- �,�/ el m `.oL A i I� /7� .Jw mil" �V�M1 .�,iJ l`tk .1 G.` 15.: i SL•e oz., rm M•' / 'N1 si I' n.* -st al `- NIT '4'-�_ y`` 1 7-^ ., r•. — l ti• I .-/ '• .?,,. J\ .. tm a •,:2 ISa \ r`-1C �\ '^' 1 ?Lyre _ 'tea ia / i-//rte47;,..!-....„.+ ...�—f\ ) _ ., L' c a2a t,& 3 C / r( 4., N^ . ,?'•1,, /l _ -+• • #4r..,........... ._...._...._.,.// i ' ,.y. ./y �r'- CZ.) + r�"�)1.:--1`%—1 c \ i� ,C,..y \{ .e✓��_ �•:-,,•-- `.-. C4.3' 4,0 ,^. J /\Y� Z�4F. f ]� I '1�_ ♦..J/ I it ' • �— —` ,J?L r` - mr, `." r 'lc N r • I :r• \ tz , 1 ��, `r: --�/ I yr,t3 J.. ` � �A m /��,r„' »•-.� �(- 1 ,.,��) fr P'. ✓ \ �� ,' J Al" .4� i `\�7"- ] ,e..y` •'•�1, ‘co.,/(,-/'-,',,cat--1,_—.5. e. y / `..,` t ` r. \_�•� - 1 J / \ t +1 1 1 � J / ��� T• Y �- 1.��.� �1(] r" ,\�•"--o 1rJ w�, t 1 )^• • ` // -Alm rA''''''-'91././ r ' l 4 ?. Z>�- 4.. .‘ \�i �� r ^—, .r. • ' ✓ Y,'.� }• :• /f •,.: r .. / ..�i �t•�y j� •'\ C , ��•-.� , 1-.,r �, Zit �j,� ) �/ ../1k '-r.1'1 /-; r;'•'� f \'"`, �- \ 1 =,, /'' e0` 61-.1,-?'1 ..� V / >?is tit• 1 �1\ Th l''[ 1,..->._ ,.-) `� 7 i,„ a ` ,� • ,,f op..);i . `m -, , f , 1 V i �•r r •L e4.. S� v� t`.P. `)) `r,.,o-,�. _, •�'i, a v'o.,it ( 1 -ev ( .c...- % i-�) •�L---P.J� •-% ‘t---A,-. ',1, , / _ ,..1 / t ----.r�, - r-. L - - J 1 /r L. 1\,. \ J '��. 141 fn • ---5L-,,t,.( a6 \ �I tAi !( L �l \t rz.�, 7r,� J ) , lc: 1 7� Ji cam / �/r ` .1J^y ^ ..ej � , i r `, `� ; { + r { �Jr . ;�� Imo. . r 1 N - l • ;it ^ 1 < • 1 • _ ... ' v w • \ K me //(rr 'N.*......m.. 7....::Th0 1 i — ra- Q. t, _ - ! w N� E f f OZ { .- 4, q 0 \ S • • • pm -I a. /. ---'\ + w W y1-• , ivs • • _. " " .:4 I Ik . ( I N : : ( 1 ; 1 , ) ' / / / iL, • K �ti___ �—, `,.- w f� - .o `� ;�/ ( �%/ ��\�l '" ; �., 1••. C.'_ ~w I:, a 3 at. az }jam}, ��.1 \\I;w•'.)PI / 'L�,tl ' ` '• 1, /w 'r 1 g `— /� .�S -"-._....c.„))1/47 s V` �'1 )tore..., C -' �N vs n�� if P�/ rc• Dlvi c. 1 .v -"• .et / ', <� 1.0 \� /3 ) T. 1. rs �. `'"4 ��f.': 1,� \ \ l •'�1QtT . /. �1 ; -4---1(3t, E\.+ `� �-' I f �— `` �J ! ..: A ` t5. 'e; T...--r C� -�% �C.._ _,- -"--)11.,..-2 (� w ter �,. i/(� ," 1 / f//S. N,�` 1 -t ✓ �,-.. i ../ � r ,d; ,. �:r/114.,ft rV„-•y'i �--••r^.,. . . 1 _`r!�✓-___ --13,6"-%::1_.„3,. „-, S :TT• •J. ./..s..1 f ' 'f..\' ~4-- , / 1 t' / I''\� l' ^� v^.J',.,,� ' :.ZJ \-' not ' f .• lc ) pct_ . �'�.. , < � r^4, -.._t - '� 'J. . •—_,- 'y-'� : () .O \' t �' 7tjtC_� c' \ �yV " tlf� I t! • � ' l / \''� 7 rs 1 .---r1-_,17)!\\ �� • rte' -_ �. . /(�- << G i2 �' ,gJl• } (ii O - .. J t i'. 1-/' �: rte_ \. C ! ,_ r-..l I 0.,II., .J 1 / .si, t . -r J I �. o ( .m.,.__,. - . __ • f em Z I z o ' i \ \ a. O • \ • y zu _ _ o ` yQ • ) ........\\• . • • I , ir. I S...............-- -------4--------- 7- itC../ ..:: ' ••••••••Y-"-;---- 'Irm 5) I i \ --P.- • ---- ' I i ..— 1 ., i �_�� - csv I r( ` J_'��� � `j.i-,a �� EV, yes Q� S I e • ,«�. . ^ �J of )+ '1� r�//i=�/� 1 `Y'- �-- 1 ,! ' ' _-� ,i'1/4; ' r� n )\,^ e` L�l."//7 � le, 84X % w1I�`'� r. J +� '� � T + � / �'� �l' 1 ii f. N�ay{ \ �,�• l 44 .-1-C cer'l�^•\,�—{t {`'•�rI��JY. N. ',a\,` ®r ` //. • •:' ��4 % '7�'li• , i `vl' o e k,`, i I �. ..3:�- J`'. �r� .� ~, V1r4-1-->-?)t- `711\ �/ —'..� �L ,:;1°- ' L-- r ''� �'47 e V `. r { MR✓ ` ` 7jl�r...� i.!/f /fe e/ / m i,-,��� fpm -/-aiY �ic7 L�..\ `�`�t.v''//l��/ /. Pt ili tog . ilf • C C:"..,?..../.0 {\ �,�'_.. .. ,�J! �.q��l / 0-,,,,.., , {t/ X11 ^I.e-1 Ls--% + >\ - Li j ix...,....a.1. 1 i _rte/ 1 1 ,) r\. j 1/4 "- f Le �j ��`1 . (..'—'..c- Ps .. .--_.Ig N y•' , \‘;111-14 `` _1 i_!,-.� -4••••"IB ' b"../ l ` , ' e]---/ S ] f / \\ ` � ` /" �" ��1 \ ,If �� �`i tit IJ�1 r\\ � ,' �—� - 7--` Y4) ti+ �- c- 1 r ig �, i ' _ Q J \_ 1 • \ —. ii U C /iia = 1 air \ \ cs 1 I !� / ) 1 j -' - • _ _"._____ - ... -. » - • . 17 n . \ Q N........___ r- -_ • a . . ° N aa • '-....* N. .,\ • a �a. o .'•.1/4, _fn Q F- Z lee 1 en 0.W �� %•••,,,,_.en r/ `! it ` - � � . N, ...! 1 f mil- -��, ��1 f m ! ,4 11 r t.%—. �v""..--.:-"1„; � Fs'ri,',0 \\-? � :S (.-', C'• �� 1.-"..._.474.5:\_. /%G�jç\i .......,...k.—--S. a c33 lc. a • ..y 1�.i1 'z 1 . -r• �e— Imo, ;�,rte < '���• a ' i *JHJ l h / `'. /•,� �✓ - a"�`<may/ V--"•-,/' .•Ad/ #(,--\,1 %^.\ ( 1', .\.%_,•"-, \ \ , S -.. (/ .,•,--..-/ ., /;-,-_,--41.74-1t/, (, V e.`/f ���^?� - An r,-‘,.... _1% 7v�� la1vJ✓/�!•i�-�{ / \-.).•�+`�_..f 11 )m: J ) • ^n C 1 yy �j,./ ..,i. . ..„•�. • . -t F/ ♦ y r ` e^- !�I `}r} H:� ((�`, ,. �rl•= r% ,....��\., �1 ��J/ . Y' .1 {/` y / CiaJ ,... . / 1` f{ 1 I , C .J'-/� Fm \ \\l\�'i=.,3 �''^`�. C' �1 C '''''''1.11c)) ' .lS 1 . 1 '• •• %•-` i �' L- � Iicii. , f--„,• ' cal? /../. d,"'lie::\:.I.(1:1\171:1-2441\ l'INLICE:'1•71 i Ili (I . , .1 tip . \-r^� ✓ _ , , �� (( _ '. \ _� . \\'Cf • / \ , � \ i-5 J 'i '''1 f�y� ;� /7.- 1 me-., , , \ 1 � ( \,...„,,, ' _ b __:\:\_ :-.1: f pe . • • O 1 le .. -- -•.• „. yy• `�� a —/ o �~1� • \ a Oct, • gZ =� I U... M ea 0 \. m W N\\_.•' e., ..._—_ : //--- :NH• y. • .r �1_'' • \"' •'ti• . / . ) ( 5��f rof 1 • 1�, i t. o i i fl: M ._.-r", 1 1 , y! \ .� ._• ' .�u k 20 ip t S I \` v �r ' 114 I t Y 0.9 i. «I�`}. \hd\a-". 4 r�J ////. fir :// ~ 1/2 p 1. sal ac (___......---.-Fr-A. ---)Y ` C�▪ �— /E:f'' r,_ �\ to 1: g ra .s.f i�y_ ` kg) �L• \•l`1A�""�"i C/ '.....'''''''&-.'. -a�.5 � �'� CTIPI.r-t. S� 'i \i. .l ! "Fr �¢ ' YL Y . ^? V 0TH✓ri 1`• .. •�)- Qom, ).1.4) 1.'2 cy5- 1 1S = ...CI ZQ D. V.1 [ice q U ` \\ • ' ` /r, f�'` ) / ^T (�-LL•1��� -!+ !Haea,,r.• 1 J (.e7,/,'‘.--, \f r- --• ,�4.(f .5:1.0-,---,..,,,,,\,. �,isr, i_ l ,1^�1,� /,_:_/.a S( '��.; , �. /.. ee-e� `� as 1 ....... \ �-� 5../7( )rim __ , V\ / Y7f • Zi �� :•...��.:"l1r ••r •"a., Al' 1 r � r'�' LJ\\lS-�.' '• ,s ../�� ) 's/ , `w, q`., - (\�C�/�''��(}�� I nit• �f I...f/ / i..� J A + /., ' ,.../. •'-mil _.r•-C W!.r, • , e �j'`..; 5 1 \\, ..� .1 ,�lq 1'� ,<_ �5• �L/1 `�' S rtl ,,+ 1 ,\�~ \ � `�� �� f.\ 1 (r�11J ,;:-s....; . CZ; p r , ,...-,....),_ ..„ ,_,...., ., I \ ..,- ,/ .-.- ;....;%A...27 \ . r�t%Y m 5, .l[ �J- X 1}1 ,.. -- _,-,...,-----)0 4101-.74,,L.t --�. ��-r','\\1- ��� 1 } V rte ,S^ eTJ I"'_ 5` • 11 7/ , 1 �r4- l -• l _ %..../t �, \ y^ - tr, rob'-4 M(l`I ? I 'L -V,yter .o < x+ 1�t ' i! ;r✓ N,.--/\+\"�!7' Ala,j /� �+ L.. 1... . ......1-, , 1 . \\. N ,(/i .0, `5 t t car -c r+ . ; :4„..„......:;Nzz....1 ‘ ‘‘) ''.4 e_ . / „../ /,./ ./ -, 't Cp. :::-TIN:::::, 1;7:::\' / -/ 1 :;C:)4X • . ,,,,:::.......(1\/. (..,..- / --,s•.:-.1.--r ' — - , % • CD 1� �y'.y✓,.k -- .r..t > //�.• N ._, /, FJ 1� `. _�`M 7-,m / U .. at ) KK % v `T ^ a a 4,j5a. L _.......... .__... 11 -- P oo ...,.,w.,. ' - r. r, M L•! _ _.. .. __.www - .... T •. ' _, \ ... $1 d \\` . r - - _ ' ... ! \`;a O \r.r �— _ _ _ �- • � : _. I O tMi • N O in . O ,( 1, \ ' I J W • 1, m ! ` • i \ • 'f• I s` t .'.— , _� r e. .i/. `<' C. xr I `� ! 1r, r :\ \\ ▪1. \ . 3 '- a.` .'fir ' a �', « c j,Y. beq cel 14 ', w ) •, - •\ -••[^' / - /"" { - ' ` , r 5'^� � . ///. •ate o }a}'a. u�{ .f......2/-ay ' • 1 � m�5^ �` � ! I_ 'SY^`4. ' wa c • a 11 �y / _ 2 f.X^a 1` �i 1 ate. , 1. .e• w _. - - �. y '. w .�1 �, /.Y. �, . .�$1^( u^' '♦-ri•'ft'fT •v .^ 1 b '�Y> :z,.../.:4,-, , --,........:\•,-... ....:,•...,,,, .Sy , ^I.:....-.1-3). -C/11'.....: /CI-4/------,. _��.—<� { / 75 �J f• Z mss) i/ ( �) \ ��r j if / /..� +----,,,�-• l.V '/ ,N/. •�• -S 7 m ,\ � :) ,``� .. Sa / mo • a`ro-r• ' ����f"R.. 1 —�o { Y\ arm PIC�*-1• , ,} r--•)',1:, n ./ \ la — ....), `�•.hJC`�J�\�., !. y �t��}f�/\0..):.„/" •C/ 1 •1 / ',a\. 7`-1 .-: F« %% f4 -, r _. s. la {' w.a'. \ t1'` y. 'r'~• J 1Vj�..�� /I ( +/ I .. :� l`, •a \, •h --.•-• �' t i /'.ar a/ �_.1/ t `S .tn . •� >'1s\ s / w e'�' 'm - ag — ��: "t - / ,, ) \. - L-- (,/..‘....rte-- `i Set _1; J ��/� \- ' 1 i 1 ` 72-'‘ 1 \ '-ell 1 c1 0 \ . r 1 �f`I \\ y• /)27/r f • �y'+ �� gym a/, �a • ` 1 41 7-rr� ; r' /•,J t� ^--s{(y •s„ ✓// r . % •4 :.\. _'- ' /a' 1 G Y _-'a 1 y/ . / L••---.__,1 / i ! am/ r ��• /- • ` <.' N. .' Ir r♦.•/p . ...r J , , + ` •1 i. ate. • n N N N M1 '- { .... . • n... ............_ ter ...:...w. r._.. Z.-b par R \ N 1 • `\ o ^�� � N. • i �..- /� _�_� - ...."--....,_.....-"-:a." ! ` 14 _ ' .... .. .,.• \ E 0. a."..„„, ... NNNN .H. , tez LL d • Hu. ' - ._ .... _. \ B to \ \` \` T a $1- La �..�-.• ... ... .. ...... .. m 0Z j • 11111/ ti �,\\ ` ' v�� _~l i'!-' .e X' ' . ; ) - -~•�_ bRs.s '%;.(i� ))ern 73: `� N y`LI2' vlfi .,.,r' m-__ 1 s':1 \,,m , ry___ r~" 1 22/ ;,:„------" ,--"6/-7 ,r , r=, -;7• } `� s�� gyp$ �klin1. • • ` as il` \ i `}w }l /21:r.74-..),'' ,.w`— `" .._.._ x.7.7 .,7 1 I '--_,,,..34 lc�� .i.„ Zola A a�i it '''',/ •' 7 (-• 1 I t \ ti-f- —,—r ' �� l�7-� - J f - y' ti / w g. v `\rte: �f " or 1 i OP ".��'---,-----"---2,-1/4-.." % �,.-y t1' 1. ,,' J\;`I r �._`•••cfy' (�J II�c-r, , V�� �� �'��j�� �f_/��t�•I %ti,t/ v` '--� —y/��� ��as.//rrC,,\/ 4,1r�� ` ,,`iJ ,.,,, �7e/_ Sj \l`�_1A ' _. �ti:'-- ..e."13).At.:-.4.1 ,.-. CS\ � i i` �/ Iii I. 1 -" -���) .�-! 7/! ' -_ mil S'`` - . .:_ .\ _ \ j )�)1 ` I 1 / J \^` / --- `•'1 1 .; i.. \-ice , / \ hi `S�.)% J/ ti "N r' \ -a(/�� { II ii. du• i 'U .J�,}\� a C �\..:: f— f f ;� �" _: , ! 1 y C / . i u � 6 �\\�` 5R ' t/17 �� OQ :� : \ • r ; 0L:-.-- ‘ •,, . . -71,• / /7 ! 2‘6, i •‘ . % ( • .•••, 1 to\ .., Et...4-...e".•' ,.., / / ( :\ ' 1---1_,,, -----_, _..." 1 ""? t ''‘,. -. ^ M1 ti N �• y P--1- ...N V • 1 Sub-basin Imperviousness DURAN EXCAVATION H1 : HISTORIC SITE RUNOFF CP1 : DEVELOPED BASIN RUNOFF Land Use Area (ft2) I (°/0 Land Use Area (ft2) I (%; Impervious Area, Grass 1705069 2 Impervious Area, Grass 194243 2 Roofs 0 90 Roofs 116758 90 Concrete Surfaces 0 100 Concrete Surfaces 16000 100 Driveways , Gravel 0 40 Driveways, Gravel 1378068 40 Wghtd Avg & Total Area 1705069 2 Wghtd Avg & Total Area 1705069 39 .7 SB1 : CONTRIBUTING AREA TO DP1 Land Use Area (ft2) I (%) Impervious Area, Grass 5494 2 Roofs 0 90 Concrete Surfaces 1149 100 Driveways, Gravel 18291 40 Wghtd Avg & Total Area 24934 34 .4 SB2 : CONTRIBUTING AREA TO DP2 Land Use Area (ft2 I °/0) Impervious Area, Grass 16728 2 Roofs 8353 90 Concrete Surfaces 1900 100 Driveways , Gravel 78856 40 Wghtd Avg & Total Area 105837 39 . 0 SB3 : CONTRIBUTING AREA TO DP3 (INCLUDES SB2) Land Use Area ;ft2; I 1%) Impervious Area, Grass 16728 2 Roofs 8353 90 Concrete Surfaces 1900 100 Driveways , Gravel 94408 40 Wghtd Avg & Total Area 121389 39 . 1 CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: Duran Excavating Catchment ID: ENTIRE SITE I. Catchment Hydrologic Data Catchment ID = ENTIRE SITE Area = 39.10 Acres Percent Imperviousness = 2.00 % NRCS Soil Type = B A, B, C, or D II. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = 5 years (input return period for design storm) C1 = 28.50 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1= 1 .47 inches (input one-hr precipitation—see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0 08. Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration * � overland LEGEND Reach 1 . Reach 2 O Beginning Flow Direction Reach Catchment Boundary NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns _ Ground Waterways (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-S fps minutes input input output input output output Overland 0.0120 500 0.08 N/A 0.22 38 71 1. 0.0120 1 ,261 7.00:- 077 27 41 2 3 4 5 Sum 1 ,761 Computed Tc = 66 12 Regional Tc = 1978 _ User-Entered Tc = 19.78. IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 1 39 inch/hr Peak Flowrate, Qp = 4.44 cfs Rainfall Intensity at Regional Tc, I = 2:91 inch/hr Peak Flowrate, Qp = 9.28 cfs Rainfall Intensity at User-Defined Tc, I = 2.91 inch/hr Peak Flowrate, Qp = 9,28 cfs SITESYRHistoric, Tc and PeakQ 11/12/2013, 1 :19 PM 23 CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: Duran Excavating Catchment ID: ENTIRE UNDEVELOPED SITE I. Catchment Hydrologic Data Catchment ID = ENTIRE SITE Area = 39.10 Acres Percent Imperviousness = 2.00 % NRCS Soil Type = B Al B, C, or D IL Rainfall Information I (inch/hr) = Cl * P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = 100 years (input return period for design storm) C1 = 28.50 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1 = 2.79 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0 36 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0 08 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration * - - - - - - - - overland LEGEND Reach 1 flow Reach 2 . O Begiwning Flow Direction Catchment Reach 3 Boundary NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance _ 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input output output Overland 0.0120 500 0 08 N/A 0 22 38 71 1 0.0120 1 ,261 7.00 077 27 41 2: 3 4. 5 Sum 1 ,761 Computed Tc = 66 12 Regional Tc = 1.9 78 User-Entered Tc = . 19.78 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 2.64 inch/hr Peak Flowrate, Qp = 3739 cfs Rainfall Intensity at Regional Tc, I = 5.52 inch/hr Peak Flowrate, Qp = 78 19 cfs Rainfall Intensity at User-Defined Tc, I = 5 52 inch/hr Peak Flowrate, Qp = 79 19 cfs SITE100YRHistoric, Tc and PeakQ 11/14/2013, 9:48 AM ZH{ CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: Duran Excavating Catchment ID: SB1 I. Catchment Hydrologic Data Catchment ID = SB1 Area = 0.61 Acres Percent Imperviousness = 34.40 % NRCS Soil Type = B A, B, C, or D II. Rainfall Information I (inch/hr) = Cl * P1 /(C2 + Td)AC3 Design Storm Return Period, Tr = 5 years (input return period for design storm) C1 = 28.50 (input the value of C1) C2= : 10.00 (input the value of C2) C3= 0:786 (input the value of C3) P1 = 1 .47 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0 27 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0 27 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration over LEGEND Reach 1 flow Reach 2 O Beginning Flow Direction Catchment Reach 3 Boundary NRCS Land Heavy Tillage/ Shod Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales! Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input output output Overland 0.0210 100 0.27 N/A 014 11 .73 1 .0.0045 70 20.00 134 0.87 2 0.3000 12 20.00 10.95 0.02 3 0.0296 162 20.00 344 0 78 4 5 Sum 344 Computed Tc = 13,41 Regional Tc = 11 91 User-Entered Tc = 11 .91 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 3.51 inch/hr Peak Flowrate, Qp = 0.58 cfs Rainfall Intensity at Regional Tc, I = 3.70 inch/hr Peak Flowrate, Qp = 0:61 cfs Rainfall Intensity at User-Defined Tc, I = 3 70 inch/hr Peak Flowrate, Qp = (161 cfs SB15YR, Tc and PeakQ 11/12/2013, 12:57 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: Duran Excavating Catchment ID: SB1 I. Catchment Hydrologic Data Catchment ID = SB1 Area = 0.61 Acres Percent Imperviousness = 34.40 % NRCS Soil Type = B A, B, C, or D II. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = 100 years (input return period for design storm) C1 = 28.50 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1 = 2.79 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.48 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0 27 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration overland- � LEGEND Reach 1 flay Reach 2 . O Beginning Flow Direction Catchment Reach 3 Boundary NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input output output Overland 0.0210 : 100 0.27 N/A 014 11 .73 1 0.0045 70 20.00 1 .34 0.87 2 0.3000 12 20.00 1.0.95 0.02 3 0.0296 162 : 20.00 3.44 0 78 4 5 Sum 344 Computed Tc = 13.41 Regional Tc = 11 91 User-Entered Tc = 11 .91 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 6.67 inch/hr Peak Flowrate, Qp = 1 96 cfs Rainfall Intensity at Regional Tc, I = 7 03 inch/hr Peak Flowrate, Qp = 2.06 cfs Rainfall Intensity at User-Defined Tc, I = 7.03 inch/hr Peak Flowrate, Qp = 2.06. cfs SB1100YR, Tc and PeakQ 11/12/2013, 12:58 PM 2.-co CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD . Project Title: Duran Excavating Catchment ID: SB2 I. Catchment Hydrologic Data Catchment ID = SB2 Area = 2.43 Acres Percent Imperviousness = 39.00 % NRCS Soil Type = B A, B, C, or D II. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = 5 years (input return period for design storm) C1 = 28.50 (input the value of C1) C2= . 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1 = 1 .47 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.29 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0 29 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration overt LEGEND Reach 1y Reach 2 O Bee7Q"ng Flow Direction Catchment Reach 3 Boundary NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input - output output Overland 0.0180 138 0.29 N/A _ 0 1.E 14 11 1 0.0130 254 20.00:. 2.28 1.86 2 0.0150 225 .: 20.00 245 1.53 3 4 5 Sum 617 Computed Tc = 17 50 Regional Tc = 1.3.43 User-Entered Tc = 1.3.43 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 3 10 inch/hr Peak Flowrate, Qp = 2.20 cfs Rainfall Intensity at Regional Tc, I = 3.51 inch/hr Peak Flowrate, Qp = 2.49 cfs Rainfall Intensity at User-Defined Tc, I = 3.51 inch/hr Peak Flowrate, Qp = 2.49 cfs SB25YR, Tc and PeakQ 11/12/2013, 12:59 PM ZR CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: Duran Excavating Catchment ID: SB2 I. Catchment Hydrologic Data Catchment ID = SB2 Area = 2.43 Acres Percent Imperviousness = 39.00 % NRCS Soil Type = B A, B, C, or D II. Rainfall Information I (inch/hr) = Cl * P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = 100 years (input return period for design storm) C1 = 28.50 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1= .. : 2/9 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0 49 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0 29 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration # - - - - overland LEGEND Reach 1 . Reach 2 i O Beginning Flow Direction Catchment Reach 3 Boundary NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input _ output output Overland 0.0180 138 0.29 N/A 01.6 1411 1 .. . 0.0130 254 20.00 2 28 1.86 2 0.0150 225 20.00 2.45 153 3 .. 4 .. 5 Sum 617 Computed Tc = 17 50 Regional Tc = 13.43 User-Entered Tc = 13.43 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 5.88 inch/hr Peak Flowrate, Qp = 7.03 cfs Rainfall Intensity at Regional Tc, I = 6.67 inch/hr Peak Flowrate, Qp = 7 98 cfs Rainfall Intensity at User-Defined Tc, I = 6 67 inch/hr Peak Flowrate, Qp = 7.98 cfs SB2100YR, Tc and PeakQ 11/12/2013, 12:59 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: Duran Excavating Catchment ID: SB3 (INCLUDES SB2) I. Catchment Hydrologic Data Catchment ID = SB3 Area = 2.78 Acres Percent Imperviousness = 39,00 % NRCS Soil Type = B A, B, C, or D II. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = 5 years (input return period for design storm) C1 = 28.50 (input the value of C1 ) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1= 1.47 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.29: Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0.29 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration • - - - - - - overland LEGEND Reach 1 flow - Reach 2 O Beginning Flow Direction Catchment Reach 3 Boundary NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input output output Overland 0.0180 138 0.29 WA 0 16 1411 1 .0.0130 254 20.00 2.28 1.86 2 0.0150 225 20.00 2 4 1.53 3 0.0200 210 . 20.00 2.83 124 4 5 Sum 827 Computed Tc = 18.74 Regional Tc = 1459 User-Entered Tc = 14.59 IV. Peak Runoff Prediction Rainfall Intensity at Computed To, I = 2.99 inch/hr Peak Flowrate, Qp = 2,43 cfs Rainfall Intensity at Regional Tc, I = 3.38 inch/hr Peak Flowrate, Qp = 2.75. cfs Rainfall Intensity at User-Defined To, I = 3.38 inch/hr Peak Flowrate, Qp = 2 75 cfs SB35YR, Tc and PeakQ 11/12/2013, 1 :04 PM 1 CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: Duran Excavating Catchment ID: SB3 (INCLUDES SB2) I. Catchment Hydrologic Data Catchment ID = S83 Area = 2.78 Acres Percent Imperviousness = 39.00 % NRCS Soil Type = B A, B, C, or D II. Rainfall Information I (inch/hr) = Cl * P1 /(C2 + Td)AC3 Design Storm Return Period, Tr = 100 years (input return period for design storm) C1 = - 28 50 (input the value of C1) C2= : 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1 = 2.79 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.49 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0 29 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration overland LEGEND Reach 1 flow Reach2 . O Beginning Flow Direction • Catchment Reach 3 Boundary NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input output output Overland 0.0180 138 .:: 0.29 N/A 0 16 14 11 1 0.0130 254 20.00 2.28 186 2 .: 0.0150 225. 20.00 245 1 .53 3 0.0200 . 210 .: 20.00 2 83 1 24 4 5 Sum 827 Computed Tc = 18,74 Regional Tc = 14.59 User-Entered Tc = 14.59 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 5:68. inch/hr Peak Flowrate, Qp = 7.77 cfs Rainfall Intensity at Regional Tc, I = 6 42 inch/hr Peak Flowrate, Qp = 8 78 cfs Rainfall Intensity at User-Defined Tc, I = 6 42. inch/hr Peak Flowrate, Qp = 8.78 cfs S63100YR, Tc and PeakQ 11/12/2013, 1 :05 PM 30 CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: Duran Excavating Catchment ID: ENTIRE SITE I. Catchment Hydrologic Data Catchment ID = ENTIRE SITE Area = 39.10 Acres Percent Imperviousness = 39.70 % NRCS Soil Type = B A, B, C, or D II. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = 5 years (input return period for design storm) C1 = 28.50 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1= 1 .47 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0 30 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0 30 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration overland LEGEND Reach 1 flow Reach 2 # O Beginning Flaw Direction Catc hment Reach 3 Boundary NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input output output Overland 0 30 N/A 0.00 0:00 1 0.0180 : :392 20.00 2 68 2.43 2 .0.0200 435. . 20.00 2.83 2.56 3 0.0100 575 20.00 2 00 4.79 4 0.0037 226 20.00 122 310 • 5 0.0010. 665 15.00 0 47 23 37 Sum 2,293 Computed Tc = 36.25 Regional Tc = 22.74 User-Entered Tc = 16.45 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 2:06 inch/hr Peak Flowrate, Qp = 23.78: cfs Rainfall Intensity at Regional Tc, I = 2.70 inch/hr Peak Flowrate, Qp = 31 20 cfs Rainfall Intensity at User-Defined Tc, I = 3.1.9 inch/hr Peak Flowrate, Qp = 36.94: cfs S ITE5YR, Tc and PeakQ 11/12/2013, 1 :20 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: Duran Excavating Catchment ID: ENTIRE SITE I. Catchment Hydrologic Data Catchment ID = ENTIRE SITE Area = 3910 Acres Percent Imperviousness = 39.70 % NRCS Soil Type = B A, B, C, or D II. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)AC3 Design Storm Return Period, Tr = 100 years (input return period for design storm) C1 = 28:50 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1 = 2.79 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.49 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0 30 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration * ~ overland ; LEGEND Reach 1 flow Reach 2 O Beginning Flaw Direction • Catchment Reach 3 Boundary NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input output output Overland 0 30 N/A 0 00 0.00 1 0.0180 : 392 20:00 2.68 2 43 2 . 0.0200 435 . 20.00 . 2'83 2 5E 3 0.0100 575 20.00 2 00 4.79 4 0.0037 226 20:00 1 .22 310 5 0.0010 665 15.00 0 47 23437 Sum 2,293 Computed Tc = 36.25 Regional Tc = 22 74 User-Entered Tc = 16:45 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 3.91 inch/hr Peak Flowrate, Qp = 75.48 cfs Rainfall Intensity at Regional Tc, I = 5.12 inch/hr Peak Flowrate, Qp = 99.03 cfs Rainfall Intensity at User-Defined Tc, I = 6.06 inch/hr Peak Flowrate, Qp = 117 11 cfs SITE100YR, Tc and PeakQ 11/12/2013, 1 :20 PM Normal Flow Analysis - Trapezoidal Channel Project: Duran Excavating Channel ID: Swale Sec A-A F � \ T > n ' 1 Yo ti Z1 `>< 7/; B Design Information Input) Channel Invert Slope So = 0.0045 ft/ft Manning's n n = 0 030 Bottom Width B = 0 00 ft Left Side Slope Z1 = 100 00 ft/ft Right Side Slope Z2 = 17 00 ft/ft Freeboard Height F = 1 00 ft Design Water Depth Y = 0.22 ft Normal Flow Condtion (Calculated' Discharge Q = 2.17 cfs Froude Number Fr = 0.41 Flow Velocity V = 0.76 fps Flow Area A = 2.83 sq ft Top Width T = 25 74 ft Wetted Perimeter P = 25 75 ft Hydraulic Radius R = 0 11 ft Hydraulic Depth D = 0 11 ft Specific Energy Es = 0.23 ft Centroid of Flow Area Yo = 0.07 ft Specific Force Fs = 0.02 kip SWALESB1 , Basics 11 /14/2013, 10: 14 AM 3 ? Normal Flow Analysis - Trapezoidal Channel Project: Duran Excavating Channel ID: Swale Sec B-B F .,1:, T >, A YoY : \ :-..) v 7, 1 v Z2 Design Information (Input) Channel Invert Slope So = 0.2000 ft/ft Manning's n n = 0.013 Bottom Width B = 2.00 ft Left Side Slope Z1 = 0.00 ft/ft Right Side Slope Z2 = 0 00 ft/ft Freeboard Height F = 1 00 ft Design Water Depth Y = 0.10 ft Normal Flow Condtion 'Calculated: Discharge Q = 2.07 cfs Froude Number Fr = 5.78 Flow Velocity V = 10.36 fps Flow Area A = 0.20 sq ft Top Width T = 2.00 ft Wetted Perimeter P = 2 20 ft Hydraulic Radius R = 0 09 ft Hydraulic Depth D = 0. 10 ft Specific Energy Es = 1 .77 ft Centroid of Flow Area Yo = 0.05 ft Specific Force Fs = 0.04 kip SWALESB1a, Basics 11 /14/2013, 10: 14 AM '7 i Normal Flow Analysis - Trapezoidal Channel Project: Duran Excavating Channel ID: Swale Sec C-C F � T O 71:1/ 1 X7 1N Z1 E L2 Design information (Input) Channel Invert Slope So = 0 0300 ft/ft Manning's n n = 0 013 Bottom Width B = 0.00 ft Left Side Slope Z1 = 12.00 ft/ft Right Side Slope Z2 = 12.00 ft/ft Freeboard Height F = 1 00 ft Design Water Depth Y = 0.20 ft Normal Flow Condtion (Calculated) Discharge Q = 2.05 cfs Froude Number Fr = 2.38 Flow Velocity V = 4.27 fps Flow Area A = 0.48 sq ft Top Width T = 4.80 ft Wetted Perimeter P = 4 82 ft Hydraulic Radius R = 0 10 ft Hydraulic Depth D = 0. 10 ft Specific Energy Es = 0.48 ft Centroid of Flow Area Yo = 0.07 ft Specific Force Fs = 0.02 kip SWALESBI b, Basics 11 /14/2013, 10: 14 AM Normal Flow Analysis - Trapezoidal Channel Project: Select Energy Channel ID: Sec D-D > , XI \NCNYo Y : 1 e v oe,'""e7 1 �' 2;2 1 < $ > Design Information (Input) Channel Invert Slope So = 0.0150 ft/ft Manning's n n = 0.030 Bottom Width B = 0.00 ft Left Side Slope Z1 = 100.00 ft/ft Right Side Slope Z2 = 20.00 ft/ft Freeboard Height F = 1 .00 ft Design Water Depth Y = 0.29 ft Normal Flow Condtion (Calculated) Discharge Q = 8.47 cfs Froude Number Fr = 0.78 Flow Velocity V = 1 .68 fps Flow Area A = 5.05 sq ft Top Width T = 34.80 ft Wetted Perimeter P = 34.81 ft Hydraulic Radius R = 0. 14 ft Hydraulic Depth D = 0. 15 ft Specific Energy Es = 0.33 ft Centroid of Flow Area Yo = 0. 10 ft Specific Force Fs = 0.06 kip SWALESB2TMP, Basics 11 /14/2013, 10: 16 AM Normal Flow Analysis - Trapezoidal Channel Project: Select Energy Channel ID: Sec E-E F ` �5 70,17 1 22 2:1 E Design Information 'Input) Channel Invert Slope So = 0.0120 ft/ft Manning's n n = 0.013 Bottom Width B = 5.00 ft Left Side Slope Z1 = 12.00 ft/ft Right Side Slope Z2 = 12.00 ft/ft Freeboard Height F = 1 00 ft Design Water Depth Y = 0.25 ft Normal Flow Condtion (Calculated) Discharge Q = 8.05 cfs Froude Number Fr = 1 .66 Flow Velocity V = 4.02 fps Flow Area A = 2.00 sq ft Top Width T = 11 .00 ft Wetted Perimeter P = 11 .02 ft Hydraulic Radius R = 0. 18 ft Hydraulic Depth D = 0.18 ft Specific Energy Es = 0.50 ft Centroid of Flow Area Yo = 0.11 ft Specific Force Fs = 0.08 kip SWALESB2, Basics 11 /14/2013, 10: 15 AM � l DETENTION VOLUME BY THE MODIFIED FAA METHOD Project: Duran Excavation Basin ID: (For catchments less than 160 acres only. For larger catchments, use hydrograph routing method) (NOTE:for catchments larger than 90 acres, CUHP hydrograph and routing are recommended) Determination of MINOR Detention Volume Using Modified FAA Method Determination of MAJOR Detention Volume Using Modified FAA Method Design Information (Input): Design Information (Input); Catchment Drainage Imperviousness I,= 39.70 percent Catchment Drainage Imperviousness I,= 39.70 percent Catchment Drainage Area A= . 39.100 acres Catchment Drainage Area A= 39.100 acres Predevelopmert NRCS Soil Group Type= B A,B,C,or 0 Predevelopmert NRCS Soil Group Type = B A,B,C,or D Return Period for Detention Control T= 10 years (2,5,10,25,50,or 100) Rebsn Period for Detection Control T = 100 years(2,5,10,25,50,or 100) Time of Concentration of Watershed Tc= 36 minutes Time of Concentration of Watershed Tc= 36 minutes Allowable Unit Release Rate q= 0.23 cfs/acre Allowable Unit Release Rate q= 024 cfs/acre One-half Precipitation Pi = 1.47 inches Ore-hour Precipitation Pt = 2.79 inches Design Rainfall IDF Formula I=C1•P1f(C2+TJAC3 Design Rainfall IDF Formula I=C,.P1f(C2+TJAC3 Coefficiert One C1 = 28.50 Coefficient One CI = 28.50 Coefficient Two C.2= 10 Coefficient Two C2= 10 Coefficient Three C3= 0.789 Coefficient Three C3= 0.789 Determination of Average Outflow from the Basin (Calculated): Determination of Average Outflow from the Basin (Calculated); Runoff Coefficient C= 0.36 Runoff Coefficient C = 0 49 Inflow Peak Runoff Qp-in= 28 76 cfs Irflow Peak Runoff Op-in= 74.29 cfs Allowable Peak Outflow Rate Op-out= 8.99 efs Allowable Peak Outflow Rate Op-out= 9.38 cfs Mod.FAA Minor Storage Volume= 50,031 cubic feet Mod,FAA Major Storage Volume= 203.826 cubic feet Mod.FAAMinor Storage Volume= 1.149 acre-ft Mod.FAA Major Storage Volume= 4476 acre-41 20 c- Enter Rairfall Duration Incremental Increase Value Here(e.g.6 for 5-Minutes) Rainfall Rairfall inflow Adjustment Average Outflow Storage Rairfall Rainfall Inflow Adjustment Average Outflow Storage Duration Intensity Volune Factor Outflow Vohfne Volune Duration Intensity Volune Factor Otilow Volume Volume minutes inches/IT acre-feet 'm' cfs acre-feet acre-feet minutes inches/M acre-feet 'm' cfs acre-feet acre-feet (irwut) (output) (output) (ottpi (output) (output) (output) Gnput) (output) (output) (oLAptA (output) (output) (output) 0 0,00 0.000 0.00 0 00 0.000 i 0.000 0 0.00 i 0.000 0.00 0.00 0.000 0.000 20 2.86 1.110 1.00 8.99 0.248 0.862 20 5.43 2.867 1.00 938 0.259 2.609 40 1.91 1483 0.95 8.54 0.471 1.013 40 3 63 3.832 0.95 9.91 0.491 3341 60 1.47 1/06 • 180 7.19 0.595 1.112 60 2.78 4.408 0.80 7.51 0.620 3.788 80 1.20 1.866 0.73 6.52 - 0.718 1.147 80 2.29 4.820 0.73 6.80 0.750 4.071 100 : 1.03 1.981 0.68 : 6.12 : 0.842 1.149 100 : 1.95 5.143 ; 0.68 638 : 0.879 4.264 120 0.90 2%4 • 0.65 5 95 0 966 1.128 120 1.71 • 5A10 0.65 610 1.008 4.401 140 : 0.80 2.182 0.63 : 5.65 : 1.090 : 1.092 140 : 1.53 : 5.637 : 0.63 5.90 : 1.137 : 4.500 160 : 0.73 2.259 0.61 5.51 : 1.214 : 1.046 160 1.38 5.837 0.61 • 5 75 1.267 : 4.570 180 : 0.67 2328 0.60 : 5.40 : 1.338 : 0.991 180 1.27 : 6.015 : 0.60 5.63 : 1396 4.619 200 : 0.62 2.391 0.59 : 5.31 : 1.462 : 0.929 200 : 1.17 : 6.178 : 0.59 • 5.54 1.525 4.650 220 : 0.57 2.448 0.58 : 5.23 1.586 : 0.862 220 1.09 6323 ; 0 58 • 5.46 1 %4 4.668 240 0.54 2.500 0.58 5.17 1.709 0/91 240 102 6.458 0.58 5.40 1/84 4.675 260 0.51 2.549 0 57 5.12 1.833 0.715 260 0.96 6.584 0.5? 5.34 : 1.913 : 4.671 280 : 0.48 : 2.594 0.56 : 5.07 : 1.957 • 0.637 280 : 0.91 ; 6.702 : 0.56 • 530 : 2.042 4.660 300 0.45 2.637 0.56 5.04 2.081 0.556 300 0.86 6.813 0.56 5.26 2.172 4.641 320 0.43 2.678 0.56 5.00 2.205 0.473 320 0 82 6.917 0.56 5.22 2.301 4.616 340 0.41 2.716 0.55 : 4.87 2329 : 0387 340 078 : 7.016 : 0.55 5.19 : 2.430 : 4.586 360 ; 039 2.752 • 0.55 4.95 : 2.453 0.300 360 : 0 75 ; 7.110 : 0.55 5.16 2.559 : 4.551 380 0.38 2/87 0.55 4.92 2.577 0.211 380 • 0?2 7.200 0$5 5.14 2.689 4.511 400 0.36 2.820 • 0.55 4.80 2/00 0.120 400 0.69 4. 7.285 0.55 5.11 2.818 4.468 420 035 2.852 • 0.54 4.88 : 2.824 : 0.028 420 0.66 : 7368 : 0.54 5.08 : 2.947 ; 4.421 440 : 034 2.883 • 0.54 • 4.86 : 2.948 -0.066 440 : 0.64 7.447 0.54 5.08 : 3.076 4370 460 : 033 2.912 : 0.64 : 4.85 i 3.072 : -0.160 460 • 0.82 : 7.522 : 0.54 5 06 : 3.206 : 4317 480 : 0.32 2.940 • 0.54 4.83 : 3.196 : -0.256 480 : 0.60 : 7.598 : 0.54 • 5.04 3.335 : 4.261 500 : 031 2.968 • 034 4.82 : 3.320 : -0.352 500 : 0 58 7.666 : 0.54 5.03 : 3.464 : 4202 520 : 0.30 2.994 • 0.53 4.81 : 3.444 : -0.450 520 0 56 : 7.735 0.53 • 5.02 : 3.593 : 4.141 540 0.29 3.020 • 033 4.80 : 3.567 : -0.548 540 0 55 : 7.801 ; 0.53 5.00 : 3.723 : 4.078 560 i 0.28 3.044 • 0.53 4.79 : 3.691 : -0.647 560 : 0.53 : 7.865 : 0.53 • 4.99 : 3 852 : 4 013 580 0.27 3.069 033 4/9 : 3.815 : -0 747 580 : 052 : 7.927 0.53 • 4.98 : 3.981 : 3.946 600 : 0.27 3.092 0.53 4/7 : 3.939 : -0.847 600 0.50 7.988 0.53 • 4.97 4.110 : 3R77 620 : 0.26 3.115 0.53 4.76 : 4.063 : -0.948 620 : 0.49 : 8.046 : 0.53 • 4.96 : 4.240 3.807 640 : 0.25 3.137 0.53 4.75 4.187 -1.050 640 0.48 : 8.104 : 0.53 • 4.96 4369 3.735 660 : 0.25 3.158 - 033 4.74 4311 : -1152 860 0.47 8.159 053 4.95 : 4.498 3.661 680 : 0.24 3.180 0.53 i 4.73 : 4.435 : -1.255 680 : 0.46 : 8.214 : 0.53 • 4.94 : 4.627 : 3.586 700 0.24 : 3.200 0.53 : 473 : 4.558 : -1.358 700 ; 0.45 8.267 0.53 4.93 : 4.757 i 3.610 720 : 0.23 : 3 220 t 0$3 4/2 : 4.682 • -1.462 720 0.44 • 8319 0.53 4.93 4.886 3.433 740 : 0.23 ; 3.240 0.52 : 4/2 4.806 : -1.566 740 0.43 : 8.369 0.52 • 4.92 : 5.015 : 3354 760 022 : 3.259 • 0.52 4/1 : 4.930 : -1.671 760 : 0.42 8.419 : 0.52 4.91 i 5.144 3.275 780 : 022 : 3.278 : 0.52 4/0 5.054 : -1.776 780 : 0.41 : 8.467 : 0.52 4.91 5.274 3.194 • 800 : 0.21 3.296 f 0.52 : 4.70 : 5178 : -1.882 800 : 0.40 8.515 : 0.52 4.90 5.403 3112 820 : 0.21 3314 0.52 4.69 5302 -1.988 820 0.40 : 8.561 0.52 4.80 : 5.532 3.029 840 ; 0.20 : 3.332 052 : 4.69 : 5.426 -2.094 840 : 0.39 : 8.607 : 0.52 4.89 i 5.661 2.946 860 : 0.20 3.349 0.52 4.68 : 5.549 -2.200 860 038 : 8.652 0$2 • 4.89 : 5/91 2.861 880 : 0.20 3366 • 0.52 : 4.68 : 5.673 -2307 880 : 037 8.696 0.52 4.88 5,920 : 2/76 900 : 0.19 : 3383 : 0.52 : 4.68 5.797 -2.414 900 037 : 8/39 0.52 4.88 : 6.049 ; 2.689 920 0.19 3299 0.52 i 4.67 : 5.921 -2.522 920 0.38 8.781 0.52 4.88 6.178 : 2.602 940 019 3.415 0.52 4.67 6.045 -2.630 940 • 0.36 8.822 0.52 4.87 6.308 2.515 960 : 0.18 : 3.431 0.52 4.67 6.169 -2/38 960 035 : 8.863 0.52 4.87 : 6.437 : 2.426 980 : 0.18 : 3.446 0.52 : 4.66 6293 -2.846 980 034 : 8.903 0.52 4.86 : 6.586 : 2.337 1000 0.18 : 3.462 • 0.52 4.86 : 6.416 -2.955 1000 : 0.34 8.943 0.52 • 4.86 : 6.695 : 2.247 1020 0.18 i 3.477 • 0.52 : 4.66 : 6.540 -3.064 1020 ; 023 : 8.882 : 0.52 • 4.96 : 6.825 : 2.157 . 1040 : 0.17 3.492 0.52 : 4.65 : 6.664 -3.173 1040 033 : 9.020 : 0.52 • 4.85 : 6.954 : 2.066 1060 0.17 3.506 • 0.52 4.65 6/88 -3.292 1060 032 9.057 • 0.52 4.85 7.083 1.974 1080 : 0.17 i 3.520 0.52 : 4.65 : 8.912 : -3.392 1080 : 0.32 : 9.095 : 0.52 4.85 : 7.212 : 1.882 1100 : 0.17 3.535 0$2 : 4.64 i 7.036 -3.501 1100 : 0.31 : 9.131 • 0.52 • 4.85 : 7342 : 1.789 1120 : 0.16 3.548 f 0.52 4.64 : 7.160 : -3.611 1120 031 9.167 : 0.52 • 4.84 7.471 : 1.696 1140 0.16 3.562 0.62 4.64 7.284 -3.721 1140 0.31 9.202 0.52 • 4.84 7.600 1.602 1160 : 016 3.576 0.52 4.64 : 7.407 -3.832 1160 030 : 9.237 0.52 4.84 : 7/30 1.508 1180 0.16 3589 0.52 4.63 7.531 -3.942 1180 030 9.272 0.52 4.84 7.859 • 1.413 1200 0.15 3.602 0.52 4.63 7.655 -4.053 1200 0.29 9.306 0.52 • 4.83 7.988 1218 Mod.FAA Minor Storage Volume(cubic ft)= 60,031 Mod.FAA Major Storage Volume (cubic It)= 203,626 Mod.FAA Minor Storage Volume(acre-ft.)= 1.1486 Mod.FAA Major Storage Volume(acre•A.)= 4.8746 UDFCD DETENTION BASIN VOLUME ESTIMATING WORKBOOK Version 2.33, Released August 2013 DETENTIONSHEET,Modified FAA 11/14/2013,10:10 AM 33 DETENTION VOLUME BY THE MODIFIED FAA METHOD Project: Dunn Excavation Basin ID: Inflow and Outflow Volumes vs. Rainfall Duration 10 r 9 — - .___ . . 8 ' 71 1 m i . N otS s I• R i z- )7 !• ! ! dif 4 $ •! !! !• s ! f •• 2 ? -A ' • •••• ,/ I+r 1 ' ! I 1 c \/ - /1 v • 7 y f ,1 � .'(ir,, t✓ ~e n f - r. •�,. . . . ' 0 .- 0 .: 0 200 400 600 800 1000 1200 1400 Duration (Minutes) —o--Mnor storm Maw vaum• —.—hitter Storm Outlbw Volume J Mho'stone Stotay.vaum. --•—Major Storm Inflow Voarm. —w—MaJorst•nn Outeow Vahan. • htoc Stone Storag•vaun. UDFCD DETENTION BASIN VOLUME ESTIMATING WORKBOOK Version 2.33, Released August 2013 DETENTIONSHEET,Modified FAA 11/14/2013,10:10 AM 31 STAGE-STORAGE SIZING FOR DETENTION BASINS Project: Basin ID: Dam -- Side Slot Z Side Slop Z Dun SYe Slope z Dan A � Fla W. Fkw SilableZ L > < > Site Sbpe Z E_� &t Slope= 1. Design Information (Input): Check Basin Shape Width of Basin Bottom, W = ft Right Triangle OR... Length of Basin Bottom, L = ft Isosceles Triangle OR... Dam Side-slope (H:V), Zd = ft/ft Rectangle OR... Circle/ Ellipse OR... Irregular (Use Overide values in cells G32:G52) MINOR MAJOR Storage Requirement from Sheet 'Modified FM': ...._1:1 ....w...:5acre-ft. Stage-Storage Relationship: Storage Requirement from Sheet'Hydrograph': . ,•„4.67 .M . acre-ft. Storage Requirement from Sheet'Full-Spectrum': acre-ft Labels Water Side Basin Basin Surface Surface Volume Surface Volume Target Volumes for WQCV, Minor, Surface Slope Width at Length at Area at Area at Below Area at Below for WQCV, Minor, & Major Storage Elevation (H:V) Stage Stage Stage Stage Stage Stage Stage & Major Storage Stages ft ft/ft ft ft ft2 ftz User ft3 acres acre-ft Volumes (input) (input) Below El. (output) (output) (output) Overide (output) (output) (output) (for goal seek) 94.50 (input) 0 0.000 0.000 95.00 0.00 I 0.00 53.952 13,488 1.239 0.310 WQCV 95.62 0.00 0.00 168,383 82,412 I 3.866 1.892 96.00 0.00 0.00 290,071 169,518 6.659 3.892 96.20 0.00 0.00 339,319 232,457 i 7.790 5.336 #N/A #N!A ' #N/A #N/A • #N/A #N/A #N/A #NIA • #N/A #NIA • #N/A #NIA , _ #N/A #NIA #N/A #NIA • #N/A #NIA #N/A : #NIA • #N/A #NIA • #NIA #NIA • #N/A #NIA #NIA #N/A • • #NIA i #NIA #NIA #NIA #N/A #NIA #NIA } #NIA i #NIA #NIA z #NIA i #NIA • #NIA #NIA • #NIA i #N/A • #NIA #N/A • #N/A #N/A #N/A #N/A i #N/A #N/A #N/A i #N/A • . . . #N/A #N/A #N/A #NIA • #N/A #N/A • _ #N!A #N/A • #NIA i #N/A #N/A #NIA • #NIA i #NIA • • #NIA #N/A #NIA #N/A #NIA #NIA #NIA i #NIA #NIA #NIA DETENTIONSHEET, Basin 11/14/2013. 10:08 AM HO STAGE-STORAGE SIZING FOR DETENTION BASINS Project: Basin ID: r STAGE-STORAGE CURVE FOR THE POND 120.00 100.00 - -0 4 . • 80.00 - a) a) 60.00 a) Q) Ct, 41 40.00 20.00 - - 0.00 0.00 1 .00 2.00 3.00 4.00 5.00 6.00 Storage (acre-feet) DETENTIONSHEET, Basin 11/14/2013, 10:08 AM I...2 O O N N el LL 0 0 0 0 .r 1 h el. of 0 n, N 3.i N 3; i 01 i • CA Ni U 3' ti r c) r o• cc: r O N } r r 1.0 N! LO o N cc: N N la v Ca O d Ca o' . . O. t• ti F .- 0. 0. W a 3• ` 0 l O O 1Of O 0000 000cc II4-0 I I 0 it 0 v I 5 • 0 0 0 o cc' ; 0000 0000 0000r o00o r O O O O 30 V cc 0. N ' '• S . g O O O O .Y a. = o a ' g 0000 0000 CA �, _ { Y S o , 0 O 0 O 2 0 3 O p O o u 3; K O ,. a. • N ~ O in >' t H 03` .� cc C 9 in N > a. S Y w '0 �Q� ' W U • r ,Yr 4 e ry Y Y - 3' 0 2 b i J U 0 O iJ .g .g .s 3 A : H r 0 v �- 0 `o .. CO el?o O ,n n :-... U .... ...`,. . n m;o .e a O; CO • 0 0 N N ° �-: O .. ... o oto 0 3; . .. .. ,... .. , . I e M e IIIIIIIIIII CI Z 2 > S p o 0 0 ao c o ` N r o 0 0 K a O o ili o _i • u a '.5 5 'K Y Y m o l d .e' . �. D E 2 o > . A 4 o U 0 0 + Yv- c 5 '3 ac. ( yq O N a •.. ‘.. .. ..•-•- a 1 ▪ ro> O o o • m U VY o v n: _ ..a y 4 4 II Z l+- N N Co b 0 I Q o o �._. ._.. ......, a, _ yco 0 o m 44 in = My o = y v 0 U U .. - N N c. Y • a 4 U yy LO Cl. N 4- .S C O p Y Y .. .., , " n `n n YO O Y u) of . or) • o g .� z 3 n en v 0 c, o 0. li CC 0. • > o o W • u 9 9 l".... II e e e e n e Lzti v) I- I- 3 62 3 CC o i t u �• • U O Y u ° o u Q n 1r.] us y na o �cp _ aom1.14 E A u 5 01 FC n PPP 'PI 3 O in n 0 ryry o ,n o00 o L/��CO U 0 Y Z L s K O' 0 0 0 O W 1 `- co u Y 3 N r• u CD CO C oO » V lD .0 O -' N '5 u O 5 u 3 w o Co m CO < . Cr ero oU o t 4 n 0 ., 0 0 0 co 0 < - CO O Oa o � m 0000 `, V Y = c V x 4 � > .0 o _O wt C 0 ^ 'N omv � r CO > - C U ' '1 C) U CO O O) q c O 0 0 0 0 > IA 0 ii P-.. Y 4 • _ Q P 'S• CP t0 O �.i i m t) 4 �n 0) l' w rn N II II 0 CO I I RESTRICTOR PLATE SIZING FOR CIRCULAR VERTICA Project: Duran Excavation Basin ID: Dia . To X o o / ` 0 0 0 0 0 0(...„,Yo 8 i A Sizing the Restrictor Plate for Circular Vertical Orifices or Pipes (Input) Water Surface Elevation at Design Depth Elev: WS = PipeNertical Orifice Entrance Invert Elevation Elev: Invert = Required Peak Flow through Orifice at Design Depth Q = PipeNertical Orifice Diameter (inches) Dia = Orifice Coefficient Co = Full-flow Capacity (Calculated) Full-flow area Af = Half Central Angle in Radians Theta = Full-flow capacity Qf = Percent of Design Flow = Calculation of Orifice Flow Condition Half Central Angle (0<Theta<3. 1416) Theta = Flow area A0 = Top width of Orifice (inches) To = Height from Invert of Orifice to Bottom of Plate (feet) Yo = Elevation of Bottom of Plate Elev Plate Bottom Edge = Resultant Peak Flow Through Orifice at Design Depth O0 = Width of Equivalent Rectangular Vertical Orifice Equivalent Width DETENTIONSHEET, Restrictor Plate 11 /14/2013, 10:09 AM 11.2 L ORIFICES #1 Vertical #2 Vertical Orifice Orifice 96.20 feet • 94.50 feet 9.38 cfs 24.0 : inches 0.65 • • 's 3. 14 . <sgft r 3. 14 srad 13.7 - I cfs r 146% 1 .62 ≥ rad 1 1 .66 I sq ft 23.98 finches 1 .04 feet s 95.54 feet J 9.4 # scfs , 1 .60 1 s feet DETENTIONSHEET, Restrictor Plate 11 /14/2013, 10:09 AM Lf if STAGE-DISCHARGE SIZING OF THE OUTLET CULVERT (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS) Project: Basin ID: (4a cdtr .wdta 'W»ft Gran -Mt - � u 0 Caw la Sat '• i R. ....... .. ......... .....# ....-�.-::. •- t. M Status: Sheet Contains Warnings. See a ,,,,,n^ w �" 'ULAN 4r'`' Wk.t Setreo7 Design Information (Input): Circular Culvert Barrel Diameter in Inches D= 24 in. Circular Culvert: Inlet Edge Type (choose from pull-down fist) Square End with Headwall OR: Box Culvert: Barrel Height(Rise) in Feet Height(Rise) = _ ft. Box Culvert: Barrel Width(Span) in Feet Width (Span) = ft. Box Culvert: Inlet Edge Type (choose from pull-down list) Square Edge w/90-15 Deg. Headwall Number of Barrels No= 1 Inlet Elevation at Culvert Invert lee„= 94.50 ft. elev. Outlet Elevation at Culvert Invert Odev= 94.10 ft. elev. Culvert Length in Feet L= 24.0 ft. Manning's Roughness n= 0.0150 Bend Loss Coefficient Kb = Edt Loss Coefficient KX = 1.00 Design Information (calculated): Entrance Loss Coefficient Ke= 0.50 Friction Loss Coefficient K,= 0.39 Sum of All Loss Coefficients K,= 1.89 Orifice Inlet Condition Coefficient Cd= 0.86 Minimum Energy Condition Coefficient KEie,,.= -0.03 Calculations of Culvert Capacity (output): Water Surface Tailwater Culvert Culvert Flowrate Controlling Inlet Elevation Surface Inlet-Control Outlet-Control Into Culvert Culvert Equation From Sheet Elevation Flowrate Flowrate From Sheet Flowrate Used "Basin" ft cfs cfs "Outlet" cfs (ft., linked) - (input if known) (output) (output) (cfs, linked) (output) (output) 94.60 0.00 0.00• 0.0D 0.00 0.00 No Flow MS <inlet) 96.00 D.00 1.20 6.57 0.00 0.00 Min. Energy. Eqn. 96.62 0.00 5.20 8.13 0.00 0.00 Regression Eqn. 96.00 • 0.00 8.30 8.81 0.00 _ 0.00 Rresression Eqn. 96.20 0.00 10.10 9.37 #NIA #WA Regression Eqn. 0.00 0.00 0.00 0.00 #NIA #WA No Flow MS <inlet) 0.00 0.00 0.00 0.00 #WA _ #WA No Flow(WS <inlet) 0.00 0.00 0.00 0.00 #WA #I4/A No Flow(WS<inlet) 0.00 0.00 0.00 0.00 #WA *NIA No Flow MS< inlet) 0.00 0.00 0.00 0.00 #14/A OVA No Flow MS<inlet) 0.00 0.00 0.00 0.00 #WA #N/A No Flow(WS <inlet) 0.00 .•.. Q.(10 0.00 0.00 MIA #N/A No Flow MS<inlet) 0.00 .0.00 0.00 0.00, #kl/A #14/A No Flow MS <inlet) 0.00 • .: 0.00 0.00 D.00 #WA #WA No Flow MS <inlet) 0.00 0.00 0.00 0.00 MA MA No Flow(WS <Inlet) 0.00 0.00 0.00 0.00 #WA #14/A No Flow(WS<inlet) 0.00 . 0.00 0.00 0.00 MA #14/A No Flow(WS<inlet) 0.00 0.00 0.00 0.00 #WA #N/A No Flow MS <inlet) 0.00 0.00 0.00 0.00 #14/A #WA No Flow MS<inlet) 0.00 0.00 0.00 0.00 #N/A #N/A No Flow(WS<inlet) 0.00 0.00 0.00 0.00 MIA MA No Flow(WS<inlet) 0.00 .0.00 0.00 0.00 #14/A #N/A No Flow(WS<inlet) 0.00 0.00 0.00 0.00 #WA #WA No Flow MS<inlet) 0.00 0.00 0.00 0.00_ MA #WA , No Flow(WS<inlet) 0.00 0.00 0.00 0.00 #WA #WA No Flow(WS <inlet) 0.00 0.00 0.00 0.00 #WA #14/A No Flow MS <inlet) 0.00 0.00 0.00 0.00 #N/A #N/A No Flow MS<Inlet) 0.00 0.00 0.00 0.00 #WA #N/A No Flow(WS<inlet) 0.00 0.00 0.00 0.00 #14/A #I4/A No Flow oNs<inlet) 0.00 • 0.00 0.00 D.00 #N/A #N/A No Flow MS<inlet) 0.00 0.00 0.00 0.00 #N/A MA No Flow MS<inlet) 0.00 0 00 0.00 0.00 #N/A #WA No Flow MS<inlet) 0.00 0.00 0.00 0.00 *VA #N/A No Flow MS<inlet) 0.00 0.00 0.00 0.00 #WA #N/A No Flow MS<inlet) 0.00 0.00 0.00 0.00 MA #WA No Flow(WS<Inlet) 0.00 0.00 0.00 0.00 #WA #WA No Flow Ms <inlet) 0.00 0.00 0.00 D.00 #WA #N/A No Flow MS <inlet) 0.00 0.00 0.00 0.00 #WA MA No Flow MS <inlet) 0.00 0.00 0.00 0.00 #N/A *MA No Flow MS<Inlet) 0.00 0.00 0.00 0.00 #WA #WA No Flow MS<inlet) 0.00 0.00 0.00 0.00 #N/A #N/A No Flow MS <inlet) 0.00 0.00 0.00 0.00_ #14/A #N/A No Flow MS <inlet) 0.00 0.00 0.00 0.00 #14/A #14/A No Flow MS <inlet) 0.00 0.00 0.00 0.00 IOWA MA No Flow MS <inlet) DETENTIONSHEET, Culvert 11/14/2013, 10:10 AM 1C Riprap sizing 100-Year Storm Event DURAN prepared by: SLS Riprap at Swale in Sub-basin SB3 (center of site) : Pd = (V2+gd)1/2 9 Eq. HS-16e, UDFCD Drainage Criteria Manual, 2008 V = design flow velocity at swale (ft/s) = 2.48 9 From "Circular Conduit Flow" spreadsheet, Manning's Equation g = gravity (ft/s2) = 32.2 d = design depth of flow at swale (ft) = 0.42 9 From "Circular Conduit Flow" spreadsheet, Manning's Equation Pd = riprap sizing design parameter (ft/s) = 4.44 9 Eq. HS-16e, UDFCD Drainage Criteria Manual, 2008 D = Storm Sewer Diameter (ft) = 1 .5 Riprap type: L -9 From Fig. HS-20c, UDFCD Drainage D50 riprap diameter (inch) = 9 Criteria Manual , 2008 Bed Length (ft) =4D or (D^.5)*(V/2) (whichever 6 9 Eq. HS-18, UDFCD Drainage Criteria is greater)= Manual, 2008 Bed Width (ft) =4D= 6 9 Eq. HS-20, UDFCD Drainage Criteria Manual , 2008 Bed Thickness (ft) = 1 .75*D 1 .31 9 Eq. HS-17, UDFCD Drainage Criteria Manual , 2008 ROUND BED THICKNESS TO 2D Conclusion: Riprap at end of pipes will consist of a 6'x6'x1 .5' bed. Riprap at outlet of 24" CMP (at Detention Pond Outlet): Pd = (V2+gd)Y2 9 Eq. HS-16e, UDFCD Drainage Criteria Manual, 2008 V = design flow velocity at pipe outlet (ft/s) = 2.95 -3 Manning's Equation g = gravity (ft/s2) = 32.2 d = design depth of flow at pipe outlet (ft) = 2.00 9 Manning's Equation Pd = riprap sizing design parameter (ft/s) = 8.55 9 Eq. HS-16e, UDFCD Drainage Criteria Manual, 2008 D = Storm Sewer Diameter (ft) = 2 Riprap type: L 9 From Fig. HS-20c, UDFCD Drainage D50 =riprap diameter (inch) = 9 Criteria Manual , 2008 Bed Length (ft) = 8 -9 Eq. HS-18, UDFCD Drainage Criteria Manual , 2008 Bed Width (ft) = 8 9 Eq. HS-20, UDFCD Drainage Criteria Manual , 2008 Bed Thickness (ft) = 1 .31 9 Eq. HS-17, UDFCD Drainage Criteria Manual, 2008 ROUND BED THICKNESS TO 2D Conclusion: Riprap at end of pond outlet pipe will consist of a 8'x8'x1 .5' bed and increased 11/14/13 www.ecmds.com/pri nt/computati on/34874/34875 NORTHTensar International Corporation 5401 St. Wendel-Cynthiana Road AMERICAN Poseyville, Indiana 47633 G R E E N Fax 812.8867.0247 www.nagreen. com Erosion Control Materials Design Software Version 5.0 Channel Computations Project Parameters Specify Manning's n: 0.04 Discharge: 117 Peak Flow Period: 1 Channel Slope: 0.048 Bottom Width: 100 Left Side Slope: 4 Right Side Slope: 4 Existing Channel Bend: 0 Bend Coefficient (Kb): 1.00 Retardance Class (A - E): Vegetation Type: Vegetation Density: Soil Type: Channel Lining Options Protection Type Permanent Material Type Matting Type SC250 Manning's N value for selected Product 0.04 Cross-Sectional Area (A) A = AL + AB + AR = 31.55 AL = (1/2) * Depth2 * ZL = 0.19 AB = Bottom Width * Depth = 31.16 AR = (1/2) * Depth2 * ZR = 0. 19 Wetted Perimeter (P) P = PL + PB + PR = 102.57 PL = Depth * (ZL2 + 1)0.5 = 1.28 PB = Channel Bottom Width = 100 PR = Depth * (ZR2 + 1)0.5 1.28 Hydraulic Radius (R) R = A / P = 0.31 Flow (Q) Q = 1.486 / n * A * R2/3 * S1/2 = 117 Velocity (V) V = Q / A = 3.71 Channel Shear Stress (Te) Td = 62.4 * Depth * Slope = 0.93 q 7 www.ecmds.corrdprint/computation/34874/34875 1/2 11/14/13 www.ecmds.com/pr i nt/computati on/34874/34875 Channel Safety Factor = (Tp / Td) 3.21 Effective Stress on Blanket(Tdb) Te = Td * (1-CF) * (ns/n)2 = 0.93 CF = 0 ns = 0.04 Soil Safety Factor Allowable Soil Shear (Ta) = 0 Soil Safety Factor = Ta / Te = 0 Conclusion: Stability of Mat STABLE Conclusion: Stability of Underlying soil Side Slope Liner Results 48 wnw.ecmds.cor /print/computation/34874/34875 2/2 • —asaws(4.5541111;z?). Jigs ..... , _ . . p• •'St!'; j......... .4.4 . aaotrt©3 i • O is^,:n ' • • • • t 0 • f LI 7 m g, W u Q ` c �' 1 W V a ONo cri >: o� j Y V CO .•F t COo yam-• ' nc o= u ME°I. WI > > E< O sc „Q Q jig u.; `� E B a Q a II i � to: } W N d W Fi D ..«E s 7i rL L. W I I S r.'. 0 'K G$ 0 r y ° 2. O Z =- Eg �j O • Y 0 W t Q L I 3 Z O a I o o4c ^ Fi O a �. E o u o`epu'rw a II a �••{1G1 0.'i o = W o 7S 8$ 14 tn Oa u N W V ° •` z )4 din i .� o • Qgv '9 rl I z W V W< : E$ $ � 0T�� T0T�� i °. . ..I . Sit s LV � �V V `•� a^ $ 3 °cI ° cav< < *SIL<pu 1 ° C< u & III!! Fir 8E Li u 0 g3r°2n ]]+l{ .4� ,�wL�� •� i�3y '1?I,: ��yV, l., l °0° ` �,�. fhti " i S '•IGI • s. • < • • • ' 'n Pi; - . - • . l - • 7,1 r• t. 1 x )R�•/. Mr. •r.,..��Y .i'♦, `i'-i 1 �.)• ! j.�• IN / f.. . ` �!��f1 T r -$ 6'w 1 ml• mom{ ;� t '<64,.....—.4L J S` OS4Z�, " 1-'f�TlT ivtl _ '1 gaup: � i ' , ?r`. ,jeiil. Vi- 1 ..�t :4' i % �• , • )4.461 : •. . aaw d : •S isy .! y•'11-i___,. -+r;i1 .'•!•' -• 3/� ; fs-: ,. .44•-•,.-4•••`•y' '`7 sf. 'fr., ":,'-'1 - . _ • -t w ;,1*1; ' et' ���_ ' r.4 Va^4 ' . 1 1 1�� Ty^•';7� .l Ii.4 3i��a «-'1}. 4 ride,. v . y r.�, �i ♦ !,r'M� J� S..• . E e• i .. iiR.•a ` :'yY v.'�. j ' ir:it. t.p e ed.:- -�-•. . . - $• .' 1. .1,'.' 13%f i.. f am ....i.• .'1l 'L' ` • L a` 1r • .. �] S L!' ! -ar • 7 t ` • . • L it'" 'A . p '� � •♦�R y } '. .-Q • 4•\, +1/ .t t J i 4' S ' , •_ t. • •.I •• .. L t h z 1:1417";•;€1 art;j1b.4,v11•� 1 . +haft }/s'^ipia '11 �.yiYlr :R1 t '• • 1. ' ` " \ .G� to Q pyy�•��#itigfi e�..livT•i14,•. Ivl• ~ l.r Cl.�i Yr.:1 ,• A♦j. 1•.1 • •• • ,1•-.:�." . �'a.. •,� .r ; .4 « N •'•-.`t 3•.(�1"'-y / I:"4�;/ a .'-V[ .t I !.-l.1 6.:,1f { t ' : 1 /�• \ •d ."-rw 1 "°, ` r l %.:. It' O , •II • i MNit s1 'e "sill :"fr. I • sY+ r.e ��f4.e r:S, a4.v.(+r .a •�'3 e�},"w •1r .I • 1 ri. .. ..,. r}ar3 F fir.,":.... ... " ' •t�.1+i. '°F :r• a. 4r J•t ` �7 tt it tY,^^�C S .r1 1 t..: • • a• '--1,.�++ rr :.+� 5t'. • 1 . - r. Y 146e:, '� - . „'"' iy 1 0 "� ,.> IY'I l V 1 I( ' ! . 4• -•.7 Y 1•A f ••• _ . ,. ,.• f Q . E. 31sr q Yv ; .t I -- c •• :7'1%L r a •'',:7,-..4,‘.2..S...,0„,• • t aLt� i • .! tam••'k s f r a ays J., -:1`.O •LA. - i 1 .i .: •r.� •_I C. l % 1, • '4.005; .p -1 •..1•..' . i. . •t l R 3,!AC 1 ^�'1 •.F r4. w i,'ff'J_ +'7.�• , •$ l • 1 • .v' ' t , .- S. 62,0.'1 *. T. S{po. CN ;.L... ..i 1 R• .r r•. ar *-7"r41:14 ,..tr.7 vr` . {li.. �� a . -1.... ii•41./.31 f'Lrt kT. ; 4•Y+11'/II !'r 1d . g/m w' [•/`r;7 n $,. i \ hM ��ll`7',pr tit • ".... 44, ee • r•.2 e n:r( \� .G♦/r/}yx). • .1/4....i.„.•. .... Al !..` .' ly.�•,��C, •. ..e `-'ti +C•Il:,•'',i •Abl�y'.tJ°'c.. TII`' �,(y\\ • � ': y1 { ..p e• Fill�!� . •0.1.0 l46. y• [e Sl� r� s�v.L i't� 'tan.i _ ra.t :.t. n� vay� 1 rt_3 ! •d1 _..j�- �:A dY J+ rxf� aR� t a S* t, .,;.•'• +• v ,x`e....-67...,U% � imz4-•• atctii .- "a-v im' • .,i ,.•mil+ at•4-:it ifi3,.„,..„,,,,,....„ ,,,t., -..-. .,. J.:„,..- , , . 14 .i r}4„,, ;:Rl }t •�.Y R .r Y'•'• v ,It +' • ti♦ 11 i t• j f t I 1 `'14, r sR �; f:f •t, kv. !i'v:-. h;�'+i, • x,0'd , de,_• }`«••v-7 isi AIL t. '', .< .•safr1.t Y •.� I 1l 3. y `.T• d ♦. i .. -- m qK; •4 f,, •.'?., .�:.• ' it . { Pr-rill.. ltksl. �� W . '•44 v a.3..�a,. 7 .�1�1> Cpm;ij•,:..v,C .<"!rte+ 11/"'l u.p Q �1 J r, . +: (/.. y},S :• �.'.`Y !1 .• lc vw �'•5 h�y.�', OJp r Q . •y 1Nf1O9 t�—r�Z�arnacc' - 2yv �:_A04.4 ys""t r .vs ,'.l '.Fi&7,.. a�^ Ziitt `11,r oyy,, • h A v Buz ~ • y vY s 'Y 9C �' ♦i CIa qr+�et 4' 1. rt•ya2 y. - • t+i.�' $.As, �I.11 5.' t. j�r`I.. tJR + _ sa1,�• . .., '&hF:..sr. .. CO M I' r .�00 c a) ° o ,- C CD N N Q) '- co a O a) O O C L 3 co O //U a) r a) N N (°o as Q) > U N CO U +� Y CD fn r CO s.. c0 tO Cu I > C r Q. r MS 0 r., U o) a) V .O r 0 It; C >, O 0 0. 2. ca 2 O U 2 -a a_ a) r CO 0 a) O c coot, c6 a) 13 •O to J ° a)sr C Ts a C ` a � r o m NN• ^ E t a) N N — Y a) E U CCOO — U Q) o U 7 co N N O 0. Z ai acamc,-a c""a `c °° woaN Cl) ° E n a) a) CD Q m �a a c0 � � �`? c a u)CO cp O U) a 6- < c .c ..� Q 1 p0) E `o a. c ° � ONa) u � Z ca to N LOa� E a o ao Ects E U Nw CU Fs o av 0 oN t N f° c Q ca cU an cu o .0 n. .c 2 U) o m a c cn cu IX o ca .... �. -c cn o c U) U a Cu o o Q Q o m ,, o c m a 3 � � w o c`a C . a ca-ono LL w a) CO"' ccoo c Nam o � c Ica � r N o E ?' oa) co a 'ca . . t o Q) a � aa ° off Eo oc n o •nE -0 Z o co a) 0 co a) i -- n o cn o r: N , a) up ca a N a) A < ..a•n a)-0 a) ca it V tO .�, w o ill o -� COU) cn °' c U n y vii r � ca Cu > Z •Q V a) a) o N ° c`a "� al E cEr cu >, ( ° L ca cn o � ii Li a`) 0) cO `o i•-,_ m c o -aco _ .ca c N a °� a rd �i c`a c`oa � � p E ov c>c o o .. c �Can 0 o c c0 � � w a o a Q ctl w oa an -e N Cl) E in. .1 U >-‘ E ' U) 0 E c `Q a- 0 -oa ,oc a) � m o o -0 c ai o — ca Q a m •a a a o c rn -0Et m o � c Boma) .-o u ° >, as a) n a' o W .a 1- co .- ° v � oc � � nay too E °' ' - o 'Qa) ca o caa ° v) c0 c0 ano aw ° U C > — a — ca a) r a) 4) t ca c u) cO •0 a) 0 o ° O c0 2- N -O L a) O 7 0 cO 0 C 0 c0 E I" 5 W E a. cn a E to SO 2 fl. -a Q U I-- to ct coo ❑ N I- a E O D 0 U) 6 >, ca a L ° Cl)0 C) 0 >.. 'o cu c a o o co o = as 0 a) O a) : a up a m cnCu > t U R 3 n. Ts o al U .c E° c O c a a) to o C7 -a c4 a) a)— 0 o t Z •o a) E s Og Q' Q. CA N N y 12 X O To .o c) ❑ O m « c2 ' 8hi a) 0 U ❑ Z 2 m w a! _ D 2 J a o t�qq C co L C z © OO ®i III � ,� ra N c a co O I- CO W J m co a .� a m c6 Q Q > > a (0 S N O O a) c C V ' L C C O O O — O 'a -a Q co co y) a) .4 O r w C_ cO O '' C - O a Q ma 0 m 0 o 0 o Z a) Q O m O U U ❑ z mQ O m m Fa- 0) C C C a) a 0 .O O p to N 0) = Q Cl) o c d trz re Lle a) w c c4 O Z U 81 Jl .ssI .o Hydrologic Soil Group—Weld County, Colorado, Southern Part h. tr W .. 8 518010 518090 518170 518250 518330 518410 O 40° 2711"N I I I I I o N. - t , O 40° 27 11"N ) ! + 441 ,• � � ' •�_ w 1 1 i4 , •.4. • Vim. �f 1 'Ir. - • _ • • O + - ! Irbil a • •• :A `- $ ( '• i. ra r ) M'a•.,'� fa.1 � .'^n•w ••.cip `.4414, .v • Si_ ( j 'CS `+, ,Ir. T Rr fir• .1'� • . ' / •j— 's, , �L ,. /1 .7 • 7108•. . - rat.— County>Roada6 . .r /agy(j.,p. •.a. _. -..IIa • _ fp0 4 r f rtg : i. • v a mil• > >. rJ#- �1 r' ' ^ �• • - 1, - S'y ;.4 ,: '�- �k ,/ ',' � , j 1 -_�a.''i .r, Ors, :f'.- • .l I . t r , w, • '`� _.c' t a f y, . ,� ‘,�'. , ' 3� - 1 S y t Y. ': 74...E<",. • ra /sky 1 .— • .• , ' t�� t'. �`7 • j. `..4 : 4 . � .` r Syr. ..•.a< .�` N,y •• ., r . 4 , •r' .14 : ,. f- - r ,e,stZ .s.r I\ , f Spi . c , it ., • . 1 It • .., ,p s •t • r y 1 J r •t t y i, i L V •_1 it ( -4 0 Ill M It ' s i? o 1 ' i, Ln LA Y. h •• ; SP vt 40° 26'SO"N - I I I I I f 40° 26'50"N 518010 518090 518170 518250 518330 518410 3 3 v Map Scale: 1:3,120 if printed on A portrait(8.5"x 11")sheet Meters S N 0 45 90 180 270 g 0 150 300 600 900 Feet TM Map projection: Web Mercator Corner aaordinates: WCS84 Edge tics: UTM Zone 13N WGS84 USDA Natural Resources Web Soil Survey 11/10/2013 �.— Conservation Service National Cooperative Soil Survey Page 1 of 4 S Hydrologic Soil Group—Weld County, Colorado, Southern Part Hydrologic Soil Group Hydrologic Soil Group— Summary by Map Unit— Weld County, Colorado, Southern Part (CO618) Map unit symbol Map unit name Rating Acres in AO1 Percent of AO1 3 Aquolls and Aquents, I D 0.0 ; 0.1% gravelly substratum I I 8 1t Ascalon loam, 0 to 1 f B 10.1 24.7% percent slopes g t- -- --.. 50 ' Otero sandy loam, 0 to 1 i B 11 .9 29.0% percent slopes 51 Otero sandy loam, 1 to 3 B 11 .0 26.8% percent slopes 152 Otero sandy loam, 3 to 5 B 8.0 19.4% percent slopes Totals for Area of Interest 41.0 100.0% USDA Natural Resources Web Soil Survey 11/10/2013 Conservation Service National Cooperative Soil Survey Page 3 of 4 53 Hydrologic Soil Group—Weld County, Colorado, Southern Part Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (ND, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (ND, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff. None Specified Tie-break Rule: Higher USDA Natural Resources Web Soil Survey 11/10/2013 a Conservation Service National Cooperative Soil Survey Page 4 of 4 REFERENCES 1 . URBAN STORM DRAINAGE CRITERIA MANUAL VOLUMES 1, 2, 3 DATED JUNE 2001 REVISED AUGUST 2008 2 . NOAA ATLAS 2 VOLUME 3 RAINFALL MAPS 3 . RUNOFF ANALYSIS-UD RATIONAL SPREADSHEET v1 .02a DATED SEPT 2005 FROM URBAN DRAINAGE CRITERIA MANUAL VOLUME I 4 . CULVERT DESIGN- UD -CULVERT SPREADSHEET v2 . 00c DATED FEB 2010 FROM URBAN DRAINAGE CRITERIA MANUAL VOLUME 1 5 . CHANNEL DESIGN- UD-CHANNELS SPREADSHEET v1 . 04 DATED OCT 2006 6. U D-BM P SPREADSHEET v3 .01 DATED JAN 2011 7. UD-DETENTION_2 . 2 DATED AUGUST 2011 Sc? Hello