Loading...
HomeMy WebLinkAbout20151046.tiff RR" DEC232QN Final Drainage Reported County PIanri., GREELEY 01 HOE for Razor 26 SWD Injection Facility� Prepared For: A WHITING Whiting Petroleum Corporation 1700 Broadway #2300 Denver, CO 80290 Prepared By: ►, $. ►'l PF5 CHMibIk1 Ser-rk•s Petroleum Field Services 7535 Hilltop Circle Denver, CO 80221 December 18, 2014 ►, t ► ` P FS • • +k Petroleum Field Services December 18, 2014 Mr. Wayne Howard, P. E. County Engineer/ CIP Weld County P.O. Box 758 , Greeley, Colorado 80632 Re: Razor 26 SWD Injection Facility Dear Mr. Howard , Petroleum Field Services (PFS) has completed a final drainage report for the Razor 26 SWD Injection Facility located 1 .5 miles southeast of the intersection of Weld County Road 127 and Highway 114. This report is prepared in accordance to the Weld County Engineering and Construction Criteria (WCECC) and Urban Storm Drainage Criteria Manual (USDCM). The proposed site collects 100-year developed flows and releases at the historic 5-year rate. In addition, the outlet structure incorporates water quality measures in accordance with the WCECC and USDCM. Therefore, the construction of the proposed Razor 26SWD Injection Facility development is in compliance with both the Weld County and UDFCD stormwater criteria. We look forward to your consideration and feedback of this Final Drainage Report. If you have any further questions or comment, please contact our office at 303-928-7128 or by email at mwe l ke r(a�petro-fs.co m . Sincerely, Petroleum Field Services, LLC. Michael C. Welker, PE, CFM Project Engineer Certification of Engineering I hereby certify that this report for the final drainage design of Razor 26 SWD Injection Facility was prepared by me (or under my direct supervision) in accordance with the provisions of the Weld County storm drainage criteria for the owners thereof. •olig:* \pUL /Cb y,� feS j�- •. sp 44 lailizArdirie'esti i i : 0 8/C : • \;. 4 %%SS/0N6k.�C, Michael C. Welker, Registered Professional Engineer State of Colorado No. 39871 WHITING PFSt4 ,, NOOF ►.baMun+11.Iti Services Contents 1 . General Location and Description 1 1 . 1 . Location 1 1 .2. Description of the Property 1 2. Drainage Basins and Sub-Basins 2 2. 1 . Major Basin Description 2 2.2. Sub-Basin Description 2 3. Drainage Design Criteria 2 3. 1 . Development Criteria Reference and Constraints 2 3.2. Hydrological Criteria 3 3.3. Hydraulic Criteria 4 4. Drainage Facility Design 5 4. 1 . General Concept 5 4.2. Specific Details 5 5. Conclusions 6 6. References 7 APPENDIX APPENDIX A Vicinity Map A-1 Hydrologic Soils Map A-2 NOAA Atlas Point Precipitation Frequency Estimates A-3 APPENDIX B Hydrologic Computations For Pond Weighted % Impervious Calculations B- 1 Weighted Runoff Coefficient C Calculation B-2 Time of Concentration Calculation B-3 Rational Method Procedure 10-yr Runoff B-4 Rational Method Procedure 100-yr Runoff B-5 Final Drainage Report for Razor 26 SWD Injection Facility Page i 1' t WHITING .. e_ k Ns, lial lOrvk 01 Detention Pond Volume Sizing 8-6 Detailed Calculation Reference Equations, Figures and Tables B-7 TO B-10 APPENDIX C Hydraulic Computations for Pond Stage —Storage Sizing for Detention Basins C-1 Stage-Discharge Sizing of Water Quality Capture Volume Outlet C-2 Restrictor Plate Sizing C-3 Stage-Discharge Sizing of the Weirs and Orifices C-4 Stage-Discharge Sizing of the Outlet Culvert C-5 Stage-Discharge Sizing of the Spillway C-6 Water Quality Trash Screen Sizing C-7 Trash Rack Sizing C-8 Riprap Sizing C-9 TO C-12 Detailed Calculation Reference Equations, Figures and Tables C-13 TO C-15 APPENDIX D Construction Plan and other References Razor 26 SWD Injection Facility Drainage Plan 11x17 DP1 Razor 26 SWD Injection Facility Pond Drainage Details 1 11x17 DP2 Razor 26 SWD Injection Facility Pond Drainage Details 2 11x17 DP3 Razor 26 SWD Injection Facility Erosion Control Plan 11x17 DP4 Razor 26 SWD Injection Facility Erosion Control Details 1 11x17 DP5 Razor 26 SWD Injection Facility Erosion Control Details 2 11x17 DP6 FOLDER POCKET Razor 26 SWD Injection Facility Drainage Plan 24x34 BACK POCKET Razor 26 SWD injection Facility Pond Drainage Details 1 24x34 BACK POCKET Razor 26 SWD Injection Facility Pond Drainage Details 2 24x34 BACK POCKET Razor 26 SWD Injection Facility Erosion Control Plan 11x17 BACK POCKET Razor 26 SWD Injection Facility Erosion Control Details 1 11x17 BACK POCKET Razor 26 SWD Injection Facility Erosion Control Details 2 11x17 BACK POCKET Final Drainage Report for Razor 26 SWD Injection Facility Page ii A l, l WHITING PFS i uc r.Td.wn�i+d j4' es Final Drainage Report for Razor 26 SWD Injection Facility Page iii A P. 5 tL WHITING PFS E4 v , . � � u I�nd��m Its Sarvfc•t 1 . General Location and Description 1 . 1 . Location The Razor 26 SWD Injection Facility is located in the south half of Section 26, Township 10 North, Range 58 West of the 6th Principal Meridian , Weld County, Colorado . It is physically located 1 .5 miles southeast of the intersection of Weld County Road (CR) 127 and Highway (HWY) 114. The proposed site is bounded by Pawnee National Grassland to the north and agricultural land to the east, south , and west (please see the Vicinity Map in Appendix A). There is one well pad developed to the west of the proposed site. 1 .2. Description of the Property The proposed site is owned by Whiting Petroleum Corporation with an intention to develop in two phases. The original 21 .84 acres of land purchased for this development was split into Phase I and Phase II . Phase I of the site is a well pad that was developed on the east half of the site, consisting of nine wells and two pipe houses. Phase 1 also includes existing dirt piles to the west and south of the well pad. The Phase II development proposed within the site includes a production facilities pad west of the Phase I development, swales, and a detention pond in the southeast corner of the site, which is sized to accommodate runoff from the Phase I & II developments. There is an access road located on the east side of the site and connected to Highway 114 to the north. The existing site includes underground pipelines running in an east-west direction, south of the site. There are also underground pipelines entering this pipeline corridor from the southwest corner of the Phase I well pad. Prior to development, the proposed 21 .84 acre site (Phase I & II ) was used in an agricultural capacity. As determined by the USDA Web Soil Survey, the historical soils are Kim-Mitchell complex. The Hydrologic Soil property is Hydrologic Type C. (Please see the Hydrologic Soils Map in Appendix A). The historical site generally slopes from the northwest to the southeast at a range of 0% to 9% slope. The percent imperviousness for the historical site is 2%. Upon Phase II development, the proposed site will be a mix of native planted areas, compacted gravel and concrete pads. The composite percent imperviousness is 40.71 % (please see calculations in Appendix B for details). The site is located approximately 1700 feet northwest of a livestock water pond . There are no major drainage or irrigation facilities across the site or within 200 feet of the site. As indicated from the Weld County FEMA Map Indexes, the proposed site is within Panel ID 08123C0825E (Preliminary FIRM Map), which was not printed. Thus, there is no FIRM Map associated with the proposed site. Final Drainage Report for Razor 26 SWD Injection Facility Page 1 AI1 WHITING PFS V ►� uc 2. Drainage Basins and Sub-Basins 2. 1 . Major Basin Description There is no comprehensive drainage plan associated with the proposed site and no irrigation facilities are located within 200 feet of the proposed site. 2 .2. Sub-Basin Description Stormwater historically drains from northwest to southeast. Developed on-site stormwater follows a similar drainage pattern and drains from the northwest corner to the southeast corner. There are 2 basins for the proposed development. Basin 1 is delineated within Phase development. Basin 2 is delineated within Phase II development. Runoff of Basin 1 follows the historical pattern of draining from the northwest to the proposed detention Pond in the southeast. Runoff of Basin 2 also follows the historical draining pattern. It flows to the south of the production facility pad , is collected by a proposed swale, and drains to the proposed detention Pond. Offsite stormwater from the east or west of the development follows the historical draining pattern and flows away from the proposed site . Offset runoff from the north (which remains as a native land use) flows around the site via road-side ditch adjacent to the existing access road to the north, 3. Drainage Design Criteria 3. 1 . Development Criteria Reference and Constraints There is no Weld County Master Drainage Plan associated with the proposed site. Onsite runoff follows the historical flow pattern and drains to the south for both Basins 1 and 2. Theoretically, detention ponds can be proposed in the southeast corners of Basin 1 and Basin 2. The topography to the south of Basin 2 is relatively flat and there is no feasible option for a proposed detention pond to collect the Phase II developed runoff. Therefore, runoff from Basin 2 will be directed through a proposed swale and flow to the proposed detention pond southeast of Basin 1 . There is an existing pipeline corridor running in an east-west direction south of the Phase I & II developments. Within Phase I development there are also existing pipelines running from the well pad and connecting to the pipeline corridor. These buried pipelines limit the location of proposed swales. Therefore a shallow swale and berm combination will be used to convey flows to the proposed detention pond . In the Phase II development, the composite percent imperviousness for the developed area will increase because of additions of gravel and small structures. A majority of the area will be Final Drainage Report for Razor 26 SWD Injection Facility Page 2 )1/4lik fr. ! 11 WHITING t 1 ( • 1 graded to drain to the south , then through a swale to the east and into a proposed detention pond (please see Appendix D for details). 3 . 2. Hydrological Criteria This proposed drainage plan follows the Weld County Engineering and Construction Criteria (WCECC). As per WCECC, the minor and major design storm frequency for water quality and detention pond designs is 10 years and 100 years. As indicated in the NOAA Atlas in Appendix A, the associated one hour point rainfalls are 1 .57 inches and 2 .78 inches respectively. As the on-site basin is less than 160 acres (21 .84 acres), the rational method was used to compute the runoff. The weighted percent imperviousness and runoff coefficient were calculated for Basin 1 and Basin 2 for the proposed development per WCECC Table 5-3 and USDCM RO- 4, and Equations RO-6 and RO-7. The time of concentration was calculated using USDCM Table RO-2 and Equation RO-2, RO-3, RO-4, and RO-5. As noted in WCECC, the detention pond is sized by the difference between 100-year fully developed runoff rate and historic 5-year release rate. The storage volume of the detention pond was computed by the Modified FAA Method using UDFCD UD-Denteion_v2 .34 Spreadsheet. Please see Hydrological Computations in Appendix B for details. 3.3 . Hydraulic Criteria The hydraulic structure proposed on-site includes one detention pond , outlet structure, and emergency spillway. The outlet structures of the detention pond were computed using the UDFCD UD- Denteion_v2 .34 Spreadsheet. These hydraulic calculations include Stage Storage Sizing for Detention Basins, Stage-Discharge Sizing of the Water Quality Capture Volume (WQCV) Outlet, Restrictor Plate Sizing for Circular Vertical Orifices, Stage-Discharge Sizing of the Weirs and Orifices, Stage-Discharge Sizing of the Outlet Culvert, and Stage-Discharge Sizing of the • Spillway. Water quality capture volume was determined with a 40-hour drain time. The Water Quality trash screen size and trash rack over the outlet were calculated per USDCM V3 Chapter 4 Outlet Structure. Please see Hydraulic Computations in Appendix C for details. Final Drainage Report for Razor 26 SWD Injection Facility Page 3 WHITING v ► ec 4. Drainage Facility Design 4. 1 . General Concept The proposed drainage plan follows a similar drainage pattern as the historic path. For the Phase I & II developments, the site will be graded to drain a majority of the site to the southeast. Stormwater from the southeast of Phase II development will then be conveyed via swales to the proposed detention pond in the southeast corner of the site. An outlet structure and emergency spillway will be constructed at the south end of the detention pond to convey flows offsite. Water quality is incorporated in the outlet structure and a micropool box is proposed to control the sedimentation. 4.2. Specific Details The depth of the proposed detention pond is 8.0 ft. as the top of the pond is 4721 .0 and the invert of the outlet pipe is 4713.0. The proposed detention pond has a calculated storage volume of 3.06 acre-ft. The proposed detention pond is graded with a 4: 1 interior side slope and provides 1 foot of freeboard above the developed 100-year water surface elevation . The associated outlet structure includes a micropool box with water quality plate, restrictor plate, and one 18-in outlet pipe . The diameter of the holes in the water quality plate is 1 . 14 inches. An emergency spillway, which is designed to provide failure protection for the embankment in the event the outlet is clogged, is designed with 4: 1 side slope and a length of 50 feet. The owner is responsible for maintaining the operation and access of the drainage facilities. The proposed detention pond can be accessed from CR 127, HWY 114, and on-site access roads. The disturbed area of the revised pond will be re-seeded . Any vegetation should be trimmed. Any debris or trash from the trash grates attached to the outlet structure should be cleaned. Any sediment from the micropool box should be cleaned out regularly. Any blockage in the culverts, ditches, or outlet pipes should be removed to keep the drainage facilities at full capacity. 5. Conclusions The hydrologic and hydraulic calculations associated with the proposed drainage plan follow the Weld County Engineering and Construction Criteria (WCECC) and Urban Storm Drainage Criteria Manual (USDCM). These calculations show that the detention pond will detain the difference of developed 100-year flow and the 5-year historic release rate. The outlet structure is able to control water quality, detain the 100-year stormwater, and release stormwater runoff at the 5-year historic rate. The emergency spillway is able to release storm runoff at the 100-year developed flow rate. Thus, Weld County's stormwater requirements have been met and stormwater impacts due to proposed development have been mitigated . Final Drainage Report for Razor 26 SWD Injection Facility Page 4 A 11 WHITING PFS NO ►nk,' 1►4atsum Ned 1in �� Final Drainage Report for Razor 26 SWD injection Facility Page 5 Ak, 1 , WHITING PFS 1 Inc feIpwm Hv J Svwrav 6. References 1 . Weld County Engineering and Construction Criteria April 2012 ; Weld County, Colorado http://www.co.weld .co.us/assets/3dd825B3d3bA3BA270d4. pdf 2 . Urban Storm Drainage Criteria Manual Vol. 1 , 2 and 3; Urban Drainage and Flood Control District; Latest Revision 3. Hydrologic Group Rating for Weld County, Colorado, Northern Part ; USDA-Natural Resources Conservation Services; National Cooperative Soil Survey 4. Weld County FEMA Map Index; Weld County, Colorado http://www.co.weld.co. usiassets/15A6dD2d93218CDABDA4.pdf Final Drainage Report for Razor 26 SWD Injection Facility Page 6 WHITING PETROLEUM CORPORATION RAZOR 26 SWD INJECTION FACILITY CR 116 tV ,-a U PROPOSED SITE 0 1000 2000 SCALE: 1"=2000' ti I- •M# nl+$I9Ir DRAWINL OAF£ SITE t3(ATION 12-15-2014 netyren. . DRAWN BY : VICINITY lviAP S 112 SEC. 26, T10N, R58W, 6TH P.M. JS35Hto>Ctck ��� JLG(Ni(K(0 8'' D;nver,CO80221 SNC WELD COUNTY, COLORADO 2 Z CI 0TE8T9b 09Z8TSb OTZBTSb 09T8TSb OTTBTS* 090819b ()TOOTS* ct 1— 44— M Ab•6b o£0TI 1 I m.01,617,64 o£0T O O LO O — A- � in ,5_ I _ i in • C., • ffi tn in WI cP 0— _ i IL i :.: O O Ur 0 • 0 cio U 'O i ..H / • S • It— i...._ s 4,•• 0 laibeN !§ ; To • t: cu — .• • - • - W 111"'777 12 5 • ♦ •' 7 •• ' •�•• X I 8 • SI El" • si %' .fir _. ...,.. . .e„. . ...., . , , . . . . , . .: , .,... . . . .. 65 ow t et{► .}� .• . r •1.f'�� J� . .L w;.� . ; ,.' r .l •� i•.1 )i• 2 O o. O 2 Q: . : .75°11-41)1Pti... . M �7; ��yj�� 41:: •iii: ,e: t{' ' C ;CA•C i �; s/r C• ti iu � Z U .y4 t J '17 <'i M.T,0S o£0T M,S•OS *C0T • ,,,IIA.""��r .1T i. :1 .T'' L w'' rjl li • 'T TIT b OTT8TSb 0908T54 0T08TSbT TSB OTZB Sb 09 8 S0 £QTSb 0928 Z z to N fel 4 r4 O 0 4) O o co N c S •c o o a) 2 N o m 'a to a c4 p Q Ncm v o n N it) I �g`u� cv CO ry Nm 00 � �' � � ° - r O 3c � `- d r O " lj O co CU O L L C 0 r O O 6 2U cd O0 -O N N O y C c0 C co E a) E U 0 c5 Y d c o N N `O C r/� W V a) .C a M O N E Z a) 'a cc a) vo +. o 8 u) t L V mas u) O ca a)a N O co O c� `mom >, c as N C) Z � ECD ws •- a)I— 0 E asc ca N N a) a) O ° . a) ucc p' N t 7 Q _ O O) E o a c � a �ia � � ZI c�vM o a��i p a) amE E U .NW m � COQ 0 oN o r N �° c Q m c� aLcv a.) ark U) 73 ca. a c6. N ° Li v o ` c ' o caO. v 0• > T > .C 0 o °� ° ° 3 co = .c C (iii O ° Z � � o � a) � n � no 15 a o � Ua CON a _0 ° >, a o Oa) cc L ° tn ° ° 6. � 44''' la .� 2 e o w 0 N N J (n N C N t/1 .O 0 C 2 EE a o CL > z � � Q ° C) ca o N ° ctis y ca co ' E ns a) D E N °- caii2 co '!' aCi iv a) Alo = «. rn a) c Nw o v a c � o >. o c..) u_(p 43) Lo � � � O c`v o � 0 0 _ aa ca N o ch C cCo F" 3 O C A U) .O s O y Q as (5 O C an 7 fA a) '' ..7 ?. E - cn a) E - alma n o 0 ,_ j N N c) a) ac) � " ° O o cr O -O ? < mr r Cuo o c a) c a) .o c "`- �_ ° m a >, cn a) r ,°) a w c c� c a) N 0 0 2 Q12 n 0 0 I a > V) a) uN o aQ) is c m ,_03I �° E .c H W E a0 d E 0SO 2 Qa < 0 I- w (0 (1) v) `0 orr) I- v - 0 O Z o 0 � a a 0 0 0) o UC� o 'o w O O o ' U o 6-m.o 73 o a . u) a a) a cC 00 o I.' y m c > �, U N o cu r 2 c c O o1 o c N .o o co 0 -O Y ro O 0 .c Z o E :a 0 a a a C/) Q H 03 N 12 a O .� V Q z ,, C co .� co W o 0 0 0 z 3 U) act .E n 2 - ccc 2 O t O Z 0 0 LLI A � . O I- m w _I a) 4) 13 a 0 so ro aro co y 3 C d v. H O O _ O Q C O N yZS w O) C o - % c cu y y a�, o o e o O C) Q o a O O 2 Q Ol ¢ a CO CI O U O Z c < a 00000 z Q a co CO m c c c 0 _ 0 U ■ ■ a � fI = � y = � Q cn O C co- C) 22 co 0 z0 Hydrologic Soil Group—Weld County, Colorado, Northern Part Razor Hydrologic Soil Group Hydrologic Soil Group Hydrologic Soil Group— Summary by Map Unit — Weld County, Colorado, Northern Part (CO617) Map unit symbol Map unit name Rating Acres in AOI Percent of AOl 11 Badland 5.8 27.0% 31 Kim-Mitchell complex, 0 C 0.8 3.7% to 6 percent slopes 32 Kim-Mitchell complex, 6 C I 2.8 13.2% to 9 percent slopes 66 Thedalund-Keota loans, C 12.1 56.1% 0 to 3 percent slopes Totals for Area of Interest 21.6 100.0% Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. USDA Natural Resources Web Soil Survey 12/15/2014 a Conservation Service National Cooperative Soil Survey Page 3 of 4 Hydrologic Soil Group—Weld County, Colorado, Northern Part Razor Hydrologic Soil Group Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff. None Specified Tie-break Rule: Higher USDA Natural Resources Web Soil Survey 12/15/2014 aill Conservation Service National Cooperative Soil Survey Page 4 of 4 12/15/2014 Precipitation Frequency Data Server NOAA Atlas 14, Volume 8, Version 2 ./-elrwrow\A Location name: Raymer, Colorado, US* / ` Latitude: 40.8244°, Longitude: -103.8237° j j Elevation: 4845 ft* °ft.,n.s ' source: Google Maps \N-.,„.,,/ POINT PRECIPITATION FREQUENCY ESTIMATES Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery 8onnin NOAA, National Weather Service. Sliver Spring, Maryland PF tabular I PF graphical I Maps & aQrials PF tabular PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches)1 Average recurrence interval (years) Duration 1 2 5 10 25 50 100 200 500 1000 j 0.260 0.325 0.438 0.539 0.690 0.814 I; 0.945 1 .09 1 .28 1 .44 5-mill ii (0,204-0.335) (0.254-0.418) (0.342-0.565) (0.418-0.699)i {0.521-0.934) (0.598-1.11); (0.671-1.32), (0.740.1.55); (0.8404.88) (0.917-2.13) 0381 0.476 0.642 0.790 1 .01 1 .19 1 .38 1 .59 1.88 1 211 10-min ! (0.298-0.490) (0.372-0.612)1 (0.500-0.828)i (0.612-1.02) (0.763-1.37) (0.876-1 .63) (0.983-1.93) (1.08-2.28) (1.23-2.76) I (1.34-3.12) 0.465 0.580 0.782 0.963 1 .23 1 .45 ; 1 .69 1.94 2.29 2.58 15-mln n I (0.364-0.598) (0.454-0.746) (0.610-1.01) (0.747-1.25) (0.930-1.67) ! (1.07-1.99) . (1.20-2.36) (1.32-2.78) (1.50-3.37) (1.64-3.81) 1 0.626 0.777 1.04 1.28 1,64 1 .94 2.26 2.60 3.08 3.46 30-min (0.490-0.804) (0.608-0.999) (0.814-1 .35) (0.995-1.66) (1.24-2.23) (1.43-2.65) (1 .60-3.15) (1.77-3.72) (2.02-4.52)(2.02-4.52) (2.20-5.12) 0.761 0.945 1 .27 1.57 2.01 2.38 2.78 3.21 1 3.81 4.30 60-min (0.596-0.978) (0.739-1.22) (0.992-1.64) (1.22-2.03) (1.52-2.73) (1.75-3.26) (1.98-3.89) (2.19-4.60) (2.50-5.60) (2.73-6.35) 2-hr 0.896 1 .11 1 .50 1.85 2.38 2.83 3.30 3.82 1 4,54 I 5.13 (0.7094.14) (0.880-1.42) !, (1.18-1.92) (1.45-2.37) (1.82-3.20) (2.11-3.83) (2.38-4.57) (2.63-5.40) (3.02-6.59) (3.30-7.48) 0.967 1.20 1.61 I 1.99 2.55 3.03 3.54 4.10 1 4.88 5.52 574 3-hr (0.770-1.22) (0.953-1.51) (1.28-2.04) (1.57-2.53) (1.97-3.41) (2.27-4.08) (2. - .86) (2.85-5.76) (3.27-7.03) (3.58-7.98) 1.13 1 .37 1 .80 2.20 ! 2.81 3.32 i 3.87 4.47 1 5.33 6.03 6-hr (0.909-1.41) (1.10-1.71) (1 .44-2.26) (1.75-2.77) (2.19-3.70) (2.52-4.41) (2.84-5.25) (3.15-6.21) (3.62-7.57) j (3.97-8.60) 12-hr 1 .35 1 .59 2.04 2.44 3.05 3.56 4.11 4,71 , 5.55 I 6.23 (1.09-1.66) (1.29-1.97) (1 .65-2.52) (1.97.3.03) (2.41-3.96) (2.74-4.66) (3.06-5.50) (3.36-6.43) i (3.81-7.76) (4.16-8.76) 24-hr 1 .60 1 .85 2.30 2.71 3.33 3.85 4.40 5.01 5.86 6.56 (1.31.1.95) (1.52-2.25) (1.88-2.81) j (2,21-3.32) (2.65-4.26) (2.99-4.96) (3.31-5.80) (3.62-6.75) (4.09-8.08) (4.44-9,10) 2-day 1 .80 2.10 2.62 3.07 3.72 4.25 4.81 5.40 ' 6.21 6.86 (1.50-2.17) (1.74-2.53) (2.17-3.16) (2.52-3.71) (2.99-4.67) (3.33-5.39) (3.65-6.22) (3.95-7.14) (4.38-8.41) (4.71-9.37) 3-day I 1 .93 2.24 2.77 3.23 3.90 4.44 5.00 5.60 6.42 7.07 ay (1.62-2.31) (1.87-2.68) (2.31-3.32) (2.68.3.89) (3.15-4.85) (3.51-5.58) (3.83-6.42) (4.13.7.34) (4.57-8.62) , (4.90-9.59) 2.04 2.36 I 2.90 3.38 4.06 4.61 5.18 5.78 6.60 7.26 4-day (1.72-2.43) (1.98-2.81) (2.43-3.46) (2.81-4.04) (3.29-5.01) (3.65-5.75) (3.98-6.60) (4.28-7.53) (4.73-8.81) ' (5.06-9.78) 7-day 2.32 2.70 3.33 3.85 1 4.59 5.17 5.75 6.35 7.15 1 7.76 (1.97-2.73) (2.29-3,18) (2.81-3.93) (3.24.4.57) (3.75-5.58) (4.13-6.36) (4.46-7.22) (4.75.8.15) (5,17-9.39) I (5.48-10.3) 2.60 3.02 3.71 4.28 5.06 5.67 ' 6.26 6.87 7.67 8.27 10-day (2 22-3.04) (2.58-3.54) ; (3.15-4.35) (3.62-5.04) (4.15-6.10) (4.55-6.91) (4.89-7.79) (5.17-8.74) (5.58-9.99) (5.89-10.9) 20-day 3.52 4.00 4.78 5.43 6.32 6.99 7.67 8.35 9.25 9.93(3.04-4.06) (3.45-4.62) i (4.11-5.54) (4.64-6.31) (5.24-7.50) (5.70-8.41) (6.07-9.41) (6.38-10.5) (6.83-11.9) (7.18-12.9) 4.29 4.84 5.73 6.46 7.45 8.21 8.96 9.71 10.7 I 11 .4 30-day (3.72-4.91) (4.20.5.55) ' (4.96-6.58) I (5.56-7.45) (6.23-8.78) (6.73.9.78) (7.14-10,9) (7.47-12.1) (7.96-13.6) (8.32-14.7) 46-day 5.22 5.91 7.01 7.90 1 9.07 9.93 i 10.8 11 .6 12.6 13.3 (4.56-5.94) (5.17-6.73) (6.11-8.00) 1 (6.85.9.04) (7.61-10.6) I (8.19-11.7) (8.64-12.9) (8.97-14.2) (9.46-15.8) (9,83-17.1) 60-day 5.98 6.84 8.18 I 9.23 10.6 11 .5 12.4 13.3 14.3 15.0 (5.26-6.77) (6.01-7.74) (7,16.9,28) (8.04-10.5) (8.90-12.2) (9.56-13.5) (10.0-14.8) (10.3-16.2) (10.8-17.8) (11,1-19.1) 1 Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. I Please refer to NOAA Atlas 14 document for more information. Sack to Top http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.htm I?l at=40.8244&lon=-103.8237&data=depth&units=engiish&serf es=pds 1/4 12/15/2014 Precipitation Frequency Data Server PF graphical PDS-based depth-duration-frequency (DDF) curves Latitude: 40.8244°, Longitude: -103.8237° 16 i i I r i i I I ► I i I 14 - . . . . .. . . • t = . . . . . . . . . . . . . . . . . ;. . , --. 12 - . . . . . . 10 - . . . . . .. . . .. . . . . . . . . . Average recurrence a inten•aI -a : : (years) ris • • :• : -- ho 0 .E .E E E tti t f {3 v v v v IC" - 500 LA O ill 6 O P N r4i rh v No O O in O .-4 .-1 rri O '-I N h'1 ct 1/4O ��Q Duration t6 i T i I I I I 14 - . . . - • • • . . . . . . . . i . • • Q10 - . N . oc 8 _ . . . ez . . • 2 --- -- -- �; �_�J•--. �.—'r"�'�—.� i i i i i l i 01 2 5 10 25 50 100 200 500 1000 Average recurrence interval (years) NOAA Atlas 14, Volume 8, Version 2 Created (GMT): Mon Dec 15 17:47:35 2014 Duration 5-rnm — 2-day — 10-min — 3-day 15-min — 4-day — 30-min — 7-day — 60-min — 1D-day — 2-hr — 20-day — 3-hr — 30-day — 64m — 45-day — 12-ht — 60-day — 2441 http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.htm I?I at=40.8244&lon=-103.8237&data=depth&units=english&series=pds 2/4 12/15/2014 Precipitation Frequency Data Server Back to Top Maps & aerials Small scale terrain 1 a) Medicine Bow Laramie Natrontd f.or est Cheyenne North Playa Fort Collins M o Greeley • , L avetendo ° • t-4 .Longmont • 1 ?Boulder • - 'Denver Arapaffo National! o,est• O 1iJ • '4," iiiielono /J ., ^- - Centennial , . .�. : , .I , 50 km Report a map error Map data ©2014 Google Large scale terrain i 1 http://hdsc.nws.noaa.gov/hdsc/pfds/pfdsfiri ntpage.html?Iat=40.8244&Ion=-103.8237&data=depth&units=english&series=pds 3/4 12/15/2014 Precipitation Frequency Data Server 2 km Report a map error Map data ®2014 Google Large scale map a F, r I . . ass I (127 2 km Report a map error Map data @2014 Google Lan s e scale aerial . �. , l, . t 1 ` ii T .. 4 . •A k� 2' ''S', 1�•• A .� • i - 1 b‘h. s...' t .' • 4 1:4! %Ili: * 1.1 #* 4. Th, ' ' . • ic. -e , . I K� . ' + ,y Iti •\• Yff � r 1 r r. 14 'I I% P Googl . = t '2 km Report a map error Imagery ©2014 TerraMetrics Back to Top US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service Office of Hydrologic Development 1325 East West Highway Silver Spring, MD 20910 Questions?: HDSC.Questions(a.noaa,gov Disclaimer http://hdsc.nws.noaa.gov/hdsc/pfds/pfds jrintpaae.hhrl?lat=40.8244&Ion=- 103.8237&data=depth&units=english&series=pds 4/4 on,. F, . . - , -.wig,� ! 2 J Z 7 2 7 / J J 3 7 2 9 a 2 J• / 3 c V 0) o c 0 0 0 0 0 0 0 0 0 0 0 / 0 0 � 0 ! c c co c o c o N o c o c c c 2 / \ g o o c o 6 9 6 6 6 2 6 0 o f o CZ 3 if ct ! , , } ) \ # 0 0 0 Co 0 \ 0 0 0 0 0 0 0 0 0 0 0 «o Q 'o o c o co 2 6 0 o d 6 o o a o o 0 2 L. L. 4 ) . \ c " ; g ) o Ea. \ \ ' \ ) \ Af 3 cc \ \ / 0 Lei ) . , . .' \ / \ 2 2 \ § 144 / $ \ \ cc tw \ -t t ~ 01 4.1 / - .. . . / C \ \ \ 46 li cr. \ \ Li Et" U 3 — W ! o » CS \ } 1-. \ — \ \ Os o \ _ 44 big j \ \ ci % \ ± \ CA § 0 ± 2 2 c = J n ; i y « / \ a « \ _ » § } •/ / , / A. \ V IS . . "C - a / -J ` .§ \ * \ tti # = » S 2 \ ) ] / c co 4 c z co k ■ \ E O ci [ & — ~ ao o 0 = m .\ .\ 4 / , Z a, pa \ / ) ± r , / � ■ - N I CC s` ithy OA , l0 .• p V d w In �. • • • • • • Y1 c 0 a • id d 1d o 0 TS t i d O 3 Cr! M • • I v5 0 0 N ,O I. M d• OA O O p Y + + et <t o O O o O 0 o0 a' . 0 0 0 0 0 0 0IN M '" o O Q t ,ri 1 , Q• V — N Os ct, - OA 0 0 .- , 0 0 -. O O M 0 0 0 0 O 0 c44'1d 4 .re Oo _ 6 a4 0 0 0 0 0 0 0 4q w `i' 0.o ` l'• el o goo d . .. 000 - 00' 0 •000 •n 00 •no0 •no0 •noov, o O t >•• lei ii-3l to to N M In N M Y• N M vl n N M • N M CFI N M ti-)j 41 8O o O C C o 0 0 o 06 0 O O O O O o do O O O O 0 ° 4 4 6 CJ (,L � W �.�, G�i O �D N t- N •n v1 •n v v1 vS �n vn v •n •n •n v'• v1 •n v •n v, V O I-' 4. C y >, M M v en M ct O NO .-' N o -.. N0 N O .-. N o -• N t .4 .5 U V a o 0 0 o C O o a O 0 o 0 0 0 0 o 6 o c C c o 0 0 C3 o N o) U � 0 0 � c 4 cy V es. in o •nw -nen0aJ - -, 00 •n00 -, o CO LA00 - 0 OD in 0 - b. h N en en N M en O O .-+ 0 0 �--• 0 0 -+ 0 P -+ 0 0 0 P ^• o 0 0 0 0 0 O O 0 0 0 0 0 0 C o 0 0 a a O P 0 p VI CV L a If, Is)yy a ta C> '1 la) �O I• G d. N a N o N V' N 'O N 1/40 N 'O N •O N ,0 CC ceO O r N , M N • M M • -t M • 't M • 't M , d M • '•t' M • CA coy �4 00 0o c0 00 a 00 o0 00 0 ' a 4 o C e C1, c ad 't — ^ h N —• N -mo t• -- t- qtr •. V >.. • • —• •-. • r- • N -' • N -• • N - • N - , c".4 '--• I N 0 w d 0 0 c CO 0 0 P o 0 0 0 0 0 0 0 'C•.I W 0 it W L ' . ,o N '0 N a: - o, '-' tT •- ON .- rn --• 0, 0 O d 0 . 00 , 0 0 • .-- 0 , -. 0 • '� 0 • - 0 , --I 0 • -- ,I U e , 0 O 0 c o O o 0 0 0 0 0 o 0 0 0 d U C dl d a A A CA A a 0 a 0 H d w o < AA odW 8 ¢ co o ¢ CO o q o D< 0dCO < fA $ c a Cl 0 U 0 0 0 U U + L 0 A ta rP (j c� J, .y O 0 0 O O o O o C .8' A 0 0 0 0 a 0 0 0 4- o 6ek AI CQ O l` 'C O o c \° e \ \° \ e .n a CO H S. o a a. QLi p o 0 0 0 0 0 0 0 .� ry •d-. y •� O 0 O 0 0 O •C (A c• l"-- 0 I"' 0 .. o - F Q •0 44 -0:• 4. ,. :r - r y O 4-~ 7 , 07 y t 0. w, r4 •n w `•'• 8 -- 00 ;r O 0 — N 0 Cl 9 CO �4/4 — ) U E o o ca co co Y O yy _ II �O II' II II0 t1 -8 3 U� U U Q =� M T124 !I 0 0 ;� o o , r, r, o v, o o N H h 1cO t3 Y 0 _ + rip, 0 Y C7 X10O 1: 44 eglix A, ¢ C7 o r C7 U N 0 w ,n o d F 'a r. > ^, n o V ..... .PS co f: .. tje1 v o0 0 0 _a M o) �, r o u o 0 ed 1-4 O le 0S� 0 O O 03 .-, v la; h T co C4 tad � -, p .-. Do 6 01 M 'c t C C7 0 , y G 0 n n - ci "a O t C NN O voi o r—t A IS V N �r ^id. q mpir,i N. N � O �" ry ~ N ria r Q 1~ 1 � ea C', IS' °par, 4 ra ' `o u. A U= i .S .a' 0 O U t+1 M a i .1 t7 t.5- o o 4 A M c ,c a — U E I: .--, N U 2 , a I 'N tagg 0 0 0 0 0 0 0 O 0 O A DI CO W PI in co E z e° O r el p" A V Q 04 .0 Z x co Fe o g c i Ow we 3 Q x Fr Y 124 4 Ty, cn Q. r-- , : a U ' N N 11 It t ir • ' N a tr Cu ono Iti U .C' 0O o t f• a. C n � 4 d '"' U �O:Ida (�O 4 DM C iv P•Sk en 1/4O A .`i,, o as M oo >i ,r o a x oo '.o .; ' a V V e r b C I.ry 0 E4 u Q M O IX CC q -. E O O o 0 04 U 6 q M ••••C 2 y0 ' z .-. N 0 . iim Q 2 g 4 A ca as w 4 cb ca zF. Pi 0 ,- ••a N A in g a O Q. a Z o ...<if: b IA 3 a Y ...Ind/ill i ea U rs Iti' CD :4 Z a .N t0 O U in ra . . aho ri v P4 ..e O0 V O C H V .p 00 Cr L i z q o+ tu tl a " M in L. ON eNIz 0) b a, W vi .o e c q N P, •.. owet i O C4 k h r N P. F-� U SO (9; b O CC a U N C s. L. O A' 1--C � �. CC O ei di J Q •E M O Iii "V Q F-+ i. h ,O J 14.1 y O W O% ww9 z O G O C d n pp !�ZQ Jj1 Cl C' ti r, VD Cr c6 ^ E a 4 C; if,! . . 4 " 4 A CO co PR 4 0 c) 94 41 - N A P4 r•. a+ tC a+ r. a e O O V .2 Z: ) p.. z z Eri Q x AA. Razor 26S77'D Infection Facility WHI11N0 PFSS. Nor DETENTION VOLUME BY THE MODIFIED FAA METHOD Project: Redtail Basin ID: Proposed Basin 1 (For catchments less than 150 acres only. For larger catchments, use hydrograph roofing method) (NOTE: for catchments larger than 90 acres, CUHP hydrogreph and routing are recommended) Determination of MINOR Detention Volume Using Modified FAA Method I Determination of MAJOR Detention Volume Using Modified FAA Method es yn Mortal-on (Input): - Design InfonnatTon n•u catchment Uramage ImpeMousness I. 2 40 71 percent Catchment Drainage Impervlousness I, • 40 /1 percent Catchment Drainage Area A4 17 00 tyres Catchment Drainage Area A= 17 870 acres Predevelopmenl NRCS Sal Group Type • C 0.B. C. or D Predevelopment MRCS Sod Group Type= C A 8 C,or D Return renal for Detention Control r• 10 •SJrt(2.5 10.25.50.or 100) Return Penod for 0etenlwn Control T•I 100^ -1N5(2. 5 10.25.50. or 100) Time of Concentrallon of Watershed Tc • 25 mtwtel Time of Concentration of Watershed Tc = 25 mlmfles Allowable Viat Release Rate q• 0.17 cfs'acic Arvunoie VIN Relcal:Ralc I? tv.c one-hour Precipitation Pr • 1 67 nches One-how Pretq)Nation p • 2 aches ()nlgn Rainfall IDF Formula I •C;P,/(C2+TJ`C, Design Rainfall 10F Formula I •C;Pi/(C2+TJ`C3 Coemcienl One C,• 28:4 Coef lcientOne C, • 20.50 Coemcient Two C:■ 10 Coemc)ent Two C;• 10 Coemcient Three C3= 0 766 Coefficient Three C, • 0.756 - tam na an o veraae u ovt -nom The as n cuiitb tin na ri ofAveraae-Out f e Bs 1B c -ed)' Runoff Coefficient C• 0 42 Runoff Coefficient C = 058 Inflow Peak Runoff Qpin = 2063 cfs Infos Peak Runoff Op-in - 50-44 cis Allowable Peak Outflow Rate Qp•out• 3.04 cfs Allowable Peak Outflow Rate ( -out = - _ 304 cis Mod. FAA Minor Storage volume• 40.078 cubic het Mod.FAA Major Storage Volume= 133,331 cudc teat Mod. FAA lunar Storage Votuma= a ago acre-It Mod.FAA Mater Storage Volume• 3.051 acts-ft 5 .. cpty 4i� 1,.• r ,,.. . .., , ,. . :r w• C.�-. •Is !.Ttr :,At r.r ., Rainfall Rainfall Inflow Adjustment Average Outflow Storage RainfaN Rainfall Inflow Adjustment Average Outflow Storage Duration Intensity Volume Factor Outflow Vokane Volume Gumboil Intensity Volume Factor outflow Volume Volume minutes inches/hr acre-feet ern' an acre-feet acre-feel minutes Inches/hr acre4eet 1n- cis acreaeet acre-feet r n::ulr (output) (outru() (oulpun (output) (output) (output) (nOVt) Output) Iouput) (output) (otitout) (pulrpld) tourouu 5 533 0275 100 3.04 0021 0254 5 9.43 0673 100 304 0021 0652 10 4.26 0 439 100 3 04 0 042 0 397 10 7.52 1.074 1.00 3 04 0 042 1 032 15 356 0 553 100 3 O4 0 063 0 490 15 6 31 1.351 100 3.04 0 063 1 289 20 309 0 639 100 3 04 0 064 0 555 20 5.47 1561 100 104 0 084 1 478 25 2.74 0 707 100 3 03 0 104 0 603 25 4 84 1.729 1.00 3.03 0.104 1625 30 2.46 0 764 0 91 277 0 115 0 649 30 4.36 1 868 0.91 2.77 0 115 1 753 35 2 25 0 813 0 85 260 0 125 0 607 35 398 1987 0.85 2.60 0 125 1 862 40 2 07 0 855 0 81 246 0136 0 719 40 366 2 090 0.61 2.46 0 136 1 955 45 1.92 0 892 0 78 236 0 146 0 746 45 3.40 2.187 0.78 Z36 0 146 2 036 50 1 70 0 926 0 /5 227 0 156 0 769 50 3 17 2 264 0 75 2 27 0 156 2 107 55 1.68 0956 0 73 220 0 167 0 l89 56 2.98 2.338 0.73 2.20 0 167 2 171 60 1.59 0 984 0 71 215 0 177 0 807 60 2.81 2.407 0.71 216 0 177 2 729 65 150 1 010 0 69 210 0 188 0 822 85 266 7 470 0.69 2 10 0 188 2 282 70 1 43 1 034 068 206 0 198 0 835 70 2 53 2 528 0.68 2.06 0 198 2 330 75 1.36 1 056 0 67 2 02 0 20') 0 847 75 2A1 2.585 0.67 2.02 0 209 2 374 60 1.30 1 017 0 66 199 0 219 0 858 80 2.31 2634 0.66 1.99 0 219 2 414 85 1.25 1 097 0 65 196 0 230 0 B67 85 2.21 2.682 0.65 1.96 0 230 2 452 90 1.20 1 115 0 64 1.94 0 240 0 875 90 2.12 2.727 0.64 1.94 0 240 2 487 95 1.15 1 133 063 1 92 0 251 0 882 95 2.04 2.771 0.63 1.92 0 251 2 520 100 1 11 1 150 0 62 190 0 261 0 889 100 19/ 2 812 0 62 190 0 261 2 551 105 1 0/ 1 166 0 62 188 0 2/2 0 894 105 1.90 2.851 0.62 1.88 0 2I2 2 579 110 1.04 1 181 0 61 186 0 282 0 890 110 1.84 2.888 D.61 1.86 0 282 2 606 115 1 01 1 1% 0 61 1 85 0 792 0 903 115 1 78 2 924 0.61 1.85 0 792 2 632 120 0.98 1 210 060 1 83 0 303 0 907 120 1.73 2.959 0.60 1.83 0 303 2 656 125 695 1 224 060 1 82 0 313 0 910 125 168 2 992 0.60 1.82 0 313 2 679 1.30 0 92 1 237 060 181 0 324 0 913 130 1.63 3.024 0.60 1.91 0 324 2 700 135 090 1 249 059 180 0 334 0 915 135 1 59 3 055 059 180 0 334 2 771 140 0 87 1 262 0 59 1 79 0 345 0 917 140 154 3 085 0.59 1.79 0 345 2 740 145 0.85 1 2/3 0 59 1 78 0 355 0 918 145 1.50 3.114 1.59 1.78 0 355 7 /58 150 D.83 1 285 058 1 77 0 366 0 919 150 1.47 3.142 0.58 1.77 0 366 2 776 155 0.01 1 296 058 1 76 0 376 0 920 155 1 43 3 169 0.58 1 76 0 376 2 793 160 0.79 1 307 058 1 75 0 387 0 920 160 1.40 3 195 0.58 1.75 0 387 2 809 165 0.77 1 317 058 1 75 0 397 0 920 165 1.37 3 221 0.58 1.75 0 397 2 824 170 0.76 1 327 0 57 1 74 0 406 0 920 170 1.34 3 245 0.57 1 74 0 408 2 638 175 0 74 1 337 Cr 57 1 73 0 418 0 919 175 1 31 3 270 0.57 1.73 0 418 2 852 180 0.72 1 341 0 57 1 73 0 428 0 918 180 1,28 3.294 0.57 1.73 0 428 2 665 185 0.71 1 356 0 57 1.72 0 439 0 917 185 1.26 3.317 0.57 1.72 0 439 2 878 190 0 70 1 366 0 67 1 72 0 449 0 916 190 1 23 3 330 0.57 1 72 0 449 2 890 195 0.68 1 375 056 171 0 460 0 915 195 1.21 3.361 0.56 1.71 0.460 2 901 200 0.67 1 383 056 1 71 0 470 0 913 700 1 18 3 383 0.56 1.11 0 470 2 012 205 066 1 392 056 1 10 0 481 0 911 205 1 16 3.404 056 1 70 0 481 2 923 210 066 1 400 056 1 70 0 491 0 909 210 1 14 3.424 056 1 70 0 491 2 933 215 0.63 1 409 056 1 69 0 502 0 907 215 1 12 3.445 056 1 69 0 502 2 943 220 0.62 1 411 056 1 69 0 512 0 905 220 1 10 3.464 056 169 0 512 2 952 225 0.61 1 425 056 1 69 0 523 0 902 225 1 08 3 484 0% 1 69 0 523 2 961 230 060 1 432 0 55 168 0 533 0 899 230 1 07 3 503 055 168 0 533 2 969 235 059 1 440 0 55 168 0 544 0 896 235 1 05 3.521 0 55 1 68 0 544 7 978 240 058 1 447 055 168 0 5.54 0 893 240 1 03 3.539 055 168 0 554 2 985 245 0.57 1 455 0 55 1 67 0 564 0 890 245 1 02 3 557 055 1 67 0 564 2 993 250 0 57 1 462 0 55 1 67 0 575 0 887 250 1 00 3.575 055 1 67 0 515 3 000 255 056 1 469 055 167 0 585 0 884 255 099 3.592 0 55 1 67 0 585 3 007 260 0 55 1 476 0 55 166 0 5.96 0 880 260 0 97 3.609 055 166 0 596 3 013 265 0.54 1 463 0 55 1 66 0 606 0$77 265 0 96 3.626 055 166 0 606 3 020 270 0.53 1 490 0 55 166 0 617 0 673 270 0 94 3.643 0.55 166 0 617 3 026 275 0.53 1 496 0 55 166 0 627 0 869 275 0 93 3.659 0 55 166 0 627 3 031 280 0.52 1 503 054 1 65 0 638 0 865 280 0 92 3.675 0 54 165 0 638 3 037 285 0.51 1 509 0 54 1 65 0 648 0 861 285 0 91 3.690 054 1 65 0 648 3 042 290 0 51 1 516 0 54 1 65 0 659 0 857 290 0 90 3 706 054 165 0 659 3 047 295 0.50 1 522 0 54 165 0 669 0 853 295 088 1121 D 54 165 0 669 3 052 300 0.49 1 578 054 164 0 680 0 848 300 0 87 3.736 054 164 0 680 3 05/ 305 049 1534 054 164 0690 0043 305 0114 3t I 054 164 0690 30x31 Mod.FAA Mnor Storage Valente(cube f1.)• *OM Mod.FAA Milos Storage Votums(cub)( ft.) • 133,331 Mod.FAA LIner Storage Volume(acrrrrl.)• 0.9201 Mod.FAA Maio' storage Volume(acre-ft) • 3.0409 UDFCO DETENTION BASIN VOLUME EST MATING WORKBOOK Version 2 34, Released November 2013 Appendix B Hydrologic Computations 1241/2014 7/2014 Page B-6 A Razor 26 SWD Injection Facility ►, 4, ►'i WHITING P4 V •� ` � .ta.w.fiWl .xe, COMPOSITE BASIN -WEIGHTED "% IMPERVIOUS" CALCULATIONS REF: Weld County Engineering and Construction Criteria Table 5-3 Recommended Percentage Imperviousness Values Table 5-3 Recommended Percentage Imperviousness Values Land Use or Surface Characteristics Percentage Impervious Business: Commercial areas 95 Neighborhood area 85 Residential: Single-family See UDFCD Manual Multi-family (detached) 60 Multi-family (attached) 75 Half-acre lot or larger See UDFCD Manual Apartments 80 Industrial: Light areas 80 Heavy areas 90 Parks, cemeteries 5 Playgrounds 10 Schools 50 Railroad yard areas 15 Undeveloped areas* : Historic flow analysis 2 Greenbelts, agricultural 2 Off-site flow analysis 45 (when land use not defined) Streets: Paved 100 Gravel 40 Recycled asphalt 75 Drives and walks 90 Roofs 90 Obtained from the runoff chapter of the UDFCD Manual (Volume 1), Table RO-3 Appendix B Hydrologic Computations 12/17/2014 Page B-7 Razor 26 SWD Infection Facility WHITINGS Ik • . K•1 COMPOSITE BASIN -WEIGHTED WEIGHTED "C" CALCULATIONS REF: C'SDCM V. 1 Rungli Table RO-3 Recommended Percentage Imperviousness Values C , = K i + (1 .31i3 — 1 .4412 + 1 . 1351 — 0. 12) for CA ≥ 0, otherwise CA = 0 (RO-6) CCD = Ktap + (0.SsSi3 - 0.78612 + 0.7741 + 0.04) (RO-7) C3 = (CA + CCD )/2 in which: i = % imperviousness/100 expressed as a decimal (see Table RO-3) CA = Runoff coefficient for Natural Resources Conservation Service (NRCS) Type A soils Ca = Runoff coefficient for NRCS Type B soils CcD = Runoff coefficient for NRCS Type C and D soils K., = Correction factor for Type A soils defined in Table RO-4 AcD = Correction factor for Type C and D soils defined in Table RO-4 Table RO-4—Correction Factors L and Kay for Use with Equations RO-6 and RO-7 Storm Return Period NRCS Soil Type 2-Year 5-Year 10-Year 25-Year 50-Year 100-Year C and D 0 -0.101 + 0.11 -0.18i + 0.21 -0.281 + 0.33 -0.331 + 0.40 -0.391 + 0.46 A 0 -0.08i + 0.09 -0.141 + 0A7 -0.191 + 0.24 -0.22i + 0.28 -0.251 + 0.32 Appendix B Hydrologic Computations 12/17/2014 Page B-8 Razor 26 SWD Injection Facility WHITING PFS a COMPOSITE DEVELOPED BASIN -Rational Method Procedure REFERENCE USDCM VOL. ! RUNOFF to = t+ + t (RO-2) = 0.395(1 . 1 - C, b' L (RO-3) Is .9433 V = CySuos (RO-4) in which: Tr= velocity (ft/sec) C, = conveyance coefficient (from Table RO-2) . = watercourse slope (ft/ft) r = L + 10 (RO-5) 1S0 in which: 4 = maximum time of concentration at the first design point in an urban watershed (minutes) Table RO-2—Conveyance Coefficient. Cr Type of Land Surface Conveyance Coefficient, C, Heavy meadow 2.5 Tillage/field 5 Short pasture and lawns 7 Nearly bare ground 10 Grassed waterway 15 Paved areas and shallow paved swales 20 Appendix B Hydrologic Computations 12/17/2014 Page B-9 A Razor 26 SWD Injection Facility PA ►'� WHITING PFS 88 Nalr RELEASE BATE REFERENCE USDCM VOL.2 STORAGE Table SO-1—Maximum Unit Flow Release Rates (cfs/acre) from On-Site Detention Facilities Design Return MRCS Hydrologic Soil Group Period - (Years) A a C & O 2 0.02 0.03 0.04 5 0.07 0.13 0.17 10 0.13 0.23 0.30 25 0.24 0.41 0.52 50 0.33 0.56 0.68 100 0.50 0.85 1.00 Appendix B Hydrologic Computations 12/17/2014 Page B-10 ARazor 26 SDD Injection Facility i WHITING Di4 ,NO emiir STAGE-STORAGE SIZING FOR DETENTION BASINS - - - - - , Project: Basin ID: sits skipz Da '`SSW skip Z 0 _ �-•-- SS Tipp: A 4 `� / Fl^'>w r>v ..-____.....--..._ce...------ r L ' > sic Skepc z '—) Millis e L pelIgn Information flnrxrt): z ; s n I Width of Basin Bottom, W = ft Right Irian,* OR. Length of Basin Bottom, L = ft Isosceles Triangle OR.. Darn Side-slope (H:V), 4 = 4.00 kit Rectangle - OR. Circle/ Ethne OR . Irregular X (Use Ovande values in cells G32G52) 7,1 !:OR 7.1 • Storage Requirement from Sheet Modified FM': 092 308 acre-ft Stage,-Storage Re$atlonsldo; Storage Requirement from Sheet'Hydrograph': acre-ft Storage Requirement from Sheet 'Furl-Spectrum': acre-ft Labels Water Side Basin Basin Surface Surface Volume Surface Volume Target Volumes for WOCV, Minor. Surface Slope Width at Length at Area at Area at Below Area at Below for WOCV, Minor & Major Storage Elevation (H:V) Stage Stage Stage Stage Stage Stage Stage & Major Storage Stages ft ft/ft ft ft il rereUser ft' acres acre-ftVSumes Below El (output) (output) l ioutoutl Overide (output) (output) (output) (for coal seek) 471300 iccut 50 0.001 I 0.000 4714.00 400 0.00 000 _ 11.307 5.678 0.260 _ 0.130 WOCV 471500 4.00 000 0.00 13.049 17.857 0.300 0 410 WOCV 4716.00 400 000 0.00 14.910 _ 31.836 0 342 073 i 10 YR 4716.50 4.00 0.00 0.00 15.885 39 535 ! _ 0 365 _ 0.908 10 YR 4717.00 400 _ 0 00_ 1_ 0.00 16.889 47.729 0 358 _ 1-098 4717 50 400 000 I 000 17.923 56.432 0.411 1 295 4718.00 4.00 0.00 i 000 18.987 65.659 _ 0.436 _ 1.507 4718.50 4.00 000 0.00 20.080 75 426 0.461 1 732 4719.00 4.00 0.00 I 000 21,202 _85.746 0 487 1.968 , 4719.50 400 0 00� 0.00 22 354 96.635 0 513 2218 4720.00 4.00 0.00 0.00 23 535 108.108 0.540 2.482 472D 50 400 0.00 000 24,746 _ 120.178 0.568 2 759 4720.60 4.00 0.00 000 24,992 _122.665 ! 0.574 _2 816 4720 80 4.00 - 000 0.00 25.487 _127.713 0 535 2932 100 YR 4721.00 4.00 0.00 000 25.987 _132.880 0.597 , _ 3 050 100 YR 4721.10 T 000 000 #N IA 0 000 4721.20 0.00 0.00 #N/A : 0.000 4721.50 000 I 000 *VA 0.000 4721.80 0.00 000 #N/A 0.000 #N/A I UN/A #N/A #N/A 1 _ #N/A, #N/A f #NIA #N/A MIA *4/A r #N/A _ *4/A #NIA #N/A #N/A_ y_ UN/A #NIA_ .- #N/A #N/A *4/A #N/A 4- #N/A } #NIA, #N/A UN/A 1#1/41/AUNIA .- #N/A #N/A _UN/A MA M.VA #N/A ##4/A #N/A #N/A #N/A _ #N/A MIA #N/A #N/A t_ _ #N/A #N/A i #NIA _ #N/A I UNIA #NIA I #RV/A Appendix C Hydraulic Computation 12/17/2014 Page C -1 CI Jerr, t � I ! I V I I I ` I I claala Zaaa < aaaa - -s •r •c < ca •: •c u a crvm v Y 'c R o tt R Q •RhM a 1 _ LL O J d 0 .� u •J G G U 0 0 0 0 0 O O O O.O • r r . • \ e I• r r '• r r r' I I _ ..i .-Imo..- .-.. __._.� • I I i - - ` co I 7 a ±: H 1 I s el • n N • a a (2 JiI w a 8 a 0 ' --...÷.1--.........—..... ... ... _ , - -. . - -._ .. H I I I ing. Crt I I a -.-_-...__...__.-d- - • - - - --. . . -_ , g 0 n l'' ° I I q a� - e I E H hi aIJJ dco a aka • goof .. DEE F I I I . I;p.. 8 a .. Ill ! 1� I I q`4 6' > O O O Y ` IS !, _i 0000 0000 a 0 a 0000 0000 - I-. _ _. .-.-.._._. . - i ' O 6 O O _ I q.�- w IY a a 6 cr f e O O I , I 1 • w 4 V 0000 0000 A o I 4a a e. a•J Sm t , I O n. 4 0 le 4 fj a I I a s IS a O a t cr 48.•Y r ? qN .`N•. H W j a $ � ▪ I - - - -- 7i:- R I O� c sr iiii b8k V¢ 1 • II a4� O ° u;r000 ` I 0 cv ,+.'II t r0 o ESQ V■ Ct 0 I v Q } Oi a z a I a u II • t Nil I R' 11 II CO oz z t) 5tI fl a I o› a. W g e R a a g 3 aI ova < o Q E € e o ° ° o g .O v l a m n a i, • a m. ID 5 oo Z �• � cc I �I . b a co 4 � a� 000 - W z g g .-. • C/) r ; 4 _qv Li Pr i F. _ w Cv 1 I T•4 � . O et m a O I U .nr. �f,�• (� •, gqaa NrN . 1 7: n'.n. V i� 'S`. Ih i O .3 - 'l1 .: N < a a •( g 4 4 I h : 1xxik rN t7 ^ c.� . OUtl Oi0000000 0 •- ^ f_• iSifi11 �'tittitt h iilt �f iai it •• V O Ot0 0 0 0 0 0.0 0 0 0 0 Co 0 0 0 0 0 1' I OP CC HI • • Y • • M • • 'l Y ■ •Ieb :It' .C S - z '[ a Q •• .+ e. . O.0v. O4i ri �t • M I. P. 4' n n • ^ .o w. m -: _I 4 4 4 of 4 4 1 <'4,< < gl<,.f w1 < 4 et 4 X1 4 .- m �0.�• a•Ig ° Ii -pp TI fl) � � IF Sgo `ags gEsset “- - - uutauit•i ''� ttelEft,TZzzxi . raw qg e P .i ra i 0- I-. a •' 0 0 0 0;O,0 0 0 O,0 0 0 0 O 0 0 0 0 0 .� �' *;�, O r: w r w r . . . w c ,__ I .Z tie '�' $ `op V cR rR e -- I _ o • al 0 .5 0 . �i N N ♦, wt. M r . n. ;� t a i Ll w S o $ ao n .v,.s 1l w A.; 'p r .`9, }C �.'i .j t I 1 S 1 4 ' l $ 3 dI5. d &A d •S E 5 Q g t e C .. n 0 ..• .nNwr+ W m .eo'P mO o0 ¢ r+ Um � i� r9 t . g o .- 0 . 0�0000'000000a z. � . .. .. .. � G �C : Yi �I� iS � i $d � ouZ = ,AE aaa a• ; o •� oeono'0 a.o oo o0 d0000,e - - - 8 g • ,- £ ,{ m q ,ig o td2 Rri .3 'JCk }: JC 8 ' �• Rm :» °. �'. .� o ; 4 < v < a .t a < 4 4 e a n .t. t .c R .� R i ^' i V � ttnLar ,p .- wI• v. ,nv. o• 0000 n _ a :.. � _. 1 ,l � 3 " .. .. ..� . - � � � et 0OIan <+-OtV OO .a .+ a+ nn .a I •-Eo0000000,000000000000v s'it .7 °N''� aSitt'IP000do � ? r °_ a < 4t ≤ ≤ <:4 < ueg'< ,sa ,is •: 444st . 3, 61 i �'�• 0010 .•� o oo'o 000 BYLLt � t'�' �� G : ': 1 '. i : iL7 � a � �cr ; O,d00000'000000000000 Lo o li8282sslsgss ass a I 1 .8. , x � .■. � pse � s �e s3a II� ) Y M 1 yr.Mr/MA Y (.) 1•der Ill , { y0.0 t 03 PI-I TF _ N o� 83 a c Q. N s 'v Q 0 a a) co 0 m w v v� v m w .5 w c� rd.. 0 W. (O M a) !V O M O CO W ti r 4 c0 00 N O co r r ••-• • 1Co r '^ M r- O .— M N O 0 Oref) ti M C p,,' N er of et lit 4 W ois — 0 w E U ca C LL > O o rt QA 11 P1 II II II 11 11 II 1) 11 II II II II ' 11 n. (,� > a a ° .1.--, 0. a o 0 a 1-' } $, c1 .4. w C a L 'O H c ~ E > o W ') C C WW 0 0 To V CO > •*A• o• coo cr z ..ta W a OO , a`) N W ism r n- W • O O b. O N kirie IX [ / O CS_ I r9 4 a) `—N U � �' rs O \ 17. o N z ro i 1—_. N L E a nn a y a) > W a) Z ISu ` >� 00 0 v C E a c a) 132 .0) p t3) a o , p a`�i 0. 0 1 gg a ul z CO> p p i, a W crt i E OTC t a) Lco o till 0 I— O 'Q' c °$ O tD aNi O c ��pp ,- Rm1 IJ O_ V L .�, C Co 7 N a) *± �V r _ co a a) a) 0 co V W LL d o rte-. O` Co L V 'G CL L li Cn ` 03 o w v c O o F- So O a) 3 a) CO p 3 C C W J j v g v ... w S II 0 't c) s d 0 U-1 C c a)a) F.' O �F a) s u_ TO T3 C ni c� 0 O aUi v cv Q Q c a O [$C Ac J ,O t u 0. Ws o 2 5.tz as U b cv L E ) a W W w c v °.! co m Lao� � U � 3 aci � o acr �' �s �, v �m, t �o+ a�� '3 tt��j V i tr. vV- s j J .0 G hm CO 0. C V 7 co V m O a) N a) a) X d c p- O lL 2 IL = 2 LL. 1- 2 W a 3` U •+-: C B u O o a c 8 coo a` m 6 " a o a s C = v 0 0 y s m U U U .4<izr.) • 7:1 -al H Z Roue 26 SCUD Injedllon Fadif(1• WHITING NM STAGE-DISCHARGE SIZING OF THE WEIRS AND ORIFICES (INLET CONTROL) . Project: Basin ID: P•a1Je Llano,Ilwasp'. tabsOtte a1 ••••t It kite. •�.f .'f 1.1.- w,".....w,".....a lrItta •ak• - 1 — ..11)•1 •t kt W4 7. S • .y 11 .. 0 \7 he ` • ' , -•-•.,------ . - - — r-- 1wfwa Ode,.)I I/.q 1.I wet Ream OrevM .•. I .l v• CI . :::::r . 7 • • 1LlYA ....tarn Y r Fli 11 Current Routing Order is #2 U - -• U . - . Onion intonation linnet): el Hord 12 Hertz 41 veil s7 Vert Circular Goering: Diameter in Inches t]ia ti I I I Inches OR Rectangular Opening: Wdth n Feet VI_ b 63 3.00 au Pt Length(Height for Vertical) LorH = SLIT 150 026 Ift Percentage of Open Area After Trash Radc Reduction %open= 50 60 100 !1 Odom Caefficlert Co= 0 8$ 0:65 0.85 W r Coeffic eat C. n 300 Orifice Bevabon (Bottom for Vertical) Fe= 471860 4,715.00 1 4/1!.00 Ili Calculation of Collection Capacity:. Net Opening Area(after Trash Rack Redtlrtnn) A.= *0.53 2.25 0 21 sq ft OPTIONAL User-Overide Net Opery g Area A,al I I I isn ft Perimeter as Weir Length L,,= 17 17 ft OPTIONAL: User•Oreride Weir Length 1.., z ft Top Elevation of Vertical Orrice Openig,Top = 4716 50 4713 26 fl Center Elevation of Vertical Orifice Opening.Gen = 4715 75 4713 13 ft- I Routing 2: Water flows through WQCV plate and#1 vertical opening and #1 horizontal opening into#2 vertical opening (#2 horizontal opening is not used). Horizontal Orifices Vertical Wile es Labels Water WOO/ NI 11°6z 411 Hnriz #2 Horiz #2 Honz 41 Vert N2 Vert Total Mtge VoLmes forWUCV,Mtor Surface PfatelRiser Weir Orifice Weir Orifice Collection Collection Collection for WOCV,Minor & Mope Sweage Elevation Flow Flow Flow Flow Flow Capacity Capacity Capacity I Major Storage w S Sevabona ft cfs cfs cfs cfs cfs cfs ds cfs Volumes limo) ,,ADi.fl tniuIr,Ifl 4f. IL, : iililt ,.R I0i:1D'R• (04.nput1 IV.. Inrnnarcaafl 4113 0O 000 000 —t 000 ono I. 004 000 _ j 000 0.00 471400 009 000 i 000 j 000 000 I 000 ,_ 102 0.09 471500 0.21 O 06 i 0 00 000 000 000 1 SO 0.21 471000 0.28 000 _ I 000 000 000 553 186 1.8E 4716.50 0.31 000 _ I Goo 000 000 10 18 _ 2 01 2.01 4(1( 00 034 1821 1 8096 000 000 1312 215 2.1E 471750 038 5151 8621 000 000 1553 229 2.21 , 4718.00 0.38 9463 I 119$.59.. 000 0.00 11.60 242 2A2 4718.50 0 41 1450$ 121.93 ~000 000 19.48 254 2.64 4719 00 0 43 20361 136 32 000 000 21 16 265 2.65 4719.50 0 45 267 65 1 149.33 , 000 0.00 22.73 2 76 2.71 4720.00 048 337 28 161 29 000 0 00 24 20 2 81 2.57 4720.50 0.48 41209 112.43 __ 000 000 2.5 58 - 297 2_97 4120.00 0.49 42763 114.47 000 000 25.05 299 219 4/20 80 0 49 459 30 118 78 000 000 26 37 303 3.03 4721.00 0.60 491 71 162 89 000 000 26 89 3 07 3.07 100 Y R 4721.10 0.52 508 19 184 91 000 000 27 15 _ _309 3.09 4721.20 0.63 524 85 Ile 91 000 000 27 40 3.11 3.11 _ 4721 50 056 57590 182 78 000 000 28 14 1 17 3.17 4721.60 0.59 603 25 _ 194.70 — 000 000 2839 3 19 3.19 a111A 4WA 4N/A _ AN/A NM LU/A _ #4/A 04/A — eN/A #N/A 4141A #N/A 4f1/A #NIA OVA #N/A 111/A MA RNA AN/A 04/A IOWA OVA /H/A OM UN/A _I W#NIA —, #N/A #N/A OVA 111/.0 Ri/A NN/A NN/A itt *TPA __ OVA NN/A itN/A MIA 4N/A t ltA #NIA *4/A NN/A —� ftN/A OVA SI VA aNIA AN/A #N1A OVA CPA OVA *RA RI/A _ 4111A OVA UMON/A MIANN/A MA *NIA #NN _ #N1A #NWA %NIA I TVA NM aim _ 4WA OVA ORA 1141A T NN/A NN/A NN/A OVA - :WA MIA QlIA *WA _ #N/A 41UA MUA IIN/A :NIA _'WA_ HIM IINA 4141/1 . ttN/A MIA I #4/A VIVA *N/A *NIA IN/A WNMA MIA 0 SH/A ell/A #N/A_ IN* MA 4tlIA *WA *WA INA RNA 4N/A SN/A ova #N/A #N/A 4tt/A R1/A #114% 4111M #N/A #N/A MIA AN/A MIA nuA #14/A SI/A 4)N14 MN/A NN/A #NIA #N/A EWA ~ OVA 1 4N/A filth #N/A _ UN/A #NIA UNAA _RUA AN/A 01/A ONE 4N1A NN/A MIA #N/A RI/A OVA 111/A #54% #N/A NN/A #tl/A #N/A 1WA 4N/A 4111.0 14714 MIA /04/A /AN/A 4N _ #N/A IIN/A #N/A OVA — Ilia SN/A #N/A 'WA #11/A MA 4011/1 feta MM1A NN/A #N/A OVA ttN/A R1/A 4N/A ANA 1N/A tWA RNA an41A c/VA RUA Appteldix C Hydraulic Computations L2/L7t2014 Page C- 4 A Razor 26 infection Facility . WHITING _ _er STAGE-DISCHARGE SIZING OF THE OUTLET CULVERT (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS) y Project: Basin ID: Dirt wain .level••..• :.aiif.isir x r' O 1 raid,ti 0 • Statue: Culvert Dale is valid! —s-_— - r M aM V .a.l WMr Design Information (input): Circular Culverts Barrel Diameter in Inches D 1 18 In Circular Culvert: Inlet Edge Type(choose from pull-town list) 1 Square End Guth Hoadwa9 OR', Box Culvert: Barrel Height(Rise)in Feel Height(Rise)1 ft Box Culvert: Barrel Width(Span)in Feet Width(Span)= n Box Culvert: Inlet Edge Type(choose from pull-down list) Swam Edge wr 4015 doda fitted?dogma Number of Barrels No = 1 Inlet Elevation at Culvert Invert Ih,,,= 4713.00 ft elev Outlet Elevation at Culvert Invert 0,,,,,.„= 4712.50 It elev. Culvert Length in Feet L = 018.0 , ft Manning's Roughness n 3 0.0130 Bend Loss Coefficient K, = 000 , Exit Loss Coefficient Kx = 1 00 Design Information (ca)culate0 -. Entrance Loss Coefficient l<0= Friction Loss Coefficient Kr= Sum of All Loss Coefficients Ks= Orifice Inlet Condition Coefficient Cu= , Minimum Energy Condition Coefficient KEo,,,3 Calculations of Culvert Capacity (output); Water Surface Tailwater Culvert Culvert Flowrate Controlling Inlet Elevation Surface Inlet-Control Outlet-Control Into Culvert Culvert Equation From Sheet Elevation Flowrate Flowrate From Sheet Flowrate Used "Basin" ft cis cfs "Outlet" de (ft., linked) linoul if known) (output) (output) (cfa, linked) (output) (output) 4713.00 0.00 0.00 4714.00 000 0.09 1 4715.00 0 00 0.21 , 4716.00 0 00 1.86 4716.50 000 2.01 4717,00 000 2.15 , 4717,50 0 00 2.29 4718.00 200 2.42 4718.50 0.00 2.54 4719.00 0.00 2.65 4719.50 000 2.76 4720.00 000 2.87 4720.50 000 2,97 4720.60 0 00 2.99 4720.80 000 3.03 4721.00 0 00 3.07 4721.10 0 tM 3,09 4721.20 000 3.11 4721.60 11.00 3.17 4721.60 0.00 3.19 , 0.00 0.00 ((NIA 0.00 0.00 ftNlA 0.00 000 ((NIA 0.00 000 ((N!.6 0.00 0.00 AMA 0.00 000 ((NIA 9.00 000 #NIA 0,00 000 ((NIA 0.00 200 (WA , 0.00 0.00 ((NIA 0.00 0 00 UN/A 0 00 000 #NIA 0.00 000 dNIA 0.00 0 00 SNIA 0.00 000 ((NIA 0.00 000 #NIA 0.00 000 ((NIA 0.00 000 ((NIA 0.00 000 tINIA 0.00 000 4N/A 0,00 000 YN1A 0,00 000 ((NIA 0.00 0.00 4N/A 0.00 0.00 4N/A Appendix C Hydraulic Computations 12118/2014 Page C-5 ARazor 26 SWD Injection Facility 1 WHITING pat PFS Ars Nat STAGE-DISCHARGE SIZING OF THE SPILLWAY Project: Basin ID: 'Design Information (input): Bottom Length of Weir L = 50.00 feet Angle of Side Slope Weir Angle = 75.96 degrees Elev. for Weir Crest EL. Crest = 4.721.00 feet Coef. for Rectangular Weir Cs = 3.00 Coef. for Trapezoidal Weir C, = 2.61 Calculation of Spillimw Capacity (output); Water Rect. Triangle Total Total Surface Weir Weir Spilway Pond Elevation Flowrate Flowrate Release Release ft. cfs cfs cfs cfs (linked) (output; (output) (output) (output) 4713.00 0.00 0.00 0.00 0.00 4714.00 000 0.00 0.00 0.00 4715.00 0.00 0.00 0.00 0.00 4716.00 0.00 0 00 0.00 0.00 4716.50 0.00 0.00 0.00 0 00 4717.00 0.00 000 0.00 0.00 4717.50 0.00 0 00 0.00 0.00 4718.00 0.00 0.00 0.00 0 00 4718.50 0.00 0.00 0.00 0.00 4719.00 0.00 0.00 0.00 0.00 4719.50 0.00 0 00 0.00 0.00 472(100 0.00 0 00 0.00 0.00 4720.50 0.00 0.00 0.00 0.00 4720.60 0 00 0.00 0.00 0.00 4720.80 0.00 0 00 0.00 0 00 4721 .00 0.00 0.00 0.00 0.00 4721 .10 4 74 0.03 4.78 4.78 4721 .20 13.42 0.18 13.60 13.60 4721 .50 53.03 1 .77 54 81 54.81 4721 .60 69.71 2.80 72.51 72,51 #N/A #N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A i #N/A #WA #N/A #N/A #N/A #N/A #WA #N/A #N/A #N/A #N/A #WA #NIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A *N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #WA #N/A #N/A #NIA #NIA _ #N/A #N1A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A *N/A #N/A i #NIA #NiA #N/A #N/A #NIA #N/A #N/A #NIA Appendix C Hydraulic Computations 12/17/2014 Page C- 6 A Razor 26 SWD Injection Facility '•' ►': WHITING PFS teM Water Quality Trash Screen Sizing Ref: UDFCD V3 Chapter 4 T-12 Outlet Structures Table OS-3a and OS-2b The Diameter from WQCV Outlet Spreadsheet = 1 .816 " > 1 .25 " Table OS-3a. Trash Rack Sizing for 2" High Rectangular Orifices and Large ( 1-1/4") Circular Orifices Width of 2" \tntnrnun Width of Trash Rick Opening (1K,..a) Height as a Function of Water Depth H Above Lowest Pesforatxxr Rectangular Orifice or Spacing of Dameter of Ha_' O ft Ha3 O ft Ha3 0 ft H=5.0 ft Ha6 O ft Beasmg Bass. Csculu Orrice Crass Pods (m) 2 17ftA) 21ft 4 ' oft 25ft 27ft 1-316". 2- 15 22 ft' 26ft 3ft 32ft 34ft 1-316'. 2' i _ 30 26ft ` 32ft 35ft 3S ft 4011 1-316-. _2'" 1 _ 35 30ft 37ft -11ft _ 45ft _ 4 ft 1-316'. 2" t _40 3 i ft 1 As the height decreases, the required minimum opening .- 45 3 6 ft ` decreases For a circular orifice close to 2 in. and H <2 0 - ft. , the minimum concrete opening required is less than — _ 50 40 R 1 7 ft. Thus, setting the minimum concrete opening at 1 .7 __ _ 55 44 ft it is conservative i _ 60 4S ft 5S ft I 65ft 7ft 1 73R I 1-316'. 4" Concrete opening = 3 ft > minimum 1 .7 ft =_> OK Table OS-lb. Trash Rack Specifications for Circular Orifice Plates Max. Screen #93 Support Total Width of VEE Wire Support Rod Rod. On Carbon Steel Opening Slot Opening Type Center, Screen Frame Type Thickness (in) (in) Spacing ≤18 0.139 TE 0.074"x0.50" 1" 0.655" '/." x 1 .0 angle ≤24 0. 139 TE 0.074"x0.75" 1" 1 .03" 1 .0" x 11/•" angle ≤27 0. 139 TE 0.074"x0.75" 1" 1 .03" 1 .0" x 11/_" angle 1 1/4"x 11/_" 5.30 0.139 TE 0.074"x1 .0" 1" 1.155" angle 1 1/4"x 11h" -- -> ≤36 0.139 TE 0.074"x1 .0" 1" 1 . 155' angle 1 1/4"x 1'/," ≤42 0. 139 TE 0.105"x1 .0" 1" 1 .155" angle _ 1 Johnson Screens. St. Paul, Minnesota. USA (1-800-833- 9473) Appendix C Hydrologic Computations 12/17/2014 Page C-7 Razor 26 SWD Injection Facility WHITING 1,. Nue Trash Rack Sizing 100 A, a., = 77e•01ND f % • ♦ flood Control ♦ Grates a —Water Quality Grates 10 o ` t% : ♦ At/ A91 38.5e-o tmo 0 t 0 4 8 12 16 20 24 28 32 36 40 44 48 Outlet Diameter or Minimum Dimension D (Inches) restrictor plate flow AU = 0.21 ft' UD-DentenUon_v2.34 Restrictor Plate Sizing for Circular Vertical Orifices equivalent circular oriface D = 0.52 ft 6.21 inch At /Aoi = 77e-0 1Y4'U = 35.67 At = trash rack open area = 35.67*Aar 7.49 ft2 so minimum track rack open area is 7.49 ft2. grate size: 2 grate with size of 2' 9 .5" x 6'5.25" or 33.5 inch x 77.25inch # rods = 11 .00 rod thickness 3/8 inch or 0.375 inch Total rods thickness = 0.375*11= 4.13 inch # bar = 24.00 bar thickness 3/8inch or 0.375 inch Total bar thickness = 0.375*24= 9.00 inch Clear Open Area = (33.5-4.13)*(77.25-9)= 2004.84 in2 = 13.92 ft' Total Clear Open Area = 13.92*2 27.85 ft2 assume 50% clogged = 27.85*0.5= 13.92 ft2 > min clear opening area of 7.49 ft2 =_> OK max clear spacing cacutated = 50%*6.21 inch 3.10 inch use 3 in Appendix C Hydraulic Computations 12/17/2014 Page C-8 Razor 26 SWD Injection Facility14 WHITING S �, ►g Nuir Riprap Sizing Ref: UDFCD V1 . Major Drainage Section 4.4.2.3 and Section 7.0-7.4 Outlet pipe One 18 inch Pipes Pipe D (ft) 1 .5 Release Rate (cfs) 3.04 Q1einch (cs) 3.04 Q1emUf D1 5 = 1 .65 Yt/D 0.4 (Ref. UDFCD V1 . Major Drainage Sec 7.2) Riprap Type Ref: Figure MD-21 Type M Rock Type d50 12 inch Ref: Table MD-10 Yt = D*0.4 0.6 Froude number = O16 I„a,/D2 s 1 .10 Ref. UDFCD V1 . Major Drainage Sec 7.0 Expansion Factor 1 i2tan 8 Ref: MD-23 6.6 Vallowed 5.5 Ref: UDFCD V1 Major Drainage Sec 7.3 AI = Q]8nch I \clawed Ref: Equation MD-23 0.55 Lpca1cukated Ref: Equation MD-22 -3.82 Check if 3D< Lpcsmiat81 <10D Ref: UDFCD V1 Major Drainage Sec 7.3 NO Select value such that 3D<Lp<10D 4D Use Lp 6 Appendix C Hydraulic Computations 12/17/2014 Page C-9 Razor 26 SWD Injection Facility WHITING PFS 1 �i�N: Nit )rRe�w.ti�tw nt Riprap Sizing Detailed Calculation DRAINAGE CRITERIA MANUAL (V. 1) MAJOR DRAINAGE 60 °60 c 40— — 04.0% �G �4t Z�P� • tit 20 — — 'TIRE te i f ° 00 .2 .4 .6 .8 10 Yt /D Use Do instead of D whenever flow is supercritical in the barrel . * Use Type L for o distance of 3D downstream . Figure MD-21—Riprap Erosion Protection at Circular Conduit Outlet Valid for Q/D's 5 6.0 At Yt/D =0.4 and Q18, /D15 =1.65, the Rock Type is size Type L. For Future expansion and safety conems=> Use Type M From Table MD-10 Table MD-10 Riprap Requirements for Channel Linings. 1 it Rock Type (G, — I) < 3.3 VC (41 = 6 inches) z 3.3 to < 4.0 L' (d5 = 9 inches) a4.0to < 4.6 M (d0 = 12 inches) a4.6to < 5.6 H (i/% = 18 inches) ≥ 5.610 6.4 VH 6150 = 24 inches) Applicable only for a Froude number of < 0.6 and side slopes no steeper than 2H:1 V. Use h. = 2.5 unless the source of rock and its density are known at time of design. Type M Rock Type= dm= 12lnch From Figure MD-23 DRAINAGE CRITERIA MANUAL (V. 1) MAJOR DRAINAGE e = Expansion Angle Appendix C Hydraulic Computations 12/17/2014 Page C-10 Ab. Razor 26 SWD Injection Facility •` WHITING PFS 1rrul 7 - m 6 8/7 5 • - o 4 9-.- u. tr 9 ,/ O 3--- a - � La 0 .I .2 3 .4 .5 .6 .7 .8 TAILWATER DEPTH / CONDUIT HEIGHT, Y f / D Figure MD-23--Expansion Factor for Circular Conduits At Yt/D = 0.4 and Froude Number Q/D2.5 = 1 .1==> from Figure MD-23==> Expansion Factor 1/2tan A = 6.6 A, = —� (MD-23) where: Q = design discharge (cfs) I'= the allowable non-eroding velocity in the downstream channel (ft/sec) .4, = required area of flow at allowable velocity (ft') Vatlowable = 5.5 ft/sec ( very erosive soils) Ref. UDFCD V1 . Major Drainage Sec 7.3 7.7 ft/sec ( erosion resistant soils) Ref. UDFCD V1 . Major Drainage Sec 7.3 At = Q1einCh I Vsllowebb 0.55 ft2 Ref. UDFCD V1 Major Drainage Sec 7.3 Appendix C Hydraulic Computations 12/17/2014 Page C-11 A Razor 26 SWD Injection Facility P.5 r't WHITING S I�„ No L I =1' —W (MD-22) ° 'Ilan U ); where: /.,, = length of protection (ft) tt' = width of the conduit in (ft) (use diameter for circular conduits) Y,= (ablator depth (ft) Ii = the expansion angle of the culvert flow Yf/D = 0A ==> Yt = 0.4'D =0.6 W = D = 1.5ft Lp = (6.6) * (0.55/0.6-1.5) _ -3.85 ft L.0 requirement: 3D< Lp < 10 D Ref: UDFCD VI Major Drainage Sec 7.3 Lp calculated unreasonable Use Lp = 4O = 4.1.5 ft== eft Appendix C Hydraulic Computations 12/17/2014 Page C-12 Razor 26 SWD Injection Facility ft WHITING PFS � I� uc tahplfVm itlMHY its DE%ENTION PONI) EMERGENCY SPILL WI I'REF: REFERENCE UDFCD VOL.2 STORAGE Broad-Crested Weir: The equation typically used for a broad-crested weir is: ) U = CB„L H i s (SO-18) in which: Q = discharge (cfs) Cgew = broad-crested weir coefficient (This ranges from 2.38 to 3.32 as per Brater and King (1976). A value of 3.0 is often used in practice.) L = broad-crested weir length (ft) H = head above weir crest (ft) in V-Notch Weir: The discharge through a V-notch or triangular weir is shown in Figure SO-5 and can be calculated from the following equation: Va, Qot c) = c, tan( 7 ) H2 ` (SO-20) k 2 in which: C, = Coefficient for Triangular Weir taken from the table below Q = discharge (cfs) O = angle of V-notch in degrees H = head above the apex of V-notch (ft) Appendix C Hydraulic Computations 12/17/2014 Page C-13 Razor 26 SWD Injection Facility WHITING PFS N - - Riprap Sizing Ref l:'DF('D VI. Major Drainage Section 4. 4. 2. 3 and Section 7.0-7.4 60 — -- - - r 1 vO0` o 40 42 tole 1 � o _ spy CE# for 1r M ? 20 - TYPE L 4IF O .2 .4 . 6 .8 1.0 Yt /D Use Oa instead of D whenever flow is supercritical in the barrel . * * Use Type L for a distance of 3D downstream Figure MD-21--Riprap Erosion Protection at Circular Conduit Outlet Valid for QIDtS S 6.0 Table MD-10—Riprap Requirements for Channel Linings. • c' I, .. Rock Type (G, _ ) )U < 3.3 VL (4/50 = 6 inches) ≥ 3.3to < 4.0 C. (4/50 = 9 inches) z 4.0 to < 4.6 M ('/50 = 12 inches) ≥ 4.6 to < 5.6 H (4/50 = 18 inches) z 5.6 to 6.4 VH (€/s0 = 24 inches) Applicable only for a Froude number of < 0.8 and side slopes no steeper than 2H: 1 V. Use C;, = 2.5 unless the source of rock and its density are known at time of design. Appendix C Hydraulic Computations 12/17/2014 Page C- 14 Razor 26 S WD Injection Facility ►'s6 WHITING PFS 1. tug Riprap Sizing Ref UDFC'1) VI. Major Drainage Section 4. 4. 2.3 and Section 7.0-7. 4 0 = Expansion Angle 8 , - - - es 6 h0 O � 0 we ..Is 4 --- rki Ct Zle...e .;*a' __ 603,z /0, /a. O .l .2 .3 .4 .5 .6 .T .8 TAILWATER DEPTH / CONDUIT HEIGHT, Y f / D Figure MD-23—Expansion Factor for Circular Conduits A, _ Q (MD-23) V where: Q = design discharge (cfs) I ' = the allowable non-eroding velocity in the downstream channel (ft/sec) = required area of flow at allowable velocity (ft') Lip = I .1' "s° IV (MD-22) ? tan0 ); where: L.p = length of protection (ft) tt' = width of the conduit in (ft) (use diameter for circular conduits) = tailwater depth (ft) 11 = the expansion angle of the culvert flow Appendix C Hydraulic Computations 12/17/2014 Page C-15 I .%/ - / 1 • Is `• ` . t / 4 S. %/ Rai$ « `. . • •---, at • at. _ , �.. S. `. • -. — _ , • 9 f / fle mum MENNIIMMI\ min.& ‘,.. _ 41.111111111 ` IN I �` =� X111111 IIIIIIIII �, p ea,-to 0- 4 • 1:V/, _ II 1111111 /�� / v � �1 y ,- i� 1111111 us i Z — ` �� $ 1 $ IIII HMI 6A 0 4 ZI- . C _` I << aa. ' d 1. I 111111 =W rz G Z 6 GS Y •..... \. 3 t w nj iI1iI __j_ Z I11 " MI II• = _ . �:� .e I I Wirogarm S I I t���aC���."RC Simla i�..ia�� t��' 1 1 5a u3! I W =—== � ' l [gin Ill I I I • :a�ssssit s a OZ z I I D ix I I p; �' sMa9 ' " 1 1 1 r Z CC 5 I ! I 1 a sass =_===== t a �P 1- r I I l f I CWt:`=MIR st t 1 I t t 0 " Vt z S 1 1 1 1 -=>=EI===E11 1 1 1 1 1 1 ' a : «)8 0 0 0 1 1 1 1 _ 1 E a IL iii 2 w LLI It z o N 1 1 1 1 I II s� .1I1 l l 11 a. 1 1 1 1 1 1 1 1 1 w ; wI ( I, 111 ' 111 - _ � llltIIIl1it1 w z z I . • . I . I M ~ _ _ . iii 11 1 O x '-' 'oc . • • 1 • , , . X to u 1 / /e" ` _ -Y - \ `�.`'•• •�•, R X NIV) V / \ \ -- t J 1 . , it o - _- - ►--=z� - . , • . DN r- - -- ----.-.--•-' / ` - ;,. •;_. ._ •. ,`. Z w / is r . . . . . ..r. L. c?-caaflint- \ \ ...dik 47_ / = Ij.It. )r> I r W Z w Is ' f II• t)U. Z ii Ill Intl - ` • II R4 W2 � w• cc N / 7nI , t I J� �oJ0 1/ I i . ; ; t1 11/4 Uo ' h z I ,1111�_." I, •tll 1 st °°' g° v2 - _ 1 1 r • / I I ayprrcLU Q- V oz °v� z �`t# I li o III 11 . I tt 111 i °w =z U.. I II - -' t11 Itll o .1- ��(n z — crP 0 11111IlI -ytll o o' I 1 'm" Ww m maooW 1111ItItl I •_ �+� /lig fI1111i1 111111111 il J tI • II q is I I' lI!. � I I 'i I W I l l ll l l 711'110;11i 1 I I Q 4muoW 1 � t1—ti •I I� I1�11111 f / �I1111111 � , 11!I- 1 1 1i , • �r 1111111 J tt 1II III Y a 11i II it I If H $11111111�� 111111111 4'�. 00 111 ►111 • it I 'will 1111 l , M 111 1tIt I II IIIIII 1/11111111 I '1 ~ W 111 11 ` 11 it C 1 11<{{I (11111111, �-t }a ,_rn g 111 11111 =-----------i --- d Ilh }111 •,,,, _ _ _.111111 • , 'Ell "' 11` IIl1i 1 !� i1111� — 111111 I`+� cc 1 t t t 1; 'i ter-_ea_ J/I/ I I �Ow a Ill 111` _ _ — — _ \\ 1��- — .r� It! ,� a0 >-0 a 1 _- — ___ � — - — - - \\ I iii �'�IX " 1,1 I —. — . r r I� /ice i pp t -•- ••• �_ t et • 1 W Q } N V T I It---4-- --•_-.r I }, \ 1r, ▪, cczoou1 N Ilr 1 11 ., III 000ii I k �' 4LLuF S -.4I 00 ° ' f II ozdv a II 00 L ! II rr 1 r I I Z il II I II _� I I a • 1 t- 1` I I w $o > , - II cUUndo 40 a 1 ► I I II ^Ian • II111 �a.ysc,(7 1 I I 1''- C -Wi z .�3 I I C a) y o 1 w I- ww •J i.°n I I I o u acc0 , ,o - I I O Za •i 1� II IL 1 ` iI cc I al ? 4 1 m w - N o� a O - I 1 w W Z W 1 — _JQ W LL F Q > 1 0 Liii re g d J Z co o Lt. lis I o ! v) Q = Q O Y LL � (A m i- x Q lif:!: �G W W � ON 0.'nU � rnww 3 to �[ o z zK W OoJu.p � U W m wp H 7 Z SN O H 0 F- W WtIlj . • F- rv) uJ 1 I z tn � Ras 'ME a I ; 1 O , cc, m 411/46....0 w vi ° z •��jj to O F- to f- x rc O ~ mH Z= N JmrCC ZEN 3 W "�' al -j al la x mz HF > + WWU ar• > r F- if RNwO ? 0 n°y ff oa. Z °1 ./9-,t f+- w = SST E? Q 1 • W Wasp 1« y p + W /l z � xZ .��/`I . . . n .c o i _] - I II in(n Q 0 Sa it I I W \� ll O �p �vol- x m ui O t .�_ M H m z ''7 V ` V QW � � U V I \N W CC °WJmZ Cr ; lEr 0 Q ` h I— Rte U W OO Y W Ce n N ilr Q t3 d v - f- - - - ' ': - ' •. 1 ' ' .... ♦ I - - -!.t..- _ J.- - 7I- to Y .� 1 .. 148 .V.Z I . �. O `d. O e1 eri - S r • �- • _ w L 9 m X ~ ..44r 11 X o } v�Z O X ao 'co i carer V X V) to vi t T Q w — �W a x N Icc OW1- h w LU xo 0 ..... 1 s O I _ 1 to CC -.� -� ' 7 w 1 I w' 1 O (n LL.� r 7, • �, z J d Ag .e•.e > .. 1 pc, Q ce O ° } c� �I d 8I �� \ ?L', A �aNF� Nm ? r r r 5r 4 17 o • b b Q -. p & W ° a + + . e e N Z gib , 0 0 0 0 M ? J U ; —Iwo, N C.) a- �� 7U W WW � zQ romp 2O ° o ,. rn2Q ZC � QO W � � r _w 0 t. e. J ° SY mcnw ~ ° gjlim : U � x U U Z N CC Q zQ Q J W 0122 I. ICe-. L " ° wg ozN g ; ZW at— i �n 07 rn ,Hniwp � = ZDU � (9 O s Q U ° � owIL Z1 W ° zIt ≥ Qw in — o Z •t01 ° ° Zl- z in CO x M z 6 0 N O N (A In N Q v) a p U) N so irir 0 CI O O Zi_ > = i_ U ° $ J J U J Z . d t vo a Rv~) mOU' Qppo0 ID Q 1 �I M � • • .- r- - 1 i to r= b 6 is 5 ..-1 a < J N -� ` • d' ' j• t0 Q Fad i M 1 J W m r, . U 1 Z Z I vi j r ` % . s O m // ° � b U Z = 0 c C 1 I $ 1 0 CL OD W Q CO J J Q 4) iN 1, r I . W C9 I <O m a U �� i F Z 1 Z r M `.. ,/ _ 8 1 co ° m W I -- n •N t• O CL oz .z4.O:L — LI O a.L•2 --I- - �0.Z -- i. • _ ek *Ir--.* --n-- -Y•-- - - I 9.Q9 +- 0 N 0 to v4 r- •%I F.' c Y •p 7 O w S — es rev2 ,, f I, . a. tA : :1 O G W - bb r � • •ti\ o =s�m� F z ♦r � / / 9 F la: a - i• s ;9 4�i V'. 1 �i� . t re j Sri •1F 4 , •' i.!'' fA ₹;3 •�\i' H r \� '' I •�s •- •...i _ � �NF sFig 4. aia L' y�f . i •: yi c `�` I �_-- u a �iS' U - 41 Iv. " �i gr J 1 ANA rr ,•• a3 f i if 3 n pitr0 . 0� = -:° ��� / LLLB� ' � fi }R .4 �• N _ �1 r: i.i•rzkft 4, ,,ii i\ it• 2• 7i � lbm ifa t. mf_ I-. 1.' \ ! 7. r9 3 r \�� Oi irm� E ri �� ' ~ Ys • i~ iV Lt w 1 j{�& __ .\ i s 7 , _ . _ vgx .. R . C �l ` ' ` P. O is g )/ • e • i : Q 6- ! ` J ;- wE M V ! ti ' _ Z • /r • s - 1 Xo 9 i ; �, k , \1 a i .. 1",...0.1"), a t • • • X N " ae l yi� 1 t a' a D p f NJ z w O W H Ohm Et �w = U) g . < r, g f� zo Q CL 2 ti eo c Lr W 8 i-. 0' = O c�r�izd ¢ x LL o4O1go U Q QW � N ?r m .�. . CL LU v Oi-cl) OQ JZ x • M T oyW �z to s a - zw w- 14 U J- c� -I 0 ¢ a 0wr 0 O� aQi � U w C7 / g z a,+, +,�� t i4i+�+++9+���, . L. w co I ec ? og i . . 0 ,+++ CC b. o E. > �`�+. 2 lit ., , U) lifw ;tie l- w x 4 c11 M U O 8 U 0 • IS r- C 4 z E i O 4 Il % La 8 -got pp 2 g ' zN � ° I-72, w $ 1J m a. w 11 s� .no - ® ® ® ® 0 _ =:( _ � , L) = �;1)IP u z 0 s H w t, z X 1 t / 1 'ril1 • `. �X (,/) \ / '• J _ \ ` ti \ \ _ — l / t \\\\\ \`.\\% X to 1 / ' \ \ \ 3 I •\\•\ \\\♦\\ t N �`..-- .. - .--..-.w- .--\__ .•• iii • �♦ \\ • 1 r ••••••-. • • • % . I ..1� OM ♦ \ De- • / 1\ A''5' 11071• !M 1 > Z ���/ �/ 1 71 • It11IN(f 11 , I 1 W O / / + 1 ' - i IY'1 •11 • I Ce LUr • Q I / 1 %, '- •- - II aNzo Do / // i ' � ff_ I 1 1 Yjrga / // I letJ J l i Ito '� 1 1 7. ` ��° zo a 0 V ` -- -- 1- ll 11 E- : es i!}�'� ', '�tt X111 , Z ', ai2 _ VI Z I ' ll t r �-,I ACI11�1 `> hill, tY 1111 11 I' —" 1111111 - - - 11 11•1 ' 1 J IIIIII11 is= ''; . Illlllll I'll ce 1 11 1 i� ' II .'11111111 I ' t o I t t I' I I r \111 t 1 II, 11 CD l 11 11 t1 ;1 'III %tti i� �i i►111111 111111 ( ; `IR 1 111.11111 1%__ Ii __ r tga/ Ill — — _ _ 11IIIIIJ ' = Ili 11 111 1 d ir.•1111\11-‘1121.71-2,—"-- =llttlw =.�.- Illlll le 01 ll l l Z q ;l ttt`- __ -eft- �,11j1 I 1 t • 11 \\ f11""-- _ — — id/ i : \ 1 I II I . t t--------- ' .• 1..r� " �.,. i 111 ‘1 l — - ------;----------------_ N _ " , I II -.r_....../.......".......e.• w./.�.-.t r.r ...� -T Ir / I1 _r_ - j 1 1 1 III tI 1. OO I ' ` ;' --II 00 0 I I< II 1j OO ) I II 1 1I I 1 1 1 . 1 1 / I I 1 I ' I l -44 I 1 I I I I /A,„... < 14 � R" b i t X1 .9 1II it iliael i] -z `_ ' } ., g i 12 2 gy, na I e M si I • ,— n t QQ o " T S sit ;� 1 ,?3, II IfIli s .• I i .. ,\ ri Y I z E -v `o iry 14 gi •,U DYL il fl S 1 le g ' ; a �y{v} Ii111IrI1iII: i11 < e4Igg D• r- v3 Xi) ay t yes �1 i1 1 Vr i!;51 1e 1 61 agz ? a` ► � . Kr sFJ1jiQ �� i �� E 1 si6a 6 b} ! 7 l s-. ii. >E 9 $1iit 4 q�3 ` e i! Uzz gt.ci5 _ 1 t gAMi _ibfSii - d f- W f ' Y�'.y 'zYiy :; d1E -`I; EY• • St 1 i __k�u f_f fx 4 Vgrg i #E i 7 �,'5 reiS� §$ � � !� ref5 f°E.gad d$ 1 :3¢ ft . 1 �i ;E* Its .5 1 i'ds n - "' tit; =Y 1f iy W 41: 1 ; �ct7! Y ! Lib #g °` I '�tyyC yXiBE r-, '.} .$ :...J 4 r¢ JRt ad .k I sn CRis. giF 0 X \LA n.d r — Y'-.ost 02• CO it O_ t X NX LO :� :.R _:il fr s :I 1 5 z k yy • ll it N : ;� 21421 6 .t 1 i a ( BF 11 : 1 } • r . �� r 3 i 4 s W F . 1 I S Ij 9a i` 7 ' s� ii .I 4 •13 1 p ,,_, rir ' I Ct: i. .0 I 4 4wie g % T . -1 1 \ f "- I ' 11! id ", 1 3 yr., 2, v . '-Y I ; if ! ' % i xy, s f !r ! 11 Jr.,fq IV I , �.. _! �'3 Y s ; a s :L _ Jl I 1 '' �$ ° �1 4. pp pp i( : 1 •�1 Lii 1 i<• 6D.�Yi � � I If 3�a � Ili � rt 4Y" R i 0 "- N 2�milC •) YfJ 54 II' 4 coiiiii % .ii sl . n t . .t Gi W y QQ W J ' l C SV i 4 # l'? i4 ti ' O - ; '8 1 t Z: Iaf to <g a s cd y f i it § S ' 5 i¢ V i P i 6 &0 I b'S 1^ Yi a; ri dtg ¢5r 7 1 di. a a kgv .0 av 1 {- FE lit ail, . Y j11f Y .t ! a� a A -1 e $ 6 n Vol ; aI #v YF §v f` 8' s� PI; s► CD i Ye gf! - i a f5! ;II i A s! %9 D s 4s 1" r4.! _:4 I'�•`'• {r!. I` ii 'l S,,, . uh i• 1;, 1 vY V g ti ly 2 R gte 3� R f . ; gds rtt { � j a a xa c gb-I to Laai g 0 -L- f 5 e ~ �d r €1 a 1 i '. • II 1 I it i; lira c` 1 " 11b ;.# 01 Ya 1 ? La. it • K4 f Y g I Y V p le: 9f g ;, 1 t k yflr Y t. R� r.4 • Y 3 �dd 6 it ZC 1$ -9- �$ •13c 'f 6 e•. it ' yyaf, • C' 1. 19E 7t 4$ Skrd ' ¢a 9a .j �F 4 Y V• 1 1Y IhiF iil $ 4 R :! 1� I i b °IS ni 63 ii 4Z� �,T', E {r K 7 dg•• ! r3e # li ' hi'IIL IJthM : S"Fk eI ij4 wiml )E- S- t, iWIIIUI SFF i 1.$ !Q,S, A.; 1L z �1 .1S a ! 3rr,8): I' g : 13 ' i ,b f f: 8!r j 1 � j` Ike .,1 i.0 5 9` 644 ;iE r s W i / .a 5e Y t:. 43`1 tf 4 bIS �-' r. gy. cps GE 1Jl o§ !¢ -S S 11 .&{ al $ !1_ivr €� . .a _ 3 �.A.•f. ..e alk r - .4 ..df c9 Be• .� .4 -fit '� -) ..e 3 ' l Y• a t 1.1 4 I �� ;S ;= i , ' 1 T r l , 7 t‘ . . ("Jo,. i n 60 lit gll gl! :i it; \ Y I S — g a it i i n a4 Y .5 14r 9 ' rX ft . 1 Z i g mt - FL 1 j ► j U gY f.. g jVfa ��yY'° ?L ■+ i G� 1 ii li a. i 1 t� f ai'" 1 tt ° • y# O Fa_ 1 s 3 ,,.. YY q , II - � ;a o izil .A i t, !p i6- t` f , a= s s Ir v0 3 x n. y 3 7 Ill! ' ak 15 i ' { ' iy :. I I W - 'xa lea Litl `'s; _ '�� i`5 Y it ii! 1 422 • Cf3 �a .s ..� •YY� # 9i ay f of q f Y4 $ j W • - .J% ., •= • -1;b ..'.$ 1 .. WE ..43 • a 0. CI;) A ;9 fri A 4 A .- •u tcs 1\v la S ` rdE ti '/1" 111 ` ti-lt- p `'y tescYn �r e e a t\I \ fl L IJ 'r .4r<11>4° 3T.lib 5 ,. LII ;e44 (A il w P't ss n th i.. hn V • c�' t: A bit. - S �� LM •r. v, r i. vi y Y •i 3 's ? hi -Z . Z 4 II 2t2 3o t. ! 44 c. -, sY 6 g1 £ I G4 a •.%.k ..tii . 4• y X rVO i, L: F .N j Ykl • e 25 i k5 .y y G *rig alti a3 -a .1-.;-_ ! ° ; X (/) ai. ;2 ≤> g_ iL "4 = iti 1 .r i -0 .4 i tl 3 El° 5t.. VA . gg 4 X 1/4O r t 4s � , :'p :• is?. - a:gi �� i 's , tic, gi I ;S $ tVS$ i Y ? E; ;iQ a S X N t3_ai . ; ;L y s[r. ! ; , � t� 3 sQ 4 �� a -1fX ,=1 ..1 ,a w� b -i 'H ' x2.2i Sgii S°' 7 it Y- 4_ a Ica K 3 I • S •t Ei.i', ; Ys1 sLI ,'7 re !IT‘ '� fs sssa '4, s` bs 1.“ ; sit 3 bb4 qE� s:Z- i aiiie.(!ft!II2 E" i r s $ wt i ``f iy :I!! . Y $ vi k I J;' l 1 jQ, D�� +iti it :l .8 4$ t is 1 _ m li it I 0 : { '0: 224 2 g` g U O P lfl! ll x1 4 ' '$r':2 p A _ y4 aia ; 1 �_> Qc$ LU U s.y#k- • ( 'pi /• �g. ,•3E a i i. # s` ct Si If ! Ili oho •eCf to m 'if y..�__ __F_ t.—._ i� j` A11, Sf - 1 Shy ;� t� CO •'V W L )i . z J ,L2 G - O j L� , i ji ]ii: p, 2al ' a" 4 .r . . I . T - it " 1,: _ i - ` • • 1 • I 4 Er EE Y C tri Xs 41 MI) kift] CO 1 ti It I 6 . s Y T T'— : tt v,L` 1.•1 a d PI i ri. o , Ihe flap 8 /lit k , .ly�ftt�'?.. ,� W Hello