Loading...
HomeMy WebLinkAbout20151447.tiff FINAL DRAINAGE REPORT FOR SADDLEHORN ORIGINATION TERMINAL WELD COUNTY, COLORADO Prepared for: Magellan Midstream Partners, LP One Williams Center, OTC-9 PO Box 22186 Tulsa, Oklahoma 74172-2186 Prepared by: Tetra Tech, Inc. 1900 South Sunset Street, Suite 1 -E Longmont, Colorado 80501 Tetra Tech Job No. 133-24091 - 14001 March 2015 irq TETRA TECH CERTIFICATION OF COMPLIANCE ENGINEERING DESIGNED TO WELD COUNTY CODE STANDARDS AND CRITERIA I Jeffrey A. Butson , Consultant Engineer for Magellan Midstream Partners, LLC ("Applicant"), understand and acknowledge that Applicant is seeking land use approval of USR 15-0016 ("Application") for the property described in the attached Exhibit "A." I have designed or reviewed the design ("Design") for the proposed land use set forth in the Application. I hereby certify, on behalf of Applicant that the Design will meet all applicable drainage requirements of the Weld County Code with the exception of variance(s) described below. This certification is not a guarantee or warranty either expressed or implied. (Engineer's Stamp �i<-'`��Q h10E4/. CP q-� O11, ate, : w ggl fi?• --13 \\4D • i • /Pp•••®,•,•••..•°••C� "' Engile:r Re o ti Signature eSSIONPVc VARIANCE REQUEST 1 ) Describe the Weld County Code criteria of which a variance is being requested. 2) Describe why it is not possible to meet the Weld County Code. 3) Describe the proposed alternative with engineering rational which supports the intent of the Weld County Code. 1. ) Drainage designs should use the depth-duration frequency information provided in the Precipitation-Frequency Atlas of Western United States (Volume 2 - Colorado), published by NOAA. -Effective April 19, 2013, NOAA Atlas 2 has been superseded by NOAA Atlas 14 Volume 8 for Colorado. Rainfall data from NOAA Atlas 14 Volume 8 for Colorado was used in conjunction with Urban Drainage design documents for this drainage report. 2.) Detention pond designs shall be sized to store the stormwater runoff generated by the 100-year, 1 hour storm from the developed site and to release the stormwater at a rate not to exceed the historic 5-year, 1 hour storm. Detention pond embankments should be a 4: 1 (1-I:V) slope or flatter to facilitate maintenance. Detention pond bottoms should have a minimum slope of 1%. -Due to anticipated revisions to the Weld County Code, detention ponds were sized to store runoff from the 100-year, 1 hour storm from the developed site and release at a rate that does not exceed the 10-year historic rate. Because detention pond embankments will not need to be mowed, the maximum embankment slope is 3: 1 (H:V). The minimum slope of the bottom of the detention ponds on site are less than 1% in order to provide enough storage volume for the 100-year, 1 hour storm, being released at the 10-year historic rate. 3.) Channel lining criteria is specified for various types of channel lining in Table 5-9 of the Weld County Engineering and Construction Criteria. -Turf Reinforcement Mat is recommended to reduce erosion due to the velocities of flows and slopes of the channels on site, no vegetation on site due to fire hazard, and onsite non-cohesive soils. 4.) Re-vegetation guidelines are provided in Chapter 8 of the Weld County Code, the re-vegetation chapter of the UDFCD Manual (Volume 2) and the BMP chapter of the UDFCD Manual (Volume 3.) -Because of the fire hazard on site, the site will not be re-vegetated. I understand and agree that the intention of the Code is to reduce impacts of development on neighboring downstream properties and the public. I understand if this variance request is approved it is not precedent setting and is based on site specific constraints. Planning Director Approval indicated when signed by director or appointee: Planning Director Name Signature Date of approval 1/13/15 TABLE OF CONTENTS Page 1 .0 INTRODUCTION 1 2.0 GENERAL LOCATION AND DESCRIPTION 1 2. 1 Location and Existing Conditions 1 2.2 Proposed Development 1 3 .0 DRAINAGE BASINS AND SUBBASINS 2 3 . 1 Major Basin Description 2 3 .2 Historic Drainage Patterns 2 3 .3 Offsite Drainage Patterns 3 4.0 DRAINAGE DESIGN CRITERIA 4 5 .0 DRAINAGE FACILITY DESIGN 5 5 . 1 General Concept 5 5 .2 On-site Drainage 6 5 .3 Offsite Drainage 7 5 .4 Water Quality 7 5 .5 Detention 8 6.0 CONCLUSIONS 9 7.0 REFERENCES 10 Final Drainage Report i March 2015 Saddlehorn Origination Terminal P:1240911I33-24091-14001\Docs\Reports\Drainage Report\Final Drainage Report_Saddlehorn.doc List o f Appendices Appendix A: Mapping Vicinity Map FEMA Flood Insurance Rate Map Appendix B: Hydrology Computations Appendix B- 1 : Soils Report Appendix B-2: Rainfall Data Appendix B-3: Historic Runoff Calculations Appendix B-4: Offsite Runoff Calculations Appendix B-5: Developed Runoff Calculations Appendix C: Hydraulic Computations Appendix C-1 : Culvert Calculations Appendix C-2: Drainage Channel Calculations Appendix C-3: WQCV Calculations Appendix C-4: Detention Pond Calculations Appendix C-5: Conveyance Summary Appendix D: Drainage Plans Historic Drainage Plan Sheet 1 Offsite Drainage Plan Sheet 2 Developed Drainage Plan Sheet 3 Final Drainage Report ii March 2015 Saddlehorn Origination Terminal P:1240911133-24091-140011DocslReports\Drainage Report'Final Drainage Report_Saddlehorn.doc 1. 0 INTRODUCTION The purpose of this report is to present the proposed storm drainage improvements for the Saddlehorn Origination Terminal (Saddlehorn). With development of a green field site, one can expect an increase in impervious cover and, therefore, an increase in peak storm water runoff. This report examines the undeveloped flow patterns of offsite and on-site drainage basins and the proposed storm water facilities designed to mitigate the downstream impact of increased storm water runoff. The contents of this report are prepared, at a minimum, in accordance with the Weld County Code for a Final Drainage Report. 2. 0 GENERAL LOCATION AND DESCRIPTION 2.1 Location and Existing Conditions The Saddlehorn Origination Terminal site is located on an approximately 80 acre parcel approximately 11 .5 miles east of the Town of Platteville, Colorado, adjacent to and south of WCR 30. The main entrance of the subject property is located 0.4 miles west of the intersection of WCR 49 and WCR 30. More specifically, the subject property is located in the northeast corner of Section 25, Township 3 North, Range 65 West of the 6th P.M., Weld County, Colorado. A vicinity map has been provided in Appendix A. The property is currently undeveloped and consists of irrigated cropland. Surrounding land use adjacent to the subject parcel is primarily agricultural. In addition, a crude oil unloading facility is located north, just across WCR 30 from the subject property. Other hydrocarbon production wells are present on adjacent properties. Numerous utilities cross the subject property. In general, there are several existing buried oil/gas pipelines along the northern, western, and eastern property boundaries. Other future buried oil/gas pipelines are expected to be constructed across the subject property. Future power lines will be constructed on site to service a proposed United Power substation located offsite. WCR 30 is a publicly maintained road within dedicated County right of way. 2.2 Proposed Development Magellan Midstream Partners, LP (Magellan) is proposing an oil unloading facility for centralized collection of crude oil to be conveyed by pipeline to facilities in Cushing, Oklahoma. Magellan is leasing the property from Wes Moser, Inc. The proposed facility will be phased with only some of the features shown constructed in the near future. Additional future facilities may be constructed depending on market conditions. There are two proposed access points from WCR 30 onto the site. There will be informational signs at the entrances to direct traffic. Final Drainage Report 1 March 2015 Saddlehorn Origination Terminal P:1240911133-24091-140011Docs\Reports\Drainage Report'Final Drainage Report_Saddlehorn.doc 3. 0 DRAINAGE BASINS AND SUBBASINS 3.1 Maior Basin Description The subject property is located in rural Weld County and is surrounded by undeveloped agricultural land and a crude oil unloading facility across the street. The project site lies in a FEMA designated area, Zone C: "areas of minimal flooding." An appended Flood Insurance Rate Map is provided in Appendix A. The Saddlehorn facility is located in Flood Insurance Rate Map (FIRM), Community Panel No. 0802660900C. The site is located outside any applicable Weld County or adjacent Master Drainage Plans. The site is located within a watershed that generally flows east towards Box Elder Creek. According to the Soil Survey of Weld County, Colorado, Northern Part [ 1], site soils are primarily loamy sand with clay loam and sand interspersed. Loam soils are generally well drained and slopes are between 0 and 9 percent. A detailed soil survey report has been provided in Appendix B-1 . The soil types are predominantly hydrologic soil group A, with some type D and type A/D soils. In basins with type A/D soils, runoff coefficients for type D soils were assumed for more conservative runoff estimates. 3.2 Historic Drainage Patterns Minor ridge lines divide the site into three historic sub-basins: Basin A, Basin B and Basin C. The Points of Analysis (POA) for all basins were selected based on the originally proposed detention pond locations and historic drainage conditions. Basin A is located on the north and west sides of the project site and drains towards the east. Existing topography shows that runoff from Basin A flows along the northern edge of the property in a poorly defined watercourse. Topographic data shows that there is no borrow ditch along WCR 30. Basin A discharges onto property leased by Magellan. Basin B is located in the middle of the site and is contained entirely within the project area. Runoff from Basin B flows east across the project site and discharges onto property leased by Magellan. Basin C is located on the south and west sides of the project site and drains towards the east. Basin C discharges onto property leased by Magellan. Site rainfall depth information was obtained from the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, Volume 8, Precipitation-Frequency Atlas of the United States (2013). This data supersedes the rainfall depth information provided in the Urban Storm Drainage Criteria Manual. The current NOAA data was used for the determination of point rainfall data. The NOAA data formed the basis of the IDF calculations for other storm frequencies and durations using Urban Drainage methods. Rainfall data is presented in Appendix B-2. Historic runoff coefficients are calculated for each site soil type using the methods detailed in the Urban Storm Drainage Criteria Manual, Volume I, Ch. S. Because the areas of the historic basins are less than 160 acres, the Rational Method was used to analyze the historic peak flows. Historic Final Drainage Report 2 March 2015 Saddlehorn Origination Terminal P:1240911133-24091-140011Docs\Reports\Drainage Report'Final Drainage Report_Saddlehorn.doc runoff coefficients and peak flows for the 10-year and 100-year storm events for the historic drainage basins are presented in Table 1 . Times of concentration for the historic drainage basins were estimated using the methods detailed within Urban Storm Drainage Criteria Manual, Volume 1, Ch. 5. A composite runoff coefficient accounting for hydrologic soil group was estimated. Calculations for time of concentration and composite runoff coefficients for the hydrologic analysis are presented in Appendix B-3. Table 1 : Historic Basin Runoff Summary Peak Flow Peak Flow Basin I I) Acres 10 Year (cfs) 100 Year (cfs) Corresponding POA A 51 .35 6.34 28.66 A B 15. 13 2.95 14.07 B C 82.99 9.53 43 .69 C The values presented in the preceding table are the maximum allowable 10-year historic discharges that may be discharged from the site per County code. Detailed historic drainage calculations are provided in Appendix B-3. 3.3 Offsite Drainage Patterns Offsite drainage basins OA- 1 , OA-2, and OA-3 are located north and west of the future development and are approximately 40 acres in total. The basins are subdivisions of historic basin A. The subdivisions were delineated in order to size the culverts under the access roads. Basins OC-1 and OC-2 will be conveyed around the western and southern side of the site. The discharge will be at the same point as historic basin C. Table 2: Offsite Runoff Summary Peak Flow Peak Flow Basin ID Acres 10 Year (cfs) 100 Year (cfs) Corresponding POA OA- 1 2.29 0.57 2. 13 A OA-2 34.56 4.03 16.83 A OA-3 2.73 0.94 3.09 A OC- 1 60.41 8. 11 34.02 C OC-2 1 .63 1 .09 3.49 C Final Drainage Report 3 March 2015 Saddlehorn Origination Terminal P:1240911133-24091-140011Docs\Reports\Drainage Report'Final Drainage Report_Saddlehorn.doc Please see the Offsite Drainage Plan that is enclosed with this report. Offsite drainage calculations are provided in Appendix B-4. 4. 0 DRAIN i GE DESIGN CRITERIA This report is prepared in compliance with the Urban Storm Drainage Criteria Manual, Volumes 1, 2 and 3; Weld County Code; and the Weld County Storm Drainage Criteria Addendum to the Urban Storm Drainage Criteria Manuals Volumes 1, 2, and 3. Based on this criterion, a 100-year storm is used as the major storm when evaluating existing and proposed drainage facilities. Rainfall Data: Rainfall data was collected using the Volume 8, Precipitation-Frequency Atlas of the United States (2013). Pipe and Culvert Sizing: Site storm infrastructure capacities have been evaluated using Manning's Equation. The culverts on site are sized to convey the 100-year storm event. Additionally, the outlet pipes from each detention pond are sized for a specific release rate of the 10-year historic flow with the use of an orifice plate. Erosion control devices will be provided at all culvert and swale outlets to protect against downstream erosion. Culvert sizes were determined using Culvertmaster software. Preliminary pipe calculations have been provided in Appendix C-1 . Drainage Channel Sizing: Drainage channels are proposed along the south and west sides of the project site to route offsite flows along the edges of the site. Additional channels are present on the site to channel flows to the detention ponds. All channels are sized for the 100-year storm event using Manning's Equation. Multiple on-site drainage channels have also been sized to convey the major storm event. Detailed channel calculations have been provided in Appendix C-2. Due to the fire danger at the site, much of the developed section of the site will be unvegetated and covered with an uncompacted pea gravel layer. Drainage channels will not receive a pea gravel layer. Detention ponds may be vegetated. Due to the relative steepness of channels and the soil types and lack of vegetation, turf reinforcement mat is recommended for all drainage channels and pond slopes to reduce erosion potential. Water Quality Pond Sizing: A water quality pond is required prior to releasing stormwater runoff from the development. This water quality pond will include a water quality orifice plate on the outlet structure in accordance with the Urban Storm Drainage Criteria Manual. Detailed water quality pond sizing information is presented in Appendix C-3. Detention Pond Sizing: The detention pond volumes have been determined using the UDFCD's Detention Design — UD-Detention v2.34. Detention ponds will be configured to release no more than the 10-year historic flow at the points of analysis in accordance with anticipated future Weld County criteria. This is a variance from current effective regulations and is included in the letter that accompanies the Certificate of Compliance for this report. A minimum of one-foot of freeboard will be provided. The required water quality capture volume will be contained within the detention volumes for each pond. An emergency Final Drainage Report 4 March 2015 Saddlehorn Origination Terminal P:1240911133-24091-140011Docs\Reports\Drainage Report\Final Drainage Report_Saddlehorn.doc spillway, in the form of a trapezoidal weir, is proposed to convey the 100-year flow rate at a 6-inch depth. Detailed detention pond calculations have been provided in Appendix C-4. 5. 0 DRAINAGE FACILITY DESIGN 5. 1 General Concept The site was subdivided into several sub-basins based upon the proposed final grading of the site. Areas draining to the North Detention Pond were grouped into the "A" series developed drainage basins. The basins were subdivided to determine culvert and channel sizes. Areas draining to the South Detention Pond were grouped into the "B" and "C" series developed drainage basins. The basins were subdivided to determine culvert and channel sizes. The main storage tanks are contained in a secondary containment berm. The secondary containment area is excluded from detention calculations because the area is valved closed at all times until the runoff can be checked for oil sheen that is indicative of tank leaks. If the stored runoff is sheen-free, the runoff will be released. It is assumed that this release will occur considerably after the conclusion of a rainstorm and well after the peak release rate of the detention ponds. At POA A, the discharge in the developed condition will be a combination of the OA offsite basins and the release from the North Detention Pond. At POA B, there will be no significant discharge in the developed condition. At POA C, the discharge in the developed condition will be a combination of the OC offsite basins and the release from the South Detention Pond. The tables below summarize the allowable outflow from each of the Ponds. Table 3: POA A Runoff Summary Discharge Floe (cfs) Historic Basin A (10 Year) 6.34 Offsite Flows, Basins OA (10 Year) 5 .54 Maximum Allowable from Pond A 0.80 Final Drainage Report 5 March 2015 Saddlehorn Origination Terminal P:1240911133-24091-140011Docs\Reports\Drainage Report'Final Drainage Report_Saddlehorn.doc Table 4: POA C Runoff Summary Discharge Flow (cts) Historic Basin C (10 Year) 9.53 Offsite Flows, Basin OC- 1 (10 Year) 9.20 Maximum Allowable from Pond C 0.33 5.2 On-site Drainage Basin A- 10 will flow overland via Channel A to the North Detention Pond. Basin A- 10 is mainly comprised of a paved apron for the truck unloading facility. Basin A- 11 will flow overland via Channel C to the North Detention Pond. Basin A- 11 encompasses a paved apron and the canopy for the unloading facility. The unloading facility is elevated higher than the surrounding apron to prevent runoff from entering the unloading area. The unloading area contains a spillage capture system for capturing unintended releases of crude oil and containing it within a sump that would be pumped out when necessary. Basin A- 12 will flow overland to the North Detention Pond. Basin A- 12 includes inbound metering equipment. The total area shown for this equipment is a combination of graveled areas and small skids for equipment. It was estimated that approximately 10% of the total area shown for inbound metering equipment is impervious. Basin A-13 will flow overland via Channel A to the North Detention Pond. Basin A- 13 includes a gravel road that is a secondary entrance to the site. Basin A-20 will flow overland via Channel B to the North Detention Pond. Basin A-20 includes paved road areas, the site office, a warehouse, a QA/QC building, a water tank, a well house, and a motor control center (MCC). Basin A-21 will flow overland via Channel B to the North Detention Pond. Basin A-21 includes inbound metering equipment and the receipt manifold. The total area shown for the inbound metering equipment is a combination of graveled areas and small skids for equipment. It was estimated that approximately 10% of the total area shown for inbound metering equipment is impervious. The receipt manifold was estimated to have a total impervious area of 35%. Basin B-10 will flow overland via a minor drainage swale to the North Detention Pond. Basin B- 10 includes site roads, a portion of the metering and proving area, DRA&CI offloading, and an MCC. DRA&CI offloading was estimated to be 6% impervious. The M/L pumps area was estimated to have approximately 32% impervious area. Basin B- 11 will flow overland, via a minor drainage swale, to the North Detention Pond. Basin B- 11 includes site roads, an M/L Pump, and the mainline switchgear. The mainline switch gear has no Final Drainage Report 6 March 2015 Saddlehorn Origination Terminal P:1240911133-24091-140011Docs\Reports\Drainage Report'Final Drainage Report_Saddlehorn.doc impervious area associated with it. The M/L pump area was estimated to have approximately 32% impervious area. Basin C- 10 will flow overland into the South Detention Pond. Basin C- 10 includes the transfer manifold, an electrical substation, M/L pumps, an MCC, and some gravel or recycled asphalt site roads. The transfer manifold is estimate to be approximately 40% impervious. The electrical substation is not expected to have any significant impervious area. The secondary containment area is valved closed and is not released during a rainstorm. When released, this area will drain through the South Detention Pond. Table 5 provides the peak flow rates for the sub-basins of each of the major basins. Table 5: Onsite 100-Year Runoff Summary Peak Flow Peak Flow Basin ID Acres 10 Year (cfs) 100 Year (cfs) Corresponding POA A-10 1 .54 2.08 4.86 A A-11 2.03 5.25 10.85 A A-12 1 .8 1 .33 4.56 A A-13 4.3 3 .45 12. 12 A A-20 3 .06 3 .54 10. 13 A A-21 3 .2 2.28 7.24 A B-10 1 .67 2.48 6.52 A B-11 0.94 0.63 2.04 A C-10 8.56 8.84 28.06 C Detailed developed drainage calculations have been provided in Appendix B-_5. 5.3 ()Mite Drainage Basin OA- 1 , OA-2, and OA-3 will flow overland until being intercepted by Channel A3. Channel A3 terminates within the pipeline easements along the northern property boundary. Flows will follow the existing poorly defined watercourse within these easements. Basins OC- 1 and OC-2 will flow overland until being intercepted by Channel C2. The flows will be conveyed to the eastern property boundary around the secondary containment, returning the offsite flow to POA C. The channel is sized to convey the historic 100-year runoff. Detailed calculations have been provided in Appendix C-2. 5.4 Water Quality The proposed water quality features for the site are water quality capture ponds. Water quality capture volume (WQCV) for "A" and "B" series basins will be drained to the North Detention Pond. Final Drainage Report 7 March 2015 Saddlehorn Origination Terminal P:1240911133-24091-140011Docs\Reports\Drainage Report'Final Drainage Report_Saddlehorn.doc WQCV for "C" series basins will be drained to the South Detention Pond. The water quality volumes for all of the detention ponds are sized in accordance with the Urban Storm Drainage Criteria Manual, Volume /-3 and the water quality features are designed to handle the runoff from the developed portions of the site. Developed runoff flows are designed to route through the water quality feature. Per Urban Storm Drainage Standards, 120% of the water quality volume will be provided. The proposed water quality volume drain time is 40 hours. A perforated plate is proposed as the water quality feature for each pond. The WQCV is included in the detention pond volumes for each of the drainage basins. WQCV calculations are presented in Appendix C-3. A storage volume summary is provided below in Table 6. Table 6: Water Quality Capture Volume Summary WQCV Pond ID (acre-feet) North Pond 0.30 South Pond 0.06 Note: A minimum of one-foot (1 .0') of freeboard will be provided for detention pond volumes. 5.5 Detention There are two detention ponds within the project site. Runoff from "A" and "B" series basins will be collected in the North Detention Pond. As previously mentioned, the maximum allowable release rate from Pond A is 0.80 cfs. Runoff from "C" series basins will be collected in the South Detention Pond. As previously mentioned the maximum allowable release rate from Pond B is 0.33 cfs. Detention calculations were performed using the Urban Drainage Basin Volume Estimating Workbook, v. 2.34. A summary of the required detention volumes is presented in the following table. Final Drainage Report 8 March 2015 Saddlehorn Origination Terminal P:1240911133-24091-140011Docs\Reports\Drainage Report'Final Drainage Report_Saddlehorn.doc Table 7: Detention Volume Summary Required Detention Total Detention Volume Volume Pond I D (acre-feet) (acre-feet) Release Rate North Pond 1 .513 2.91 0.80 South Pond 1 .008 3 .53 0.33 Detention Volume Summary Required Detention Total Detention Volume Volume Pond ID (acre-feet) (acre-feet) Release Rate North Pond 1 .513 2.91 0.80 6. 0 CONCLUSIONS This report was prepared to comply with Weld County Code and the Weld County Storm Drainage Criteria Addendum to the Urban Storm Drainage Criteria Manuals Volumes 1, 2 and 3 with the exception of the variance requests that were presented in the letter at the beginning of this report. The proposed drainage system for the Saddlehorn Origination Terminal will provide detention for the developed section of the site, releasing flows at the 10-year historic rate. Releases are as near to the points of design as practical. Drainage design is not expected to adversely impact adjacent landowners. This Final Drainage Report is being submitted to Weld County for review and approval. Final Drainage Report 10 March 2015 Saddlehorn Origination Terminal PA240911133-24091-140011Docs\Reports\Drainage ReporAFinal Drainage Report_Saddlehorn.doc 7. 0 REFERENCES United States Department of Agriculture Soil Conservation Service in cooperation with Colorado Agricultural Experiment Station. Soil Survey of' Weld County, Colorado, Southern Part, September 1980. Urban Drainage and Flood Control District. Urban Storm Drainage Criteria Manual, Volume 1-3, June 2001 . Weld County Code. Weld County, Colorado, September 6, 2008 . Weld County Engineering and Construction Criteria. Weld County Public Works Department, April 2012. NOAA Atlas 14, Volume 8, Precipitation-Frequency Atlas of the United States. U.S. Department of Commerce, 2013. Final Drainage Report 10 March 2015 Saddlehorn Origination Terminal P:1240911133-24091-140011Docs\Reports\Drainage Report'Final Drainage Report_Saddlehorn.doc APPENDIX A - MAPPING ,�rj � 4 lir ile' _ ,., , , T .. illiari_ ` /f se :i / sy` 1 - (, ;) 1 : s„.... i , . 1,iv i t . eiti -, i •lt? .. ,. _ .., ----...,.... w - or Iii, 1......, ,t____Th 4' II ... , • C t .,_ , .... ...„. . _ -.1111) -• 0 i lips I is M'1 MG1 30 V1/4. i _- 4 I pi-. 1 A itt. L PROJECT 0 ,ccarofert 4** /r I , , Ifir -ItT r - p TI X 1 Q Z ( _ CJ 4;;cc r 1 _.r. X - 1 o . as 0 '. 0 ' 2,000 O o _ xt- � ` 0 o MAGELLAN MIDSTREAM PARTNERS, L.P. Project No.: 133-24091-14001 a imit) TETRA TECH SADDLEHORN ORIGINATION TERMINAL Date: FEB 12, 2015 WELD COUNTY. COLORADO Designed By: JJA C; www.tetratech.com NI Figure No. Ni 1900 S. Sunset Street, Ste. 1-E Longmont, Colorado 80501 VICINITY MAP 1 co w PHONE: (303) 772-5282 FAX: (303) 772-7039 w w I O ai LLId CC Clim AC tig 10. { • s ° aE Q ? eaoL «ica • o / y p z Paw OE CC h cc 4P w Cc (NJ a tiG 8tUb SO MC eel • r '� d; Oz • � ig 111C O ur ii u. _ w ��.• O. O 13t4. 0 .7. !� aCcr. • '�gigV C gi u, ocr O 64W • � • U LL - - - — — ca to e -- - - -- ----- - _ ----- --- - _ - _ _ III!!� ......nom_. .-..�—.�—_• (x c3 E ' i. :1 • • 7j' • F • rte:> • � f• � f• •` '• • � � � 0 p1 \ 70 s2 to on a r q�r,..,r: e M�� ./, _, r,,y{ —"w:.* F•..::.•...f rr 'p` .' -•.m "4' 7{Toz; •> r.�. c `�-. �r. r iNT ` ' '"Sr.-:Yf. '+ryd+rr_/�•,i:�'K trf a- , e y`. •� lC i .�+.�:��a..'y :'J.r:.•Y .?,.74:7,74,4,.‘...c.; .;•yC•,i�irY'�a1'• < ^.e V'•r' '+f�+S�'�r,� "i<� �`c"",ri•�• i•:`�:i' 1 "-•a '` 'C '�1.'��y. ` 'F%, 'c)L' _ x}A' .A .�:. s�JYx" .". it. T2' 9 • • �L '' ¢ au y•y ,jf:..u�.10.- - -s/ t4. . f 'Y`• . a. i�F'9CJ'ys *P 7.Ri,,j .4•A `v.S. `74 . " ..FrJ'd. `F` _ •v /c ,s ^ f')• r �s !�✓.�. y' ,wy r , y1 r y w • tai. •!' •^r44, Y. ? a'.i'&i�y�,T9�'t�.hti .,^ • -Y P .�.'nrSyQ '*'�^'r:,.;F'fnwri-!y 7.`. <i5.71• 53:44 "4 ,.' '. ^,vm.:♦ .�.]_Sy+µ:} . }�%!' ,.s tY• l' • Md A� A n ri- _ 3+: i) M� ai[•• jff�/! 1......''_3>�/ •yp .,.s e' '1'. K M.N. ?... _ Y:• Y {yyr w/.K.NF .b•� .y ^�}ii,� !%1•.ij- {Y^ +.f- 4.•r. • •\,Y ..+` '�. �,< y..At_ �• + a+ rt s'5,.T• e F •'0.,2J., 'ti Y • . ' 'T -<. /yy! Yy• 5 1,. .j., .p.^'5 "' :a' .: lP.> r...('o. •roe W;7 l . '<E' n +. :✓" .., i.Mi•��. ; "4 ...y. e,• '.:v.. .•7.4-, .`S•sts. a, r1 'c:•,^\ • >_ "f�' ;d' i+ .+ ••••'-$..1 fCx� < ). !w (i-r:.c.-I >4.y- T -f- • ._• ••4. `¢ +:,p; 1r;;Jo•.�Lw r .� �!f : . __ T- •`" ., `�,•�Lti, ;+b.«.,. '••y�. Y '.. ..r.:.. i.,. ice. ' :,•- :;•,'" ;.. r a •.,,' ' .{ .t •." -t m. ;, 2 s 43�F".. .r ,S . • ,.,t. , w ;! 'II tis`F"•:NON. tr ;`Y:^'•: 4 . +T% 3 {R:�[ ...:::.i'v k yY.'F';, a •' 7i.•;!.- tie• , - ,"F,.4k It'1, , t4 'T 4 �,T>"'III. �.`� . Frt. Tjp, ,> '41^t `.>. .v•'5,. /. `.`ryd.<�q[{ v.�7 -�5▪`'' %i%,!..'::,--'4.;:::':.--• •�f 'n /' a ...,s wr, ti. �L..<� 1� � ,.:4:4t, i;S.)..p�qMr •:j ..� . ,r ..:.. "3 , Aft. .v ?". .+ s wri:U f$J : P',•nw .!.,' .4 , T • 'bt-. ,1•"• e'nyy Vii:: t �' .,: .. ✓. >�• v w re_ y � ..c. �25Cr�p..d: � ._ r�. �,,). iN; yr-�.., .< rt y� ,.�s..� .a rte+ z, r,. ��i�.�`,'g � ; ^r�'?:.•2 NA >. .x `` .'. rt-:S: ..t,s?•,'LT: ,• ,., ;;-'ti ', . -01;77:4-' 7-s.`)•-,' .'`n _,/,,. �'`e '4'.... 5•.*'S 'f5+:,, a.�w� .S1 �� .. _`>; w•:�; •S-<grC 5 -•i,- , t�¢'t`-.- - -• '•_,✓ 4 :'.d• r..3.rA-,... ?,ty,ypil,+gJ" k a Y,ti 6. -'. f • 'e :k> . r r ti •Ws•n .s i <-r' :X4 Y$.. .+•se'91' °i• '.'Sa.sl:C+lfy. 'F'-•4.' • r � Fy _y 4 Y• +. ..y.fr.7a tt :.e �R.f. f:r�. t 'r'•1. ./:- a ♦ . ,,,�e'°+a• �+i �w '> ' .,' y,t .Y ky-M �e�..i� '�,1� Oy,�ft• • . ,r •i";;.., y .„ �jL rtj,'b S:",'r+,['a - L-fi!: v.1:71-S',,A , .. v 1;44t •.s +rF a. i yL. ?,* 41• .r. c X4.14• <.)...;M. '�.veyJf ?¢\�Nxr. t �'.Jc� `7 �.,1� r.. s '.1f ^+fj . -. +f �` ,442,4. 'e re:• Td«,t.; • .,P' a r. �.. -�- _ "'t .3 y�� ...v4,Y, a s"t:'t •,i Z. Kf'w '�'? W .4' ' ,, s�yp 't -.^.'¢-f. 9:°."� n w°!tlr a•`.� _A ' ,_'�.x J�;.�. 3Gct' <<3 �-�• -z'S.p. �sY'* ." ' .:r •^ i .. -h,`yy'QI . eY4).c• .. . . ,M Y '?� ��'1a-rh .r.1. ,y 9� .t. �LAL ,n •r N'✓YJ.iL.1 �J'.- �. i j..r -R .Lr"„ C:rg .r>>+fii" •�:r;a' �Y• "r• % .• • - :.sn'R16:: tivyt / , -+ 1• •.,,.0" )l 1 „yy .��{�` Y �S :A „rid` ,l�fts••*YY R• Jy iv.Lh '� � ai 3. ?}�- rty, v';y.i "` �.J3`.4 tt:. 1Tz, f. �t�• ww{..tTr,J- ' �i r~Ty"•.'�' ti� r�.T.� •'R�« �s'. .; °9;�•.u'y40, • • r'',447.--g,, r o - 4.'�x'Sr' �, X�y�: .-,W ..5 •' .,' , '.' - K F �6 ,< ' c.` y py > t sa r ra y t r. i {. " Ay��,. 1. Zfy_. ./ ., pq F .•), /3• ! ./R,'CKR " '...meljwrp .ps?,F ,•[W .1.. V i:TfWY I' Y• ./dam C.1:.'' ' '1.1'�'�pa_eSt"?. )A S • >t• � • %,. f3 f • • r�l \•4$',...'. [ Y.y .-t.✓ Jnp• � ` ., � 4 S ��7• r.: * •:FJ - ..' T .� :✓y�yy• [ �` Y ¢ lgt • ss 'r"� 'a `` ." .n'rly ! • r,:. 'rD c • S ro '":�"• - J.x,_r4')C• .W i%A. k CS r `;� • t-�' 1 �CNr A -r:C,'ay d - r'... • - "0 ...s irtit4_l( =" •••-V f 4. t ` • S s• • ,y ^,'w�.f/•'�.{ Y. % w.' v , rS..J•f �1:Ii Fs .w< ` 'J. � �Aa ,Y � y (.•!> Yl.:, •.i l-2Z k`..: ! , 2i..t ejt`' J -T+ 4,,, n ,i ' ,4.. < p^ 'p� Ye t r •r t < ,/• .� Mgy: c.- •�w o i a-'Q....a1 + . x y:"! , }ii- ..•j •.: R.+ 2 lv. r x -,. t -). t ' 11TH` ` '.' •-"h,T4 ,f ---eAr ,• >.t. vt ' 'h;Ff..; >t - r,. d� �•>`:d.,yrs(I - y-P.'Z� '•. . a �J y°t • '.` • ,,,,..�ks -,`.y�:r, b r n ;3/A '7F ♦, .^>. Ll fr :`y*T.' -'1W.. Y:-•y. +c alt:- : r y • K;-i7��T :Y<> K F.'< '.r)�� s�L'A=J' ,..'- g } „ 'ter .. '�9n- ▪e • t ti4:4 ! e' ! 21•14.w�}.p'{ >. a a <'M't /syy• 'i • id' '�1 ._.. Ae Y7�'•i T t ' i''`' `' ,et. - �'yt' `,t^� • fv e .t yr�J -•^ a a t ri < a. +iGrt. `•^ j>. t"ai:�p•Y�. . . ,''r'§ + fi +' rt•V � to .: ,: • x .,4. T.a,T. s, t1r iD..•�.� - �✓: �v % t rVlf r ,_ ..rf a.i �• J l �. .L 1 .i. Y(M t q < T • n • T l�*A a 7r.�'�S' .I- .L• xf r P t�s, -.4••••;41'••••4., •q.1. —4 K �� ✓ .,``JC 't' r .. �.>A S> .r. Tq.`.-3P SEC 'PA.Gtr`iJCJrA••Gatfr`Iniri nili i.,T • 4i'nsfy. er.ma..•.t .. yy..�&,r)eat.,4....i.+wi� .:' 6 b :10 ti •;P!•i k l° M hg3 /A4� �/�ti6`}(M�Ypp�y�p yNJ NR.•Y •��y f 4 .•,. t y • xLl▪ 0.ai.yrpe ',...,:. 1 he v"K� '.f �"i xi tt;*A ..,�<<�� /•vl^�:Lf ,• a-VY.M^/•l�,li li PaL > wr}T'J" 4 1 ^: 'l`w'r xsyIe °±J-• ,•�' -' ,,...• Y•.'1r•n' '< i "f x•r aLY"7b"k.AA�� w�.NI M '`-' Ar :r. %4...4.,.., t�..�.a _ 5 F dr yt . yitc. 1{, tt-e• i Tj•Y:��G.- '^c wA1S� L' y4r'J`. �' * f -> .- ..a_. fir. .V ".'r+r < '13..,. ♦ o ',sr 7.`,,h'�'. •..-t. .e; .rio•t I� tt 44.4.;',,,..7:•",;:e.:.• Isje-f�.�. • r1 - -,r J•• .. jR7�t'+Y- y, icy ?c - ,. -•,24,7_ mow+ vv rr.- 3:(.t`.t .A vt/ Z • O ' U • • w H • U i { irai • ,../.7 UeJ ! to N N M �� / isps 1 am 1 I .:16",..", mow. , •A. 4.442 ss r-; if4 . .s ti:rri APPENDIX B - HYDROLOGY COMPUTATIONS APPENDIX B - 1 SOILS REPORT ha a lG C N .-I '--, .--, 0 0 0090Sbb OOSOSi* OOPOSi* 00C 09147 00ZOSi* OOTOSi* 00005bb 006644* 0086Mt to Ns- r 4— M,,ZI,9£ oV0T - M..ZI,9£ otOT O O n t O !Q N en N O3 U-I en .=--.- � . • _. O tO O la O O •- L rl . en 2 t o • joissiagorrp. , _ O - ----up, .- .. • s- - . -.. 0 <. ... _ . — en hir t. A.. — 4L4 � . o - o o en , o en Cr) . - en A ' MI n till I O CV isitistiNt. _ ___ n 4-31 n Cr)- _ - - - ul _ �, ,,.71 co o .SR, oo l_ 4 — ri el en U .. 4ii L N O O o o ' o o - -01.8 o Q N ( n O O 03 O c0 z O 2 N / en E as y (!l Z I) O) O O O O O en a CO la Lae, _ • 2 a . O i. 4. , ill N w 0 CO VI M - `N rX-1 S O id to - - Iic - - O M t _ • N a LO .. . • en Q O 8 4 in • +• , i S N O L_ CD O 0 III - 0tt 43.1 I ` U `fl o o d > �1 Cr) t :la cc O 00 CV ❑. a n/C en . .r_ -- en (6 (6 li on a a a a cow z Q 2 C) 8 2 Nen . N 11A„bI L£ o60T in in M 44.L£ ob0T QI 00905W 00505W 001709147 00£OSW 00ZOSit 00105171700005W 0066tPt 008611* h� z z Nral TN .--i 1--, -, 0 0 (n v y- 0 o O ° O CoU) 0 c N N N in w v U) 8 +. L? ¢ a) as r `� ,� a) o '- N (o (o CO -t r 1 'Zi a i- O N U l f o (6 coo c Q) N a) U coo `o N to a (o .-, N O d a) o c 0) ." "a (o N a) '5 O a) C V N - Y co Z co a) a 0 co m - • U If Qa) 0 co N CO N .r .-, c" co a) ca E io ° v a ° aa) ° � f'? Q- (n = U ins a � � .� O 2 (.) co C - 77 .c aa)) WU OL a) ° 17 O �O ` a) To to a) Z -°a N ^ U N 4 " O N Oas d N a N 7 Q 12 (r) �? -a r ° i ¢ W (a Q (O N Q ,_ Q L O Q- 0 C c i N O w/ N (O ., o V a) (vin,_ca O N O 0o o 4, ¢ -0 CL 0 0 CO CD>+ > L w O c a) p ?� i U +••. o a3 c .-, (.ri CO O o_ a) O c o -- a) — 42 c :.r a) �' ?�. c a p 2+ (o a) Z ® _0 -0 •F3 t ° n � � � o oa � � C 4 O CO a) Et tr. Z co U m ° a) 0 .O co 92 ,as _0 a) T a (o as O O i ._ Q co _c 13 a) C 03 To EatsN CU c t .c >N .1.32 a) N t rn a) co N `) E o ca a) c >. 2 4'- = m a) w (? � �o � n � Q > >. ° co � .- Nom. � 0 Co(o o a o =0) o � � �- ° CZ as t- ' E ° , tea ¢ � co tc °- n Co a) �-' .� U >. c co a) c = c = c a a) a c a co -a u7 E N c t. E) O p — m 0 c co O. O V .— > Q Q i CO ° "O 13 = c . CO a U N was = -00 o_ .-, (000 N as > = a = co 2 (NI O o_ P Ps E a) a) CU c .N a3 •- a) a) ° a) o (6 O (n _a (o _E a) 'p 31- (Q O t E E C H S' W E 0_ co E cn > U 2 a15 ¢ U I- .-.E. (n U) Coo ON l- 0 .- 45 O W O >` a) -a 8 p O co O U 'o c = a) o cn o - as m u) a)" ca o N a) Q as Ty � ° Ts 0 ..c a) o i 1 O c = CO -O o (6 -a a) a? 0 a t z U) 2 a N ,_ ce O N c4 O) U U 0 2 3 (n ow D 2 J ,C ¢ O 10 ca a O o 7 >, Z O O D D O o 2 w c542 t x ■ 0 m w J a) a) : -Q 4 as o O p) c c o v) ,^ � C O O c 0 -a -a Q o >, ay) C .� as c C ` •5 Q c ¢ O m m 0 U 0 2 o) ¢ O m m o 0 a z c ¢ 0 m m a) a a a a) C . ' a) 'o N U 0 7 _ Q V) 0 O ce to L co w L• N CO O 2 O Ili Hydrologic Soil Group—Weld County, Colorado, Southern Part Hydrologic Soil Group Hydrologic Soil Group— Summary by Map Unit — Weld County, Colorado, Southern Part (CO618) Map unit symbol Map unit name Rating Acres in AOI Percent of AOI 35 Loup-Boel loamy sands, A/D 34.3 25.0% 0 to 3 percent slopes 57 Renohill clay loam, 3 to 9 D 8.6 6.3% percent slopes 69 Valent sand, 0 to 3 A 4.4 3.2% percent slopes 72 Vona loamy sand, 0 to 3 A 56.0 40.9% percent slopes 73 Vona loamy sand, 3 to 5 A 33.8 24.7% percent slopes Totals for Area of Interest 137.1 100.0% tau \ Natural Resources Web Soil Survey 2/5/2015 a Conservation Service National Cooperative Soil Survey Page 3 of 4 Hydrologic Soil Group—Weld County, Colorado, Southern Part Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation , are thoroughly wet, and receive precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D) . The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission . Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission . Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D) , the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff.. None Specified Tie-break Rule: Higher 1au:\ Natural Resources Web Soil Survey 2/5/2015 a Conservation Service National Cooperative Soil Survey Page 4 of 4 M * 1; I -I J 1 TT Iry .r� L ;Si: _ f 14 : , . , I 'K14. r : L 1P4; ;. * f�IIlk:iIllitLillb ,.• } r eterkik W : - . CR-30 _ 72 • 73 35 I - I T /is�� ., 69 72 dr „_ % r - O , cXQ E _ �I Ali II I li; co I i.,O Soils Legend o Map Unit No; HSG Type; Map Unit Name 5 O 35; A/D; Loup-Boel loamy sands . 57; D; Renohill clay loam 3 !! fir o 69; A; Valent sand 0 800; • • -. 72; A; Vona loamy sand •`Ft- lillb• 73; A; Vona loamy sand N CO rn MAGELLAN MIDSTREAM PARTNERS, L.P. Project No.: 133-24091-14001 o - TETRA TECH SADDLEHORN ORIGINATION TERMINAL Date: FEB 11 , 2015 a WELD COUNTY. COLORADO Designed By: JJA www.tetratech.com NI Figure No. 1900 S. Sunset Street, Ste. 1-E Longmont, Colorado 80501 HISTORIC SOILS MAP 1 co w PHONE: (303) 772-5282 FAX: (303) 772-7039 w w 1 M '* itic. , 1 . . '6 ; _ I -I J I t. r : , Il:' °I.-di • . 72 72 ... _......._......a - i . , _ . ;Is: - II 9, . 73 35 0. s IALL i 73 7 • '' I r . • "•4y , O j X I _ LLI O CC 0 . o _e Soils Legend .s o Map Unit No; HSG Type; Map Unit Name x _ _ 35; A/D; Loup-Boel loamy sands u, p of 69; A; Valent sand 0 800 _ 72; A; Vona loamy sand ,L pp73; A; Vona loamy sand N r� =al 05 ill rn MAGELLAN MIDSTREAM PARTNERS, L.P. Project No.: 133-24091-14001 0 `= _ TETRA TECH SADDLEHORN ORIGINATION TERMINAL Date: FEB 11 , 2015 a WELD COUNTY. COLORADO n Designed By: JJA www.tetratech.com No Figure No. 1900 S. Sunset Street, Ste. 1-E Longmont, Colorado 80501 OFFSITE SOILS MAP 1 w w PHONE: (303) 772-5282 FAX: (303) 772-7039 w ' . is _ . 17 - .; „Kr. . ._.. , „is..., _ . E,. . ,.. il , , c ,P WCR-30autisr______ irs _ i N a a eit ,r) 72_w„,„„„I'LlialwatN,72 57 . „ el _ 4 irsor Ii-ixI 72 jg 35 illai _ 73lifr CD ye Ce Co 72 69 9 i I x • o it. w w O J i w > Iw O cn Soils Legend cc W ' ..... o i Map Unit No; HSG Type; Map Unit Name 0 35; A/D; Loup-Boel loamy sands , x 6 57; D; Renohill clay loam E o 69; A; Valent sand Qi 400 72; A; Vona loamy sand N 73; A; Vona loamy sand r o MAGELLAN MIDSTREAM PARTNERS, L.P. Project No.: 133-24091-14001 a TETRA TECH SADDLEHORN ORIGINATION TERMINAL Date: FEB 12, 2015 Lc) WELD COUNTY. COLORADO Designed By: JJA www.tetratech.com CS Figure No. Ni 1900 S. Sunset Street, Ste. 1-E Longmont, Colorado 80501 DEVELOPED SOILS MAP 1 CO w ` PHONE: (303) 772-5282 FAX: (303) 772-7039 w APPENDIX B -2 RAINFALL DATA Precipitation Frequency Data Server Page 1 of 3 ��°,�° NOAA Atlas 14, Volume 8, Version 2 �., ,,, ee '�� g Location name: Hudson, Colorado, US* k 110111 • yeti • Latitude: 40.2020°, Longitude: -104.6103° t i F I / Elevation: 4813W x trees w `� * source: Google Maps 4Nis„ ex POINT PRECIPITATION FREQUENCY ESTIMATES Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin NOAA, National Weather Service, Silver Spring, Maryland PF tabular I PF graphical I Maps & aerials PF tabular PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches)' Average recurrence interval (years) Duration 1 2 5 10 25 50 100 200 500 1000 5-min 0.241 0.293 0.390 0.484 0.632 0.762 0.904 1.06 1.29 1.48 (0.194-0.303) (0.235-0.368) (0.312-0.491) (0.384-0.612) (0.492-0.853) (0.573-1.03) (0.654-1.26) (0.733-1.52) (0.854-1.90) (0.944-2.18) 10-min 0.354 0.429 0.571 0.709 0.926 1.12 1.32 1.56 1.89 2.17 (0.284-0.444) (0.344-0.538) (0.457-0.720) (0.563-0.897) (0.720-1.25) (0.840-1.52) (0.958-1.84) (1.07-2.22) (1.25-2.77) (1.38-3.19) 15-min 0.431 0.523 0.697 0.864 1.13 1.36 1.62 1.90 2.31 2.65 (0.346-0.541) (0.419-0.656) (0.557-0.877) (0.686-1.09) (0.879-1.52) (1.02-1.85) (1.17-2.25) (1.31-2.71) (1.52-3.38) (1.69-3.89) 30-min 0.579 0.699 0.930 1.15 1.51 1.82 2.17 2.55 3.11 3.57 (0.465-0.726) (0.561-0.878) (0.743-1.17) (0.916-1.46) (1.18-2.04) (1.37-2.48) (1.57-3.02) (1.76-3.65) (2.06-4.56) (2.28-5.26) 60-min 0.713 0.851 1.13 1.40 1.84 2.24 2.68 3.18 3.90 4.51 (0.573-0.895) (0.683-1.07) (0.899-1.42) (1 .11-1.77) (1.44-2.50) (1.69-3.05) (1.94-3.74) (2.20-4.55) (2.58-5.74) (2.88-6.64) 2-hr 0.848 1.00 1.32 1.64 2.17 2.65 3.19 3.80 4.70 5.45 (0.686-1 .05) (0.811 -1.25) (1.06-1.65) (1 .31-2.06) (1.72-2.93) (2.02-3.59) (2.34-4.42) (2.66-5.40) (3.14-6.84) (3.51-7.93) 3-hr 0.926 1.08 1.42 1.76 2.33 2.85 3.44 4.11 5.10 5.94 (0.753-1 .15) (0.881 -1.34) (1.15-1.76) (1 .41-2.19) (1.86-3.13) (2.19-3.85) (2.54-4.75) (2.89-5.81) (3.43-7.39) (3.84-8.59) 6-hr 1.09 1.26 1.62 2.00 2.62 3.19 3.83 4.56 5.64 6.55 (0.889-1 .33) (1.03-1.54) (1.32-2.00) (1 .62-2.47) (2.10-3.48) (2.47-4.25) (2.85-5.23) (3.24-6.38) (3.83-8.08) (4.29-9.37) 12-hr 1.28 1.50 1.93 2.34 2.99 3.56 4.19 4.89 5.91 6.75 (1.05-1.55) (1.24-1.82) (1.58-2.35) (1 .91-2.86) (2.40-3.89) (2.77-4.66) (3.13-5.62) (3.50-6.73) (4.05-8.34) (4.46-9.55) 24-hr 1.51 1.78 2.27 2.72 3.40 3.99 4.62 5.32 6.30 7.11 (1.26-1.82) (1.48-2.14) (1.88-2.73) (2.24-3.29) (2.74-4.34) (3.12-5.14) (3.48-6.10) (3.82-7.20) (4.35-8.76) (4.75-9.94) 2-day 1.72 2.06 2.65 3.16 3.90 4.50 5.13 5.79 6.70 7.43 (1.45-2.05) (1.73-2.46) (2.21-3.17) (2.62-3.79) (3.14-4.88) (3.53-5.69) (3.88-6.64) (4.19-7.70) (4.65-9.16) (5.01-10.3) 3-day 1.88 2.23 2.82 3.34 4.09 4.70 5.33 6.00 6.92 7.64 (1.59-2.23) (1.88-2.64) (2.37-3.36) (2.79-3.99) (3.31-5.08) (3.70-5.90) (4.05-6.86) (4.36-7.92) (4.83-9.39) (5.19-10.5) 4-day 2.01 2.36 2.96 3.48 4.23 4.84 5.48 6.15 7.07 7.81 (1.70-2.37) (2.00-2.79) (2.49-3.50) (2.91-4.14) (3.43-5.23) (3.83-6.05) (4.18-7.01) (4.49-8.08) (4.96-9.55) (5.32-10.7) 7-day 2.30 2.68 3.33 3.88 4.66 5.28 5.92 6.58 7.48 8.17 (1.96-2.69) (2.29-3.15) (2.82-3.91) (3.27-4.58) (3.80-5.69) (4.20-6.53) (4.54-7.49) (4.84-8.55) (5.28-9.98) (5.62-11.1) 10-day 2.55 2.97 3.66 4.24 5.05 5.68 6.32 6.97 7.84 8.51 (2.18-2.97) (2.54-3.46) (3.12-4.28) (3.59-4.98) (4.13-6.11) (4.54-6.97) (4.87-7.94) (5.15-8.99) (5.57-10.4) (5.88-11.5) 20-day 3.26 3.75 4.55 5.20 6.09 6.77 7.44 8.11 8.99 9.65 (2.81-3.76) (3.23-4.33) (3.91-5.27) (4.45-6.05) (5.02-7.27) (5.45-8.20) (5.79-9.22) (6.05-10.3) (6.44-11.7) (6.74-12.8) 30-day 3.83 4.39 5.29 6.02 6.99 7.73 8.44 9.15 10.1 10.7 (3.32-4.40) (3.80-5.04) (4.57-6.09) (5.16-6.95) (5.78-8.28) (6.25-9.28) (6.60-10.4) (6.86-11.5) (7.25-13.0) (7.55-14.2) 45-day 4.52 5.19 6.24 7.08 8.20 9.02 9.81 10.6 11.5 12.2 (3.94-5.16) (4.52-5.92) (5.42-7.14) (6.11-8.14) (6.80-9.63) (7.33-10.7) (7.70-12.0) (7.97-13.2) (8.36-14.8) (8.66-16.0) 60-day 5.08 5.86 7.07 8.03 9.28 10.2 11.1 11.9 12.9 13.6 (4.45-5.78) (5.12-6.66) (6.16-8.06) (6.95-9.19) (7.72-10.8) (8.30-12.1) (8.70-13.4) (8.97-14.8) (9.37-16.5) (9.67-17.7) 1 Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information. Back to Top PF graphical http://hdsc.nws.noaa.gov/hdsc/pfds/pfds printpage.html?lat=40.2020&lon=- 104.6103&d... 12/ 19/2014 APPENDIX B -3 HISTORIC RUNOFF CALCULATIONS Saddlehorn Origination Station Historic Runoff Calculations Basin Basin Area(acres) Basin Imperviousness Runoff Coeficients,c Ltotal Li Si Sw Ti Tt 'Efrain all Intensity 1 (in/hr) B .in Flows Q (cfs) let \ Arca Soil Type A Soil Type B Soil Type C Soil Type D ravel Road(ac) Roof/Tank(ac) Undeveloped(ac) I% ≥ Yr 5 Yr 10 Yr 100 Yr ill) (ft) (fi/ft) (t/ft) (min) (min) (min) 2 r 5 Yr 10 Yr 100 Yr 2Y 5 Yr 10 Yr 100 Yr A 51.35 35.18 0.00 0.00 16.17 0.00 0.00 51.35 2.0 0.018 0.057 0.130 0308 4114 500 0.0134 0.0158 38.3 68.5 106.7 0.58 0.76 0.95 L81 0.52 .22 6.34 28.66 k B 15.13 11.73 0.00 0.00 3.40 0.00 0.00 15.13 2.0 0.013 0.043 0.113 0.282 1349 500 0.028 0.02076 30.4 14.0 44.4 1.05 1.39 1.72 130 0.20 .90 2.95 14.07 11 C 82.99 59.11 0.00 0.00 23.88 0.00 0.00 82.99 2.0 0.016 0.052 0.125 0.300 4392 500 0.0171 0.0148 35.4 76.2 111.6 0.56 0.74 0.92 1.75 0.75 .21 9.53 43.69 C Site Imperviousness Table Basin A (2% Imp.) 2 yr 5 yr III yr 100 yr Roof/Tank 90 Soil Type A 35.18 68.50% 0.000 0.008 0.070 0.216 Soil Type B 0.00 0.00% 0.028 0.088 0.166 0.362 Gravd Road 40 Soil Type C 0.00 0.00% 0.056 0.162 0.262 0.508 Soil Type D 16.17 31.50% 0.056 0.162 0.262 0.508 Undeveloped 2 51.35 100.0% 1-hour Point Rainfall Depth Composite: 0.018 0.057 0.130 0.308 2 Yr 5 Yr 10 Yr 100 Yr PI 0.851 1.13 1.4 2.68 Basin B(2% Imp.) 2 yr 5 yr 10 yr 100 yr Soil Type A 11.73 77.50% 0.000 0.008 0.070 0.216 Soil Type B 0.00 0.00% 0.028 0.088 0.166 0.362 Soil Type C 0.00 0.00% 0.056 0.162 0.262 0.508 Notes: Soil Type D 3.40 22.50% 0.056 0.162 0.262 0.508 15.13 100.0% I. Re er to Table RO-3 for Site Imperviousness. Historic flow analysis=2% imperviousness. 2. Refer to Urban Drainage Criteria Manual Vol. I Table RO-5 for Runoff Coefficients,C Composite: 0.013 0.043 0.113 0.282 Basin B(2% Imp.) 2 yr 5 yr 10 yr 100 yr Equation‘: Soil Type A 59.11 71.23% 0.000 0.008 0.070 0.216 Soil Type 13 0.00 0.00% 0.028 0.088 0.166 0.362 Tc= i+Tt Tt 1=(28.5*Pl)/(10+Tc)^0.786 Q=C*1•A Soil Type C 0.00 0.00% 0.056 0.162 0.262 0.508 PI = 1-hr point rainfall depth C=Runoff Coefficient Soil Type D 23.88 28.77% 0.056 0.162 0.262 0.508 82.99 100.0% Ti=(0.395*(1.1-05)*L^0.5)/S^0.33 Tc=time of conentraction I= Rainfall Intensity C5=5 Yr Runoff Coefficient A=Area Composite: 0.016 0.052 0.125 0.300 L=500 ft.maximum S=average watercourse slope Tt=(L-500)/V V= Cv*S^0.5 Cv=Conveyance Coefficient(Table RO-2) S=average watercourse slope P:1240911133-24091-1401-140011SupportDocs\Gales\RunofCalculations_Magellan_Feb 10 APPENDIX B -4 OFFSITE RUNOFF CALCULATIONS Saddlehorn Origination Station Of Site Runoff Calculations Basin Basin Area(acres) Basin Imperviousness Runoff Coeficients,c Ltotal Li Si Sw Ti Tt Tc Rainfall Intensity I(in/hr) j Basin Flores Q(efs) Area Soil Type A Soil Type B Soil Type C Soil Type D Gravel Road(ac) Roe-rank(ac) Asphalt(ac) Undeveloped(ac) I% 2 Yr 5 Yr 10 Yr 100 Yr (II) (ft) (ft/fl) (fl/fl) (min) (min) (m Y n) 2 Yr 5 Yr 10 Yr 100 r 2 Yr 5 Yr 10 Yr 100 Y POA OA-I 2.29 1.77 0.00 0.00 0.52 0.00 0.00 0.17 2.12 9 0.024 0.086 0.169 0.330 1584 500 NN#N 0.017 36.6 19.8 56.4 0.90 1.19 1.48 2.8: 0.05 0.24 0.57 2.1: A OA-2 3436 24.11 0.00 0.00 10.45 0.26 0.00 0.51 33.80 4 0.022 0.064 0.146 0.318 3313 500 iltlikk 0.005 35.0 99.5 134.5 0.49 0.65 0.80 1.5 0.37 1.42 4.03 16.85 A OA-3 2.73 2.73 0.00 0.00 0.00 a m 0.00 037 2.26 17 0.036 0.112 0.182 0.312 752 500 NON 0.086 36.2 2.0 38.: 1.15 1.53 1.90 3.6: 0.11 0.47 0.94 3.09 A OC-1 60.41 36.63 0.00 0.00 23.78 1.21 0.00 0.11 59.09 3 0.025 0.073 0.154 0.337 4572 500 tItfitti 0.014 37.6 81.9 119.5 0.53 0.70 0.87 1.6" 0.81 3.12 8.11 34.01 C OC-2 1.63 1.63 0.00 0.00 0.00 0.00 0.00 0.29 1.34 19 0.052 0.124 0.194 0324 458 13 2.10 2.78 3.45 6.60 0.18 0.56 1.09 3.49 C Basin OA-1 2 yr 5 yr 10 yr 100)T Site Imperviousness Table Soil Type A 1.77 77.33% 0.000 0.052 0.132 0.272 Asphalt l Oll Soil Type B 0.00 0.00% 0.056 0.132 0.214 0.396 Roorank `n( Soil Type C 0.00 0.00% 0.104 0.204 0.296 0.528. Gravel Road 1) Soil Type D 0.52 22.67% 0.104 0.204 0.2% 0.528 Undeveloped 2 2.29 100.0% 1-hour Point Rainfall Depth Composite: 0.024 0.086 0.169 0.330 2 Yr 5 Yr I(1 Yr 100 Yr PI 0.851 1.13 1.4 2.68 Bash%OA-2 2 yr Syr 10 yr 100 yr Soil Type A 24.11 69.76% 0.000 0.016 0.090 0.232 Notes: Soil Typc B 0.00 0.00% 0.036 0.096 0.182 0.374 Soil Type C 0.00 0.00% 0.072 0.174 0.274 0.516 1. Refer to Table RO-3 for Site Imperviousness. Historic flow analysis=2%imperviousness. Soil Type D 10.45 30.24% 0.072 0.174 0.274 0.516 2. Refer to Urban Drainage Criteria Manual Vol. 1 Table RO-5 for RunofCoetiicients,C 34.56 100.0% Composite: 0.022 0.064 0.146 0.318 Equations: Basin OA-3 2 yr Sr 10 yr 100 yr Tc=Ti+Tt I=(28.5*P I)/(I0*Tc)^0.786 Q=C*l*A Soil Type A 2.73 100.00% 0.036 0.112 0.182 0.312 P1 = 1-hr point rainfall depth C=Runoff Coefficient Soil Type B 0.00 0.00% 0.096 0.182 0.258 0.428 Soil Type C 0.00 0.00% 0.152 0.248 0.328 0.544 Ti=(0.395*(1.1-05)*L^0.5)/S^0.33 Tc=time ofconentraction I=Rainfall Intensity Soil Typc D 0.00 0.00% 0.152 0.248 0.328 0.544 C5=5 Yr RunoffCoefficient A=Area 2.73 100.0% L=500 ft.maximum S=avemge watercourse slope Composite: 0.036 0.112 0.182 0.312 T1=(L-500)/V Basin OC-1 2 yr 5 yr 10 yr 100 sr V=CV*S^0.5 Soil Type A 36.63 60.64% 0.000 0.012 0.080 0. CV=Conveyance Coefficient(Table RO-2) Soil Type B 0.00 0.00% 0.032 0.092 0.174 u.?oN S=average watercourse slope Soil Type C 0.00 0.00% 0.064 0.168 0.268 0.512 Soil Type D 23.78 39.36% 0.064 0.168 0.268 ii-s12 60.41 100.0% Composite: 0.025 0.073 0.154 0.?t7 Basin OC-2 2yr 5 y 1O y 100)r Soil Type A 1.63 100.00% 0.052 0.124 0.194 0.324 Soil Typc B 0.00 0.00% 0.112 0.194 0.266 0.436 Soil TypeC 0.00 0.00% 0.164 0.256 0.336 0.548 Soil Type D 0.00 0.00% 0.164 0.256 0.336 0.548. 1.63 100.0% Composite: 0.052 0.124 0.194 0.324 P:1240911133-24091-140011SupportDocs\Calcs1Runoff Calcu lations_Magellan APPENDIX B -5 DEVELOPED RUNOFF CALCULATIONS Saddlehurn Origination Terminal Developed Runoff calculations Bnsio Bola Area penal Basin lmpenlnnsneas Runoff Coefeleata.e 'Fe Rabfal)hlaaslty I(Intl Basin Flaws O(of.) 1104 Area Soil Type A!Soil Type R toil Type C Sloil Type O :noel Road tee) took/Rooflac) .I.phah ice) lyWetoloped loci 14 2 1 r 5'1'r 10IYr 100'lr 18) Iminl 2Yr 5Yr HO Yr 1000 Yr Yr� 3 Tr 10IYr 100h'r I ..111 134 1.31 11110 11.041 11,00 11.00 0.00 1191 0.63 011 .330 0.370 11.410 0.500 042 I. 2.111 2.66 3.30 631 1.02 132 2.08 4.116 .3 4.11 2.03 1.311 0.00 0.00 0.65 0.00 0.00 113 0.20 90 .703 0.723 0.743 0.803 412 I: 2.11 2.81 1.48 6.66 3.02 4.12 5.25 10.8$ A ,.12 ISO 1.44 11110 11.00 036 0.38 0.00 11111 1.39 12 .1159 0.141 0.222 0.398 6154 I. 2,02 1.611 3.32 6.30 0.21 0.68 133 4366 A A.13 4.30 1.43 0.00 0.00 2.87 0.22 0.23 0.00 3.85 9 1,069 0.153 0.241 0.441 608 1d 2.02 248 3.33 6.37 0.60 I.77 3.45 12.12 A ..211 3.06 1.69 111)0 11.00 1.37 0.01 0.20 1170 2.15 LI .196 0.270 0.345 0.516 B8 IS 2,01 2.711 3.35 641 1.22. 2.24 334 10.1.1 A A.21 120 0.86 0.00 0.00 234 0.47 0.27 0.14 2.33 19 .071 0.147 0.219 0.363 %4 I• 1.98 2.63 1.26 623 0.43 1.24 2.28 7?1 A II•10 1.67 1.38 11110 11.00 0.29 0.46 0.114 1145 0.72 41 286 0.354 0.424 0.582 373 I: 2.13 2.83 331 6.71 1.02 1.67 2.48 r,7C A II-II 0.94 0.94 0.00 0.00 0.00 0.30 0.05 0.00 0.1)0 18 .044 0.118 0.188 0.318 278 I: 2.17 2.88 1.57 6.84 0.09 032 0.63 _ • A soah Pond 18.54 10.66 OB 0,110 7.88 I.85 0.79 1(I5 11.26 II A C•10 836 8.56 0.00 0.00 0.00 1.65 053 022 6.16 17 .152 0.248 0.328 0504 985 15.3)56 1.91 2.54 1.13 6.0J 2.49 539 8.84 28.06 C South Pood 836 846 11110 11.00 11.00 1.65 033 1122 6.16 17 C Site Imperviousness Table Asphnll 100 I•bar Pedal Rah fall Deplh RooUrant 00 2 Yr 5Yr 10 Yr I00Yr Grovel Road 40 PI 0451 1.13 I4 2.611 Undeveloped N Baila A-I0 1 y Syr 10 yr 180 yr I.Refer to Table R0.1 for Site lmperviousnnm. Undone how analysis-2%imperviousness. Soil lyptA 1.54 10000% 0.330 0.370 0.410 0.500 2.Race lo Urban Umin48e CtileMM*mud Vol.I lbble RO-3 for Rueoetoefficicals.C Soil Typo B 0,00 11.00% 0.370 0.410 0.460 0.360 SOB Type C 0.00 0.00% 0,410 0.460 0310 11.630 Soil Type 0.00 0.00% 0.410 0.460 0.310 0.630 toualtkasl 1.54 1011,014 Tr-L:1*0.10 1-428,5•PI1/(10+Tel"0,7*6 Composite: 0.330 0.370 0410 0.500 P1-I•hr point rainfall depth Tc-time ofconeniractioo To-time ofconennhaton Basle 4.11 1yr Syr IO yr 100 yr Soil Type A 1.38 67.98: 0.690 0.710 0.730 0.790 O-C•1•4 Soil Type R 0.00 0.00% 0.7111 0.730 0.750 01110 C-R anal Coefficient Soil Type C 0.00 0.00% 0.730 0.750 0.770 0.830 I-Rainfall Intensity Soil Type D 0.05 32,0222% 0.7311 0.750 0.770 0 830 A-Area 2.03 100.0% Composite: 0.703 0.723 0.743 0.803 Basle A-12 2yr Syr 10 yr 100 yr Soil Type A 1.69 5513% 0.0011 11.076 11.132 0288 Soil Type R 0.00 0.00% 0.068 0.152 0.232 0.408 Soil Typet 0.00 0.00% 0.122 11221 0.308 0334 Soil Typo B 137 44.77% 0.122 0,222 0308 0S34 1.06 100.0% C ompo.lte: 0039 11.141 11222 0.39E 114.01 4.1i 2yr Syr .Oyr 100 yr sad I ypo A 1.43 33% 0 0.032 0.132 0272 Soil Type It 0.00 0% 0056 0132 0214 0396 Soil Type C 0,00 0% 0,104 0204 0.296 0528 Soil type U 2.87 67% 0,104 0204 0296 052*' 4,3 100% Compuaice. 0,069 0.153 0.241 0.443 Basle A-20 2 yr Syr TO yr 100 yr Son Type A 0.86 2648% 0.130 11.190 0.250 11370 Soil Type B 0.00 0.00% 0.180 0.250 0.320 11 470 Soil Type C 0.00 0.110% 0.220 0.300 0.380 11370 Soil Type I) 2.34 73.13% 0220 0.300 0.380 11.570 3.20 100.0% Composite: 0.196 0.270 0345 11.516 Bashi 4"21 2 yr Syr IO yr 100 yr Soil Type A 1.38 8243% 0.052 0.124 11.194 0324 Soil Type B 0.00 0.00% 0.112 0.194 11266 11436 Soil Type 0.00 0.00% 0,161 11.256 0.336 0.548 Sou Type l) 029 1737% 0.164 11.256 11.336 0348 1.61 100.0% Modified: 0.071 11.147 11219 0.363 Bail.B-I0 2 yr Syr IO yr I00yr Sod Type A 0.00 0% 0.106 11254 0.306 0.414 Soil Typea 0.00 0% 0.234 0.304 11,364 0.502 Sod I ypc C 0.12 353. 0,286 11.354 11,424 0,382 Soil Type I) 0.22 63% 0386 0.354 11.424 0.582 0,344 100% Modified. 0,2116 11.354 11.424 0382 Bola R-11 2yr Syr 30 yr 100 yr Soli TypeA 0.94 la% 0.044 0.118 0.188 0.318 Soil Type II 0.00 0% 0.104 0.188 0.262 0.432 Soil Type C 0.00 0% 0.158 0.152 0.332 0.546 Soil Type D 0.00 0% 0.158 0.252 0332 0346 0:94 100% Modified: 0.044 0.118 0.188 0.31E Bado C.111 2yr Syr IO yr UO yr Soil Type A 0 0% 0.036 11.112 ILI82 0.312 Soil Type B 0 11% 0.096 11.182 o_'58 0.428 Soil Type C 0.22 42% 0.132 0248 11.328 0.544 Soil Type U Ii.) 58% 0.132 11.248 11328 0.544 0.52 10104 Modified: 0.132 0.248 11.328 11.544 PP24091'.133-24091.14001\SupponDocs:Coles!R anon CaltolMists_61 agellan APPENDIX C - HYDRAULIC COMPUTATIONS APPENDIX C - 1 CULVERT CALCULATIONS Culvert Calculator Report Culvert B Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation 4,818.03 ft Headwater Depth/Height 0.68 Computed Headwater Elew 4,816.90 ft Discharge 2.13 cfs Inlet Control HW Elev. 4,816.86 ft Tailwater Elevation 4,816.69 ft Outlet Control HW Elev. 4,816.90 ft Control Type Outlet Control Grades Upstream Invert 4,816.05 ft Downstream Invert 4,815.75 ft Length 49.00 ft Constructed Slope 0.006122 ft/ft Hydraulic Profile Profile S1 Depth, Downstream 0.94 ft Slope Type Steep Normal Depth 0.57 ft Flow Regime Subcritical Critical Depth 0.58 ft Velocity Downstream 2.15 ft/s Critical Slope 0.005549 ft/ft Section Section Shape Circular Mannings Coefficient 0.013 Section Material Concrete Span 1 .25 ft Section Size 15 inch Rise 1 .25 ft Number Sections 1 Outlet Control Properties Outlet Control HW Elev. 4,816.90 ft Upstream Velocity Head 0.17 ft Ke 0.20 Entrance Loss 0.03 ft Inlet Control Properties Inlet Control HW Elev. 4,816.86 ft Flow Control N/A Inlet Type Beveled ring, 33.7° bevels Area Full 1 .2 ft2 K 0.00180 HDS 5 Chart 3 M 2.50000 HDS 5 Scale B C 0.02430 Equation Form 1 Y 0.83000 Title: Saddlehorn Project Engineer: jeff.butson p:\...\supportdocs\calcs\saddlehorn.cvm ECS-IMR-USA CulvertMaster v3.3 [03.03.00.04] 03/12/15 11 :45:24 AO Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Culvert Calculator Report Culvert C Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation 4,818.20 ft Headwater Depth/Height 1 .00 Computed Headwater Elew 4,817.39 ft Discharge 3.49 cfs Inlet Control HW Elev. 4,817.23 ft Tailwater Elevation 4,817.37 ft Outlet Control HW Elev. 4,817.39 ft Control Type Outlet Control Grades Upstream Invert 4,816.14 ft Downstream Invert 4,815.88 ft Length 52.00 ft Constructed Slope 0.005000 ft/ft Hydraulic Profile Profile PressureProfile Depth, Downstream 1 .22 ft Slope Type N/A Normal Depth 0.82 ft Flow Regime N/A Critical Depth 0.75 ft Velocity Downstream 2.86 ft/s Critical Slope 0.006368 ft/ft Section Section Shape Circular Mannings Coefficient 0.013 Section Material Concrete Span 1 .25 ft Section Size 15 inch Rise 1 .25 ft Number Sections 1 Outlet Control Properties Outlet Control HW Elev. 4,817.39 ft Upstream Velocity Head 0.15 ft Ke 0.20 Entrance Loss 0.03 ft Inlet Control Properties Inlet Control HW Elev. 4,817.23 ft Flow Control N/A Inlet Type Beveled ring, 33.7° bevels Area Full 1 .2 ft2 K 0.00180 HDS 5 Chart 3 M 2.50000 HDS 5 Scale B C 0.02430 Equation Form 1 Y 0.83000 Title: Saddlehorn Project Engineer: jeff.butson p:\...\supportdocs\calcs\saddlehorn.cvm ECS-IMR-USA CulvertMaster v3.3 [03.03.00.04] 03/12/15 11 :50:18 AO Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Culvert Calculator Report Culvert D Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation 4,810.71 ft Headwater Depth/Height 1 .29 Computed Headwater Elew 4,809.62 ft Discharge 18.96 cfs Inlet Control HW Elev. 4,809.62 ft Tailwater Elevation 4,808.56 ft Outlet Control HW Elev. 4,809.61 ft Control Type Inlet Control Grades Upstream Invert 4,807.68 ft Downstream Invert 4,807.26 ft Length 56.00 ft Constructed Slope 0.007500 ft/ft Hydraulic Profile Profile M1 Depth, Downstream 1 .30 ft Slope Type Mild Normal Depth 1 .30 ft Flow Regime Subcritical Critical Depth 1 .19 ft Velocity Downstream 5.83 ft/s Critical Slope 0.008675 ft/ft Section Section Shape Circular Mannings Coefficient 0.013 Section Material Concrete Span 1 .50 ft Section Size 18 inch Rise 1 .50 ft Number Sections 2 Outlet Control Properties Outlet Control HW Elev. 4,809.61 ft Upstream Velocity Head 0.53 ft Ke 0.20 Entrance Loss 0.11 ft Inlet Control Properties Inlet Control HW Elev. 4,809.62 ft Flow Control Submerged Inlet Type Beveled ring, 33.7° bevels Area Full 3.5 ft2 K 0.00180 HDS 5 Chart 3 M 2.50000 HDS 5 Scale B C 0.02430 Equation Form 1 Y 0.83000 Title: Saddlehorn Project Engineer: jeff.butson p:\...\supportdocs\calcs\saddlehorn.cvm ECS-IMR-USA CulvertMaster v3.3 [03.03.00.04] 03/12/15 01 :44:19 PM © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Culvert Calculator Report Culvert E Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation 4,812.31 ft Headwater Depth/Height 1 .21 Computed Headwater Elew 4,810.41 ft Discharge 4.86 cfs Inlet Control HW Elev. 4,810.35 ft Tailwater Elevation 4,808.03 ft Outlet Control HW Elev. 4,810.41 ft Control Type Entrance Control Grades Upstream Invert 4,808.89 ft Downstream Invert 4,807.86 ft Length 104.00 ft Constructed Slope 0.009904 ft/ft Hydraulic Profile Profile S2 Depth, Downstream 0.81 ft Slope Type Steep Normal Depth 0.81 ft Flow Regime Supercritical Critical Depth 0.89 ft Velocity Downstream 5.76 ft/s Critical Slope 0.007643 ft/ft Section Section Shape Circular Mannings Coefficient 0.013 Section Material Concrete Span 1 .25 ft Section Size 15 inch Rise 1 .25 ft Number Sections 1 Outlet Control Properties Outlet Control HW Elev. 4,810.41 ft Upstream Velocity Head 0.42 ft Ke 0.50 Entrance Loss 0.21 ft Inlet Control Properties Inlet Control HW Elev. 4,810.35 ft Flow Control Transition Inlet Type Square edge w/headwall Area Full 1 .2 ft2 K 0.00980 HDS 5 Chart 1 M 2.00000 HDS 5 Scale 1 C 0.03980 Equation Form 1 Y 0.67000 Title: Saddlehorn Project Engineer: jeff.butson p:\...\supportdocs\calcs\saddlehorn.cvm ECS-IMR-USA CulvertMaster v3.3 [03.03.00.04] 03/12/15 11 :52:09 AO Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Culvert Calculator Report Culvert F Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation 4,811 .00 ft Headwater Depth/Height 0.90 Computed Headwater Elew 4,811 .00 ft Discharge 10.85 cfs Inlet Control HW Elev. 4,810.93 ft Tailwater Elevation 4,807.96 ft Outlet Control HW Elev. 4,811 .00 ft Control Type Entrance Control Grades Upstream Invert 4,809.65 ft Downstream Invert 4,807.79 ft Length 68.00 ft Constructed Slope 0.027353 ft/ft Hydraulic Profile Profile S2 Depth, Downstream 0.58 ft Slope Type Steep Normal Depth 0.58 ft Flow Regime Supercritical Critical Depth 0.90 ft Velocity Downstream 8.67 ft/s Critical Slope 0.005954 ft/ft Section Section Shape Circular Mannings Coefficient 0.013 Section Material Concrete Span 1 .50 ft Section Size 18 inch Rise 1 .50 ft Number Sections 2 Outlet Control Properties Outlet Control HW Elev. 4,811 .00 ft Upstream Velocity Head 0.38 ft Ke 0.20 Entrance Loss 0.08 ft Inlet Control Properties Inlet Control HW Elev. 4,810.93 ft Flow Control Unsubmerged Inlet Type Beveled ring, 33.7° bevels Area Full 3.5 ft2 K 0.00180 HDS 5 Chart 3 M 2.50000 HDS 5 Scale B C 0.02430 Equation Form 1 Y 0.83000 Title: Saddlehorn Project Engineer: jeff.butson p:\...\supportdocs\calcs\saddlehorn.cvm ECS-IMR-USA CulvertMaster v3.3 [03.03.00.04] 03/12/15 03:36:50 PM Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Culvert Calculator Report Culvert G Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation 4,807.50 ft Headwater Depth/Height 0.86 Computed Headwater Elew 4,806.78 ft Discharge 10.13 cfs Inlet Control HW Elev. 4,806.73 ft Tailwater Elevation 4,806.23 ft Outlet Control HW Elev. 4,806.78 ft Control Type Outlet Control Grades Upstream Invert 4,805.49 ft Downstream Invert 4,805.25 ft Length 49.00 ft Constructed Slope 0.004898 ft/ft Hydraulic Profile Profile M1 Depth, Downstream 0.98 ft Slope Type Mild Normal Depth 0.92 ft Flow Regime Subcritical Critical Depth 0.87 ft Velocity Downstream 4.14 ft/s Critical Slope 0.005801 ft/ft Section Section Shape Circular Mannings Coefficient 0.013 Section Material Concrete Span 1 .50 ft Section Size 18 inch Rise 1 .50 ft Number Sections 2 Outlet Control Properties Outlet Control HW Elev. 4,806.78 ft Upstream Velocity Head 0.31 ft Ke 0.20 Entrance Loss 0.06 ft Inlet Control Properties Inlet Control HW Elev. 4,806.73 ft Flow Control Unsubmerged Inlet Type Beveled ring, 33.7° bevels Area Full 3.5 ft2 K 0.00180 HDS 5 Chart 3 M 2.50000 HDS 5 Scale B C 0.02430 Equation Form 1 Y 0.83000 Title: Saddlehorn Project Engineer: jeff.butson p:\...\supportdocs\calcs\saddlehorn.cvm ECS-IMR-USA CulvertMaster v3.3 [03.03.00.04] 03/12/15 11 :57:04 AO Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Culvert Calculator Report Culvert H Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation 4,802.38 ft Headwater Depth/Height 1 .03 Computed Headwater Elew 4,802.49 ft Discharge 20.27 cfs Inlet Control HW Elev. 4,802.44 ft Tailwater Elevation 4,801 .74 ft Outlet Control HW Elev. 4,802.49 ft Control Type Entrance Control Grades Upstream Invert 4,800.95 ft Downstream Invert 4,800.69 ft Length 35.00 ft Constructed Slope 0.007429 ft/ft Hydraulic Profile Profile CompositeS1 S2 Depth, Downstream 1 .05 ft Slope Type Steep Normal Depth 0.97 ft Flow Regime N/A Critical Depth 1 .01 ft Velocity Downstream 5.11 ft/s Critical Slope 0.006620 ft/ft Section Section Shape Circular Mannings Coefficient 0.013 Section Material Concrete Span 1 .50 ft Section Size 18 inch Rise 1 .50 ft Number Sections 3 Outlet Control Properties Outlet Control HW Elev. 4,802.49 ft Upstream Velocity Head 0.45 ft Ke 0.20 Entrance Loss 0.09 ft Inlet Control Properties Inlet Control HW Elev. 4,802.44 ft Flow Control Unsubmerged Inlet Type Beveled ring, 33.7° bevels Area Full 5.3 ft2 K 0.00180 HDS 5 Chart 3 M 2.50000 HDS 5 Scale B C 0.02430 Equation Form 1 Y 0.83000 Title: Saddlehorn Project Engineer: jeff.butson p:\...\supportdocs\calcs\saddlehorn.cvm ECS-IMR-USA CulvertMaster v3.3 [03.03.00.04] 03/12/15 03:54:19 PM Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Culvert Calculator Report Culvert J Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation 4,802.26 ft Headwater Depth/Height 1 .01 Computed Headwater Elew 4,801 .85 ft Discharge 2.04 cfs Inlet Control HW Elev. 4,801 .74 ft Tailwater Elevation 4,801 .74 ft Outlet Control HW Elev. 4,801 .85 ft Control Type Outlet Control Grades Upstream Invert 4,800.59 ft Downstream Invert 4,800.28 ft Length 61 .00 ft Constructed Slope 0.005082 ft/ft Hydraulic Profile Profile CompositePressureProfileM1 Depth, Downstream 1 .46 ft Slope Type N/A Normal Depth 0.58 ft Flow Regime Subcritical Critical Depth 0.57 ft Velocity Downstream 1 .66 ft/s Critical Slope 0.005507 ft/ft Section Section Shape Circular Mannings Coefficient 0.013 Section Material Concrete Span 1 .25 ft Section Size 15 inch Rise 1 .25 ft Number Sections 1 Outlet Control Properties Outlet Control HW Elev. 4,801 .85 ft Upstream Velocity Head 0.04 ft Ke 0.20 Entrance Loss 0.01 ft Inlet Control Properties Inlet Control HW Elev. 4,801 .74 ft Flow Control Unsubmerged Inlet Type Beveled ring, 33.7° bevels Area Full 1 .2 ft2 K 0.00180 HDS 5 Chart 3 M 2.50000 HDS 5 Scale B C 0.02430 Equation Form 1 Y 0.83000 Title: Saddlehorn Project Engineer: jeff.butson p:\...\supportdocs\calcs\saddlehorn.cvm ECS-IMR-USA CulvertMaster v3.3 [03.03.00.04] 03/13/15 09:50:25 AM © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Culvert Calculator Report Culvert K Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation 4,802.50 ft Headwater Depth/Height 0.87 Computed Headwater Elew 4,802.05 ft Discharge 6.52 cfs Inlet Control HW Elev. 4,802.00 ft Tailwater Elevation 4,801 .32 ft Outlet Control HW Elev. 4,802.05 ft Control Type Outlet Control Grades Upstream Invert 4,800.96 ft Downstream Invert 4,800.34 ft Length 124.00 ft Constructed Slope 0.005000 ft/ft Hydraulic Profile Profile M1 Depth, Downstream 0.98 ft Slope Type Mild Normal Depth 0.78 ft Flow Regime Subcritical Critical Depth 0.73 ft Velocity Downstream 3.16 ft/s Critical Slope 0.006198 ft/ft Section Section Shape Circular Mannings Coefficient 0.013 Section Material Concrete Span 1 .25 ft Section Size 15 inch Rise 1 .25 ft Number Sections 2 Outlet Control Properties Outlet Control HW Elev. 4,802.05 ft Upstream Velocity Head 0.25 ft Ke 0.20 Entrance Loss 0.05 ft Inlet Control Properties Inlet Control HW Elev. 4,802.00 ft Flow Control Unsubmerged Inlet Type Beveled ring, 33.7° bevels Area Full 2.5 ft2 K 0.00180 HDS 5 Chart 3 M 2.50000 HDS 5 Scale B C 0.02430 Equation Form 1 Y 0.83000 Title: Saddlehorn Project Engineer: jeff.butson p:\...\supportdocs\calcs\saddlehorn.cvm ECS-IMR-USA CulvertMaster v3.3 [03.03.00.04] 03/12/15 03:49:40 PM Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 APPENDIX C -2 DRAINAGE CHANNEL CALCULATIONS Channel A Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.020 Channel Slope 0.01100 ft/ft Left Side Slope 4.00 ft/ft (H:V) Right Side Slope 4.00 ft/ft (H:V) Bottom Width 50.00 ft Discharge 20.27 ft3/s Results Normal Depth 0.17 ft Flow Area 8.58 ft2 Wetted Perimeter 51 .40 ft Hydraulic Radius 0. 17 ft Top Width 51 .35 ft Critical Depth 0.17 ft Critical Slope 0.01054 ft/ft Velocity 2.36 ft/s Velocity Head 0.09 ft Specific Energy 0.26 ft Froude Number 1 .02 Flow Type Supercritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.17 ft Critical Depth 0.17 ft Channel Slope 0.01100 ft/ft Critical Slope 0.01054 ft/ft Bentley Systems, Inc. Haestad Methods allotley Ele thi aster V8i (SELECTseries 1) [08.11.01.03] 3/12/2015 11 :16:18 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Channel B Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.020 Channel Slope 0.00980 ft/ft Left Side Slope 4.00 ft/ft (H:V) Right Side Slope 4.00 ft/ft (H:V) Discharge 17.37 ft3/s Results Normal Depth 0.98 ft Flow Area 3.87 ft2 Wetted Perimeter 8.11 ft Hydraulic Radius 0.48 ft Top Width 7.87 ft Critical Depth 1 .03 ft Critical Slope 0.00757 ft/ft Velocity 4.49 ft/s Velocity Head 0.31 ft Specific Energy 1 .30 ft Froude Number 1 .13 Flow Type Supercritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.98 ft Critical Depth 1 .03 ft Channel Slope 0.00980 ft/ft Critical Slope 0.00757 ft/ft Bentley Systems, Inc. Haestad Methods datleit Cle tMaster V8i (SELECTseries 1) [08.11.01.03] 3/12/2015 11:18:31 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Channel C Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.020 Channel Slope 0.00400 ft/ft Left Side Slope 4.00 ft/ft (H:V) Right Side Slope 10.00 ft/ft (H:V) Discharge 10.85 ft3/s Results Normal Depth 0.79 ft Flow Area 4.34 ft2 Wetted Perimeter 11 .15 ft Hydraulic Radius 0.39 ft Top Width 11 .02 ft Critical Depth 0.68 ft Critical Slope 0.00847 ft/ft Velocity 2.50 ft/s Velocity Head 0.10 ft Specific Energy 0.88 ft Froude Number 0.70 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.79 ft Critical Depth 0.68 ft Channel Slope 0.00400 ft/ft Critical Slope 0.00847 ft/ft Bentley Systems, Inc. Haestad Methods datleit Cle tMaster V8i (SELECTseries 1) [08.11.01.03] 3/12/2015 11:19:26 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Channel D Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.020 Channel Slope 0.01500 ft/ft Left Side Slope 4.00 ft/ft (H:V) Right Side Slope 4.00 ft/ft (H:V) Bottom Width 0.00 ft Discharge 18.96 ft3/s Results Normal Depth 0.94 ft Flow Area 3.52 ft2 Wetted Perimeter 7.74 ft Hydraulic Radius 0.46 ft Top Width 7.51 ft Critical Depth 1 .07 ft Critical Slope 0.00748 ft/ft Velocity 5.38 ft/s Velocity Head 0.45 ft Specific Energy 1 .39 ft Froude Number 1 .39 Flow Type Supercritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.94 ft Critical Depth 1 .07 ft Channel Slope 0.01500 ft/ft Critical Slope 0.00748 ft/ft Bentley Systems, Inc. Haestad Methods aIntley Ele thi aster V8i (SELECTseries 1) [08.11.01.03] 3/12/2015 11 :11 :08 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Channel E Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.020 Channel Slope 0.00500 ft/ft Left Side Slope 4.00 ft/ft (H:V) Right Side Slope 4.00 ft/ft (H:V) Discharge 37.50 ft3/s Results Normal Depth 1 .49 ft Flow Area 8.87 ft2 Wetted Perimeter 12.28 ft Hydraulic Radius 0.72 ft Top Width 11 .91 ft Critical Depth 1 .40 ft Critical Slope 0.00683 ft/ft Velocity 4.23 ft/s Velocity Head 0.28 ft Specific Energy 1 .77 ft Froude Number 0.86 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1 .49 ft Critical Depth 1 .40 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00683 ft/ft Bentley Systems, Inc. Haestad Methods datleit Cle tMaster V8i (SELECTseries 1) [08.11.01.03] 3/12/2015 11:13:31 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 APPENDIX C -3 WQCV CALCULATIONS STAGE-DISCHARGE SIZING OF THE WATER QUALITY CAPTURE VOLUME (WQCV) OUTLET Project: Saddlehom Origination Station Basin ID: North Pond WQCV Design Volume(Input): Catchment Imperviousness, la= 31.0 percent Catchment Area,A= 18.8 acres Diameter of holes, D= 1.188 inches Depth at WQCV outlet above lowest perforation,H= 1 feet Mmber of holes per row,N= 2 Vertical distance between rows,h = 4.00 inches OR Number of rows,NL= 3.00 Orifice discharge coefficient,Co= 0.60 Height of slot.H= inches Slope of Basin Trickle Channel,S= 0.010 ft/ft Width of slot,W= inches lime to Drain the Pond= 40 hours 0 C 0 0 0 r—_ 0 Perforated Watershed Design Information(Input): O O O Plate Percent Sal Type A= 58 % o o =io Examples Percent Sal Type B= 0 % o o e O o a o 0 0 0 Percent Soil Type C/D= 42 % A, A, Ar Ai_ _iv_ Outlet Design Information(Output): Co 0 0 0 0 0a. , 4'J Water Quality Capture Volume.WQCV= 0.160 watershed inches o Water Quality Capture Volume(WQCV)= 0.251 acre-feet o O O o oDesign Volume(WQCV/12'Area'1.2)Vol= 0.301 acre-feet o O O O O O Outlet area per row,A0= 0.90 square inches Total opening area at each row based on user-input above,A0= 2.22 square inches Total opening area at each row based on user-input above,A0= 0.015 square feet 3 Central Elevations of Rows of Holes in feet Row 1 Row 2 Row 3 Row4 Row 5 Row 6 Row 7 Row 8 Row 9 Row 10 Row 11 Row 12 Row 13 Row 14 Row 15 Row 16 Row 17 Row 18 Row 19 Row 20 Row21 Row 22 Row 23 Roily23 6 4799.10 4799.43 4799.77 I I I Flow Collection Capacity for Each Row of Holes in cfs 4799.10 0.0000 0.0000 0.0000 1 I 0.00 _ 4799.20 0.0234 . 0.0000 . 0.0000 I 0.02 _ 4799.30 0.0331 . 0.0000 . 0.0000 _ _I_ 0.03 4799.40 0.0406 . 0.0000 . 0.0000 _ I 0.04 4799.50 0.0468 0.0196 0.0000 I 0.07 4799.60 0.0524 0.0305 0.0000 I 0.08 4799.70 0.0574 0.0385 0.0000 _ I 0.10 _ 4799.80 0.0620 0.0451 0.0128 I 0.12 4799.90 0.0662 . 0.0508 0.0267_ I 0.14 4800.00 0.0703 . 0.0559 . 0.0355 _ I 0.16 4800.10 0.0741 0.0606 0.0425 _I 0.18 4800.20 0.0777 0.0650 0.0486 I 0.19 4800.30 0.0811 0.0691 0.0539 _ I 0.20 _ 4800.40 0.0844 . 0.0729 . 0.0588 _ 1 0.22 4800.50 0.0876 0.0766 0.0633 I 0.23 4800.60 0.0907 . 0.0801 0.0675 I 0.24 __ 4800.70 ! 0.0937 . 0.0835 0.0714_ I 0.25 4800.80 ! 0.0966 . 0.0867 0.0752 I 0.26 4800.90 I 0.0994 0.0898 0.0787 I 0.27 _ 4801.00 0.1021 . 0.0928 . 0.0821 I 0.28 4801.10 0.1047 . 0.0957 0.0854 I 0.29 4801.20 0.1073 . 0.0985 . 0.0886 _ I 0.29 _ 4801.30 0.1099 0.1013 0.0916 0.30 4801.40 0.1123 0.1040 0.0946_. I 0.31 4801.50 0.1147 0.1066 0.0974 I 0.32 _ 4801.60 0.1171 . 0.1091 . 0.1002 I 0.33 _ 4801.70 0.1194 . 0.1116 . 0.1029_ _I_ 0.33 4801.80 0.1217 . 0.1140 . 0.1055 _ I 0.34 4801.90 0.1239 0.1164 0.1081 I 0.35 4802.00 0.1261 0.1187 0.1106 0.36 4802.10 0.1283 0.1210 0.1131 _ I 0.36 _ 4802.20 I 0.1304 0.1233 0.1155 I 0.37 4802.30 0.1325 . 0.1255 0.1178 I 0.38 4802.40 0.1345 . 0.1276 . 0.1201 _ I 0.38 4802.50 0.1366 0.1298 0.1224 I 0.39 4802.60 0.1386 . 0.1319 . 0.1246__ _I 0.40 4802.70 0.1405 0.1339 . 0.1268 _ I 0.40 4802.80 0.1425 . 0.1360 . 0.1289 _I 0.41 4802.90 0.1444 . 0.1380 . 0.1310 _ I 0.41 _ #WA i #N/A #N/A I #WA #WA #N/A . #WA _I #WA #N/A _ MA #N/A _ _ _ _I #WA _ #NIA MA #WA _ J _ _ 1 _ I #N/A #WA MA MA #N/A Override Override Override Override Override Override Ovenide Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Rawl Row 2 Row 3 Row 4 Row 5 Row 6 Row 7 Row 8 Row 9 Row 10 Row 11 Row 12 Row 13 Row 14 Row 15 Row 16 Row 17 Row 18 Row 19 Row 20 Row 21 Row 22 Row 23 Row 24 lA-Detention_v2.34 North Pond.ids,WQCV 2/12/2015, 1:56 PM STAGE-DISCHARGE SIZING OF THE WATER QUALITY CAPTURE VOLUME (WQCV) OUTLET Project: Saddlehorn Origination Station Basin ID: North Pond r 1 STAGE-DISCHARGE CURVE FOR THE WQCV OUTLET STRUCTURE 10000.00 9500.00 < 9000.00 -, 8500.00 8000.00 m m Y C, C) 7500.00 m iT co Y^ V/ 7000.00 -t 6500.00 6000.00 5500.00 -- 5000.00 - 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 Discharge (cfs) K J UD-Detention_V2.34 North Pond.>ds,WQCV 2/12/2015, 1:56 PM STAGE-DISCHARGE SIZING OF THE WATER QUALITY CAPTURE VOLUME (WQCV) OUTLET Project: Saddlehom Origination Terminal Basin ID: South Pond WQCV Design Volume(Input): Catchment Imperviousness, la= 13.0 percent Catchment Area,A= 9.91 acres Diameter of holes, D= 0.875 inches Depth at WQCV outlet above lowest perforation,H= 1 feet Mmber of holes per row,N= 2 Vertical distance between rows,h = 4.00 inches oR Number of rows,NL= 3.00 Orifice discharge coefficient,Co= 0.60 Height of slot.H= inches Slope of Basin Trickle Channel,S= 0.010 ft/ft Width of slot,W= inches lime to Drain the Pond= 40 hours 0 C 0 0 0 r— I 0 Perforated Watershed Design Information(Input): O O O O O O =i Plate Percent Sal Type A= 100 % o Examples Percent Sal Type B= % o o e O o a o o I o Percent Soil Type C/D= % A, A, At Ai_ _iv_ Outlet Design Information(Output): Co 0 e 0 0 0 , 4'J Water Quality Capture Volume.WQCV= 0.056 watershed inches o Water Quality Capture Volume(WQCV)= 0.046 acre-feet o O O Ini O Design Volume(W)CV/12'Area'1.2)Vol= 0.055 acre-feet o O O O O O Outlet area per row,A0= 0.18 square inches Total opening area at each row based on user-input above,A0= 1.20 square inches Total opening area at each row based on user-input above,A0= 0.008 square feet 3 Central Elevations of Rows of Holes in feet Row 1 Row 2 Row 3 Row4 Row 5 Row 6 Row 7 Row 8 Row 9 Row 10 Row 11 Row 12 Row 13 Row 14 Row 15 Row 16 Row 17 Row 18 Row 19 Row 20 Row21 Row 22 Row 23 Roily23 6 4795.00 4795.3.3 4795.67 I I Flow Collection Capacity for Each Row of Holes in cfs 4795.00 0.0000 0.0000 0.0000 I 0.00 4795.10 0.0127 0.0000 . 0.0000 I 0.01 4795.20 i 0.0180 0.0000 0.0000 I_ 0.02 4795.30 I 0.0220 . 0.0000 . 0.0000 _ I 0.02 4795.40 0.0254 0.0106 0.0000 I_ 0.04 4795.50 0.0284 0.0166 0.0000 I 0.05 4795.60 0.0311 0.0209 0.0000 _ I 0.05 _ 4795.70 0.0336 . 0.0245 . 0.0070 _I 0.07 4795.80 0.0360 . 0.0276 0.0145 I_ 0.08 4795.90 0.0381 . 0.0304 . 0.0193 I 0.09 4796.00 0.0402 0.0329 0.0231 _ _I_ 0.10 4796.10 0.0422 0.0353 0.0264_ I 0.10 4796.20 0.0441 0.0375 0.0293 _ I 0.11 _ 4796.30 0.0459 . 0.0396 0.0319_ I 0.12 4796.40 0.0476 . 0.0416 0.0344 I_ 0.12 4796.50 0.0493 . 0.0435 . 0.0366 _ I 0.13 _ 4796.60 ! 0.0509 . 0.0453 0.0388 I 0.13 4796.70 ! 0.0524 0.0471 0.0408 I 0.14 4796.80 I 0.0540 0.0488 0.0427 _ I 0.15 _ 4796.90 0.0554 0.0504 0.0446 I 0.15 4797.00 0.0569 . 0.0520 . 0.0464_ I_ 0.16 4797.10 0.0583 0.0535 0.0481 I 0.16 _ 4797.20 0.0596 0.0550 0.0497 I_ 0.16 4797.30 0.0610 . 0.0564 . 0.0513_. I_ 0.17 4797.40 0.0623 0.0579 0.0529 _ I 0.17 _ 4797.50 0.0636 . 0.0592 . 0.0544_ I 0.18 4797.60 0.0648 . 0.0606 . 0.0559_ I_ 0.18 4797.70 0.0661 . 0.0619 . 0.0573 _ I 0.19 4797.80 ! 0.0673 . 0.0632 0.0587 I 0.19 4797.90 ! 0.0685 . 0.0645 0.0601__. I 0.19 4798.00 0.0697 0.0657 0.0614 _ I 0.20 _ 4798.10 ! 0.0708 . 0.0669 0.0627 I 0.20 _ 4798.20 0.0719 . 0.0681 0.0640 _ _I_ 0.20 4798.30 0.0731 . 0.0693 . 0.0652 _ I 0.21 _ 4798.40 0.0741 0.0705 0.0664 I 0.21 #WA #WA #WA _I #WA #N/A #N/A #WA #N/A #NM #WA . #N/A . _I #NIA #WA #WA . #WA _ I #N/A _ #WA #WA . #N/A I_ #N/A #WA #WA . #WA _I #N/A _ #N/A _ #WA #N/A _ _ _I PM _ #NIA #N/A #WA I _ I I #WA #NIA #NIA #WA #N/A Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Rawl Row 2 Row 3 Row 4 Row 5 Row 6 Row 7 Row 8 Row 9 Row 10 Row 11 Row 12 Row 13 Row 14 Row 15 Row 16 Row 17 Row 18 Row 19 Row 20 Row 21 Row 22 Row 23 Row 24 LD-Detention_v2.34 South Pondids,WQCV 2/12/2015, 1:53 PM STAGE-DISCHARGE SIZING OF THE WATER QUALITY CAPTURE VOLUME (WQCV) OUTLET Project: Saddlehorn Origination Terminal Basin ID: South Pond r STAGE-DISCHARGE CURVE FOR THE WQCV OUTLET STRUCTURE 6000.00 5000.00 4 ♦ ♦ ♦ • • ♦ • ♦ • ♦ ♦ ♦ • • • • ♦ • • • ♦ • ♦ • ♦ ♦ • ♦ ♦ ♦ ♦ ♦ • ♦ 4000.00 d m Y a> 44 3000.00 — a) tC, co 'Y^^ V/ 2000.00 1000.00 - 0.00 0.00 0.05 0.10 0.15 0.20 0.25 Discharge (cfs) J UJ-Detention_J2.34 South Pond.xls,WQCV 2/12/2015, 1:53 PM APPENDIX C -4 DETENTION POND CALCULATIONS DETENTION VOLUME BY THE MODIFIED FAA METHOD Project: Magellan Platteville Origination Station Basin ID: North Pond (For catchments less than 160 acres only. For larger catchments, use hydrograph routing method) (NOTE: for catchments larger than 90 acres. CUHP hydrograph and routing are recommended) Determination of MINOR Detention Volume Using Modified FAA Method 1 Determination of MAJOR Detention Volume Using Modified FAA Method Design Information (Input): Design Information (Input): Catchment Drainage Imperviousness 1,= 31.00 percent Catchment Drainage Imperviousness I,= 31.00 percent Catchment Drainage Area A= 18.540 acres Catchment Drainage Area A= 18.540 acres Predevelopment NRCS Soil Group Type= A A. B. C.or D Predevelopment NRCS Soil Group Type= A A, B. C, or D Return Period for Detention Control T= 10 years(2.5, 10,25,50,or 100) Return Period for Detention Control T= 100 years(2. 5, 10, 25. 50,or 100) Time of Concentration of Watershed Tc= 20 minutes Time of Concentration of Watershed Tc = 20 minutes Allowable Unit Release Rate q = 0.04 cfs/acre Allowable Unit Release Rate q = 0.04 cfs/acre One-hour Precipitation P, = 1.40 inches One-hour Precipitation P1 = 2.68 Inches Design Rainfall IDF Formula i =C,*P,/(C2+T,)AC3 Design Rainfall IDF Formula i =C,* P11(C2+Tj^C3 Coefficient One C, = 28.50 Coefficient One C1 = 28.50 Coefficient Two C2= 10 Coefficient Two C2= 10 Coefficient Three C3= 0.789 Coefficient Three C3= 0.789 Determination of Average Outflow from the Basin (Calculated): Determination of Average Outflow from the Basin (Calculated): Runoff Coefficient C= 0.26 Runoff Coefficient C= 0.38 Inflow Peak Runoff Qp-in= 13.19 cfs Inflow Peak Runoff Qp-in = 36.89 cfs Allowable Peak Outflow Rate Op-out= 0.80 cfs Allowable Peak Outflow Rate Qp-out = 0.80 cfs Mod. FAA Minor Storage Volume= 22,326 cubic feet Mod. FAA Major Storage Volume= 65,909 cubic feet Mod. FAA Minor Storage Volume= 0.513 acre-ft Mod. FAA Major Storage Volume= 1.513 acre-ft 1 <-Enter Rainfall Duration Incremental Increase Value Here(e.g. 5 for 5-Minutes) Rainfall Rainfall Inflow Adjustment Average Outflow Storage Rainfall Rainfall Inflow Adjustment Average Outflow Storage Duration Intensity Volume Factor Outflow Volume Volume Duration Intensity Volume Factor Outflow Volume Volume minutes inches/hr acre-feet "m" cfs acre-feet acre-feet minutes inches/hr acre-feet m" cfs acre-feet acre-feet (input) (output) (output) (output) (output) (output) (output) (Input) (output) (output) (output) (output) (output) (output) 0 0.00 0.000 0.00 0.00 0.000 0.000 0 0.00 0.000 0.00 0.00 0.000 0.000 1 6.02 0.040 1.00 0.80 0.001 0.039 1 11.52 0.112 1.00 0.80 0.001 0.111 2 5.62 0.075 1.00 0.80 0.002 0.072 2 10.75 0.209 1.00 0.80 0.002 0.206 3 5.27 0.105 1.00 0.80 0.003 0.102 3 10.09 0.294 1.00 0.80 0.003 0.291 4 4.97 0.132 1.00 0.80 0.004 0.128 4 9.52 0.370 1.00 0.80 0.004 0.365 5 4/1 0.156 1.00 0.80 0.006 0.151 5 9.02 0:437 1.00 0.80 0.006 0.432 6 4.48 0.178 1.00 (180 0.007 0.172 6 8.57 0.499 1.00 0.80 0.007 0.492 7 4.27 0.198 1.00 0.80 0.008 0.191 7 8.17 0.555 1.00 0.80 0.008 0.547 8 4.08 0.217 1.00 0.80 0.009 0.208 8 7.81 0.606 1.00 0.80 0.009 0.597 9 3.91 0.234 1.00 0.80 0.010 0.224 9 7.48 0.653 1.00 0.80 0.010 0.644 10 3.75 0.249 1.00 0.80 0.011 0.238 10 7.19 0.697 1.00 0.80 0.011 0.686 11 3.61 0.264 1.00 0.80 0.012 0.252 11 6.91 0.738 1.00 0.80 0.012 0.726 12 3.48 0.277 1.00 0.80 0.013 0.264 12 6.67 0.776 1.00 0:80 0.013 0.763 13 3.36 0.290 1.00 0.80 0.014 0.276 13 6.44 0.812 1.00 0.80 0.014 0.798 14 3.25 0.302 1.00 0.80 0.015 0.287 14 6.22 0.845 1.00 0.80 0.015 0.830 15 3.15 0.313 1.00 0.80 0.017 0.297 15 6.03 0.877 1.00 0.80 0.017 0.861 16 3.05 0.324 1.00 0.80 0.018 0.307 16 5.84 0.907 1.00 0.80 0.018 0.889 17 2.96 0.334 1.00 0.80 0.019 0.316 17 5.67 0.935 1.00 0.80 0.019 0.917 18 2.88 0.344 1.00 0.80 0.020 0.324 18 5.51 0.963 1.00 0.80 0.020 0243 19 2.80 0.353 1.00 0.80 0.021 0.332 _ 19 5.36 0.988 1.00 0.80 0.021 0267 20 2.73 0.362 1.00 0.80 0.022 0.340 20 5.22 1.013 1.00 0.80 0.022 0291 21 2.66 0.370 0.97 0.78 0.023 0.348 21 5.09 1.036 0.97 0.78 0.023 1.014 22 2.59 0.378 0.95 0.76 0.023 0.355 _ _ 22 4.96 1.059 0.95 0.76 0.023 1.036 23 2.53 0.386 0.93 0.75 0.024 0.363 23 4.84 1.080 0.93 0.75 0.024 t057 24 2.47 0.394 0.91 0.73 0.024 0.369 24 4.73 1.101 0.91 0.73 0.024 1.077 25 2.41 0.401 0.90 0.72 0.025 0.376 25 4.62 1.121 0.90 0.72 0.025 1.096 26 2.36 0.408 0.88 0.71 0.025 0.382 26 4.52 1140 0.88 0.71 0.025 t115 27 2:31 0.414 0.87 0.69 0.026 0.388 27 4.42 1.159 0.87 0.69 0.026 1.133 28 2.26 0.421 0.85 0.68 0.026 0.394 28 4.33 1.177 0.85 0.68 0.026 1.150 29 2.22 0.427 0.84 0.67 0.027 0.400 29 4.24 1.194 0.84 0.67 0.027 1167 30 2.17 0.433 0.83 0.66 0.027 0.405 _ 30 4.16 1.211 0.83 0.66 0.027 1.183 31 2.13 0.439 0.82 0.66 0.028 0.410 _ 31 4.08 1.227 0.82 0:66 0.028 1.199 32 2.09 0.444 0.81 0-65 0.029 0.416 32 4.00 1.243 0.81 0-65 0.029 1.214 33 2.05 0.450 0.80 0.64 0.029 0.420 33 3.93 1.258 0.80 0.64 0.029 1.229 34 2.02 0.455 0.79 0.63 0.030 0.425 _ _ 34 3.86 1.273 0.79 0.63 0.030 1.243 35 t98 0.460 0.78 0.63 0.030 0.430 35 3.79 1.287 0.78 0.63 0.030 1.257 36 1.95 0.465 0.78 0.62 0.031 0.434 36 3.72 1301 0.78 0.62 0.031 1.270 37 1.91 0.470 0.77 0.61 0.031 0.439 37 3.66 1.315 0.77 0.61 0.031 1.283 38 1.88 0.475 0.76 0.61 0.032 0.443 38 3.60 1.328' 0.76 0.61 0.032 1.296 39 1.85 0.479 0.75 0.60 0.032 0.447 39 3.54 1.341 0.75 0.60 0.032 1.309 40 1.82 0.484 0.75 0.60 0.033 0.451 40 3.49 1.354 0.75 0.60 0.033 1.321 41 1.79 0.488 0.74 0.59 0.034 0.455 41 3.43 1.366 0.74 0-59 0.034 1.332 42 1.77 0.493 0.74 0.59 0.034 0.458 42 3.38 1.378 0.74 0.59 0.034 1244 43 1.74 0.497 0.73 0.58 0.035 0.462 43 3.33 1.390 0.73 0.58 0.035 1.355 44 1.71 0.501 0.73 0.58 0.035 0.466 44 3.28 1.401 0.73 0.58 0.035 1.366 45 1.69 0.505 0.72 0.58 0.036 0.469 45 3.23 1.413 0.72 0.58 0.036 1.377 46 1.67 0.509 0.72 0.57 0.036 0.473 _ 46 3.19 1.424 0.72 0.57 0.036 1.387 47 1.64 0.513 0.71 0.57 0.037 0.476 47 3.14 1.434 0.71 0.57 0.037 1.397 48 1.62 0.516 0.71 0.57 0.037 0479 48 3.10 1.445 0.71 0.57 0.037 1.407 49 1.60 0.520 0.70 0.56 0.038 0.482 49 3.06 1.455 0.70 0.56 0.038 1.417 50 1.58 0.524 0.70 0.56 0.038 0.485 50 3.02 1.465 0.70 0.56 0.038 1.427 51 1.56 0.527 0.69 0.56 0.039 0.488 51 2.98 1.475 0.69 0.56 0.039 1436 52 1.54 0.531 0.69 0.55 0.040 0.491 52 2.94 1.485 0.69 0.55 0.040 1.445 53 1.52 0.534 0.69 0.55 0.040. 0.494 53 2.91 1.495 0.69 0.55 0.040 1.454 54 1.50 0.538 0.68 0.55 0.041 0.497 54 2.87 1.504 0.68 0.55 0.041 1.463 55 1.46 0.541 0.68 0.54 0.041 0.500 _ 55 2.84 1.513 0.68 0.54 0.041 1.472 56 1.46 0.544 0.68 0.54 0.042 0.502 56 2.80 1.522 0.68 0.54 0.042 1.481 57 1.45 0.547 0.67 0.54 0.042 0.505 57 2.77 1.531 0.67 0.54 0.042 1.489 58 1.43 0.550 0.67 0.54 0.043 0.508 _ 58 2.74 _ 1.540 0.67 0.54 0.043 1.497 59 1.41 0.554 0.67 0.53 0.043 0.510 59 2.70 1.549 0.67 0.53 0.043 1.505 60 1.40 0.557 0.67 0.53 0.044 0.513 60 2.67 1.557 0.67 0.53 0.044 1.513 Mod. FAA Minor Storage Volume(cubic ft.)= 22,326 Mod. FAA Major Storage Volume(cubic ft.)= 65,909 Mod. FAA Minor Storage Volume(acre-ft.)= 0.5125 Mod. FAA Major Storage Volume(acre-ft.) = 1.5131 UDFCD DETENTION BASIN VOLUME ESTIMATING WORKBOOK Version 2.34, Released November 2013 UD-Detention_v2.34 North Pond. Modified FM 3/19/2015.3:40 PM DETENTION VOLUME BY THE MODIFIED FAA METHOD Project: Magellan Platteville Origination Station Basin ID: North Pond Inflow and Outflow Volumes vs. Rainfall Duration 1 .8 1.6 . ••• ••• • •• • •• 1 .4 •••• ••• •• • • • 1 .2 - • • •• • • • • • • 1 a, m U Co a. E 0.8 • l6 0.6 • 0.4 - O O�t.On.O O p p O p OOOOO°°° 000000000p0OooO0 . OOOO 0.2 • . 0 0 10 20 30 40 50 60 70 Duration (Minutes) --Minor Storm Inflow Volume —E+—Minor Storm Outflow Volume 0 Minor Storm Strap VWYmo Major Storm Inflow Volume —�Major Storm Outflow Volume • Major Storm Storage Volume UDFCD DETENTION BASIN VOLUME ESTIMATING WORKBOOK Version 2.34. Released November 2013 UD-Detention_v2 34 North Pond, Modified FAA 3/19/2015,3:40 PM DETENTION VOLUME BY THE MODIFIED FAA METHOD Project: Magellan Platteville Origination Station Basin ID: South Pond (For catchments less than 160 acres only. For larger catchments, use hydrograph routing method) (NOTE: for catchments larger than 90 acres. CUHP hydrograph and routing are recommended) Determination of MINOR Detention Volume Using Modified FAA Method Determination of MAJOR Detention Volume Using Modified FAA Method Design Information (Input): Design Information (Input): Catchment Drainage Imperviousness I,= 17.00 percent Catchment Drainage Imperviousness I,= 17.00 percent Catchment Drainage Area A= 8.560 acres Catchment Drainage Area A= 8.560 acres Predevelopment NRCS Soil Group Type= A A, B, C,or D Predevelopment NRCS Soil Group Type= A A, B.C,or D Return Period for Detention Control T= 10 years(2.5, 10,25,50,or 100) Return Period for Detention Control T= 100 years(2. 5, 10, 25. 50,or 100) Time of Concentration of Watershed Tc= 16 minutes Time of Concentration of Watershed Tc = 16 minutes Allowable Unit Release Rate q = 0.02 ets/acre Allowable Unit Release Rate q = 0.02 cfs/acre One-hour Precipitation P, = 1.40 inches One-hour Precipitation P1 = 2.68 inches Design Rainfall IDF Formula i =C,*P,/(C2+T,)"C3 Design Rainfall IDF Formula i =C,* P11(C2+Tj"C3 Coefficient One C, = 28.50 Coefficient One C1 = 28.50 Coefficient Two C2= 10 Coefficient Two C2= 10 Coefficient Three C3= 0.789 Coefficient Three C3= 0.789 Determination of Average Outflow from the Basin (Calculated): Determination of Average Outflow from the Basin (Calculated): Runoff Coefficient C= 0.18 Runoff Coefficient C= 0.32 Inflow Peak Runoff Qp-in= 4.70 cfs Inflow Peak Runoff Qp-in = 15.99 cfs Allowable Peak Outflow Rate Op-out= 0.21 cfs Allowable Peak Outflow Rate Op-out = 0.21 cfs Mod. FAA Minor Storage Volume= 10,227 cubic feet Mod. FAA Major Storage Volume= 43,903 cubic feet Mod. FAA Minor Storage Volume= 0.235 acre-ft Mod. FAA Major Storage Volume= 1.008 acre-ft 10 <-Enter Rainfall Duration Incremental Increase Value Here(e g. 5 for 5-Minutes) Rainfall Rainfall Inflow Adjustment Average Outflow Storage Rainfall Rainfall Inflow Adjustment Average Outflow Storage Duration Intensity Volume Factor Outflow Volume Volume Duration Intensity Volume Factor Outflow Volume Volume minutes inches/hr acre-feet "m" cfs acre-feet acre-feet minutes inches/hr acre-feet "m" cfs acre-feet acre-feet (input) (output) (Output) (output) (output) (output) (output) (input) (Output) (output) (output) (output) (output) (output) 0 0.00 0.000 0.00 0.00 0.000 0-000 0 0.00 0.000 0.00 0-00 0.000 0.000 10 _ 3.75 0.080 1.00 0.21 0.003 0.077 10 7.19 0.271 1.00 0.21 0.003 0.268 20 2.73 0.116 0.90 0.19 0.005 0.110 20 5.22 0.394 0.90 0.19 0.005 0.389 30 2.17 0.138 0.77 0.16 0.007 0.132 30 4.16 0.471 0.77 0.16 0.007 a464 40 1.82 0.155 0.70 0.15 0.008 0.147 40 3.49 0.526 0.70 0.15 0.008 0.518 50 1.58 0.167 0.66 0.14 0.010 + 50 3.02 0.570 0.66 0.14 0.010 0.560 60 1.40 + 0.63 0.13 0.011 0.167 60 2.67 0.605 0.63 0.13 0.011 D.594 70 1.26 0.187 0.61 H_III •+ .+ :+' . . +098 a +: e0.017 0.191 100 1.87 0.706 OM 0.017 0.690 e 0.91 0.213 as2 0.12 0.018 0.195 110 1.75 0.725 + + 0.018 0.707 ' 0.86 0218 0.57 0.12 am+ + 199 120 1.64 0.743 0.57 0.12 0.020 0.723 + 0.81 + + 0.12 0.021 0.202 130 1.55 0.759 0.56 e 12 0 021 0.738 M0O 0.77 0.227 0.56 0.12 0.023 0.205 140 1.47 + + e 0.023 0.752 0.73 0.232 0.55 0.12 0.024 0.208 150 1.39 + + + 0.024 0.764 0.69 0.236 0.55 0.12 0.025 0.210 160 1.33 0.t302 + ' 0.025 0.776 + 0.66 + + 0.11 0.027 0212 170 1.27 0.814 + + 0.027 +1.7:I7 ' 0.64 + + • 0.11 0.028 + 180 1.22 0.826 0.54 + + + 0.798 e 0.61 + + fl____________ + + :e:+ + curae + + + 0.826+ 220e + e 0.834+ 230 . + e + e e :•+ 240 0.96 + r + + + : ++ + e + + + + + e 0.857+ + ' +• + + 260 0.92 • 'e• 0.53 0.11 + +• + + ::• no 0.47 + 268 + 0.11 0.041 + 270 0.90 0.912 0.53 0.11 0.041 0.871 + 0.46 0.270 ' 0.11 ' + • 280 0.87 0.920 0.53 0.11 0.043 0.878 + 0.44 + + 0.11 0.044 • 290 0.85 0.928 I_fl 0.11 Ii!___ • • 0.884 300 0.43 + 0.53 + 0.046 + 300 0-83 + 0.53 0.42 + e + 3100.41 • + + 3200.40 + + + 330 0.77 +0.39 • + + 340 0.75 + •.•0.38 + + • 350 0.73 • +0,38 + + + + ++ + 0.11® + + :+ + + + + • 380 069 + ': •e 0.35 + 0.52 0.11 0.059 + 390 0-68 0.995 + 0.11 0.059 0.936 400 0.35 0.294 + 0.11 0.060 + 400 0.66 1.001 0.52 0.11 0.060 0.940 • ' 0.34 ee 0.11 0.062 + 410 0.65 1.006 • e + e. a °• • + 0.33 0229967 + + 0.063 • 420 0.64 1.012 + OM 0.063 0.949 • + 0.33 + + 0.11 0.065 • 430 0.63 1.017 0.52 OM 0.065 0.953 440 0.32 0.301 + + 0.066 • 440 0.62 1.023 0.52 OM 0.066 450 0.32 0.302 I . 0.11 0.067 + 450 0.61 1.028 • + 0.067 0.961 • •+ 0.31 0.304 0.52 0.11 0.069 0.235 460 0.60 1.033 + 0.11 0.069 0.964 ' 0.31 0.305 0.52 0.11 0.070 + 470 0.59 1.038 + 0.11 0.070 + •. • :e 0.30 0.307 + + 0.072 0.235 480 0.58 1.043 0.52 • 0.072 0.971 it0.30 + •: + + e . e + + •0.29 0.309• 0.52 0.11 0.075 0.235 500 0.56 1.053 + • 0.075 0.978 510 0.29 + 0.52 0.11 0.076 0.235 510 0.55 1.058 0.52 0.11 0.076 e • • 0.28 0.312 + 0.11 0.078 • 520 0.54 1.062 a52 0.11 0.078 '®'' 530 0.28 + + 0.11 0.079 + 530 0.53 1.067 0.52 al 1 0A)79 5• + 0.27 ' + 0.11 0.080 + 540 0.53 1.071 + + 0.080 • • ' 0.27 0.316 0.51 0.11 0.082 0.234 550 0.52 1.076 r 0.11 0.082 0.994 + 0.27 + + + 0.083 + 560 0.51 1.080 + ' + •: ' e 0.26 + + + 0.085 570 0.50 1.084 0.51 0.11 0.085 "' • e 0.26 + • 0.51 0:11 0.086 580 0:50 1.089 0.51 0.11 0.086 e e ' 0.26 + 0.51 011 0.088 0°°:.222F3 590 0.49 1.093 + • 0.088 1.005 600 0.25 • + + 0.089 + 600 0.48 1.097 + 0.089 + Mod. FAA Minor Storage Volume(cubic ft.)= 10,227 Mod. FAA Major Storage Volume(cubic ft.)= 43,903 Mod. FAA Minor Storage Volume(acre-ft.)= 0.2348 Mod. FAA Major Storage Volume(acre-ft.) = 1.0079 UDFCD DETENTION BASIN VOLUME ESTIMATING WORKBOOK Version 2.34, Released November 2013 UD-Detention_v2.34 South Pond. Modified FAA 3/19/2015,3:41 PM DETENTION VOLUME BY THE MODIFIED FAA METHOD Y Project: Magellan Platteville Origination Station Basin ID: South Pond Inflow and Outflow Volumes vs. Rainfall Duration 1 .2 1 L •'• • ••• ••• • •• • •• •• • ••• • ••• • - • ••• • • • • • •• 0.8 •llP_ 116 ( . . . • 0.2 OOOOOpp000000000000000000000000000000000000000000000 0 0 100 200 300 400 500 600 700 Duration (Minutes) Minor Storm Inflow Volume .++�Minor Storm Outflow Volume 0 Minor Storm Storage Volume se—Major Storm Inflow Volume —6—Major Storm Outflow Volumo • Major Storm Storage Volume UDFCD DETENTION BASIN VOLUME ESTIMATING WORKBOOK Version 2.34, Released November2013 UD-Detention_v2 34 South Pond. Modified FAA 3/19/2015,3:41 PM Saddlehorn Origination Terminal Culvert Runoff Calculations 10-yr 100-yr Velocity;,, Pipe Dia. CULVERT ID Contributing Basins HW EL: Inv.In Inv.Out (cfs) (cfs) (ft/s) (in) A WCR 30 Roadside Ditch* 4822.75 4820.58 15 B OA-I 0.57 2.13 4816.9 4816.05 4815.75 2.15 15 C OC-2 1.09 3.49 4817.39 4816.14 4815.88 2.86 15 D OA-1,OA-2 4.60 18.96 4809.62 4807.68 4807.26 6.31 2 x 18 E A-10 2.08 4.86 4810.41 4808.89 4807.86 5.76 15 F A-11 5.25 10.85 4811.00 4809.65 4807.79 8.67 2 x 18 G A-20 3.54 10.13 4806.78 4805.49 4805.25 4.14 2 x 18" H A-10,A-I 1,A-12 8.65 20.27 4802.37 4800.95 4800.69 4.5 3 x l8" .1 B-I1 0.63 2.04 4801.85 4800.59 4800.28 1.66 15 K B-10 2:48 6.52 4802.05 4800.96 4800.34 3.16 2 X 15" *Use Weld.Co.Minimum Standards Rip rap Apron Calculations at Culvert Outlets Type of Rip Rap Depth Expansion Factor Length of Rip Rap Cheek Discharge CULVERT ID Pipe 0,Dper Barrel, Tailwater Allowable 1 t.D , Rip Rap ) s Q ` ( 9 ) (Min.) (Max) p Depth,Yt Velocity,v Q/D (Figure MD-21) 450 (Table MD-7 2 (150 /D'-- 1/ 2`tan0) (Figure MD-23 At Length 3*D Min. 10 D Max Use Qioo (II) (cis) (R) (ft/sec) (in) (in) (it) (ti) (ft) (ft) (It) A I.'_ 4 B 1.25 2.13 0.98 3.00 0.78 1.53 L" 9 18 3.75 4 C 1.25 3.49 0.98 3.00 0.78 2.49 L" 9 18. 3.75 4 D 1.5 9.48 0.94 3.00 0.63 5.16 L 9 18 3.4 6.x 3 13 4.5 15 13 E 1.25 4.86 1.49 3.00 1.19 3.48 L" 9 18 3.75 4 F 1.5 5.43 1.49 3.00 0.99 2.95 L" 9 18 4.5 S G 1.5 5.07 1.49 3.00 0.99 2.76 L** 9 18 4.5 5 H 1.5 6.76 1.05 3.00 0.70 3.68 L" 9 18 4.5 5 J 1.25 2.04 1.46 3.00 1.17 1.46 L" 9 18 3.75 4 IC 1.25 316 1.40 3.00 1.12 2.33 L** 9 18 3.75 4 Outfall A I 0.80 0.28 3.00 0.28 0.80 L** 9 18 3 3 Outfall B I 0.33 0.17 3.00 0.17 0.33 L" 9 18 3 3 Storm Sewer A I 5.20 0.74 3.00 0.74 5.20 L 9 18 5.2 5.0 i 7 3 22 7 **per Urban Drainage guidelines,use Type L rip rap for a length of 3* Diameter downstream,no further calculations required Ditch Calculations 10-yr 100-yr Depth of Flow Req'd Depth+Freeboard Planned Min.Depth \ clucitc Froude# Hydr. Radius Shear Ditch ID Contributing Basins Type Side Slopes Channel Slope (cfs) (cfs) (ft) (it) (k) (ti:.( n=0.02 (ft) (psi) A A-12.A-11,1,A-10 8.65 20.27 Trapezoidal 50'BW) 4:1 1.10% 0.17 1.17 2.0 ' u. 1.02 0.17 0.12 B A-20,A-21 5.82 1737 V Ditch 4:1 0.98% 0.98 1.98 2.0 1.13 0.48 0.29 C A-1I 5.25 10.85 V Ditch 4:1 0.40% 0.79 1.79 2.0 0.70 0.39 0.10 D OA-1,OA-2 4.60 18.96 V Ditch 4:1 1.50% 0.94 1.94 2.5 1.39 0.46 0.43 E OC-I.OC-2 9.20 37.50 V Ditch 4:1 0.50% 1.49 2.49 4.0 4.23 0.86 0.72 0.22 RESTRICTOR PLATE SIZING FOR CIRCULAR VERTICAL ORIFICES Project: Magellan Platteville Origination Station Basin ID: North Pond u . To 0 0 / 0 0 X o 0 O 0 #1 Vertical #2 Vertical Sizing the Restrictor Plate for Circular Vertical Orifices or Pipes (Input) Orifice Orifice Water Surface Elevation at Design Depth Elev: WS = 4,801 .74 feet Pipe/Vertical Orifice Entrance Invert Elevation Elev: Invert = 4,799.01 feet Required Peak Flow through Orifice at Design Depth Q = 0.80 cfs Pipe/Vertical Orifice Diameter (inches) Dia = 12.0 inches Orifice Coefficient Co = 0.60 Full-flow Capacity (Calculated) Full-flow area Af = 0.79 sq ft Half Central Angle in Radians Theta = 3.14 rad Full-flow capacity Qf = 5.7 cfs Percent of Design Flow = 706% Calculation of Orifice Flow Condition Half Central Angle (0<Theta<3. 1416) Theta = 0.90 rad Flow area A0 = 0.10 sq ft Top width of Orifice (inches) To = 9.38 inches Height from Invert of Orifice to Bottom of Plate (feet) Yo = 0.19 feet Elevation of Bottom of Plate Elev Plate Bottom Edge = 4,799.20 feet Resultant Peak Flow Through Orifice at Design Depth Qo = 0.8 , cfs Width of Equivalent Rectangular Vertical Orifice Equivalent Width = 0.53 feet Centroid Elevation of Equivalent Rectangular Vertical Orifice Equiv. Centroid El. = 4,799.11 feet UD-Detention v2.34 North Pond , Restrictor Plate 3/13/2015, 4:22 PM RESTRICTOR PLATE SIZING FOR CIRCULAR VERTICAL ORIFICES Project: Magellan Platteville Origination Station Basin ID: South Pond -� ; -- - T - 0 0 / —' \ c X ^ o C O #1 Vertical #2 Vertical Sizing the Restrictor Plate for Circular Vertical Orifices or Pipes (Input) Orifice Orifice Water Surface Elevation at Design Depth Elev: WS = 4,796.24 feet PipeNertical Orifice Entrance Invert Elevation Elev: Invert = 4,794.93 feet Required Peak Flow through Orifice at Design Depth Q = 0.33 cfs Pipe/Vertical Orifice Diameter (inches) Dia = 12.0 inches Orifice Coefficient Co = 0.60 Full-flow Capacity (Calculated) Full-flow area Af = 0.79 sq ft Half Central Angle in Radians Theta = 3.14 rad Full-flow capacity Qf = 3.4 cfs Percent of Design Flow = 1030% Calculation of Orifice Flow Condition Half Central Angle (0<Theta<3.1416) Theta = 0.75 rad Flow area A0 = 0.06 sq ft Top width of Orifice (inches) To = 8.14 inches Height from Invert of Orifice to Bottom of Plate (feet) Yo = 0.13 feet Elevation of Bottom of Plate Elev Plate Bottom Edge = 4,795.06 _ feet Resultant Peak Flow Through Orifice at Design Depth Qo = 0.3 cfs Width of Equivalent Rectangular Vertical Orifice Equivalent Width = 0.46 feet Centroid Elevation of Equivalent Rectangular Vertical Orifice Equiv. Centroid El. = 4,795.00 feet UD-Detention v2.34 South Pond, Restrictor Plate 3/13/2015, 4:23 PM APPENDIX C -5 CONVEYANCE SUMMARY Saddlehorn Origination Terminal Culvert Runoff Calculations 10-yr 100-yr Velocitytr* Pipe Dia. CULVERT ID Contributing Basins (cfs) (cfs) HW EL: NV.In Inv.Out (ft/s) (in) 1 OA-I 0.57 2.13 4816.9 4816.05 4815.75 2.15 15 2 OA-1,OA-2 4.60 18-96 4809.62 4807.68 4807.26 6.31 2 x 18 3 OC-2 1.09 3.49 4817.47 4815.98 4815.61 214 15 4 A-10 2.08 4.86 4809.93 4808.41 4807.86 6.48 15 5 A-11 4.14 8.51 4811.44 4809.65 4807.79 9.57 I8 6 A-I0,A-I 1,A-I2 7.47 17.82 4802.37 4800.95 4800.69 5.47 3 x 18" 7 A-2O 4.88 12.38 4807.46 4806.00 4805.14 5.06 2 x 18" 8 B-10 2.59 7.60 4802.33 4800.96 4800.00 4.57 15 9 B-I1 0.59 1.84 4801.42 4800.59 4800.28 1.77 15 10 WCR30 Roadside Ditch* 4822.75 4820.58 15 *Use Weld.Co. Minimum Standards Kip rap Apron Calculations at Culvert Outlets Type of Rip Rap Depth Expansion Factor Length of Rip Rap Check CULVERT ID Discharge Tailwater Allowable „ Rip Rap d" (Table 11(2*tang) (Figure Pipe O,D per Barrel, Yt/D Q/D 2*d50 Q/D2.5 At I _ngth 3*D (Min.) 10*D (Max) Use Depth,Yt Velocity,v (Figure MD-21) MD-7) MD-23) Owl) (ft) (cfs) (ft) (ft/sec) (in) (in) (f) (ft) (ft) (ft) (ft) 1 1.25 2.13 0.94 3.00 0.75 1.53 L"' 9 18 4 2 1.5 9.48 0.94 3.00 0.63 5.16 L 9 18 3.4 6.4 12 4.5 15 12 3 1.25 3.49 1.49 3.00 1.19 2.49 L"• 9 18 4 4 1.25 4.86 0.16 3.00 0.13 3.48 H 18 36 2.8 0.8 7 3.75 2I 7 5 1.5 8:51 0.16 3.00 0.11 4.63 H 18 36 3.1 0.7 II 4.5 22 11 6 1.5 5.94 1.24 3.00 0.83 3.23 L** 9 18 5 7 1.5 6.19 0.99 3.00 0.66 3.37 L** 9 18 5 8 1.25 7.60 0.99 3.00 0.79 5.44 L** 9 18 4 9 1.25 1.84 0.99 3.00 0.79 1.32 L** 9 18 10 1.25 0.00 **per Urban Drainage guidelines,use Type L rip rap for a length of 3*Diameter downstream,no further calculations required Dinh Calculations 10->r 100-s r Depth of Flow Req'd Depth+Freeboard Planned Min.Depth Velocity Fronde# 11)dr. Radius Shear Ditch ID Contributing Basins Type Side Slopes ( liannel slope (cis) (cfs) (ft) (ft) (It) (ft/s) n=0.02 (ft) (psi) i OA-I 0.57 2.13 V Ditch 4:1 0.50" 0.33 1.33 3.0 4.90 2.13 0.16 0.05 2 OA-I,OA 4.60 8.96 V Ditch 4:1 1.50% 0.94 1.94 2.5 5.36 1.39 0.46 0.43 3 OC-2 1.09 3.49 V Ditch 4:1 1.30% 0.51 1.51 3.5 3.34 1.17 0.25 0.20 4 OC-1,OC-2 9.20 :7.50 V Ditch 4:1 0.50% 1.49 2.49 4.0 4.23 0.86 0.72 0.22 5 A-10 2.08 4.86 V Ditch 4:1 2.00% 0.53 1.53 3.0 4.27 1.46 0.26 0.32 6 A-11 4.14 3.51 V Ditch 4:1 0.70% 0.65 1.65 2.0 2.91 0.90 0.32 0.14 7 A-12,A-11,A-10 7.47 7.82 Trapezoidal 50'BW) 4:1 1.10% 0.16 1.16 2.0 2.1.5 1.01 0.1f 0.10 8 A-20,A-21 7.06 9.48 V Ditch 4:1 1.20% 0.99 1.99 2.0 4.98 1.25 0.48 0.36 APPENDIX D - DRAINAGE PLANS 1 I 2 I 3 I 4 I 5 6 i 7 I j = `y N I U 5s9 irli W e ° j . �.. ;, c gipp, • N v tt ° F r ' LL M \I\ S 1 i �� • O U) O4 2 9 W N. 357I 4 ' 37 ;f I 4 7 8 z rj ,i, nr t, _ ,4 6,4 4 (i, 7 . . . Th . . . 1 - 1 . . . . . . _ I_ \\ ,I_ .,. a 4/I l ::>• St EA ° I __ E _...� �, N I c I -.. ( - - a - . ..) 8 . (.... . • z� ' - ' 1 r • a s� J7 Qui NNK:\\( - ‘ . t. • • Q aril \\ ` L2L1.la I '1 G I a . . ` B Ww OCR i D IP:M {� B a r^/ ^ s t AC Cie , 1513 (pp��,85 • - _\ - t I 1 ' \ ,', riii • 3 _ + i )- _i ,• m) ccc I/ L'j <::: :1- . A : gt.._. 0 •f , I •o N - I ` q o f I • I ' -• - I `� M .'a Lii iti 1 • C Iit / LEGEND: o DRAINAGE FLOW c' 2 0I 4. -ra' I DRAINAGE BASIN BOUNDARY iti o a- f i 1 - - - DRAINAGE FLOW PATH ; çt e. _-6' • I / — — PROPERTY LINE a F� r2 ' 1 '�' J • ./ A POINT OF ANALYSIS �. r a, z 0 i ! B DRAINAGE BASIN NUMBER Q ZQ I 1 • 1lb fl) Z qa I pp r✓_ 10 YEAR PEAK DISCHARGE o B , ( � '� i0 100 YEAR PEAK DISCHARGE W �- Z rder e•O 25 4794 �ro Z z o O Lu 0V �~'� �� DRAINAGE BASIN ACREAGE O Q J O a z.sitZ J LIJ J • . Q 1 �/' 1 W I ar - W cc r ► o zg o 1 , 5. Ma0 r 3w ct o 1 / \ ..J O i__ I.• / CW7 aMJ \ O _LO f o �'� ♦• \ I Project No.: 133.24081.14001 A By:c • Designed a • • s� �� KKJ 2 •, 1 Drawn By: LAW a By:g 11 0 100' 200' 400' Checked JAB co P0i)'li 1r, ! SCALE: 1" =200' 1 I N ' t ► ! O N if �� Bar Measures 1 inch 1 I 2 I 3 I 4 I 5 6 1 7 llit 1 i EW o NI ,IN Zor ii )• (I� ID 0 N LV a; LIO N- � Oo OA-3 _ E F 2 2.:73 730p.94, r O1 ji °, � . $1 Q0p 1 • �� 9 ' co 91A cno - - - _ - - -' H OA-2 t / • ' o 357 . 34.56 .03 • ,�t� � 1 , 47846 # i a •« 4E,34. 4 ±AC �11,5 � • ctf .4 ,� I / OA-1 _ f 220:%0.57 _ ��: ,�� x x - '� • x P ell / : ir e r • me i11.0 k•ali I — - - - - . I 040E x tei ___ i ' e • 1 •.• •=• . I i jil f 5 - - . . . leir _ L _ � o.a o� O 1 l h - _ i v; I I OC 2 b �/ e �� 4 , I ex LJ • ft 1.63 0.03 I II I wiz J gIII \ �1C 03.49 I x I• FN- LL 1 LL 2 k i H 0C-1 I4 c / �— 4 Wi mg . 60.41 C�.11 , I cl\----I -. \ 1 I W a 3 < s J+C CUM t� I _t x I 4 z D —� r I _......- ( 1, , 07: 4'; r l f S • dit Si 1( I ; hi/LI\ ng[ eta - 11 • 2 : l El D _ C -\ II' rJ • I �� ilit• O7 Ii: ) \ I ( \_\4,____ j 1 A II • • CO • • 1 ki � � ,� ii a f frai _rid opre / �� -- I 1 x a • -� E `1 e II I I I) , LEGEND: Z o \ I • • \ �� DRAINAGE FLOW a r \\\ o • �X U o 4 -eV - _ , - - �, I DRAINAGE BASIN BOUNDARY W • o U t•ca �� DRAINAGE FLOW PATH - 1 �� II aim I I • PROPERTY LINE o¢ rte ' o I. , �• I - I ! f I A POINT OF ANALYSIS ce O I ad. r r Y ce Z •itie Bci r DRAINAGE BASIN NUMBER Q c6 z ce B I 0 10 YEAR PEAK DISCHARGE , 4794CD ILL) uj 281100 YEAR PEAK DISCHARGE Z zo DRAINAGE BASIN ACREAGE if oUill w ` • ZJ W 5 Q r � 2 1 Coro o _ ffI r o zQ (¢j 1 r O �•• W o I • Z S JW , LA IL W p 1 ITr 'i i " 0) o �• I f• �• Project No.: 133-24091-1400 \ O a A '•� - . a Designed By: KKJ ariis z 1 /0. Drawn By: LAW a I I 2 o It 0 100' 200' 400' Checked By: JAB cN•�, 0 N ' s • L N Iiel I SCALE: 1" = 200' o M ?III f O ,U �� Bar Measures 1 inch 1 I 2 I 3 I 4 I 5 I 6 I 7 P I E W r N LEGEND: U _ � � ° y 0) o EXISTING MAJOR CONTOURS (5' INT.) LLLI ie. U-j v M ✓ ? III I I - G is I G G G G G EXISTING MINOR CONTOURS (1'INT.) r M III G - G - - G ` - G - G - G \ xx xx xx EXISTING CHAIN LINK FENCE LINE a v'> c �- 1 � -I G G G G G � - g - o F j x 1O I I - (-4 -_ •*,-.....„.,,,........,,,... I x x x x EXISTING 4-STRAND BARBED WIRE FENCE en J N OE OE OE OE � OE °° I G- _�- I x X X x EXISTING 3-STRAND BARBED WIRE FENCE im rn m I I I I x �_ • -: I UE/T EXISTING UNDERGROUND ELECTRIC/TELEPHONE Ili ` I / M X 1 I I \k �. G 1 \� , I , -- UT EXISTING UNDERGROUND TELEPHONE o i I �r \\ ' �/ G EXISTING UNDERGROUND GAS LINE i t I I x "-�� -------...........a.... � ui d I OE EXISTING OVERHEAD POWER LINE O Ox I I III I •' \k \ I ' .J-- ��G - EXISTING EASEMENT a G NORTH POND DRAINAGE PATH 'O .— — — CHANNEL A "" — — — — �� OUTLET A L=276 FT — — — — EXISTING GRAVEL ROAD DEPTH= 2.0 FT CULVERT H - - - - - - - - - - - - - - - - - ' SOUTH- �I SIDE SLOPES= 4:1 A-13 p " \\ - - - - - - - - - - - C, - G OUTLETTB ND ( - - I EXISTING GRAVEL ROAD BOTTOM WIDTH=50.0 FT a1� •3a; p° ! G __ - G / - C x x x� - I I 'II :AC ;c1,2.1' $ • ♦ \� G - -- x - x x ---x — —x —x I �I I I j' ' • \ CULVERT J x _x -x x •---4796 '? r > I EXISTING ASPHALT ROAD -' I I I 4802- ' r • _ x --4798 - zx z • - • I DRAINAGE PATH I - -- - - - r �, • ��• NIA; • EXISTING ASPHALT ROAD L=648 FT I l Y r / / B-11 -_ . c.a —� I U�/ L/T-�- E I I I /5//"�� • NORTH DETENTION POND RP SOUTH DETENTION POND I EXISTING OIUGAS WELL HEAD I I 1 I9 , / _ REQ'D STORAGE = 1.52 ACRE FT o0.•M� - - - I_ ■ REQ'D STORAGE = 1.01 ACRE FT I ' / ,_ FREE BOARD = 1.0 FT ,-.l - `LJ-Q FREE BOARD = 1.0 FT I 100-YR WSE=4801.74 1 4 100-YR WSE =4796.24 PROPOSED ROW LINE • CULVERT K �I I-� G ❑ , • w 1 I . �"� / - - . , '- ' I I PROPOSED ASPHALT ROAD n I I I I ��44: -- . n . A - _ �- I ' PROPOSED RECYCLED ASPHALT ROAD H I+ 1 % if �. ; ' • I FUTURE ASPHALT ROAD LL I I I llll • DRAINAGE PATH I �` • 4 ! �i-' r I J I t • • - 8p- -i, ,I - ,^,f ,, I > I xx xx xx PROPOSED CHAIN LINK SECURITY FENCE -311 L=654 FT I 4` CHANNEL B - • - 'r �_ / • • - -. - -/ �� PROPOSED CONTAINMENT AREA V! I I I I • DEPTH= 2.0 FT I I . I I - I 1 I / SIDE SLOPES=4:1 4798 , - PROPOSED DETENTION POND ',Biwa X-1 I I I • V-DITCH Ci-1� V 777. I I I - Z E I I / i 1 - / PROPOSED DRAINAGE SWALE g liA III ii I I I •� _. - - DRAINAGE PATH I - /� t4C ° I I - wsile-ew 'a L= 373 FT DRAINAGE PATH �/ - PROPOSED UTILITY EASEMENT6 o I I I / 48p$_ CI-` A-21 - - -i i I L 955 FT 1 . - . — . - I. T OE PROPOSED OVERHEAD POWER LINE d ' £ CHANNEL C ' r' B-1 0 —_4411.,_____J_____ -- FEMA FLOOD PLANE DELINEATION LINE V J S _ ..2C x,.28 3 a e DEPTH 2.0 FT I as ! ^ 8^� SECONDARY CONTAINMENT �� VJ? o m _ A-12 3AC Ot.2a I . _4� C� • —`•�. i ��. c SIDE SLOPES=4:1 ' 'C 2!'I 6 I ;t au _ OUTLET •6 z g D Q M V-DITCH N. I P7\ I Q<7•is ~��y �_ _ tor '"_ i __ _ PROPOSED ASPHALT ROAD__48p I Gl0 �� , I W Co sr Jr an N- U •I Oj < 7- i 48pq-moo o — I �illii I , EL Lk? to S I I I I•� DRAINAGE PATH I \n ° /� \ ��' y \\ II> I l'` • J PROPOSED RECYCLED ASPHALT ROAD d I O I / L= 764 FT / \ . . LL I 1 I I ;r • 48j0 o(/ / \ ! •? FUTURE ASPHALT ROAD CULVERT D ili •I / ` a• I 1 In a 1 �.� � j it I PROPOSED CONCRETE UNLOADED BAY _i Xx r ��cn ._ CULVERT E , ` . - ' I / / / • / I r r -�- � i 1 : \ I - CULVERT F A-11 j — — — .� / \ 1!F / \ / , I FUTURE CONCRETE UNLOADING BAY m.\ - ----e..... ' A�' I I fac •xo. 481' 1 �_ PCC \ T - I - II I PROPOSED STRUCTURE x0 C� I I . �� tt, 4814 1 CULVERT G co, ' L • I o I , I ' II DRAINAGE L=4F PATH I I . I I I T — — �� V I ( SECONDARY CONTAINMENT AREA , I 1 - I FUTURE STRUCTURE tW) I I �I I I w i _ - -I �i•i•�•i••••. VEHICLE TRACKING z X I �I I 1 I �.. x 1 . aaoa' f -....... C I� I I 1 • 4816 '-I I I CHANNEL I 48j6 f . •O••• a x DEPTH= 3.0 FT I • A-20 F _.� ' I O ` I 0-0-0 LIGHTPOLE O p r�� I SIDE SLOPES=4:1 I I �, an5 • �+ W ii x oIl I -DITCH ��• I ---I =nc •1a1 - \ \ I vl • xeII1I I " ( CTI ( E • - DRAINAGE FLOWwx II xII1II • • •' DRAINAGE PATH (.: / \ x -1-Z I I I I I ' , L= 608 FTI I 1 - - • • • •S•S•�•S•� DRAINAGEBASINBOUNDARYa _ o Ix , I Ix a .•� Q J� I I I L�J !► IC •p ` x I 1 I• fj-- { \ ( o ' ' DRAINAGE FLOW PATH 0 ! ----A ,_ I X I 1 I I I x us / I PROPERTY LINE ce a /� I DRAINAGE PATH I • I 1 A-10 \ ix C7 I I L=692 FT I I • / �p'I \0 - \ -� W I I • j° 9?• ` LJ ` a ■' I i I I I A POINT OF ANALYSIS Z C7 x I I I HI \ ' *AC Ga6�a / O 4808.. -BERM - . . .�"" D- Q x ce ce B I I w• N -_ a, _ •-v -��► - - —�x3 i5. d� xr. xr s:.— _ '" —4ra —"_ ��x_ `- 'y I c Z a O I I I I I ♦ q f 4814-4814•-�•af — ,�•�•�•�•�••�81:i� o I I 1 �`�•i • • • • • • • — — — . . . •a. •�s a.�. 4812 �— b I / B DRAINAGE BASIN NUMBER Z w - - -_ - 2 - --- - � // 10 YEAR PEAK DISCHARGE F- H + I I •-I - I • - - - //I MC Q��� 100 YEAR PEAK DISCHARGE X Z 0 Q w # ' Ii 1 r I CHANNEL D CULVERT B J ' , CULVERT C CHANNEL E 1 / /I �, ,00 n P iii — y J I DEPTH= 2.5 FT �- DEPTH= 4.0 FT DRAINAGE BASIN ACREAGE w i L* I I I SIDE SLOPES=4:1 I I \--,-- SIDE SLOPES=4:1 1 // I Q Z V-DITCH I I V-DITCH // Q t6sr I I O il I — CHANNEL O I in O Q Q 'o _ c7 I i I I DEPTH= 3.0 FT � o � W U �_ I I I SIDE SLOPES= 4:1 1 11 o ��I CULVERT A � - - - V-DITCH - - - - . m x I �� Q W M ' L Q .. .. r - .. C• A �` J Project No.: 133-24091-14001 a I • Designed By: KKJ a I I Drawn By: LAW m ~ c I I © Checked By: JAB t H N 0 50' 100' 200' ^ ._ 0, ._ o ii ii a M SCALE: 1" = 100' U M Sheet �� Bar Measures 1 inch Hello