Loading...
HomeMy WebLinkAbout20152220.tiff re/ permontesgroup UET Midstream -lies Buckingham Facility Final Drainage Report Prepared for : UET 225 Union Blvd . Suite 200 Lakewood , CO 80228 Date Prepared : February 2015 Project Number : 172 . 002 625 Main Street, Longmont, Colorado 80501 I Ph: (720) 684-4981 I Fx: (888) 716-2411 I www.permontesgroup.com Final Drainage Report UET Midstream Buckingham Facility Buckingham , CO Prepared for : UET 225 Union Blvd . Suite 200 Lakewood , CO 80228 Date Prepared : February 2015 Project Number : 172 . 002 permontesgroup UET Midstream Buckingham Facility Final Drainage Report ENGINEER'S CERTIFICATION "I hereby certify that this Final Drainage Report for the design of UET Midstream Buckingham Facility project was prepared by me (or under my direct supervision) in accordance with the provisions of the Weld County Code for the owners thereof. I understand that the Weld County does not and will not assume liability for drainage facilities designed by others." Laurie Clark, P.E. Registered Professional Engineer State of Colorado No. 46456 A�,p,DO LICFN111 O O .••S••. s 1 /0, c.) ••\,(., •\� ANN •CC• c• ..." 1111 e • vim•: 1 • s. 46456 i 4 -a • i Q 111 1‘j/ON AV_ = The following members of Permontes Group, Inc. staff contributed to the study and the preparation of this report: Project Manager: Mickey Leyba-Farnsworth Project Engineer: Erin Nielsen Project Engineer: Laurie Clark Permontes Group, Inc. -i- February 2015 UET Midstream Buckingham Facility Final Drainage Report CERTIFICATION OF COMPLIANCE ENGINEERING DESIGNED TO WELD COUNTY CODE STANDARDS AND CRITERIA I Laurie Clark, Consultant Engineer for Permontes Group, Inc. ("Applicant"), understand and acknowledge that Applicant is seeking land use approval of UET Midstream Buckingham Facility ("Application") for the property described in the attached Exhibit "A." I have designed or reviewed the design ("Design") for the proposed land use set forth in the Application. I hereby certify, on behalf of Applicant that the Design will meet all applicable drainage requirements of the Weld County Code with the exception of variance(s) described below. This certification is not a guarantee or warranty either expressed or implied. •area!000 LiceptI ei ote••• ANity NFO Ijt1 J -753.•• t •• Q 46456 9 i 11 O3 ••. y- $$'s •.......• V\ = 111 ‘‘s/oNAL �N: Engineer of R ord Signature The following members of Permontes Group, Inc. staff contributed to the study and the preparation of this report: Project Manager: Mickey Leyba-Famsworth Project Engineer: Erin Nielsen Project Engineer: Laurie Clark Permontes Group, Inc. -i- February 2015 UET Midstream Buckingham Facility Final Drainage Report TABLE OF CONTENTS Page 1 .0 INTRODUCTION 1 2.0 DESCRIPTION OF BASINS & SUB-BASINS 1 3.0 PROPOSED DRAINAGE PLAN 2 Direct Discharge Areas Detention Pond Areas Allowable and Modeled Releases Downstream Conveyance System Drainage Facility Maintenance 4.0 DRAINAGE ANALYSIS AND DESIGN CRITERIA 6 Regulations Development Criteria Hydrological Criteria Hydraulic Criteria 5.0 POST CONSTRUCTION STORMWATER MANAGEMENT 6 Stormwater Quality Control Measures 6.0 CONCLUSIONS 7 7.0 REFERENCES 7 LIST OF TABLES Table 1 Urban Drainage & Flood Control District Recommended Unit Flow Release Rates Table 2 Allowable Release Rates per UDFCD Recommended Allowable Release Rates Table 3 Actual Release Rates LIST OF FIGURES Figure 1 Vicinity Map Figure 2 Existing Drainage Plan Figure 3 Developed Grading, Drainage & Erosion Control Plan Figure 4 Details Permontes Group, Inc. -ii- February 2015 UET Midstream Buckingham Facility Final Drainage Report APPENDICES Appendix A SUPPORTING REFERENCE INFORMATION FIRM Map Soil Survey Information UDFCD - Recommended Percent Imperviousness Values UDFCD — Composite Runoff Coefficient Formulation Time Intensity Frequency Curve Development Appendix B HYDROLOGIC CALCULATIONS Existing Runoff Calculations Developed Runoff Coefficients Developed Time of Concentration Minor 5-yr Storm Calculations Minor 10-yr Storm Calculations Major 100-yr Storm Calculations Release Rate Summary Appendix C HYDRAULIC CALCULATIONS Required Pond FAA Volume Provided Pond Volume Water Quality Orifice Sizing Outlet Structure Orifice Calculations Restrictor Plate Sizing Secondary Containment Required Volume 100-Year Flowmaster Design Worksheets: DP1 Secondary Containment Controlled Outlet DP2a Culvert at Maintenance Access Road DP2b Roadside Culvert to Detention Pond DP3 Roadside Culvert to Detention Pond DP4 Detention Pond Outlet Pipe Riprap Calculations Permontes Group, Inc. -iii- February 2015 UET Midstream Buckingham Facility Final Drainage Report 1 .0 INTRODUCTION Permontes Group, Inc. has prepared the following final drainage report in accordance with the Weld County Code. This report will demonstrate that the proposed UET Midstream Buckingham Facility development will provide adequate drainage facilities to mitigate stormwater runoff and protect downstream properties. Site Location & Description The 9.40 acre property is identified as Lot A of RE-5039-34-3, located on a portion of Section 34, Township 8 North, Range 59 West of the 6th P.M. This site is currently vacant land and is located south of the intersection of Highway 14 and CR86.5. The applicant is anticipating approximately 120 inbound oil truck deliveries per day for the crude storage facility, as well as company vehicles and contractor vehicles. UET Midstream, LLC is proposing to install two 50,000 barrel (BBL) crude oil storage tanks with 5 truck unloading bays as well as a produced water storage area with 3 truck unloading bays. The proposed facility will be one-directional and will be entered and exited off of County Road 115 by separate access drives. This site is included on Flood Insurance Rate Map Panel No. 0802660575 C , which is not printed. Native soil information was derived from the National Resources Conservation Service, Web Soil Survey of Weld County, Colorado, Northern Part (Appendix A) and consists of approximately half Olney fine sandy loam, 0-6% which is classified as hydraulic soil group B. This area generally encompasses the developed portion of the site. The remainder of the site, which generally includes the secondary containment area, is mapped as Platner loam, 0-3% slopes, and is classified as hydraulic soil group C. There are no major irrigation ditches or channels that traverse the site. 2.0 DESCRIPTION OF BASIN & SUB-BASINS Previous Reports No previous reports for this site have been located. Historic Drainage Sub-basins The vacant property historically drains as a single basin, designated as H1 . Please refer to the Historic Drainage Map (Figure 2). Basin H1 contains approximately 9.40 acres that sheet flows to the southeast, at generally 0.5% to 2.5% slopes, onto the Highway 14 ROW. The peak runoff rates for the 5-year, 10-year and 100-year storm events for Sub- basin H1 are 4.45 cfs, 8.65 cfs and 27.72 cfs, respectively. An Existing Drainage Map has been prepared and is included in this report for reference purposes (Figure 2;. The Historic Drainage was calculated based on existing topography and soils information. The site does not fall within any drainage district and will be developed in accordance to the Weld County Code. Permontes Group, Inc. Page 1 February 2015 UET Midstream Buckingham Facility Final Drainage Report 3.0 PROPOSED DRAINAGE PLAN The intent of the proposed drainage plan is to maintain the historic drainage patterns and offsite discharges from the site. UET Midstream, LLC (UET) is proposing a pipeline injection and crude oil tank storage facility as well as a Class II Oilfield Disposal Facility within the Agricultural Zone District. The intent of the oil storage facility is to provide a local crude oil storage facility that will have receipt capability via trucks/tankers and pipeline. The crude terminal will then store the crude on-site in two (2) large storage tanks prior to transfer to the Pony Express Pipeline (PXP). The facility will consist of approximately five (5) to eight (8) oil truck Lease Automatic Custody Transfer units (LACT) receiving skids, outbound injection skid into the PXP System, and potential inbound LACT to accommodate local gathered barrels. The drainage for this site consists of industrial areas, Basins D2 and D3, that will drain via sheet flow, grass-lined channels and culverts to a Detention Pond, Basin D4, located in the southeast corner of the property. The detention pond has been designed to accommodate flows from the water quality capture volume, the 10-year minor storm event, and the 100-year major storm event. The pond also contains an outlet structure that will facilitate water quality with a perforated plate, the 5-year release rate with an orifice, and the 100-year release rate with an outlet pipe and restrictor plate. The pond will release at the southeast property line at the historic low point of the parcel. A small area on the western property line, Basin OS1 , will sheet flow onto WCR 115 ROW, and another area along the southeastern borders of the site, Basin OS2, will sheet flow to the Highway 14 ROW. The oil tanks, water tanks, pump building and the future salt water disposal area are all enclosed within an earthen berm for secondary containment purposes, designated Basin Dl . The secondary containment volume was designed for 125% of the volume of the largest tank plus the 25-year, 24-hour storm event. The secondary containment area will be manually drained via a shut-off valve on 12" RCP only after the runoff is deemed to be clean and uncontaminated. The secondary containment area will drain through the detention pond, but is not accounted for in the pond volume calculations. Direct Discharge Areas Basin OS1 contains 0. 15 acres of berm that sheet flows undetained to the west, toward WCR 115 ROW at approximately 4: 1 slope. Runoff from this area is calculated to be 0.22 cfs in the 10-year storm event and 0.72 cfs in the 100-year storm event. Basin OS2 is a narrow strip of land that contains 1 .05 acres of native soil and generally sheet flows to the east according to undisturbed existing topography at approximately 1 % slope. This basin will drain to the Highway 14 ROW as it has historically. Runoff from this area is calculated to be 0.95 cfs in the 10-year storm event and 3.04 cfs in the 100-year storm event. Basin D1 contains 2.71 acres of industrial area that drains to the southeast at approximately 1 % slope. This area is secondary containment for oil tanks, water pumps and tank facilities, and a future salt water disposal facility. The entire secondary containment area will be lined with 6" of clean sand over an HDPE liner. Basin D1 has approximately 14,000 cy of provided volume contained by an earthen berm. The largest tank is 50,000 bbl, which equates to 10395 cy and the 25-year, 24-hour storm volume is calculated to be 924 cy. Total required capacity is therefore 13,917 cy, which is less than the provided volume of 14,000 cy. The outlet for the secondary containment area is 125 If of 12" pipe at 0.58% slope. The outlet pipe will be manually controlled by a valve that will remain closed Permontes Group, Inc. Page 2 February 2015 UET Midstream Buckingham Facility Final Drainage Report during normal site operations. When stormwater collects in the secondary containment area, it will be tested for pollutants and contaminants. If the stormwater is deemed to be contaminated, it will be required to be hauled offsite to an appropriate disposal facility. If the stormwater is determined to be clean, the valve will be opened after the detention pond has fully drained and the contained water will be allowed to discharge through the detention area. Because Basin D1 is secondary containment, it is not included in the required detention pond volume calculations. The maximum discharge is equal to the full-flow capacity of the 12" outlet pipe, which is calculated to be 2.71 cfs. Calculations for these basins are included in Appendix B. Detained Areas Basin D2 contains 3.40 acres of industrial area that includes the gravel access road, office, septic system, possible well location and the crude oil unloading bays. Runoff from this basin will be diverted to a roadside swale and through a 15" pipe with FES and Type L riprap into the detention pond. Runoff from Basin D2 is calculated to be 3.78 cfs in the 10-year storm event and 9.49 in the 100-year storm event. Basin D3 contains 1 .33 acres of industrial area that includes the gravel access road and future saltwater disposal bays. Runoff from this basin will be diverted to a roadside swale and through a 12" pipe with FES and Type L riprap into the detention pond. Runoff from Basin D3 is calculated to be 1 .82 cfs in the 10-year storm event and 4.20 in the 100-year storm event. Basin D4 contains 0.76 acres of proposed detention pond area. The detention pond slopes at approximately 1 % toward the outlet structure. The outlet structure is designed to control the WQCV, 5-year and 100-year volumes. The top of the pond is designed to at elevation 4928.5, which accommodates the required volume with one foot of freeboard above the 100-year WSE of 4927.5. A 10' long by 6" deep emergency spillway has also been provided at the natural low point of the site, with a weir elevation of 4927.5 and top elevation of 4928.0. Allowable and Modeled Releases Detention was sized using the Rational Formula-based FAA Method procedure provided in Urban Drainage Volume 2. Weld County allows detained stormwater to be released at historic rates, which is calculated at 0. 13 cfs/ac for the 5- year storm event and 0.85 cfs/ac for the 100-year storm event (Table 1). Table 1 — UDFCD Allowable Release Rates (A.R.R.) (HSG B) NAME Storm Event Area Historic Runoff Undetained *All Unit Release Rate **A.R.R. (acres) (cfs) (cfs) (cfs/ac) (cfs) H1 5-year 9.40 2.58 0.61 0.13 1 .22 100-year 9.40 16.08 3.76 0.85 7.99 *Allowable Unit R.R. = A.R.R. / Area **A.R.R. = Historic RR - Undetained Runoff Actual release rates from the site for both 5-year and 100-year storm events are given below (Table 2). Permontes Group, Inc. Page 3 February 2015 UET Midstream Buckingham Facility Final Drainage Report Table 2 — Modeled ,Actual) Release Rates Summary: Historic Release Rate (cfs) Developed Release Rate (cfs) (Detained) NAME NAME Area Area 5-Yr 100-Yr 5-Yr 100-Yr (ac( (ac, H1 9.40 2.58 16.08 D2, D3, D4 5.49 0.71 4.66 Total 9.40 2.58 16.08 5.49 0.71 4.66 The detention pond has been sized to include the WQCV with the 10-yr and 100-yr volumes and provide 1 -foot of freeboard above the 100-year water surface elevation. The pond is designed with a 10ft wide emergency overflow spillway on the east side of the pond, 0.5-ft below the top of berm, to allow stormwater above the 100-yr storm event to exit the pond and flow safely overland to the Highway 14 ROW. The pond will utilize a modified Type C outlet structure with trash rack to appropriately release Stormwater at the calculated release rates for the WQCV, 5-yr and 100-yr storm events. Detained discharges will be discharged via a 15-inch RCP storm pipe to the existing Highway 14 ROW at the southeast corner of the property. See Table 3 for the calculated required detention pond volumes based on the Developed Release Rates shown above. Table 3 — Required Detention Pond Volumes: NAME AREA AVE IMP. WQCV WQCV 5-YEAR * 100-YR * (ACRES) (%) (Inches) (C.F.) (C.F.) (C.F.) POND 5.487 23% 0.11 2,743 4,120 12,952 The water quality control volumes were determined using the following formula using a 24-hr drain time: WQCV = a * (0.91i3-1 . 19i2+0.78i) V i = Imperviousness Ratio (i = IN,q/100) V 24-hr drain time a= 0.9 The table below outlines the provided accumulated pond volumes. Table 4 — Provided Detention Pond Volumes & Water Surface Elevations: WQ Vol= 2,743 2,743 WQ W.S.= 4926.79 5-yr Vol= * 4,120 5,492 5-yr W.S.= 4926.88 100-yr Vol= * 12,952 15,695 100-yr W.S. = 4927.53 * 1/2 WQCV added to 5yr Volume & WQCV added to 100yr Volume Downstream Conveyance System Historically, flows left the site as sheet flow, directed to the east onto Highway 14 ROW. The developed site will release detained runoff at below historic rates as a point discharge. Type L riprap has been provided to disperse the flow and to prevent erosion before it reaches public ROW. Drainage Facility Maintenance The property owner will be responsible for regular maintenance and repairs of the drainage facilities including the collection and removal of silt and debris from inlets, pipes, swales, structures and the detention pond. Other maintenance operations may include proper maintenance of the grasses in the detention area such as mowing and Permontes Group, Inc. Page 4 February 2015 UET Midstream Buckingham Facility Final Drainage Report watering and replanting when necessary to prevent erosion and maintain stabilized soils. All storm facilities designed here-in are private. Additional maintenance will be required for the secondary containment area. Regular maintenance will include silt and debris removal from the pipe inlet area, pump maintenance, and replacement of sand if contaminants cannot be removed and replacement of HDPE liner if torn or damaged. 4.0 DRAINAGE DESIGN CRITERIA Regulations This Final Drainage Report for UET Midstream Buckingham Facility development was designed in accordance to the Weld County Code. Development Criteria The development criteria used for this site is the Weld County Code. Hydrological Criteria This drainage study has been designed in compliance with the Weld County Code. The Rational Method was used to quantify peak runoff from the developed site, using Intensity-Duration-Frequency Data for Firestone area. The design storm recurrence intervals for the minor and major storms are the 2-year and 100-year recurrence intervals, respectively. UDFCD's UD_Rational v 1 .02a Microsoft Excel spreadsheet tool, released August 2005, was used for the area-weighting runoff coefficient calculation as well as the peak runoff calculations using the rational method. Hydraulic Criteria According to the Weld County Code for runoff purposes, the minor storm is the 10-year event, and the major storm is the 100-year event. The allowable release rates are designated as 5-year and 100-year historic rates. The drainage system includes all swales, pipes, pumps, inlets, pond, outlet structure and emergency spillway. This system is intended to collect storm water from the minor and major storm events. It also collects and conveys storm water within the secondary containment area in a controlled fashion. The detention storage volume requirement was calculated using the Rational-Modified FAA method including the water quality capture volume (WQCV) requirement. UDFCD's UD-Detention v 2.02 Microsoft Excel spreadsheet tool, released January 2007 was used for calculating the detention volume requirement and in the design of the outlet structure for the detention pond. 5.0 POST CONSTRUCTION STORMWATER MANAGEMENT Stormwater Quality Control Measures Post-development storm water quality will be controlled by the inclusion of water quality orifices in the proposed detention pond and riprap at the pond release location. Water quality volume calculations and orifice sizing were preformed utilizing the standard forms designed by the Urban Drainage and Flood Control District (See Appendix). In addition, some construction BMPs, such as straw bale barriers shall be maintained and remain in place until the site is stabilized with approximately 70% growth, to ensure limited erosion of the soils. Permontes Group, Inc. Page 5 February 2015 UET Midstream Buckingham Facility Final Drainage Report Additional quality control measures for the secondary containment area include testing of captured stormwater for contaminants before manual release and an HDPE liner to prevent possible soil and groundwater contamination. 6.0 CONCLUSION This report is written to describe and confirm the developed drainage conditions for the proposed commercial development known as UET Midstream Buckingham Facility. This drainage study was prepared in conformance with the Weld County Code and the proposed site will be a significant improvement to the existing drainage conditions and have little to no adverse effects on adjacent properties. Refer to the APPENDICES of this report for all relevant calculations and reference materials. 7.0 REFERENCES 1) Weld County Code, latest revisions. 2) Web Soil Survey 2. 0, National Cooperative Soil Survey, Weld County, Colorado, Northern Part United States Department of Agriculture, Natural Resources Conservation Service http://websoilsurvey.nres.usda.gov 3) Urban Storm Drainage Criteria Manual, Volume 1, 2, and 3, latest edition, Urban Drainage and Flood Control District Permontes Group, Inc. Page 6 February 2015 APPENDIX A Supporting Reference Information UET Midstream Buckingham Facility Final Drainage Report DESIGN DATA Design References V THE WELD CODE V AutoCAD CIVIL 3D V FLOWMASTER by BENTLEY V StormCAD by BENTLEY V CULVERTMASTER by BENTLEY V DETENTION VOLUME ESTIMATING WORKBOOK, VERSION 2.03a, MARCH 2008, URBAN DRAINAGE AND FLOOD CONTROL DISTRICT Design Storms — Weld County Code Minor Storm - 10 YEAR Major Storm - 100 YEAR Runoff Coefficients — Urban Drainage Volume 1 — Table RO-5 Time of Concentration (Tc) — Urban Drainage FOR URBANIZED BASINS - Tc = L/180 + 10 Where T0 is the Time of Concentration, and L is the longest reach of the basin. Rainfall Intensities (I) — Urban Drainage Volume One hour precipitation values for Section 14, T2N, R68W, NOAA Atlas 2, Vol. III , Colorado 1973 Required Detention Volumes Calculated by Modified FAA Method - Urban Drainage Allowable Release Rate for NRCS Soil Group B 5-yr Allowable Unit Release Rate = 0. 13 cfs/acre 100-yr Allowable Unit Release Rate = 0.85 cfs/acre Runoff Quantities Calculated by Rational Method - Urban Drainage Q=CIA Manning's n Values REINFORCED CONCRETE PIPE n = 0.013 SMOOTH HDPE n = 0.010 OPEN CHANNELS n = 0.020 Permontes Group, Inc. Page 7 February 2015 8 8 ❑ ❑ o +\ QRRJLE6 RIG LRXS2 : HB&WON _&REM GR :1FU-LQ3D1W o M 8 FWD LCMAFDP °/0).0cNCVICP M o o o o o o 000000 000000 000000 000000 OO0O❑0 000000 000000 000000 ❑ • • ♦ as • ^f ,. -rw.. • •,•'„ • '1 , a. • a • • �r '44 U ` . ❑ • , ❑ �. N. 0 O - • fit: 0 ❑ i �� ♦ 0 Ot. • • • _ ❑O • 0 F • \ \\ a, • .4y• • -- * - . Celfit •• • • 0 ^ v.:: 4 %. z:1,,,b1:1 ,S‘ _ 41A...Trite. colt.,7:iii,.:::;:::::eis••.c..1:::itl:a:44 3:1lett::11:04,.a v,by.7°1:.,..‘stl:::pt.r. ip.. .is :1.4 " El \ 1 4, )AriVvr • - Ifs .21a1••• •• . . • \ 1 ` .,� •,l•t 1, �; .••• • ..� , 1 1•411 `.I , 0 1 it . J lip El 0 • • \ Y♦ • c� .' _ k" � { i° A rl 11.E ❑ y • t 1 . *Is ' r, t i 1 .}y !.� r t4 0 IS4 • • L . Nt , , t , 0 ! A11•1/4^•. • ❑ \ ! ‘ 7 !"�•�Y1 ❑ 44 x I ❑ o obi ' 1 . 0 O r i•,`•1 0 Pe 4 la ❑ h. i• ❑ ,, ❑ I •}, ,. ❑0 ❑ i r • 1 ❑ ` , . t1 O + 3� J , a ❑ o A il, ; . - - en .) • -- ii i 0.. i • •frrt. • r--; : '***6- tee k-:•. ' • • ' 77 �r • ❑❑01101❑®❑ CO , :L /.J : ,24 ` �_ ' :14....1 �. - •. tit". a I ❑❑01101❑®❑ m o❑❑❑❑❑0 000000 000000 000000 000000 000000 000000 ❑0[0❑❑ ❑ ❑ M 0 C6®FOB=®IMO❑01123Qh131)4$®R ❑ 1 0 RAW p ❑ ❑❑ ❑❑ ❑❑O ❑❑❑ p FI hN A ❑ 00 O0O ❑00 ) 000 0CSCSLRMR*Q111FEm IEICP QD*6❑❑RO©FWD 70@RQF®❑1O *6❑0 USDA 1 ovxw 5 HVRXIFM/ : FE 6 RLC6X1314 L11.4111111_1 &R( /M WDVIRQ 6 HLXLFH 1 D\EC0C&FRSI-LDVIH 6 RLC6XCVEK 3 DJ FLFIEI al. Hg Hi D 9 > g 0 H Ry i p p N N O GG L _. p • ri ® c a 2 Pg > 9 1 U) i' ° 2 Lij , LL4 ° 8 2 ° il1 05 r, -, R T i"rC% t D -3' t 68 Fro,a go L:2 i hl N Ni_ . � E1 oZ3 o8 �g p , w N Q a N ° g fi W ° S � p 9En LI) � r '13 p m °� cp0 � �ticil gt 8 2_ e i u) u8r., w ± E 6 ! ± R>< (f) — I-LI cilis t L.PA a. en L d q w 1 ff'1 :94 ; 9 _ w ich u8 per ° wa0- 9 Cr r p ; ° p g P $ 111 9 gj5i S b0 a % -igtg co b 01 . 1 5i c, 4Li o J: _ 2 6 5 0 .f o i � 0 P � g Q ± ' 9 e > 6 H B a 6 P i i 0 9 ; 2 I - ? 0 0 � ou 06 _ (O � - Ep O s en r ❑ ❑ ❑ ❑ z O 9 t 4 P A - . . N M N 03 Efl a I69 el I el Efl (n o 0 06 CA 5 T i (1) En o 0 0v 0th _ � i E!3 En o o E P co . a, I i i 9 — 0 21 +\ GRIM IF 6 RC) LIRXS2 : HES&RXOJN &R&WID(R 1 RIM-U)3D IW 8 M0 ICWIFD P °AXFNDJ KD P + \CRaJ LF 6 RLCY LRXS +\GiR1RJIF.6 . . IRXS2 6XP P DI,I[E]) DSLBCM Gl H S&RXCM/ &MID GR 1 RUKHLO 3DLW&2 0 DS XQLWAP ERO 0 DS XCLI/COP H 5 DMCJ $ FIHV [Q$ 2 , 3ELF HOWL $ 2 , 2 OH I IO-I VDO3 SDP % W \W SF-J F}V/I ARSHV 3 ®\Q-JJE P \AR & I IN ED SHIHC GSM/ 7 RIO Cr,IiRU.$ U°D'.RI ,QMNON ❑i DOOM FWF USVRQ + \ GR J IF VRLOJ LWSVD IW[E DM-IG RQ F-MW' D WVIR ACC I I CSRMBO6 FWE)UH D WU Q- 31R FOI[ l [CRXUJ UFOKSVD FFFU].QJ [W1N{CDN rZ D \IRQZ KHQ lPQH VRODLIH_C,RASUMFII\►IG E\ [YHJ F-IDWOIDUt PARIRU K®2 Ilt/VDRU FFIYH SUEFISM1 O I URP real CGQIDIWQ RIP V 7 KH MICOThatitH 8 QIMGI61D\PoN_D UH DWIJ Q-K3WICRXW URXSVII :ru.: -DCM IOW \NU+1 GO GH) W1 Lam] an CID Qat&CJ [ 7 KHJ l RXSV D UHK2H CC -PD V I RUC V] * IRXS[$ [[6 RLV KDYLQJ DICJICC1 LODMO LID\MA LK:R I O-2 K 1flW &R)CJ KO Z F-W7 KHVH FRt / /i" D [HMI [CI I IS Z HIDGUD ICHGARK FMMYWIEID IC]-K VIDCf/_RU J UDYH® VDC GVLM KHVH VRI.'IDYH D KLJ ECLIMI RI EZ DIMUV DQ/P MAE OIJ * l0 (S[/o .E IR1.0 KD YQJ D[P RCS-L D W LCD L(TL\WQ LID W Z KHQ\ARE K®LZ F-1 7 K J-M-1 FRC.M ' ;KlH 0 R P RGHLID\MDCG-HS RUGH-IS P RC-IIID Z H 1Q9JP KEW ENG VR IV.11CWJDYHP IID\ D[CLCI-F \DQUH 1R P RCRIDIAICLEFED LAM ItoM 1. IZ F4M- 1MR ' KDYH D P RCS-IIDWADVM RI Z D\M..MDQ P LWIRQ * URXSC& C[6 RLV KDYIQJ [D WC [10 LECIDMQ LIMN Z KHQ\PIRJ 0 Z I-IVI 7 KF-M-i FRC MWV FKQH Q u ; NRCY KDYICIJ D LO\ FUND VP SHGE /\NH GRZ CZ DUD.P RYI-ParRI Z D1MJMJ \ RC [P RGI-IID I LC I V4 RUI ICH M \DCH 7 KHvH VIR1 KD11 D VCD;Z IOW RI 2 EMU IUD OP LMRQ * URXS ' 6 IlakDYQJ D Y-13 VEC LCD LaID\WQ UDW KU K IXQRISRI ID0Z KHQ \NRRCJ K® WU K HvH FFCMWFKH 0 RI F®\ V \NDV CYHrD KUWUD\1 VZ H® SR \NDVWCDYH.DNJK[ZDINUI,COE(HI _VRICSYLVECISMDFRDI SDQRUF®\ ®\ I-WJ DVRUC I-DLflt ICVXIUD Fl-tCG CCIAND D UH[ MDOZ ERY1- C D ►a S1-LYIRXV P D\MD 0 7 KI-M-IliIFOI YH D[YIIll LV Z [LD1Pol.I I D\M JI,MCOD bMRQ ,I [D \/fLOYDWIJ RSKIDQK1 GPM LF J rivdn CIII -LILL V'Q) AN ULJ I RUG )niGD IU-DV1D C C D LCD-ICED U-DVI2 UMWIADW)W-W CO MD CFRQQIMQ D1111 W IIRXS[r [DURDWLJ a-IG WOO 5 DV4C1J 2 SVIRO/ $JJt UDImo?OHARG : Rpm on& RO URQ l USD,\ 1 D1IXIDC6 HVRXIFHV : FE 6 RI C6 X1YH\ &RCM1YDI4RQ 6 I-CNIFH 1 D119ZGDC&RRSIAID\VV'H 6 3 DJ H RI +\ C RAJ IF 6 RC lRXS2 : &RCN_&ROM(R-1RPM 3 DUN 8 FM0 (GAWP °/a(FNQJ KDP &RD SR 01-0113 JB MIFF-QA&X MI r9 RQ-I_6 S RILhG 71HE LID N5X0113- lJ 14-U USDA 1 DWIDC6HVRXIFEN : FE 6RC6XIYH &RQVI-L(DWRQ 6 RYIFH 1 D\ROD C&RRSF wWH 6 R c6 3 DJ H r _R Project: UET Midstream Buckingham /\/N/ Project #: 172 .002 Date : February 2015 permontesgroup Recommended Percent Impervious Values for Land Type Land Use or Surface Characteristics Percent Impervi ousness Business : Commercial areas 95 Neighborhood areas 85 Residential : Single-family Multiunit (detached) 60 Multiunit (attached) 75 Half-acre lot or larger * Apartments 80 Industrial : Light areas 80 Heavy areas 90 Parks, cemeteries: 5 Playgrounds : 10 Schools : 50 Railroad yard areas : 15 Undeveloped areas : Historical Flow Analysis 2 Greenbelts, agricultural Off-site flow analysis 45 (when land use not defined ) Streets: Paved 100 Gravel (packed ) 40 Driveways and sidewalks : 90 Roofs : 90 Lawns, sandy soil 0 Lawns, clayey soil 0 *Refer to Figures RO-3 through RO-5 in Runoff Chapter of USDCM . 2/2/2015 172.002 DRN Project: UET Midstream Buckingham Project #: 172.002 permontesgroup Date: February 2015 Runoff Coefficient vs. Watershed Imperviousness Based on Runoff Coefficient estimating equation published by Urbonas, et.al. (1990) & WEF (1998) Basic equation for NRCS Soil Types C & D: Coo =Kw0 + (0.858*i3 - 0.786*12 + 0.774*i + 0.04) Basic equation for NRCS Soil Type A: CA = KA + (1.31*i3 - 1.44*i2 + 1.135*i - 0.12) in which usevaluesfor CA > 0 in which: i = /,/100, imperviousness ratio 1.; = watershed imperviousness in percent CA = Runoff Coeffident for NRCSSoi1 Type A KA = Correction factor for CA when the storm return pen od is greater than 2-years Ca) = Runoff Coeff id ent for NRCS Soil Types C and D Kco = Correction factor for CCD when the Sorm return period is greater than 2-yeas Valuesof Correction Factors Kap a KA NRCS Storm Return Pal od Sal Types 2-yr 5-yr 10-yr 25-yr 50-yr 100-yr C & D 0.00 [-0.10`i+0.111 [-0.181+0.21] (-0.281+a.33) [-a331+0.40] [-0.391+0.46] A 0.00 [-0.08*i+0.09] [-0.141+0.17] [-0.191+0.24] [-0.221+0.28] [-0.251+0.32] Values of Runoff Coefficient Ca) Values of Runoff Coetfidait CA Values of Runoff Coefficient C8 I mpay. Type C and D NRCS Hydrologic Sa 1 Groups TypeA NRCS Hydrologic Soils Group Type B NRCS Hydrologic Soi I s Group Ratio ( 1) CI Cs C110 Ch Cso C, i; O. C. C10 C,�, C5( Cw ; C, G, C,:, O, Cao C,:,,, 0.00 0.04 0.15 0.25 0.37 0.44 0.50 0.00 0.09 0.17 0 24 C.28 2 0.3 0.02 0.12 0.21 0.31 0.36 0.41 0.02 0.06 0.16 0.26 0.38 0.45 0.51 _ 0.00 0.09 0.17 0 24 C.28 2 0.3 0.03 0.13 0.21 0.31 0.36 0.41 0.05 0.08 0.18 0.28 0.39 0.46 0.52 _ 0.00 0.09 0.16 0 23 C.27 1 0.3 0.04 0.13 0.22 0.31 0.36 0.41 0.10 0.11 0.21 0.30 0.41 0.48 0.53 _ 0.00 0.08 0.16 0 22 C.26 0 0.3 0.06 0.15 0.23 0.32 0.37 0.41 0.15 0.14 0.24 0.32 0.43 0.49 0.54 _ 0.02 0. 10 0.17 0 23 C.27 0 0.3 0.08 0.17 0.25 0.33 0.38 0.42 0.20 0.17 0.26 0.34 0.44 0.50 0.55 _ 0.06 0. 13 0.20 0 26 C.30 3 0.3 0.12 0.20 0.27 0.35 0.40 0.44 0.25 0.20 0.28 0.36 0.46 0.52 0.56 _ 0.09 0. 16 0.23 0 29 C.32 5 0.3 0.15 0.22 0.30 0.37 0.42 0.46 0.30 0.22 0.30 0.38 0.47 0.53 0.57 _ 0.13 0. 19 0.25 0 31 C.34 7 0.3 0.18 0.25 0.32 0.39 0.43 0.47 0.35 0.25 0.33 0.40 0.48 0.54 0.57 _ 0.16 0.22 0.28 0 33 C.36 9 0.3 0.20 0.27 0.34 0.41 0.45 0.48 0.40 0.28 0.35 0.42 0.50 0.55 0.58 _ 0.19 0.25 0.30 0 35 C.38 1 0.4 0.23 a30 0.36 0.42 0.46 0.50 0.45 0.31 0.37 0.44 0.51 0.56 0.59 _ 0.22 0.27 0.33 0 37 C.40 3 0.4 0.26 0.32 0.38 0.44 0.48 0.51 0.50 0.34 0.40 0.46 0.53 0.57 0.60 - 0.25 0.30 0.35 0 40 C.42 5 0.4 0.29 0.35 0.40 0.46 0.50 0.52 0.55 0.37 0.43 0.48 0.55 0.59 0.62 _ 0.29 0.33 0.38 0 42 C.45 7 0.4 0.33 0.38 0.43 0.48 0.52 0.54 0.60 0.41 0.46 0.51 0.57 0.61 0.63 _ 0.33 0.37 0.41 0 45 C.47 0 0.5 0.37 0.41 0.46 0.51 0.54 0.56 0.65 0.45 0.49 0.54 0.59 0.63 0.65 _ 0.37 0.41 0.45 0 49 C.51 3 0.5 0.41 0.45 0.49 0.54 0.57 0.59 0.70 0.49 0.53 0.57 0.62 0.66 0.68 0.42 0.45 0.49 0 53 C.54 6 0.5 0.45 0.49 0.53 0.58 0.60 0.62 0.75 0.54 0.58 0.62 0.66 0.69 0.71 _ 0.47 0.50 0.54 0 57 C.59 1 0.6 0.51 0.54 0.58 0.62 0.64 0.66 0.80 0.60 0.63 0.66 0.70 0.73 0.74 _ 0.54 0.56 0.60 0 63 C.64 6 0.6 0.57 0.59 0.63 0.66 0.69 0.70 0.85 0.66 0.68 0.71 0.75 0.78 0.79 _ 0.61 0.63 0.66 0 69 C.70 2 0.7 0.63 0.66 0.69 0.72 0.74 0.75 0.90 0.73 0.75 0.77 0.80 0.83 0.83 _ 0.69 0.71 0.73 0 76 C.77 9 0.7 0.71 0.73 0.75 0.78 0.80 0.81 0.95 0.80 0.82 0.84 0.87 0.89 0.89 _ 0.78 0.80 0.82 0 84 C.85 6 0.8 0.79 0.81 0.83 0.85 0.87 0.88 1 .00 0.89 0.90 0.92 0.94 0.96 0.96 0.89 0.90 0.92 0 94 C.95 6 0.9 0.89 0.90 0.92 0.94 0.95 0.96 Notes For Type B Sals, tretheaverageof coeffidaitsCco and CA . 2i?2b75 172.002 ORN tk/e\e<s \ Project: UET Midstream Buckingham Project #: 172.002 permontesgroup Date: February 2015 INTENSITY-DURATION CURVE DEVELOPMENT I. One-hr Precipitation Values for Section 14, T2N, R68W Return Period 2 5 10 100 (Years) *Depth (Inches) 0.95 1 .37 1 .64 2.68 *From NOAA Atlas 2, Vol. III, Colorado 1973 2-Year 5-Year 10-Year 100-Year Duration Duration Depth Intensity Depth Intensity Depth tensity Depth Intensity (min) Factor (in) (in/hour) (in) (in/hour) (in) (in/hou -) in (in/hour) 5 0.29 0.276 3.306 0.397 4.77 0.476 5.71 0.777 9.33 10 0.45 0.428 2.565 0.617 3.70 0.738 4.43 1 .206 7.24 15 0.57 0.542 2.166 0.781 3.12 0.935 3.74 1 .528 6.11 _30 0.79 0.751 1 .501 1 .082 2.16 1 .296 2.59 2.117 4.23 60 1 .00 0.950 0.950 1 .370 1 .37 1 .640 1 .64 2.680 2.68 INTENSITY-DURATION-FREQUENCY CURVES 10 — 9 8 2-Year L 7 5-Year t c 6 10-Year 5 100-Year 2 4 a) 4 3 2 1 0 0 10 20 30 40 50 60 70 Duration (minutes) 2/2/2015 172.002 DRN APPENDIX B Hydrologic Calculations /\"%\// Project: UET Midstream Buckingham Project #: 172.002 permontesgroup Date : February 2015 HISTORIC RUNOFF BASIN AREAS AVG. SOIL % IMP. C2 C5 C10 Coo (AC) SLOPE TYPE H1 9.40 2% 0.06 0. 16 0.26 0.51 1 .0% C TOTAL 9.40 'ACRES HISTORIC TIME OF CONCENTRATION INITIAL/OVERLAND TRAVEL TIME TIME (ti) (tt) tc=t;+tt C„ C5 LENGTH SLOPE ti LENGTH SLOPE VEL. tt FINAL BASIN Ft % Min Ft % FPS Min Min H1 0. 16 1200 1 .0% 59.70 59.70 10 Velocity Coefficients ;Table RO-2; t; = 0.395,1 .1-05;L"' t, = L 2.5 Heavy Meadow si/3 60V 5 Tillage / Field V = c s1;2 7 Short pasture & lawns C = Frequency Adjustment Factor 10 Nearly bare ground Q2 and 10 year = 1 .0 15 Grassed waterway Q = Velocity Coefficients 20 Paved areas and shallow paved swales EXISTING RUNOFF BASIN Tc 12 15 Igo Iioo AREA Q2 Qs Q10 Q100 (min) (in/hr) (in/hr) (in/hr) (in/hr) (ac.) (cfs) (cfs) (ct) (cfs) H1 16.67 2.05 2.96 3.54 5.78 9.40 1 . 16 4.45 8.65 27.72v • TOTAL 9.40 1 .16 4.45 8.65 27.72 RATIONAL METHOD Q = CIA Q - FLOW IN CUBIC FEET PER SECOND C - RUNOFF FACTOR A - AREA I - AVERAGE RAINFALL INTENSITY I = (28.5 P) / ((10+Tc)"0.786) 2/2/2015 172.002 DRN /1\47\/\ Project: UET Midstream Buckingham Project #: 172.002 permontesgroup p Date: February 2015 Developed Sub-Basin Coefficients BASIN LAND USE AREA (ac.) C2 C5 C,o C100 I(%) SOIL TYPE D1 Secondary Containment 2.71 0.16 0.25 0.33 0.55 18% C D2 Industrial 3.40 0.15 0.22 0.30 0.46 24% B D3 Industrial 1 .33 0.20 0.27 0.34 0.48 34% B D4 Detention Area 0.76 0.03 0. 13 0.21 0.41 2% B OS1 Offsite West 0.15 0.06 0. 16 0.26 0.51 2% C OS2 Offsite Southeast 1 .05 0.03 0.13 0.21 0.41 2% B 9.40 ac 19% BASIN LAND USE AREA (ac.) I(%) Landscaped 2.201 2% D1 Asphalt/Concrete 0.000 100% Roof 0.505 90% Total Area 2.706 Composite 18% BASIN LAND USE AREA (ac.) I(%) Landscaped 1 .880 2% D2 Asphalt/Concrete 0.257 100% Gravel 1 .253 40% Roof 0.007 90% Total Area 3.397 Composite 24% BASIN LAND USE AREA (ac.) I(%) Landscaped 0.510 2% D3 Asphalt/Concrete 0. 184 100% Gravel 0.638 40% Roof 0.000 90% Total Area 1 .331 Composite 34% BASIN LAND USE AREA (ac.) I(%) Landscaped 0.760 2% D4 Asphalt/Concrete 0.000 100% Gravel 0.000 40% Roof 0.000 90% Total Area 0.760 Composite 2% BASIN LAND USE AREA (ac.) I(%) Landscaped 0.155 2% OS1 Asphalt/Concrete 0.000 100% Gravel 0.000 40% Total Area 0. 155 Composite 2% BASIN LAND USE AREA (ac.) I(%) Landscaped 1 .048 2% OS2 Asphalt/Concrete 0.000 100% Roof 0.000 90% Total Area 1 .048 Composite 2% 2/3/2015 172.002 DRN /k../k/\lk Project: UET Midstream Buckingham Project #: 172.002 permontesgroup Date: February 2015 TIME OF CONCENTRATION DEVELOPED BASIN DATA INITIAL/OVERLAND TRAVEL TIME Tc CHECK FINA REMARKS TIME (Tc, ,Tt) (Urbanized Basins) Tc BASIN ID: AREA C5 LENGTH AVG. SLOPE Ti LENGTH AVG. SLOPE C VEL Tt COMP TOTAL Tc=(L/180)+1C (acres) (ft) (%) (min) ,ft) (%) ;fps) ;min) Tc LENGTH (ft; ;min) _ in D1 2.711 0.25 450 1 .0 32.6 - 32.6 450 12.5 - 12.50 Check • D2 3.397 0.22 425 2.0 26. 1 445 , 0.6 1 1 .2 6.4 32.4 870 14.8 . 14.83 Check D3 1 .331 0.27 • 100 2.0 11 .9 320 1 .0 7 0.7 7.6 : 19.5 420 12.3 : 12.33 Check • D4 0.759 0. 13 125 2.0 15.6 : 15.6 125 10.7 - 10.69 Check OS1 0.155 0.16 20 20.0 2.8 2.8 20 10.1 5.00 Min • 110 0.5 23. 1 23.1 110 10.6 10.61 Check OS2 1 .048 0.13 C, - Conveyance Coefficients 2.5 Heavy Meadow 5 Tillage / Field 7 Short pasture & lawns 10 Nearly bare ground 15 Grassed waterway 20 Paved areas and shallow paved swales t; = 0.395(1 .1-05 L12 s1i3 t1 = L V = Cv*S1/2 60V 2/3/2015 172.002 DRN Project: UET Midstream Buckingham Project #: 172.002 permontesgroup Date: February 2015 DEVELOPED RUNOFF (RATIONAL METHOD PROCEDURE) 5 - YEAR DIRECT RUNOFF TOTAL RUNOFF CHANNEL PIPE TRAVEL TIME H u_ cn �. cn Z_ 0 in W — a 7 E a Cl) -.. E a Cl) O cn p �, L �, L.L. o U o ,. v v �, H in c� 0 E O c 2 ) O �- } U Q i } C W z o Q � a .c v E a c v W H Y.... w ~ ~ E n a o O 5 o w w o ,� a .s O a a o z o o ° W z o f 2 W Q Q z v O w _I w w W a -I w Ov a w > > Secondary Containment To 1 D1 2.711 0.25 12.50 0.68 3.38 2.29 DP1 13.1 0.68 3.31 2.24 2.71 0.58 1• 2.0 125.0 3.4 0.607 Controlled Release To Detention Pond D2 3.397 0.22 14.83 0.75 3.13 2.34 To DP2b 15.0 0.75 3.11 2.32 0.35 0.50 12.0 22.0 2.2 0.167 2a 15°/0 OF D2 To DP 2a 15.2 0.75 3.10 2.31 2.32 2.15 1• 5.0 60.0 6.5 0.155 2b To Detention Pond D3 1.331 0.27 12.33 0.36 3.40 1.22 To DP3 12.7 0.36 3.35 1.21 1.22 1.20 1• 2.0 100.0 4.4 0.382 To Detention Pond 3 D4 0.759 0.13 10.69 0.10 3.61 0.36 To Detention Pond 4 D2, D3, D4 3.87 Total To Detention Pond OS1 0.155 0.16 5.00 0.02 4.65 0.12 Offsite to West OS2 1.048 0.13 10.61 0.14 3.62 0.49 Offsite to Southeast 2/3/2015 172.002 DRN Project: UET Midstream Buckingham • Project #: 172.002 permontesgroup DEVELOPED RUNOFF Date: February 2015 (RATIONAL METHOD PROCEDURE) 10 - YEAR DIRECT RUNOFF TOTAL RUNOFF CHANNEL PIPE TRAVEL TIME n in a. W J0 n E2 n U �' I } U ° Q I } c Z Z u_ < c c Q c 3 `� W i_ I- W � I- E W u v v n a o O U w w O Q Q a p Z O p W Z O H 2 W Q Q z O O w co J w w a J w O D 0: > > Secondary Containment To 1 D1 2.711 0.33 12.50 0.89 4.04 3.62 DP1 13.1 0.89 3.96 3.54 2.71 0.58 12.0 125.0 3.4 0.607 Controlled Release To Detention Pond To DP2b D2 3.397 0.30 14.83 1.02 3.74 3.81 15.0 1.02 3.73 3.80 0.57 0.50 12.0 22.0 2.6 0.141 To DP 2a 2a 15°/0 OF D2 15.1 1.02 3.71 3.78 3.80 2.15 15.0 60.0 7.3 0.137 2b To Detention Pond D3 1.331 0.34 12.33 0.45 4.07 1.84 To DP3 12.7 0.45 4.02 1.82 1.84 1.20 12.0 100.0 5.0 0.335 To Detention Pond 3 D4 0.759 0.21 10.69 0.16 4.32 0.69 To Detention Pond 4 D2, D3, D4 6.29 Total To Detention Pond OS1 0.155 0.26 5.00 0.04 5.56 0.22 Offsite to West OS2 1.048 0.21 10.61 0.22 4.33 0.95 Offsite to Southeast 2/3/2015 172.002 DRN /\./.\s/. . Project: UET MidstreamBuckingham Project #: 172.002 permontesgroup Date: February 2015 DEVELOPED RUNOFF (RATIONAL METHOD PROCEDURE) 100 - YEAR DIRECT RUNOFF TOTAL RUNOFF CHANNEL PIPE TRAVEL TIME LL 7) d u_ N cn in2 ( r. - a Cl) c a. c!) _ cn _ N i -(;)-- LL c LL 0 �- _ H Cl) U O C 2 � (n C U U " _ } U v I } C z p Q LL E 0 -c U E 0 v LL1 H H LL ¢ H H E W a D_ C7 U d O C� U w w OIt CL ¢ _ ¢ = d iz O O a w O H O ¢ ¢ D U U LJL.. (n J ≥ U- 0 a J ' O Secondary Containment To D1 2.711 0.55 12.50 1.49 6.61 . 9.85 DP1 13.1 1.49 6.47 9.65 2.71 0.58 12.0 125.0 3.4 0.607 Controlled Release To Detention Pond D2 3.397 0.46 14.83 1.56 6.12 9.56 To DP2b 14.9 1.56 6.10 9.52 1.43 0.50 12.0 22.0 3.3 0.110 To DP 2a 15% of D2 15.1 1.56 6.07 9.49 9.52 2.15 15.0 60.0 8.8 0.113 To Detention Pond D3 1.331 0.48 12.33 0.64 6.65 4.25 To DP3 12.6 0.64 6.58 4.20 4.25 1.20 12.0 100.0 5.6 0.298 To Detention Pond D4 0.759 0.41 10.69 0.31 7.06 2.20 To Detention Pond D2, D3, D4 15.89 Total To Detention Pond OS1 0.155 0.51 5.00 0.08 9.09 . 0.72 Offsite to West OS2 1.048 0.41 10.61 0.43 7.08 3.04 Offsite to Southeast 2/3/2015 172.002 DRN /.\/\\./ , Project: UET Midstream Buckingham Project #: 172 .002 permontesgroup Date : February 2015 RUNOFF RELEASE RATE SUMMARY Allowable Release Rates A.R.R.) Per UDFCD Recommended Allowable Release Rates (HSG B) *Allowable Unit Undetained **A.R.R. NAME Storm Event Area Developed Runoff Release Rate (acres) (cfs) (cfs) (cfs/ac) (cfs) POND 5-year 9.40 4.48 0.61 0.13 1 .22 100-year 9.40 19.65 3.76 0.85 7.99 **Allowable Unit RR = ARR/Area *A.R.R. = Historic RR - Undetained Runoff MODELED (ACTUAL) RELEASE RATE SUMMARY AREA Historic Release Rate (cfs) Developed Release Rate (cfs) NAME (Detained & Undetained) (ac) 5-Yr 100-Yr 5-Yr 100-Yr POND 5.49 2.58 16.08 0.71 4.66 Total 5.49 2.58 16.08 0.71 4.66 2/3/2015 172.002 DRN APPENDIX C Hydraulic Calculations DETENTION VOLUME BY THE MODIFIED FAA METHOD Project: UET Midstream Buckingham Basin ID: D2, D3 (For catchments less than 160 acres only. For larger catchments, use hydrograph routing method) (NOTE: for catchments larger than 90 acres, CUHP hydrograph and routing are recommended) Determination of MINOR Detention Volume Using Modified FAA Method Detemination of MAJOR Detention Volume Using Modified FAA Method Design Information (Input): Design Information (Input): Catchment Drainage Imperviousness a* 23.00 percent Catchment Drainage Imperviousness ,= I 23.00 percent Catchment Drainage Area A= 5.490 acres Catchment Drainage Area A= 5.490 acres Predevelopment NRCS Soil Group T .: = B A,B,C,or D redetlelopment NRCS Soil Group Type= B A,B,C,or D Return Period for Detention Control = 5 years(20,25,50,or 100) Return Period for Detention Cortol f= 100 years(2,5, 10.25,50,or 100 Time of Concentration of Watershed Ti = 13 minutes oTBeicentration of Watershed Tc= 13 minutes Allowable Wit Release Rate t = 0.13 cfs/acre Alleitiffikelease Rate 1= 0.85 cfs/acre One-hour Precipitation P, = 1.35 inches One-hour Precipitation P, = 2.61 inches Design Rainfall IDF Formula i=C1"P,/(C2+TJ"C, Design Rainfall IDF Formula i=C,"P,/(C,+TJ"C3 Coefficient One C, = 28.50 Coefficient One C, = 28.50 Coefficient Two C2= 10 Coefficient Two Cz= 10 Coefficient Three C3= 0.789 Coefficient Three Ca= 0.789 Detemination of Average Outflow from the Basin (Calculated': Detemination of Average Outflow from the Basin (Calculated): Runoff Coefficient C= 0.21 Runoff Coefficient C= 0.45 Inflow Peak Runoff Op-in= 3.70 cfs Inflow Peak Runoff Qp-in= 15.34 cfs Allowable Peak Outflow Rate Op-out= 0.71 cfs Allovble Peak Outflow Rate Qpou t= 4.67 cfs Mod.FM Minor Storage Volume= 4.120 cubic feet Mod.FAA Major Storage Volume= 12,952 cubic feet Mod.FM Minor Storage Volume= 0.095 acre-ft Mod.FM Major Storage Volume= 0.297 acre-ft 5 <-Enter Rainfall Duration Incremental Increase Value Here(e.g.5 for 5-tvinutes) Rainfall Rainfall Inflow Adjustment Average Outflow §era Rainfall Rainfall Inflow Adjustment Average Outflow ragSto Duration Intensity Volume Factor Outflow Volume Volume atidT.r Intensity Volume Factor Outflow Vokrne Volume minutes inches/M acre-feet 'm" cfs acre-feet acre-feet minutes inches/tr acre-feet "m" cfs acre-feet acre-feet (input) (output) (output) (output) (output) (output) (output] putjin (output) (output) (output) (output) (out', OutPU 0 _ 0.00 0.000 o.00 0.00 0.000 0.000 0 0.00 0:000 0.00 0.00 0.000000 0 5 � 4.54 0.036 1.00 0.71 0.005 0.0;1 5 8.78 0.149 i 1.00 4.67 I 0.08217 _ 10 __ 3.62 _ 0.057 1.00 0.71 0.010 0.048 10 7.00 0.238 1.00 ( 4.67 64 _ 0.0 0.174 15 - 3.04 0.072 0.94 0.67 0.014 0.08 15 5.87 0.300 0.94 4.40 91 _ 0.0 0.209 20 2.63 0.083 0.83 _ 0.59 0.016 0.067 20 5.08 0.346 0.83 j 3.88 07 0.1 0.239 _ 25 233 0292 0.77 0.55 0.019 0.074 25 4.50 0.383 0.77 357 23 _ 0.1 0.260 30 2.09 0.100 0.72 0.51 0.021 0.019 30 4.05 0.413 0.72 _ 3.37 39 _ 0.1 0.274 35 - 1.91 0.106 0.69 0.49 0.024 0.082 35 3.69 0.440 0.69 3.22 55 0.10.284 _ 40 _ 1.76 0.112 0.67 0.48 0.026 o.ogs 40 3.40 0.462 0.67 3.11 71 _ 0.10.291 _ 45 1.63 0.116 0.65 0.46 0.029 0.058 45 3.15 0.482 0.65 3.02 87 0.10.295 50 1.52 0.121 0.63 0.45 0.031 0.090 50 2.94 0.500 0.63 2.95 03 0.2 0.297 55 -- 143 - 0.125 0.62 044 0.034 0.091 55 2.76 0517 0.62 2.90 19 _ 0.2 0.297 60 1.35 0.128 _ 0.61 0.44 0.036 0.092 60 2.60 0.532 0.61 _ 2.85 36 0.2 0.296 65 1.28 0.132 0.60 0.43 0.038 0.093 65 2.47 0.546 0.60 2.81 52 0.2 0.294 _ 70 1.21 0.135 0.59 0.42 0.041 0.094 70 2.34 0.558 _0.59 2.78 68 0.2 0.291 _ 75 1.16 0.138 0.59 0.42 0.043 0.094 75 2.23 0.570 0.59 2.75 84 _ 0.2 0.287 80 1.10 0.140 0.58 _ 0.42 0.046 0.095 80 2.14 0.581 0.58 j 2.72 00 0.3 0.282 _ 85 _ 1.06 0.143 058 041 0.048 0.095 85 2.05 0.592 058 2.70 16 _ 0.3 0.276 90 1.02 0.145 0.57 0.41 0.051 0.095 90 1.97 0.602 0.57 2.68 32 0.3 0.270 95 0.98 0.148 0.57 0.41 0.053 0.094 95 1.89 0.611 0.57 2.66 48 0.3 0.263 _ 100 - 0.94 0.150 0.57 0.40 0.056 0.094 100 1.82 0.620 0.57 2.64.364 0 0.256 _ 105 0.91 0.152 0.56 040 0.058 0.094 105 1.76 0.629 0.56 2.63.380 0 0.249 110 0.88 0.154 0.56 0.40 0.061 0.093 110 1.70 0.637 0.56 i 2.61.396 0 0.241 _ 115 _ 0.85 _ 0.156 0.56 040 0.063 0.093 115 1.65 0.645a56 ( 2.60.412 0 0.233 _ 120 0.83 0.158 - 0.56 0.40 0.066 0.092 120 1.60 0.653 0.56 2.59.428 0 0.224 - 125 0.80 _ 0.159 0.55 039 0.068 0.091 125 1.55 0.660 0.55 j 2.58.444 0 0.215 _ 130 0.78 - _ 0.161 - 0.55 0.39 0.070 0.0g1 130 1.51 0.667 0.55 2.57.460 0 0.206 _ 135 0.76 0.163 0.55 0.39 0.073 0.090 135 1.47 0.674 0.55 2.56.477 0 0.197 _ 140 0.74 0.164 0.55 _ 039 0.075 0.0@9 140 1.43 0.680 0.55 j 2.55.493 0 0.187 _ 145 -- 0.72 0.166 0.55 0.39 0.078 0.068 145 1.39 0.686 0.55 - 2.55.509 0 0.178- 150 0.70 0.167 0.54 0.39 0.080 0.087 150 1.36 0.692 0.54 2.54.525 __ 0 0.168 155 0.68 0.169 0.54 0.39 0.083 0.086 155 1.32 0.698 0.54 2.53.541 0 0.158 _ 160 _ 0.67 _ 0.170 0.54 0.39 0.085 0.085 160 1.29 0.704 0.54 2.53.557 0 0.147 _165 0.65 0.171 0.54 0.39 0.088 0.064 165 1.26 0.710 0.54 _ 2.52.573 0 0.137 _ 170 - 0.64 - 0.173 0.54 038 0.090 0.063 170 1.24 a715 0.54 2.52.589 0 0126 _ 175 _ 0.63 _ 0.174 0.54 _ 0.38 0.093 0.081 175 1.21 0120 0.54 ( 2.51.605 _ 180 0.61 0 0.115 0.175 - 0.54 0.38 0.095 0.080 180 1.18 0.726 0.54 2.51.621 0 0.104 _ 185 0.60 0.176 0.54 0.38 0.097 0.0/9 185 1.16 0.731 0.54 j 2.50.637 0 0.093 _ 190 0.59 0.178 0.53 0.38 0.100 0.078 190 1.14 0.735 0.53 2.50.653 0 0.082 _ 195 0.58 0.179 0.53 0.38 0.102 0.076 195 1.12 0.740 0.53 2.49.669 0 0.071 _ 200 0.57 0.180 0.53 _ 0.38 0.105 0.075 200 1.09 0.745 0.53 j 2.49.685 0 0.060 _ 205 - 0.56 - 0.181 0.53 0.38 0.107 0.074 205 1.07 0.750 0.53 2.48.702 _ 0 0.048 210 0.55 0.182 0.53 0.38 0.110 0.0-2 210 1.06 0.754 0.53 2.48.718 0 0.036 215 0.54 0.183 0.53 0.38 0.112 0.071 215 1.04 0.758 0.53 2.48.734 0 0.025 _ 220 - 0.53 _ 0.184 0.53 - 0.38 0.115 0.069 220 1.02 0.763 0.53 - 2.47.750 _ 0 0.013 225 0.52 0185 0.53 0.38 0.117 0.068 225 1.00 0.767 0.53 _ 2.47/66 0 0.001 _ 230 _ 0.51 -_ 0186 0.53 _ 038 0.120 0.0e7 230 029 a771 0.53 2.47.782 0 -0.011 _ 235 0.50 0.187 0.53 0.38 0.122 0.085 235 0.97 0.775 0.53 ( 2.47.798 0 -0.023 240 0.49 _ 0.188 0.53 0.38 0.124 0.064 240 0.95 0/79 0.53 2.46.814 0 -0.035 _ 245 0.49 _ 0189 0.53 0.38 0.127 0.062 245 0.94 0.783 0.53 j 2.46.830 0 -0.047 _ 250 0.48 - _ 0.190 0.53 0.38 0.129 0.0€1 250 0.92 0.787 0.53 2.46.846 _ 0 -0.059 255 0.47 0.191 0.53 0.38 0.132 0.039 255 0.91 0.791 0.53 2.45.862 0 -0.072 _ 260 0.46 0192 0.53 0.38 0.134 0.087 260 0.90 0.794 0.53 j 2.45.878 _ 0 -0.084 265 0.46 0.193 0.53 0.37 0.137 0.056 265 0.88 0.798 0.53 2.45.894 0 -0.096 270 0.45 0.193 0.52 0.37 0.139 0.094 270 0.87 0.801 0.52 2.45.910 _ 0 -0.109 275 0.44 0.194 0.52 0.37 0.142 0.053 275 0.86 0.805 0.52 2.45.926 0 -0.121 _ 280 __ 0.44 _ 0.195 0.52 0.37 0.144 0.0q1 280 0.85 &808 0.52 2.44.943 _ 0 -0134 285 0.43 0.196 _ 0.52 0.37 0.147 0.049 285 0.84 0.812 0.52 2.44.959 _ 0 -0.147 290 0.43 0.197 0.52 037 0149 0.048 290 0.83 0.815 0.52 _ 2.44.975 _, 0 -0.159 295 _ 0.42 0.198 0.52 0.37 0.152 0.046 295 0.82 9.819 _ 0.52 2.44.991 I 0 -0.172 300 0.42 0.198 0.52 0.37 0.154 0.044 300 0.81 0.822 0.52 2.44.007 1 -0.185 Mod.FAA Minor Storage Volume(cubic ft.)= 4,120 Mod.FM Major Storage Volume(cubic ft.)= 12,952 Mod.FM Minor Storage Volume(acre-ft)= 0.0946 Mod.FM Major Storage Volume(acre-ft.)= 0.2973 UDFCD DETENTION BASIN VOLUME ESTIMATING WORKBOOK Version 2.34, Released November 2013 Copy of LA-Detenton_v2.34,Ivbdified FAA 2/3/2015,4:52 PM DETENTION VOLUME BY THE MODIFIED FAA METHOD Project: UET Midstream Buckingham Basin ID: D2, D3 Inflow and Outflow Volumes vs. Rainfall Duration 1.2 1 0.8 -- ar a> 4 r N u 0.6 to m E 3 0 > 0.4 • •• • • •• • • • • • • • I • • • • • 0.2 • ••• • • • • • • . pOOOOOOOOOOOOOOOOOOOO OOO - - 0 � 0� ;0000000000000000000 • • • • 0 0 50 100 150 200 250 300 350 Duration (Minutes) -w—Minor Stonn Inflow Volume—A—Minor Storm Outflow Volume c; Minor Storm Storage Volume f-Major Storm Inflow Volume—a—Major Storm Outflow Volume • Major Storm Storage Volume UDFCD DETENTION BASIN VOLUME ESTIMATING WORKBOOK Version 2.34, Released November 2013 Copy of LA-Detention_y2.34,b bdified FAA 2/3/2015,4:52 PM /N0/\*/ Project: UET Midstream Buckingham Project #: 172.002 permontesgroup Date : February 2015 REQUIRED DETENTION VOLUMES AVERAGE NAME AREA IMP. WQCV WQCV 5-YEAR * 100-YEAR * (ACRES) (°/o) (Inches) (C.F.) (C.F.) (C.F.) POND 5.487 23% 0.11 2,743 4, 120 12,952 WQCV = 0.9*(0.91 i3-1 .19i2+0.78i) 24-hr drain time * 5YR & 100YR Volumes from FAA Method PROVIDED DETENTION VOLUMES STAGE CUM. WQCV 5-YR 100-YR CONTOUR AREA VOLUME VOL. ELEV. ELEV ELEV 4926.70 0 0 9199 4926.79 4926.88 4927.0 1818 9199 12166 4927.53 4928.0 27596 21364 23280 4928.5 28278 44645 *Storage Volume calculated using the the following formula V1,2 = [(A1 +A2+ {((A1 * A2)^0.5) * d })] / 3 ACCUMULATED DETENTION VOLUMES & WATER SURFACE ELEVATIONS WQ VoI= 2,743 2,743 WQ W.S.= 4926.79 5-yr VoI= * 4,120 5,492 5-yr W.S.= 4926.88 100-yr VoI= * 12,952 15,695 100-yr W.S. = 4927.53 * 1/2 WQ Vol added to 5yr Volume & WQ Vol added to 100yr Volume 2/5/2015 172.002 DRN /\/\./ Project: UET Midstream Buckingham Project #: 172.002 permontesgroup Date: February 2015 OUTLET STRUCTURE ORIFICE CALCULATIONS DETENTION POND 5-yr Orifice Q = C*A * ((2*g*H)^.5) QAll5 = 0.81 cfs QwQcv = 0 cfs (Per 'StageLDischarge Sizing for WQCV Outlet') Qall5outiet = 0.81 cfs = Qalllo 0 QwQcv Cd = Orifice Coeff (0.40 [ 0.61 for circular, 0.65 for squareDedged and plates) A = 1/4(rrD2) H = Elev5 ti ElevwQcv Elev5 = 4926.87 ft Hwa= 0.17 ft ElevwQcv = 4926.61 ft H5yr 0.25 ft ElevINV = 4926.44 ft Diameter (in) Diameter (ft) HEADA C AREA(ft^2A q (ft/s^2) Q(cfs) 6.75 0.563 0.43 0.61 0.2485 32.2 0.794 6.8125 0.568 0.43 0.61 0.2532 32.2 0.809 6.88 0.573 0.43 0.61 0.2578 33.2 0.837 Use: 6 13/16" Diameter Orifice 100-Se Orifice Q1oo = C*A * ((2*g*H)^.5) Q1oo = 5.29 cfs Cd = Orifice Coeff (0.40 C 0.61 for circular, 0.65 for squareDedged and plates) A = 1/4(rrD2) H = Elevloo ElevwQcv Elev100 = 4927.49 ft EIev,Nv = 4926.44 ft SEE RESTRICTOR PLATE SIZING SHEET FOR 100(YR ORIFICE PLATE: USE 1 1/4" RESTRICTOR PLATE HEIGHT OVERFLOW WEIR Q(wIER) = C(L=0.1 iH))H^312 Undetained 100lyr flow: 1 .66 cfs C = 3.330 L = 10.0 H = 0.50 Use: 3 foot long x 10 foot wide weir i = 2 Spillway Elev: 4927.99 ft Q(wIER) = 11 .66 cfs 2/2/2015 172.002 DRN STAGE-DISCHARGE SIZING OF THE WEIRS AND ORIFICES (INLET CONTROL) Project: UET Midstream Buckingham Basin ID: D2, D3 Routing Order#1 (Standard) Routing Order#2 v W.S EL Mawr r WS.EL.rd ell a v W.SEL.Minor H2...... H1 v WS El.WO Hl v WSEL.WO VI • WO WO H V7 .. V2 V2 Routing Order#3(Single Slage) Rotting Orda#4 v W S EL.ErretelvCv Iii v W.S EL Delon Storm v W.S.EL.WO Ht v S EL Mao' not O.9rlmuroR H2VH+WO _ VI V1 Current Routing Order is #2 LJ Design Information (pout): #1 Horiz #2 Horiz. #1 Vert. #2 Vert. Circular Opening: Diameter in Inches Dia. = 15.00 15.00 inches OR Rectangular Opening: Width in Feet W = ft Length(Height for Vertical) L or H = ft. Percentage of Open Area After Trash Rack Reduction c/0 open= 50 50 %D Orifice Coefficient Co= 0.60 0.60 Weir Coefficient Cw= Orifice Elevation(Bottom for Vertical) EO= 4,926.70 I 4,926.70 ft. Calculation of Collection Capacity. Net Opening Area (after Trash Rack Reduction) A = 0.61 0.61 sq.ft. OPTIONAL: User-Overide Net Opening Area A,= sq.ft. Perimeter as Weir Length L,,,= ft. OPTIONAL: User-Overide Weir Length L,,,= ft. Top Elevation of Vertical Orifice Opening,Top= 4927.95 4927.95 ft. Center Elevation of Vertical Orifice Opening, Cen= 4927.33 4927.33 ft. Routing 2: Water flows through WQCV plate and #1 vertical opening and #1 horizontal opening into #2 vertical opening (#2 horizontal opening is not used). Horizontal Orifices Vertical Orifices Labels Water WQCV #1 Horiz. #1 Horiz. #2 Horiz. #2 Horiz. #1.Ver #2 Vert. Total Target Volumes for WQCV, Minor, Surface Plate/Riser Weir Orifice Weir Orifice Collection oilecthn Collection for WQCV, Minor, & Major Storage Elevation Flow Flow Flow Flow Flow Capac ty Capacity Capacity &Major Storage W.S. Elevations ft cfs cfs cfs cfs cfs cfs cfs cfs Volumes (input) (linked) (User-linked) (output) (output) (output) (od$pu (output) (output) (output) (link for goal seek) 4926.70 0.00 0.00 I 0.00 0.00 0.00 0.00 0.00 0.00 W Q 4926.80 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.05 5-yr 4926.90 0.00 0.00 0.00 0.00 0.00 0.15 0.15 0.15 4927.00 0.01 0.00 0.00 0.00 0.00 0.27 0.27 0.27 4927.10 , 0.01 0.00 0.00 0.00 0.00 , 042 0.42 0.42 4927.20 0.01 0.00 0.00 0.00 0.00 0.59 0.59 0.59 4927.30 0.01 0.00 0.00 0.00 0.00 0.78 0.78 0.78 4927.40 0.02 0.00 0.00 0.00 0.00 0.98 0.98 0.98 100-yr 4927.50 0.02 0.00 0.00 0.00 0.00 1.20 1.20 1.20 4927.60 0.02 0.00 0.00 0.00 0.00 143 1.43 1.43 4927.70 0.02 0.00 0.00 0.00 0.00 1.67 1.67 1.67 4927.80 0.03 0.00 0.00 0.00 0.00 _ 1.93 1.93 1.93 4927.90 0.03 0.00 0.00 0.00 0.00 2.20 2.20 2.20 4928.00 0.03 0.00 0.00 0.00 0.00 243 2.43 2.43 4928.10 0.03 0.00 0.00 0.00 0.00 2.60 2.60 2.60 4928.20 0.03 0.00 0.00 0.00 0.00 2.76 2.76 2.76 4928.30 0.03 0.00 0.00 0.00 0.00 2.92 . 2.92 2.92 4928.40 0.04 0.00 0.00 0.00 0.00 3.06 3.06 3.06 4928.50 0.04 0.00 0.00 0.00 0.00 3.20 3.20 3.20 4928.60 0.04 0.00 0.00 0.00 0.00 3.34 3.34 3.34 4928.70 #N/A 0.00 0.00 0.00 0.00 3.46 3.46 #N/A 4928.80 #N/A 0.00 0.00 0.00 0.00 3.59 3.59 #N/A 4928.90 #N/A 0.00 0.00 0.00 0.00 3.71 3.71 #N/A 4929.00 #N/A 0.00 0.00 0.00 0.00 3.82 3.82 #N/A 4929.10 #N/A 0.00 0.00 0.00 0.00 3.94 3.94 #N/A #N/A #N/A #N/A MA #NIA #N/A #NIA #N/A #N/A #N/A #WA #N/A #NIA #N/A #N/A #N/A #N/A #NIA i/N/A #N/A #N/A #N/A #NIA #N/A #N/A #NIA #N/A #N/A #N/A , #NIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #NIA #NIA #N/A #N/A #N/A MA #N/A #N/A #N/A #N/A #N/A #NIA MA #N/A #N/A #N/A #NIA #N/A MA #N/A #N/A #N/A #N/A #N/A #N/A ##N/A #N/A #WA #NIA #N/A #N/A #N/A #N/A #N/A #NIA #N/A #N/A #19/A #N/A #N/A #WA #N/A #N/A #N/A MA #NIA #N/A #N/A #N/A #N/A #N/A #WA #19/A #WA #N/A #N/A #N/A #NIA #NIA *VA #N/A #WA #N/A #N/A #N/A I #N/A #N/A #1/A #N/A #N/A #N/A #N/A MIA I #N/A #WA #NIA #N/A #N/A #N/A #N/A *WA #N/A #N/A ##J/A , #N/A #N/A #N/A #N/A #fd/A #N/A #N/A #NIA #WA ##N/A #N/A #N/A #NIA #N/A #N/A #1/A #N/A #WA #N/A #N/A #N/A #N/A #WA #N/A #N/A #N/A #N/A Copy of UD-Detention_v2.34, Outlet 2/3/2015, 5:12 PM STAGE-DISCHARGE SIZING OF THE WEIRS AND ORIFICES (INLET CONTROL) Project: UET Midstream Buckingham Basin ID: D2, D3 STAGE-DISCHARGE CURVE FOR THE OUTLET STRUCTURE 4929.7 4929.2 • - • 4928.7 - C) +' CD CD CD Cr) tC) 4928.2 - • - • • • 4927.7 - - -' 4927.2 4926.7 0 0.5 1 1 .5 2 2.5 3 3.5 4 Discharge (cfs) I Copy of UD-Detention_v2.34, Outlet 2/3/2015. 5:12 PM STAGE-DISCHARGE SIZING OF THE WATER QUALITY CAPTURE VOLUME (WQCV) OUTLET Project: UET Midstream Buckingham Basin ID: D2, D3 WQCV Desiqn Volume(Input): Catchment Imperviousness, la= 23.0 percent Catchment Area,A= 5.49 acres Diameter of holes,It= .625 inches Depth at WQCV outlet above lowest perforation,H= 1 feet Number of holes per row,N 1 Vertical distance between rows.h = 4.00 inches OR Number of rows,NL= 3.00 Orifice discharge coefficient,Ca= 0.60 Height of slot.H= inches Slope of Basin Trickle Channel,S= 0.010 ft/ft Widf slot,W= inches Time to Drain the Pond= 24 hours O O O O O ini O Perforated Watershed Design Information(Input): o o o 0 0 0 Plate Percent Soil Type A= %, o Examples Percent Soil Type B= 100 % ° p ° ° o o ° O o O Percent Soil Type C/D= % _)}, A, Outlet Desian Information(Output): ° p , ° p p o , o ° 4" Water Quality Capture Volume,WQCV= 0.104 watershecinches o 0 Water Quality Capture Volume(WQCV)= 0.047 acre-feet o 0 0 Design Volume MOCV 112`Area'1.2)Vol= 0.057 age-feet O O O O O 0 Outlet area per row,A0= 0.31 square inches Total opening area at each row based on user-input above,A0= 0.31 square inches Total opening area at each row based on user-input above,A0= 0.002 square feet 3 CeRow20 Row Row22 Row23 Row23 I LI 49Row 1 Row 2 Row 26.44 4926.77 492 t 1 �Row4 Row 5 Row 6 Row 7_ Row 8 Row 9 Row 1 0Zo�1 Elevations of Rowsow Holes i Row n el4 Row 15- Row 16_Row 17 Row 18 Rt9v I Flow Collection Capacity for Each Row of Holes in cis 4926.44 0.0000 0.0000 0.0000 I 1 1 I 0.00 4926.54 0.0032 0.0000 . 0.0000 I 0.00 4926.64 0.0046 . 0.0000 0.0000_ _I_ 0.00 4926.74 0.0056 0.0000 0.0000 _ I 0.01 4926.84 0.0065 0.0027 0.0000 I_ 0.01 4926.94 0.0072 0.0042 0.0000_ I 0.01 4927.04 0.0079 0.0053 0.0000 - I 0.01 _ 4927.14 0.0086 0.0062 0.0018_ I 0.02 4927.24 0.0092 0.0070 0.0037 I 0.02 4927.34 0.0097 . 0.0077 0.0049 _ I 0.02 4927.44 0.0103 0.0084 0.0059 I 0.02 4927.54 0.0108 0.0090 0.0067 0.03 4927.64 0.0112 0.0096 0.0075 _ I 0.03 _ 4927.74 0.0117 0.0101 . 0.0081 I 0.03 4927.84 0.0121 0.0106 0.0088 I 0.03 4927.94 0.0126 0.0111 0.0093 I 0.03 __ 4928.04 0.0130 0.0116 0.0099 0.03 4928.14 0.0134 0.0120 0.0104_ I 0.04 4928.24 0.0138 0.0124 0.0109 - I 0.04 _ 4928.34 0.0141 0.0128 0.0114 -_ I 0.04 #N/A . #N/A OVA I #WA #WA #NIA #WA I #WA _ #WA #NIA #N/A -I_ #WA #WA #NIA tiN/A -. #WA MA - #MA #WA - -I #N/A #WA #N/A . #N/A _ I #WA #N/A #N/A . OVA _I_ #WA #WA #NIA #WA _ AIWA #WA #NIA #MA _I_ #WA _ tiN/A #MA #1\l/A I #WA MA #WA #WA - -I #N/A _ #WA #MA . #14/A I #WA #NIA #N/A OVA I #WA #WA #WA #WA I AIWA #WA #NIA #N/A #N/A tiN/A #NIA tif\l/A _I #WA ttN/A #MA #WA #N/A #MA #NIA #N/A _I #N/A ttN/A MA #N/A _ I #WA _ #WA #N/A #N/A I_ #WA #N/A MA #N/A _I 1$14/A #WA _ MA #MA _I #WA _ A #WA #14/A #MA #MA 1 1 I AIWA Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Override Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7 Row 8 Row 9 Row 10 Row 11 Row 12 Row 13 Row 14 Row 15 Row 16 Row 17 Row 18 Row 19 Row 20 Row 21 Row 22 Row 23 Row 24 Copy of UD-Detention_v2.34,WQCV 2/3/2015,5:06 PM Containment Volume Calcs 12/3/2014 25-yr 24-hr Rainfall: 3 in (NOAA Atlas 2 Vol 3) 25-yr 24-hr Rainfall: 0.25 ft Containment Area: 99755 sq ft. Containment Area Depth: 4.5 ft Containment perimeter: 1320 ft Total Stormwater volume: 924 cy Largest Tank Volume: 50000 bbl 2100000 gal 10395 cy Total Req'd Containment Volume: , ; "__ _;j cy (125% of largest tank + 25yr 24hr stor Containment Volume: 16625.83 cy (from top of berm) Tank displacement: 2108 cy Provided Containment Volume: 14518 cy Worksheet for Secondary Contain Full Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.013 Channel Slope 0.00580 ft/ft Normal Depth 1 .00 ft Diameter 1 .00 ft Discharge 2.71 ft3/s Results Discharge 2.71 ft3/s Normal Depth 1 .00 ft Flow Area 0.79 ft' Wetted Perimeter 3.14 ft Hydraulic Radius 0.25 ft Top Width 0.00 ft Critical Depth 0.71 ft Percent Full 100.0 Critical Slope 0.00809 ft/ft Velocity 3.45 ft/s Velocity Head 0.19 ft Specific Energy 1 .19 ft Froude Number 0.00 Maximum Discharge 2.92 ft3/s Discharge Full 2.71 ft3/s Slope Full 0.00580 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 Bentley Systems, Inc. Haestad Methods SctEi lle f ElttwrMaster V8i (SELECTseries 1) [08.11 .01 .03] 2/3/2015 4:09:12 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Worksheet for Secondary Contain Full GVF Output Data Normal Depth Over Rise 100.00 Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1 .00 ft Critical Depth 0.71 ft Channel Slope 0.00580 ft/ft Critical Slope 0.00809 ft/ft Bentley Systems, Inc. Haestad Methods SctEi lle f ElttwrMaster V8i (SELECTseries 1) [08.11 .01 .03] 2/3/2015 4:09:12 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 Worksheet for 2a Maint Access Culvert 100yr Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.013 Channel Slope 0.00500 ft/ft Diameter 1 .00 ft Discharge 1 .43 ft3/s Results Normal Depth 0.54 ft Flow Area 0.43 ft2 Wetted Perimeter 1 .65 ft Hydraulic Radius 0.26 ft Top Width 1 .00 ft Critical Depth 0.51 ft Percent Full 53.9 % Critical Slope 0.00617 ft/ft Velocity 3.31 ft/s Velocity Head 0.17 ft Specific Energy 0.71 ft Froude Number 0.89 Maximum Discharge 2.71 ft3/s Discharge Full 2.52 ft3/s Slope Full 0.00161 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 0/0 Normal Depth Over Rise 53.95 0/0 Downstream Velocity Infinity ft/s Bentley Systems, Inc. Haestad Methods SctEi lle f ElttwrMaster V8i (SELECTseries 1) [08.11 .01 .03] 2/3/2015 4:12:01 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Worksheet for 2a Maint Access Culvert 100yr GVF Output Data Upstream Velocity Infinity ft/s Normal Depth 0.54 ft Critical Depth 0.51 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00617 ft/ft Bentley Systems, Inc. Haestad Methods Sa i:fie f EhtwrMaster V8i (SELECTseries 1) [08.11 .01 .03] 2/3/2015 4:12:01 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 Worksheet for 2b Culvert to Pond 100yr Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.013 Channel Slope 0.02150 ft/ft Diameter 1 .25 ft Discharge 9.49 ft3/s Results Normal Depth 1 .03 ft Flow Area 1 .08 ft2 Wetted Perimeter 2.84 ft Hydraulic Radius 0.38 ft Top Width 0.96 ft Critical Depth 1 .17 ft Percent Full 82.1 % Critical Slope 0.01865 ft/ft Velocity 8.80 ft/s Velocity Head 1 .20 ft Specific Energy 2.23 ft Froude Number 1 .46 Maximum Discharge 10.19 ft3/s Discharge Full 9.47 ft3/s Slope Full 0.02158 ft/ft Flow Type SuperCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 0/0 Normal Depth Over Rise 82.14 0/0 Downstream Velocity Infinity ft/s Bentley Systems, Inc. Haestad Methods Sa i: ie f EtderMaster V8i (SELECTseries 1) [08.11 .01 .03] 2/3/2015 4:14:29 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Worksheet for 2b Culvert to Pond 100yr GVF Output Data Upstream Velocity Infinity ft/s Normal Depth 1 .03 ft Critical Depth 1 .17 ft Channel Slope 0.02150 ft/ft Critical Slope 0.01865 ft/ft Bentley Systems, Inc. Haestad Methods Sa i: ie f EtderMaster V8i (SELECTseries 1) [08.11 .01 .03] 2/3/2015 4:14:29 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 Worksheet for 3 Culvert to Pond 100yr Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.013 Channel Slope 0.01200 ft/ft Diameter 1 .00 ft Discharge 4.19 ft3/s Results Normal Depth 0.92 ft Flow Area 0.76 ft2 Wetted Perimeter 2.57 ft Hydraulic Radius 0.29 ft Top Width 0.54 ft Critical Depth 0.86 ft Percent Full 92.1 % Critical Slope 0.01274 ft/ft Velocity 5.54 ft/s Velocity Head 0.48 ft Specific Energy 1 .40 ft Froude Number 0.82 Maximum Discharge 4.20 ft3/s Discharge Full 3.90 ft3/s Slope Full 0.01383 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 Normal Depth Over Rise 92.15 Downstream Velocity Infinity ft/s Bentley Systems, Inc. Haestad Methods SctEi lle f ElttwrMaster V8i (SELECTseries 1) [08.11 .01 .03] 2/3/2015 4:35:09 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Worksheet for 3 Culvert to Pond 100yr GVF Output Data Upstream Velocity Infinity ft/s Normal Depth 0.92 ft Critical Depth 0.86 ft Channel Slope 0.01200 ft/ft Critical Slope 0.01274 ft/ft Bentley Systems, Inc. Haestad Methods SctEi lle f ElttwrMaster V8i (SELECTseries 1) [08.11 .01 .03] 2/3/2015 4:35:09 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 Worksheet for Pond Outlet Pipe Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.013 Channel Slope 0.01450 ft/ft Diameter 1 .25 ft Discharge 4.66 ft3/s Results Normal Depth 0.70 ft Flow Area 0.70 ft' Wetted Perimeter 2.11 ft Hydraulic Radius 0.33 ft Top Width 1 .24 ft Critical Depth 0.88 ft Percent Full 55.8 % Critical Slope 0.00742 ft/ft Velocity 6.62 ft/s Velocity Head 0.68 ft Specific Energy 1 .38 ft Froude Number 1 .55 Maximum Discharge 8.37 ft3/s Discharge Full 7.78 ft3/s Slope Full 0.00520 ft/ft Flow Type SuperCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 55.78 0/0 Downstream Velocity Infinity ft/s Bentley Systems, Inc. Haestad Methods SctEi lle f ElttwrMaster V8i (SELECTseries 1) [08.11 .01 .03] 2/3/2015 5:16:16 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Worksheet for Pond Outlet Pipe GVF Output Data Upstream Velocity Infinity ft/s Normal Depth 0.70 ft Critical Depth 0.88 ft Channel Slope 0.01450 ft/ft Critical Slope 0.00742 ft/ft Bentley Systems, Inc. Haestad Methods SctEi lle f ElttwrMaster V8i (SELECTseries 1) [08.11 .01 .03] 2/3/2015 5:16:16 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 Project: UET Midstream Buckingham Project #: 172.002 Date: February 2015 perrnontesgroup RIPRAP CALCULATIONS DP-1 Secondary Containment Controlled Outlet A. DESIGN DATA Number of Outlets: 1 Normal Depth (Yn) 1 ft Outlet Width: 12 in. = 1 ft Tailwater (Yt) 1 ft Total Discharge (Qd): 2.71 cfs Slope (S) 0.58 70 Velocity (v) 3.45 fps Mannings (n) 0.013 B. RIP RAP SIZING Froude Number (Fr) = V If Froude Number is greater than 1 ( Supercritical Flow) then use: SQRT(gd) Da= 1/2*(D+Yn) (Substitute Da for D in all equations) = 0.61 (Subcritical Flow = 1 Q/Dtb= 2.71 If Froude Number is less than 1 ; Subcritical Flow, then use: Yt/D= 1 D= 1 From Figure MD221 (Urban Drainage Design Criteria Manual) Use Type L RipRap d50= 9 inches C. LENGTH OF PROTECTION L = (1/ (2TAN 0))(At I Yt 2D) where: L = 2 Length of Protection (Not less than 3D or greater than 10D when Froude parameter ≤ 6) D = 1 ft Diameter of Conduit Yt = 1 ft Tailwater depth At = 0.79 sf Required Area of flow at allowable velocity (QN) Q = 2.71 cfs Design Discharge (1002jr event) V = 3.45 fps Allowable nonlroding velocity (5.5 fps for erosive soils) A = Expansion angle of culvert flow Q/D2.5= 2.71 Yt/D= 1 From Figure MD223 (Urban Drainage Design Criteria Manual) expansion factor 1/(2tan0)= 3.5 Pipe Diameter = 1 .0 ft If Q/D2.5≤ 6 Designed Rip Rap Length = 4 ft Minimum Length (3D)= 3 Width 1 (2D) = 2 ft Calculated Length = 21751 Width 2 (3D) = 3 ft Maximum Length (10D)= 10 Thickness 1 .5*(d50) = 1 .1 ft d50 = 9.0 in Project: UET Midstream Buckingham Project #: 172.002 Date: February 2015 perrnontesgroup RIPRAP CALCULATIONS DP2a Maintenance Access Road A. DESIGN DATA Number of Outlets: 1 Normal Depth (Yn) 0.54 ft Outlet Width: 12 in. = 1 ft Tailwater (Yt) 0.54 ft Total Discharge (Qd): 1 .43 cfs Slope (S) 0.50 Velocity (v) 3.31 fps Mannings (n) 0.013 B. RIP RAP SIZING Froude Number (Fr) = V If Froude Number is greater than 1 ( Supercritical Flow) then use: SQRT(gd) Da= 1/2*(D+Yn) (Substitute Da for D in all equations) = 0.79 (Subcritical Flow = 0.77 Q/Dtb= 2.12 If Froude Number is less than 1 ; Subcritical Flow, then use: Yt/D= 0.54 D= 1 From Figure MD021 (Urban Drainage Design Criteria Manual) Use Type L RipRap d50= 9 inches C. LENGTH OF PROTECTION L = (1/ (2TAN 0))(At / Yt OD) where: L = 0 Length of Protection (Not less than 3D or greater than 10D when Froude parameter ≤ 6) D = 1 ft Diameter of Conduit Yt = 0.54 ft Tailwater depth At = 0.43 sf Required Area of flow at allowable velocity (QN) Q = 1 .43 cfs Design Discharge (1000/r event) V = 3.31 fps Allowable nonEbroding velocity (5.5 fps for erosive soils) A = Expansion angle of culvert flow Q/D2.5= 1 .43 Yt/D= 0.54 From Figure MD13 (Urban Drainage Design Criteria Manual) expansion factor 1/(2tan0)= 3.5 Pipe Diameter = 1 .0 ft If Q/D2.5≤ 6 Designed Rip Rap Length = 4 ft Minimum Length (3D)= 3 Width 1 (2D) = 2 ft Calculated Length = 03.7 Width 2 (3D) = 3 ft Maximum Length (10D)= 10 Thickness 1 .5*(d50) = 1 .1 ft d50 = 9.0 in Project: UET Midstream Buckingham Project #: 172.002 Date: February 2015 perrnontesgroup RIPRAP CALCULATIONS DP2b Culvert Into Pond A. DESIGN DATA Number of Outlets: 1 Normal Depth (Yn) 1 .03 ft Outlet Width: 15 in. = 1 .3 ft Tailwater (Yt) 1 .03 ft Total Discharge (Qd): 9.49 cfs Slope (S) 2.15 70 Velocity (v) 8.80 fps Mannings (n) 0.013 B. RIP RAP SIZING Froude Number (Fr) = V If Froude Number is greater than 1 ( Supercritical Flow) then use: SQRT(gd) Da= 1/2*(D+Yn) (Substitute Da for D in all equations) = 1 .53 (Supercritical Flc = 1 .14 Q/Dtb= 7.80 If Froude Number is less than 1 ; Subcritical Flow, then use: Yt/D= 0.824 D= 1 .25 From Figure MD221 (Urban Drainage Design Criteria Manual) Use Type L RipRap d50= 9 inches C. LENGTH OF PROTECTION L = (1/ (2TAN 0))(At / Yt 2D) where: L = 2 Length of Protection (Not less than 3D or greater than 10D when Froude parameter ≤ 6) D = 1 .25 ft Diameter of Conduit Yt = 1 .03 ft Tailwater depth At = 1 .08 sf Required Area of flow at allowable velocity (QN) Q = 9.49 cfs Design Discharge (1002jr event) V = 8.80 fps Allowable nonlroding velocity (5.5 fps for erosive soils) A = Expansion angle of culvert flow Q/D2.5= 5.432 Yt/D= 0.824 From Figure MD223 (Urban Drainage Design Criteria Manual) expansion factor 1/(2tan0)= 3.5 Pipe Diameter = 1 .3 ft If Q/D2.5≤ 6 Designed Rip Rap Length = 4 ft Minimum Length (3D)= 3.75 Width 1 (2D) = 2.5 ft Calculated Length = 21711 Width 2 (3D) = 3.75 ft Maximum Length (10D)= 12.5 Thickness 1 .5*(d50) = 1 .1 ft d50 = 9.0 in Project: UET Midstream Buckingham Project #: 172.002 Date: February 2015 perrnontesgroup RIPRAP CALCULATIONS DP3 Culvert Into Pond A. DESIGN DATA Number of Outlets: 1 Normal Depth (Yn) 0.92 ft Outlet Width: 12 in. = 1 ft Tailwater (Yt) 0.92 ft Total Discharge (Qd): 4.19 cfs Slope (S) 1 .20 70 Velocity (v) 5.54 fps Mannings (n) 0.013 B. RIP RAP SIZING Froude Number (Fr) = V If Froude Number is greater than 1 ( Supercritical Flow) then use: SQRT(gd) Da= 1/2*(D+Yn) (Substitute Da for D in all equations) = 1 .02 (Supercritical Flc = 0.96 Q/Dtb= 4.45 If Froude Number is less than 1 ; Subcritical Flow, then use: Yt/D= 0.92 D= 1 From Figure MD121 (Urban Drainage Design Criteria Manual) Use Type L RipRap d50= 9 inches C. LENGTH OF PROTECTION L = (1/ (2TAN 0))(At / Yt 1 D) where: L = 1 Length of Protection (Not less than 3D or greater than 10D when Froude parameter ≤ 6) D = 1 ft Diameter of Conduit Yt = 0.92 ft Tailwater depth At = 0.76 sf Required Area of flow at allowable velocity (QN) Q = 4.19 cfs Design Discharge (1001yr event) V = 5.54 fps Allowable non1eroding velocity (5.5 fps for erosive soils) A = Expansion angle of culvert flow Q/D2.5= 4.19 Yt/D= 0.92 From Figure MD123 (Urban Drainage Design Criteria Manual) expansion factor 1/(2tan0)= 3.5 Pipe Diameter = 1 .0 ft If Q/D2.5≤ 6 Designed Rip Rap Length = 4 ft Minimum Length (3D)= 3 Width 1 (2D) = 2 ft Calculated Length = 10.623 Width 2 (3D) = 3 ft Maximum Length (10D)= 10 Thickness 1 .5*(d50) = 1 .1 ft d50 = 9.0 in Project: UET Midstream Buckingham Project #: 172.002 Date: February 2015 perrnontesgroup RIPRAP CALCULATIONS DP4 Detention Pond Outlet A. DESIGN DATA Number of Outlets: 1 Normal Depth (Yn) 0.7 ft Outlet Width: 15 in. = 1 .3 ft Tailwater (Yt) 0.7 ft Total Discharge (Qd): 4.66 cfs Slope (S) 1 .45 70 Velocity (v) 6.62 fps Mannings (n) 0.013 B. RIP RAP SIZING Froude Number (Fr) = V If Froude Number is greater than 1 ( Supercritical Flow) then use: SQRT(gd) Da= 1/2*(D+Yn) (Substitute Da for D in all equations) = 1 .39 (Supercritical Flc = 0.975 Q/Dtb= 4.84 If Froude Number is less than 1 ; Subcritical Flow, then use: Yt/D= 0.56 D= 1 .25 From Figure MD221 (Urban Drainage Design Criteria Manual) Use Type L RipRap d50= 9 inches C. LENGTH OF PROTECTION L = (1/ (2TAN 0))(At / Yt 2D) where: L = 2 Length of Protection (Not less than 3D or greater than 10D when Froude parameter ≤ 6) D = 1 .25 ft Diameter of Conduit Yt = 0.7 ft Tailwater depth At = 0.70 sf Required Area of flow at allowable velocity (QN) Q = 4.66 cfs Design Discharge (1002jr event) V = 6.62 fps Allowable nonlroding velocity (5.5 fps for erosive soils) A = Expansion angle of culvert flow Q/D2.5= 2.668 Yt/D= 0.56 From Figure MD223 (Urban Drainage Design Criteria Manual) expansion factor 1/(2tan0)= 3.5 Pipe Diameter = 1 .3 ft If Q/D2.5≤ 6 Designed Rip Rap Length = 4 ft Minimum Length (3D)= 3.75 Width 1 (2D) = 2.5 ft Calculated Length = 23.855 Width 2 (3D) = 3.75 ft Maximum Length (10D)= 12.5 Thickness 1 .5*(d50) = 1 .1 ft d50 = 9.0 in FIGURES 29 ,s, 28 27 CO H - - wy �� I I- - - - - - - - 33 BUCKINGHAM WCR 86 .5 1ST ADD . .. 34 SITE \ °° y�� WCR 86 I T 7N M Ln `\ 5 , 3 .\\N.,,,,,,,cy n U VICINITY MAP /\"/ SCALE: 1"=2000' BUCKINGHAM CRUDE TERMINAL DATE: JANUARY 2015 & SWD FACILITY PROJECT NO: 172.002 permontesgroup 625 Main Street T.(720)684-4981 VICINITY MAP PAGE: Longmont.CO80501 F:(866)563.9212 FIGURE 1 FIGURE 1 www.permontesgroup.com Hello