Loading...
HomeMy WebLinkAbout20161092.tiff SITE SPECIFIC DEVELOPMENT PLAN AND USE BY SPECIAL REVIEW (USR) APPLICATION FOR PLANNING DEPARTMENT USE DATE RECEIVED : RECEIPT # /AMOUNT # 1$ CASE # ASSIGNED: APPLICATION RECEIVED BY PLANNER ASSIGNED: Parcel Number 0 9 6 9 _ 2 7 _ 4 _ 0 0 _ 0 0 2 (12 digit number - found on Tax I.D. information, obtainable at the Weld County Assessor's Office, or www.co.weld.co.us) Legal Description PT E2SE4 LOT B RECX14-0110 . Section 27 , Township 5 North , Range 61 West Zone District: NA , Total Acreage: 74 , Flood Plain: NA , Geological Hazard : NA Airport Overlay District: NA FEE OWNER(S) OF THE PROPERTY: Name: Cirice B Land Company, LLC Work Phone # (303)-293-9100 Home Phone # NA Email ddennison@billbarrettcorp.com Address: 1099 18th Street, Suite #2300 Address: City/State/Zip Code Denver/CO/80202 Name: Work Phone # Home Phone # Email Address: Address: City/State/Zip Code Name: Work Phone # Home Phone # Email Address: Address: City/State/Zip Code APPLICANT OR AUTHORIZED AGENT (See Below: Authorization must accompany applications signed by Authorized Agent) Name: M3 Construction, LLC Work Phone # (720)-708-6535 Home Phone # NA Email m3c@m3construct.com Address: 2861 W. 120th Ave. . Suite #250 Address: City/State/Zip Code Westminster/CO/80234 PROPOSED USE: Oil and gas storage yard facility to store materials such as new and previously used oilfield tanks, vessels, pipes on pipe racks and other oil and gas production related equipment. I (We) hereby depose and state under penalties of perjury that all statements, proposals, and/or plans submitted with or contained within the application are true and correct to the best of my (our)knowledge. Signatures of all fee owners of property must sign this application. If an Authorized Agent signs, a letter of authorization from all fee owners must be included with the application. If a corporation is the fee owner, notarized evidence must be included indicating that the signatory has to legal authority to sign for the corporation. ////T //c 1 d819nat6ire: Owner or Authorized Agent Date Signature: Owner or Authorized Agent Date SITE SPECIFIC DEVELOPMENT PLAN AND USE BY SPECIAL REVIEW (USR) QUESTIONNAIRE 1. Explain, in detail, the proposed use of the property Circle B Land Company, LLC proposes to construct an oil and gas storage yard facility for the exclusivity of Bill Barrett's Corporation to store materials such as tanks, vessels, pipe racks and other oil and gas production related equipment. All materials on site will be stored unused or decontaminated following any usage to ensure any environmental health concerns. The proposed storage yard will not have any buildings on site and will operate year-round . 2. Explain how this proposal is consistent with the intent of the Weld County Code, Chapter 22 of the Comprehensive plan. Section 22-2-70 of the Weld County Code describes allowing industrial development that is compatible with the surrounding environment. The Laydown Yard will not hinder the agricultural landscape of its surrounding neighbors due its simple purpose of storing new and used oil and gas related equipment for Bill Barrett's use. 3. Explain how this proposal is consistent with the intent of the Weld County Code, Chapter 23 (Zoning) and the zone district in which it is located. This proposal is consistent with the Weld County Code, Chapter 23, Sec. 23-3-40.A.2, which states that oil and gas support and services may be constructed, occupied, operated, and maintained in the A (Agricultural) Zone District upon approval of a permit in accordance the requirements and procedures set forth from the County. 4. What type of uses surround the site (explain how the proposed use is consistent and compatible with surrounding land uses. NGL Water Solutions DJ, LLC has a saltwater disposal facility directly North of where the Bill Barrett Laydown Yard will be located of WCR 52. This SWD facility includes an offload, tank farm and a pump house building and the other properties surrounding this site are a mix of agricultural, and Oil/Gas infrastructures. The Laydown Yard will be contained and will not hinder the production, or landscape, of its neighbors. 5. Describe, in detail, the following: a . Number of people who will use this site: Approximately 10-20 delivery trucks will access the facility on a daily basis for the purpose of delivering or picking up storage equipment. There will also be 2 semi-trucks/week going to and from the yard. b. Number of employees proposed to be employed at this site: This site will be unmanned so the frequency of trips will be sporadic and depend on business activity. c. Hours of operation : The facility will operate 24-hours a day, seven days a week. However, typical access in and out of the facility will occur during daylight hours. d . Type and number of structures to be erected (built) on this site: • (4) Conex shipping/storage containers (40' x 8') • Assorted pipe racks will be stored separately a. Type and number of animals, if any, to be on this site: There will be no animals on site. f. Kind of Vehicles (type, size, weight) that will access the site and how often: Facility traffic will flow to and from the site daily at intermittent times during mostly daylight hours. No parking or staging of vehicles shall occur on County roads. Type/Size Number of Daily Round Trips Weight (lbs) Pick Up Trucks 10-20 _ 1,500 Semi-Trucks 3.5 (2 weekly) 80,000+/- Employee 5-10 1,500 Vehicles g. Who will provide fire protection to the site: Wiggins Fire Protection Department h. Water source on the property (both domestic and irrigation): NA, there will be no provided water source at the laydown yard . i. Sewage disposal system on the property (existing and proposed): NA, there will be no sewage disposal system at the laydown yard as well . j. If storage or warehousing is proposed, what type of items will be stored : Tanks, vessels, pipe racks and other oil and gas production related equipment. 6. Explain the proposed landscaping for the site. The landscaping shall be separately submitted as a landscape plan map as part of the application submittal. The storage yard and communications site would be graveled along their travel paths and graded for positive drainage and a 6-foot chain link fence will surround the facility. No further landscaping is proposed. 7. Explain any proposed reclamation procedures when termination of the Use by Special Review activity occurs When use of the facility is terminated, all stored equipment will be removed and the land will be returned to its native state according to the COGCC regulations. 8. Explain how the storm water drainage will be handled on the site. The facility is located on a relatively flat parcel of land and will be surfaced with gravel. Please see the Drainage Report included in this application . 9. Explain how long it will take to construct this site and when construction and landscaping is scheduled to begin Construction is anticipated to start on October 1, 2016 and end on October 31, 2016. 10. Explain where storage and/or stockpile of wastes will occur on this site Two small dumpsters will be placed on site and municipal solid waste will be managed by Waste Management Incorporated . The dumpster will be emptied weekly or biweekly. A RCRA Universal Waste program will be set up and managed by Clean Harbors incorporated for the proper management or recycling of universal wastes. 11. Please list all proposed on-site and off-site improvements associated with the use (example: landscaping, fencing, drainage, turn lanes, etc.) and timeline of when you will have each one of the improvements completed. All onsite site improvements will happen during the month of October in the year 2016, which will consist of landscaping, fencing, and a detention pond located in the east corner of the site in order to improve drainage. There will be no offsite improvements. WELD COUNTY ACCESS PERMIT � v �Q CO ��, Weld County Public Works Dept. � � Phone: (970) 304-6496 1111 H Street After Hours: (970) 356-4000 P.Q. Box 758 -p Emergency Services: (970) 304-6500 x 2700 Greeley, CO 80632 C,„-V '! ' Inspection: (970) 304-6480 B4fC ° Permit Number: AP14-00410 Issuance of this permit binds applicant and its contractors to all requirements, provisions, and ordinances of Weld County, Colorado. Project Name: RECX14-0110 Expiration date: 03/16/2015 Applicant Information: Property Owner Information: Name: Ted Lopez Name: D Dennison Company: NGL Water Solutions do M3 Construction Company: Bill Barrett Corporation Phone: 816-519-0056 Phone: 303-293-9100 Email: tlopez@m3-construct.com Email: ddennison@billbarrettcorp,com Location: Proposed Use: Access is on WCR: 52 Temporary: Nearest Intersection WCR: 52 & WCR: 89 Single Residential: Distance From Intersection: 9500 Industrial: Number of Existing Accesses: 0 Small Commercial: Planning Process: RE RECX14-0110 Oil & Gas: Z Large Commercial: Road Surface Type & Construction Information: Subdivision: Road Surface: Gravel Field (Agricultural Culvert Size & Type: 15" CMP/RCP min. Only)/Exempt: Start Date: 08/01 /2014 Finish Date: 11 /01 /2014 Materials to Construct Access: Required Attached Documents Submitted: Traffic Control Plan: No Certificate of Insurance: No Access Pictures: No A copy of this permit must be on site at all times during construction hours Daily work hours are Monday through Friday DAYLIGHT to 1/2 HOUR BEFORE DARK (applies to weekends if approved) Approved MUTCD traffic control/warning devices are required before work begins and must remain until completion of work Special Requirements or Comments Parcel 096927400016. Utilize existing shared access point on CR 52 for Lot A & Lot B (1 -O&G) located approx. 9500 ft. West of CR 89. Approved by: Digitally signed by Morgan Weld County Public Works Date: 9/23/2014 grert n-Morgan Gabnert,o,ou, email-mga bber t@wveldgov.com ,c=US Date:2014 07 23 07:52:45 06'00' Print Date -Time: 9/23/2014 7:50: 16AM Report ID: PW00008v001 Page 1 of 1 FOR COMMERCIAL SITES, PLEASE COMPLETE THE FOLLOWING INFORMATION BUSINESS EMERGENCY INFORMATION: Business Name: Bill Barrett Corporation Phone: (303)-293-9100 Address: 1099 18th Street, Suite #2300 City, ST, Zip: Denver/CO/80202 Business Owner: Circle B Land Company, LLC Phone: 303-293-9100 Home Address: 1099 18th Street, Suite #2300 City, ST, Zip: Denver, CO 80202 List three persons in the order to be called in the event of an emergency: NAME TITLE ADDRESS PHONE Dathan Bulot Production Superintendent 33105 WCR 33 Greeley, CO 80631 (970)-353-0407 x 6009 Dathan Bulot Production Superintendent 33105 WCR 33 Greeley, CO 80631 (970)-593-2137 24-Hr Emergency # 33105 WCR 33 Greeley, CO 80631 1-800-880-6359 Business Hours: 8:00 AM - 5:00 PM Days: Monday - Friday Type of Alarm: 4 on Burglar Holdup Fire Silent Audible Name and address of Alarm Company: NA Location of Safe: NA MISCELLANEOUS INFORMATION: Number of entry/exit doors in this building: NA Location(s): NA Is alcohol stored in building? NO Location(s): NA Are drugs stored in building? NO Location(s): NA Are weapons stored in building? NO Location(s): NA The following programs are offere a public service of the Weld Coun riffs Office. Please indicate the programs of interest. Physical Security Check Crime Prevention Presentation UTILITY SHUT OFF LOCATIONS: Main Electrical: NA Gas Shut Off: NA Exterior Water Shutoff: NA Interior Water Shutoff: NA DUST ABATEMENT PLAN BILL BARRETT LAYDOWN YARD I-1 Road Surface • The road surface for the proposed access(s) entering the property is a dirt road with an aggregate surface, which will be maintained to ensure that there is sufficient traction in the event of rain or moisture. • During the construction phase of the project, BBC will use water or magnesium chloride trucks for dust suppression . • Application of water & chemicals will be done with a 1200 gallon tank truck with a spray type applicator. • Water or magnesium chloride application will continue to be applied on an as-needed basis. • Soil Erosion will be mitigated through the appropriate use of best management practices contained within BBS's Storm Water Management Plan. • After construction is completed, BBC will gravel the access and travel ways within the facility area . aw Construction, LLC 120th`t 2861 W. Ave., Suite 250 Mt- Westminster, CO 80234 Phone: (720) 708-6535 November 13, 2015 Ken Wonstolen Bill Barrett Corporation 1099 18th Street Suite 2300 Denver, CO 80202 Re : Laydown Yard Facility USR Authorization Dear Mr. Wonstolen, On behalf of NGL Water Solutions DJ, LLC, M3 Construction, LLC has permission to act as an authorized agent of Bill Barrett Corporation and Circle B Land Company, LLC for the laydown yard facility. Written : N wo " h Signature: L/f, L) v ? ce , evo2C1 & tQTitle: � i Date: III 13 Is PTA Aldridge Transportation Consultants , LLC Advanced Transportation Planning and Traffic Engineering John M.W. Aldridge, PE, PTOE, AICP 1082 Chimney Rock Road Colorado Registered Professional Engineer Highlands Ranch, CO 80126 Professional Traffic Operations Engineer Tele: 303-703-9112 American Institute of Certified Planners Fax: 303-703-9152 Mobile: 303-5944132 Email:johnra!atceng.com October 6, 2015 Cooper Murray Project Manager M3 Construction, LLC 2861 W. 120th Ave. Suite 250 Westminster, CO 80234 RE: Traffic Narrative Bill Barrett Laydown Yard Dear Mr. Murray: This technical letter provides a traffic narrative of the potential impact occasioned by a lay down yard that will be located on the north side of WCR-52 approximately 9,400 feet east of WCR-89. The aerial photo shows the location of the site. • ;.•P . - ' •; • In this area, WCR-52 is a two- la lane gravel roadway that carries 419 ` minimal traffic in the range of ea • '< ''� ' 0-200 vehicles per day • kr. according to the Weld County . V 2035 Transportation Plan. lb i 1' w r� r .,.&If?, •`; 1, - , There is no data on width. It is in poor condition per the plan. The plan does not provide any ` ., : :4 forecast volumes for this � ' = roadway. The site will have c`""cart"`'`tlr direct access to WCR-52 via a single driveway. The laydown yard will store materials such as new and previously used oilfield tanks, pipe on pipe racks and other oil and gas production related equipment. The site will be unmanned, but approximately 10-20 delivery trucks will access the facility on a daily basis and two semi-tractor trailers per week. Aldridge Transportation Consultants, LLC Page 2 of 3 TRAFFIC NARRATIVE In accord with the County directive, the following information supports a waiver of a Traffic Impact Study requirement. Type of Vehicle Number of Round Trips/Day a) Passenger cars/pickups 0 b) Tandem Trucks c) Semi-Truck/Trailer/RV 20 d) Expected Vehicle Routes According the operator of the yard, the majority of the trucks will travel to/from WCR-89 west of the site. This is because the most of the wells are to west and north. e) Trip Distribution Conservatively, it is estimated that 75 percent of the 20 round trips will travel to/from WCR-89. The other 25 percent will travel to/from Morgan County Road 0. f) Peak Hour of Usage The facility operates on a 24-hour basis and as such, there is no particular peak hour of usage. Nonetheless, for analysis purposes, a standard 10 percent of daily traffic is assumed. At 10 percent of the daily, this equates to 2 trips entering and 2 trips exiting the facility. Based on the above information, the owner/operator of the Laydown Yard agrees to the improvement triggers below: a) 200 vpd or significant dust as identified by County-Mag-Chloride dust abatement b) 300 vpd alternative pavement c) 400 vpd pavement d) 10 vph during peak hour turning left into the facility — left turn deceleration lane e) 25 vph during peak hour turning right into the facility — right turn deceleration lane f) 50 vph during peak hour turning right out of the facility — right turn acceleration lane. The vehicles per hour triggers for deceleration or acceleration lanes are not met. P7-4 Aldridge Transportation Consultants, LLC Page 3 of 3 CONCLUSIONS Based on this analysis, the present roadway surface, access configuration, and traffic control will adequately handle, without improvements, the truck traffic generated by the Laydown Yard. Should you have any questions or need additional information please call me at 303-703- 9112. Respectfully s • uu fitted: Aldridge T ans ortation Consultants, LLC John M. W. Aldrid :e, PE, PTOE, AICP Principal JMWA/me of . 1• o ' E • n ,' O ' 0lo•to° to ♦ . O 3 • e. . • _,,,g FXLED300SF LIGHTING Project: Type: \` c," ‘ Prepared By: Date: C ,--- •- Driver Info LED Info Type: Constant Current Watts: 300W } 120V: 2.69A Color Temp: 5000K (Cool) 208V: 1 .57A Color Accuracy: 72 CRI 240V: 1.36A L70 Lifespan: 100,000 277V: 1 .18A Lumens: 38,292 Input Watts: 315W Efficacy: 122 LPW Ultra high output, high efficiency LED floodlight with NEMA Types: 7H x 6V, 6H x 4V, 4H x Efficiency: 95% 6V, 5H x 5V and 3H x 3V. Patent Pending airflow technology ensures long LED and driver lifespan. Use for general and security lighting for large areas, building facades, signs and landscapes. Color: Bronze Weight: 66.1 lbs Technical Specifications Listings Color Stability: Reflector: UL Listing: LED color temperature is warrantied to shift no more Specular and semi-specular vacuum metalized Suitable for wet locations. Suitable for ground than 200K in CCT over a 5 year period. polycarbonate mounting. Color Uniformity: Gaskets: DLC Listed: RAB's range of CCT (Correlated Color Temperature) High-temperature silicone gaskets This product is on the Design Lights Consortium (DLC) follows the guidelines of the American National Standard for Specifications for the Chromaticity of Finish: Qualified Products List and is eligible for rebates from P DLC Member Utilities. Solid State Lighting (SSL) Products, ANSI C78.377- Our environmentally friendly polyester powder coatings 2011 . are formulated for high-durability and long-lasting IESNA LM-79 & LM-80 Testing: color, and contains no VOC or toxic heavy metals. Construction RAB LED luminaries have been tested by an Green Technology: independent laboratory in accordance with IESNA LM- IP Rating: 79 and LM-80, and have been received the Mercury and UV free, and RoHS compliant. Polyester Ingress Protection rating of IP66 for dust and water. powder coat finish formulated without the use of VOC Department of Energy "Lighting Facts" label. Ambient Temperature: or toxic heavy metals. Electrical Suitable for use in 40°C (104°F) ambient Other Drivers: temperatures. California Title 24: Constant Current, 1050mA, 50/60 Hz, 120-277V, 4 kV Effective Projected Area: surge protection, 120V: 2.69A, 208V: 1 .57A, 240V: See FXLED300SF/D10, FXLED300SF/BL, 1 .36A, 277V: 1 .18A, THD <20%, Power Factor: 99% EPA = 4 FXLED300/PCS or FXLED300SF/PCS2 (277V) for a THD: Cold Weather Starting: 2013 California Title 24 compliant product. Any additional component requirements will be listed in the 6.8% at 120V, 10.9% at 277V The minimum starting temperature is -40°F/-40°C. Title 24 section under technical specifications on the Optical Thermal Management: product page. NEMA Type: Superior thermal management with external Air-Flow Replacement: fins. The FXLED300 replaces 1000W Metal Halide NEMA Beam Spread of 7H x 6V Floodlights. Housing: LED Characteristics Warranty: Die-cast aluminum housing and door frame Lifespan: RAB warrants that our LED products will be free from Mounting: defects in materials and workmanship for a period of 100,000 hour LED lifespan based on IES LM 80 Heavy-duty Slipfitter for 2 3/8"OD pipe. five (5) years from the date of delivery to the end user, results and TM-21 calculations. including coverage of light output, color stability, driver LEDs: performance and fixture finish. Multip-chip, high-output, long-life LEDs Color Consistency: 7-step MacAdam Ellipse binning to achieve consistent fixture-to-fixture color. Need help? Tech help line: 888 RAB-1000 Email: sales@rabweb.com Website: www.rabweb.com Page 1 of 2 Copyright © 2014 RAB Lighting Inc. All Rights Reserved Note: Specifications are subject to change at any time without notice FXLED300SF 9eEG Dimensions Features 13 15/16 300W replaces 1000 MH floodlights ,� 22 3/8" 353 mm 100,000-hour LED lifespan 569 mm 5-year No Compromise Warranty 14" �`►��� ��,:1; 355 mm 22 3/8" 569 mm Ordering Matrix Family Watts Mount Color Temp Beam Spread Finish Dimming Voltage Photocell Bi-Level FXLED 300 = 300W SF = Slipfitter = Cool = 7H x 6V = Bronze = No Dimming = 120-277V = No Photocell = No Bi-Level T = Trunnion Y = Warm B64 = 6H x 4V W = White /D10 = Dimmable /480 = 480V /PCS = 120V Swivel /BL = Bi-Level N = Neutral B55 = 5H x 5V /PCS2 = 277V Swivel B46 = 4H x 6V /PCS4 = 480V Swivel B44 = 4H x 4V /PCT = 120-277V Twistlock B33 = 3H x 3V /PCT4 = 480V Twistlock Need help? Tech help line: 888 RAB-1000 Email: sales@rabweb.com Website: www.rabweb.com Page 2 of 2 Copyright © 2014 RAB Lighting Inc. All Rights Reserved Note: Specifications are subject to change at any time without notice V INN EM: WERNSMAN N ENGINEERING , INC .C IN 1011 42nd STREET • EVANS, CO 80620 Phone (970) 3534463 Fax (970) 353-9257 November 10, 2015 Mr. Wayne Howard Development Review Engineer Weld County Public Works P . O. Box 758 Greeley CO 80632 RE: Preliminary Drainage report and plan for the Bill Barrett Laydown Yard Facility Dear Mr. Howard : Attached is the Preliminary Drainage Report and Plan for the Bill Barrett Laydown Yard Facility. This report addresses both the on-site and off-site hydrology that affects or is affected by the proposed development. If you have any further questions or comments regarding this matter, please contact this office. Sincerely, atir�v,y4#��9R^,fr: 11: At d ER/ M•A'°. t,."cal '.'"'°s1'tr�t,aRg3RiSil iEs�"ti er. Eric Wernsman P . E. " I hereby certify that this report for the final drainage design for the Bill Barrett Laydown Yard was prepared by me (or under my direct supervision) in accordance with the provisions of the Weld County Storm Drainage Criteria for the owners thereof" _4O, „ �I ).tai,niltu etas! y,� a 9 VP ,, JJ'' r� ,3 C 'q a.A -c p i ii O, rife Registered Professional Engineer State of Colorado No. 33371 CERTIFICATION OF COMPLIANCE ENGINEERING DESIGNED TO WELD COUNTY CODE STANDARDS AND CRITERIA I Eric Wernsman , Consultant Engineer for M3 Construction ("Applicant"), understand and acknowledge that Applicant is seeking land use approval of a USR on parcel 096927400002 ("Application") for the property described in the attached Exhibit "A." I have designed or reviewed the design ("Design") for the proposed land use set forth in the Application. I hereby certify, on behalf of Applicant that the Design will meet all applicable drainage requirements of the Weld County Code with the exception of variance(s) described below. This certification is not a guarantee or warranty either expressed or implied. Oe'•el7��tyi%�� �rt rz.. ktiO NV(Engineers Stamp) ,� .• ": E .� meet • 33371 �+®�0 to • <.• .. ``'''P�r� osiA Engineer of Record Signature VARIANCE REQUEST 1 ) Describe the Weld County Code criteria of which a variance is being requested. 2) Describe why it is not possible to meet the Weld County Code. 3) Describe the proposed alternative with engineering rational which supports the intent of the Weld County Code. I understand and agree that the intention of the Code is to reduce impacts of development on neighboring downstream properties and the public. I understand if this variance request is approved it is not precedent setting and is based on site specific constraints. Planning Director Approval indicated when signed by director or appointee: Planning Director Name Signature Date of approval 1/13/15 Index Page 1-9 DRAINAGE REPORT 10 IDF TABLE AND FOR ZONE 1 FOR STATE OF COLORADO 11 RAINFALL DEPTH FOR ZONE 1 FOR STATE OF COLORADO 12-23 RAINFALL MAPS FOR NOAA ATLAS 2 VOLUME 3 24 BASIN AND SUB-BASIN IMPERVIOUSNESS CALCS 25-26 PEAK RUNOFF FOR HISTORIC CONDITIONS 27-28 PEAK RUNOFF FOR HISTORIC CONDITIONS OS1 & OS2 CUHP 29-30 PEAK RUNOFF FOR HISTORIC CONDITIONS OS3 31 PEAK RUNOFF FOR HISTORIC CONDITIONS OS4 32-33 PEAK RUNOFF FOR HISTORIC CONDITIONS OS5 34-35 PEAK RUNOFF FOR PROPOSED CONDITIONS Si 36 PEAK RUNOFF FOR PROPOSED CONDITIONS S2 37 PEAK RUNOFF FOR PROPOSED CONDITIONS ENTIRE SITE 38-39 SWALE CALCULATIONS SEC A-A 40-43 SWALE CALCULATIONS SEC B-B 44-45 SWALE CALCULATIONS SEC C-C 46-47 SWALE CALCULATIONS SEC D-D 48-49 DETENTION VOLUME REQ' D ( MODIFIED FAA METHOD) 50 DETENTION VOLUME PROVIDED 51 WQCV ORIFICE PLATE SIZING 52 HISTORIC RELEASE ORIFICE 53 OUTLET CULVERT EROSION CONTROL 54-58 SPILLWAY CALCS 59 VICINITY MAP 60 NATIONAL FLOOD INSURANCE INDEX MAP 61-65 NRCS SOIL MAP AND INFORMATION 66 REFERENCES General Description : The proposed site is located on the west side of the Weld County Road 93 (WCR 93) Right-of-Way and the north side of Weld County Road 52 (WCR 52.) Right-of-Way. The proposed site is located mainly within an existing native grass pasture in the southeast % of Section 27 Township 5 North, Range 61 West of the 6th Prime Meridian . The legal description for the property is Lot B RECX 14-0010. The site is approximately 5 miles north of State Highway 34. There are no major waterways, water holding areas or water resources on or adjacent to the property. The project site contains approximately 5 . 10 acres (The entire property contains 75 acres, but this report only addresses the 5 . 1 acres that is going to be developed ) that is planned for a proposed gravel loading pad, parking lot, drive way and storage yard . A detention pond with a water quality control volume is proposed to hold developed flows from the remainder of the site and release at a reduced 72-hour drain time and a five-year historic rate, respectively. The ground cover on the existing site consists of mainly natural grasses . The soil type present on-site and portions of the contributing off-site basins is Valent Sand, with slopes ranging from 3 percent to 9 percent ( Index Number 70 shown on the map). Valent Sand is classified in the hydrologic soil group "A" . See NRCS soil report in the appendix for the location and description of the soil type. There is an existing injection well facility to the north of this site. There are no major open channels on or adjacent to the property. In the proposed condition, offsite flows draining toward the site from the north will enter the site via a swale along the west side of the property and direct them around the site into the detention pond . Most of the runoff generated by the proposed development will be collected via swales l flows will sheet flow into the detention pond . The detention pond is located in the southeast corner of the property and releases developed runoff through a staged outlet. A water quality capture outlet will release minor storm flows over a 72-hour time period and a major storm orifice opening will release flows at a five-year historic equivalent rate . The released flow will be directed to the south, toward the borrow ditch on the north side of WCR 52 . Riprap is placed at the end of the pipe outlet to protect the ground surface from erosion . Drainage Basins and Sub-Basins: There is no Weld County Master Drainage Plan for this site at the current time. The Riverside Canal lies to the south, about one mile downstream of the project site . The closest major basin is the South Platte River Basin, which lies approximately 4 miles to the south . This project site is not located within the South Platte River 100-year floodplain . Historically the site slopes generally to the south at approximately a 0.8% slope. Drainage basin, H1, represents on-site drainage patterns on the 5 . 10-acre site which produce five-year and 100-year runoff rates of 1 .07 cubic feet per second (cfs) and 3 . 79 cfs, respectively. Off-site flows enter the site from the north, east and west and are designated as OS1, OS2, OS3, OS4, and OS5 in this analysis. The off-site drainage basins, O51 and OS2 were calculated using the Colorado Urban Hydrograph Procedure, due to the size of the basins exceeding 160 acres . Off-site basins OS3, OS4 and OS5 are each below 30 acres in size, thus the Rational Method was utilized to calculate those runoff rates. All of the off-site basins are undeveloped and contain native vegetation . Flows from all off-site 2 basins drain toward the site and are directed around the property via swales. Off- site basin OS1 lies north to northwest of basin OS2 and contains 179 . 2 acres, which outfall to the north boundary of O52 . The peak 100-year runoff rate is approximately 216 cfs . Off-site basin O52, with 217. 6 acres, lies directly north and east of the project site and produces a 100-year peak flow of about 148 cfs. Off- site basin O53 contains 4. 19 acres and lies to the west of the property. This basin drains to the west of the site boundary and generates 100-year runoff rate of 5 . 60 cfs . A 10- year runoff rate of 1. 1 cfs was also calculated for the basin . Off-site basin OS4 lies directly north of OS3 and directly west of the project site. With an area of 6. 15 acres, the basin outfalls to the northwest quarter of the site to the north at a 100-year runoff rate of about 7 .60 cfs . OS5 off-site basin contains 28 acres and lies west of the site. This basin drains onto the west side of the site and into the borrow ditch along CR 53 . The basin generates a 100-year runoff rate of 29. 66 cfs and a 10-year runoff rate of 5.91 cfs . O51, O52 and OS4 all enter the site at the north east corner of the site via an extension of the swale on the property to the north and drain into the detention pond . OS3 and OS5 drain to the existing borrow ditch along the north side of the CR 53 The land to the south of the project site is undeveloped and drains to the south, toward the South Platte River. Therefore, stormwater from this area does not enter the project site. The on-site developed flows are mainly directed to the detention pond in the southeast corner of the property. Sub-basin S1 contains 0.4 acres and represents the flows within the undeveloped western portion of the project site. The basin contains a swale that carries flows from off-site basins OS3 and OS5 . SB1 will be released un-detained since it is mainly offsite flows and the area that carries the offsite flows around the site . The 100-year runoff rate is 0.63 cfs. The 10-year runoff rate is 0. 13 cfs . Sub-basin S2 is located in the central portion of the site and contains 3.6 acres of almost entirely gravel surface. The 100-year rate is approximately 10. 12 cfs . The entire site with an area of 5 . 10 acres, produces a 100-year runoff rate of 12. 6 cfs. Drainage Design Criteria : There is no Weld County Master Drainage Plan or project master drainage plans for this site at the current time. The undeveloped and developed land to the north contributes offsite flows onto the north east corner of the site . A swale will direct these flows directly to the detention pond . A proposed swale will redirect offsite flows from the west sides of the site toward the borrow ditch on the north side of WCR 52 . The existing drainage pattern of the area will be maintained by directing all on-site and off-site flows to WCR 52 . Using the NOAA Atlas 2 Volume III maps an IDF table was generated . Please see calculations sheet 2. A one hour rainfall depth of 1.49 inches and 2 .87 inches was determined for a five-year and 100-year event, respectively. The rational method was used to calculate runoff and release rates. The detention pond was sized using a 5-year historic release rate . A water quality capture volume is designed within the pond to release minor storms over a 72-hour period to maintain water quality. The on —site swales were sized to pass the 100-year events . The runoff for specific design points was calculated by inputting the area, imperviousness, soil type, one hour precipitation values, slope, length of travel and conveyance into the peak runoff spreadsheet. Please see the corresponding peak runoff and feature design for each point. The release rate and developed runoff amounts were calculated using the rational method . The detention pond volume was determined using the Modified FAA Method with one exception . The discharge rate did not use the soil type value. The discharge rate was determined by finding the total historic runoff rate for the site and then dividing by the site area per Weld County recommendations . This value was then input into the detention pond spreadsheet to determine the volume required . Drainage Facility Design : The 100-yr storm volume required by using the Modified FAA method was determined to be 19, 772 cubic feet. The historic release rate was not decreased even though SB1 releases un-detained . The majority of the runoff associated with this site is off-site and in a large storm event the pond will fill up much faster than it would under normal circumstances. The release rate was determined by using the 0. 21 cfs per acre on 5. 1 acres. With a pond outlet invert of 4513 .00, the 100- year high-water elevation is 4515 . The available volume provided is approximately 21, 134 cubic feet. The water quality capture volume (WQCV) can be included in this volume per the Weld County Addendum to the Urban Drainage Manual . The minimum WQCV allowed for the site is .068 acre-feet. The water elevation of the WQCV basin is 4514 . 12 . (At elevation 4514 the volume provided is 0. 267 acre-feet. ) The proposed detention outlet has an initial orifice plate to provide water quality capture volume in an extended detention basin . The first stage orifice plate shall have (2) 1/2-inch holes to release the water quality capture volume runoff. The orifice plate is set at elevation 4513 . 12 due to the 1' minimum depth requirement in the Urban Drainage Manual . The second orifice plate with a 2-1/2" high opening at the bottom of the pipe releases flow to an 18- inch diameter corrugated metal pipe (CMP) that directs flows to the east. A seven-foot by three-foot bed of Type L riprap will be placed at the pipe outlet at a depth of one and a half feet. An emergency spillway is designed to allow off-site flows from sub-basin(s) OS1, OS2, OS4, the NGL C11 site and the entire Bill Barrett Laydown yard, once the pond is full and to allow on-site flows to leave the detention pond in the event that the pond outlet is clogged . The emergency overflow is provided at elevation 4515. The spillway base shall be a minimum of 70 feet wide and will limit the flow depth to 18 inches at a discharge rate of 400 cubic feet per second . Slope protection on the downhill side is provided by North American Green P550 fabric. Please refer to the appendix for the calculations regarding the spillway. An additional 15" CMP culvert should be placed next to the existing one at the driveway. In combination the two are designed to pass the 10-year storm from OS3, OS5 and S1 . The combined flows generate 7 .67 cfs. The dual 15" cmp culverts can pass over 8 cfs prior to the flow overtopping the driveway. Swales are designed throughout the site to direct storm-water flows to the detention pond . Flows from sub-basin OS1, O52, OS4 are intercepted by a grass swale along the east site boundary, designed at a 0.7% slope . The flow used to calculate the swale parameters are the sum of the peak 100-year flows from OS1, OS2, OS4, the NGL C11 site and the entire Bill Barrett Laydown Yard Site. Although the times of concentrations for each basin are different, it was determined that the total sum of the peak flows would be used to calculate the swale parameters in order to provide a conservatively sized swale. This swale is designated as Cross-Section A-A in the design calculations and on the drainage plan . In the new condition of the swale, the manning's "n" is 0.030, which creates a 100-year water depth of 1 .9 feet and a Froude Number of 0.79 . In the mature condition of the swale, the manning's "n" is 0.040, which generates a 100-year flow depth of 2 . 25 feet and a Froude Number of 0. 61. There is a fabric lined section of this same channel that has a 4% channel slope to eliminate 1' of elevation to help control Froude Numbers in the rest of the swale . The swale is represented by Cross-Section B-B on the drainage plan . According to the software provided by Tensar ( North American Green ) The channel has a depth of 1. 17' and has the ability to safely pass the required flow. Within the southern side of sub- basin S2, a swale directs water from most of the project site to the detention 7 pond . The swale, Cross-Section C-C, is designed with a longitudinal slope of 0.85%. In the new condition, the manning's "n" is 0. 30, with a depth of 1 feet and a Froude number of 0.71, the channel has the ability to pass 14 . 2 cfs. When the vegetation matures, the manning's "n" increases to 0.040 and creates a 100-year water depth of 1.0 feet and a Froude Number of 0.53 . The channel can pass 10. 7 cfs . Cross-Section D-D is located in the west portion of the site, within sub-basin Si. This swale is set at a 1 .0% slope . In the new condition, the manning's "n" is 0.030, which produces a water depth of 0. 52 feet and a Froude Number of 0.78. When the channel vegetation has matured, the manning's "n" is 0.040, resulting in a flow depth of .61 feet and a Froude Number of 0. 6. The spreadsheets included in the report detail the physical requirements to provide adequate drainage ways. Please refer to the spreadsheets for the specific design . Once the site vegetation has been re-seeded very little maintenance should be required for site operation . Care should be taken to keep trash and debris out of inlets and pipes to prevent excess water from building up on the site. If complete blockage would occur in the detention pond outlet the water would release through the emergency spillway. If blockages occur they should be immediately cleaned . All storm water pipes shall be kept clean to maintain full capacity. 8 Conclusions : The proposed site will control developed storm water flows through an on- site detention pond . The allowable release rates from the detention pond include a water quality release rate that allows minor storm flows to release over a 72- hour time period and a major storm release rate that is equivalent to the five-year historic runoff rate. Off-site flows that drain toward the site are directed through the property and the detention pond spillway. All of these storm water flows are conveyed off-site to the east. This report and design will meet the Weld County Code without any variances . This design should be more than adequate to prevent either on-site or off-site runoff flows from creating damage . The site is not part of any Weld County Master Drainage Plan . Please see the reference sheet for a complete list of references used for this design and report 1 IDF TABLE FOR ZONE ONE IN THE STATE OF COLORADO Zone 1: South Platte, Republican, Arkansas, and Cimarron River Basins Project: Barrett Enter the elevation at the center of the watershed: Elev = 4,520 (input) 1 . Rainfall Depth-Duration-Frequency Table Enter the 6-hour and 24-hour rainfall depths from the NOAA Atlas 2 Volume III in rightmost blue columns Return Rainfall Depth in Inches at Time Duration Period 5-min 10-min 15-min 30-min 1-hr 2-hr 3-hr 6-hr 24-hr (1 ) (2) (3) (4) (5) (6) (7) (8) (9) (1 0) output output output output output output output input input 2-yr 0.30 0.47 0.59 0.82 1 .04 1 . 16 1 .25 1 .40 1 .70 5-yr 0.43 0.67 0.85 1 .18 1 .49 1 .63 1 .74 1 .90 2.30 10-yr 0.52 0.81 1 .02 1 .42 1 .79 1 .93 2.04 2.20 2.60 25-yr 0.63 0.98 1 .24 1 .72 2. 18 2.36 2.49 2.70 3.20 50-yr 0.73 1 . 14 1 .44 2.00 2.53 2.69 2.81 3.00 3.60 100-yr 0.83 1 .29 1 .64 2.27 2.87 3.05 3. 19 3.40 3,80 Note: Refer to NOAA Atlas 2 Volume Ill isopluvial maps for 6-hr and 24-hr rainfall depths. 2. Rainfall Intensity-Duration-Frequency Table Return Rainfall Intensity in Inches Per Hour at Time Duration Period 5-min 10-min 15-min 30-min 1-hr 2-hr 3-hr 6-hr 24-hr (1 ) (2) (3) (4) (5) (6) (7) (8) (9) (1-0) output output output output output output output output output 2-yr 3.60 2.80 2.36 1 .64 1 .04 0.58 0.42 0.23 0.07 5-yr 5.20 4.03 3.41 2.36 1 .49 0.82 0.58 0.32 0. 10 10-yr 6.25 4.85 4.09 2.84 1 .79 0.97 0.68 0.37 0. 11 25-yr 7.57 5.87 4.96 3.44 2. 18 1 . 18 0.83 0.45 0. 13 50-yr 8.82 6.84 5.78 4.00 2.53 1 .35 0.94 0.50 0. 15 100-yr 9.99 7.75 6.55 4.54 2.87 1 .53 1 .06 0.57 0.16 RAIN.xls, Z-1 11 /10/2015, 1 :14 PM /0 ; One-Hour Rainfall Depth Design Chart 3.50 3.00 2.87 2.50 2 53 ♦ 2. 18 ♦ n 2.00 - C sic 1 .79 ♦ t N 0 1 .50 1A9- • 1 .00 1 04 ♦ -_ - � - -- -- - s 0.50 - • • 0.00 - 2-yr 5-yr 10-yr 25-yr 50-yr 100-yr Return Period RAIN.xls, Z-1 11/10/2015, 1 : 14 PM ' I • { ( • __ _.4—... -4-4-• :..±—-- - �f -� s- '- } — { ; 4.rra —iJy tkJ:• I 1 7 I Y I { M :.�.+. tom..--- ...„...............L...._,......„_14.-,'I " ':+'mil'. • I .. • , 1 f "_ f .mow ,�w�irrrr..�Z.3 i • S h I `• _ 1 K. 1 1. .' \` /• . FPS t ^ •x: 111-al .'t• Sr' !! 11 i. V` "� ` In 11 7 s % -s 1 sr .. .. veli i . ▪.'./✓ •>•{> 1/44...... • .$ IM ' - f -" / / ,.Z :III?,= ; .�•� y3 � � C:�') " i. %%If::..., 'Lid • • ...• ,,, , , ,• .• ...„ - ..... . •Td ..,rte_..= _ f` _ Y: , . - .0. ill _ig I•. ._ ...4... 4 Ala } • • •• ,�•' •.or•.*•' ate." f '. t r`� ^�i 2 •,. •. '' SC ,''' ••.i:3 1 _ • �� / rev-, {•I.% r .,�•' . ;, }'t"•• .r � ; � Q �.rI 6. • '� .1 ,_. �TsD .-j .`! _jra •ht` ' �q . %� rr 1 • 7 Jj 7..1• ':1c.V .f.. ._�! .• .r•: •••• '• : . . • � 7• of _. �. �S1:�' `�• Cl i • a2 ,; ;t. r ..:-. ..-14f..- • _i! -•5` ...I-tun. c•--.'� •ad• :. �. ( .„pry ,.1 . . _• :a i• ' _ ..' •'i.: ' y�7e14:1117 i•�' • wi —a..w. mer 411;--t- -4.44":4/1"4.1' .• aK•:' _ _e 1 •.. . {P-� ,� - 1.. •...4 •+r.., Is ....4.4..i.....a16.r.r- .-►.iw w , Ir•I CI i & a r? r. ` Y ...-n- - - — - _ _.._ --""�i.to y .• .,, f '. ! ;1 ca ;�L; ! • Ii 11 i I • t t in 2 i T --- :S.‘. 1 / -\ ice` 1 �. 7 • • E Jet' I J j 1 1 I / 13 1 % 4. 1 i I : : -r - • ? i .ri - i ';.� —'T : . i :; --lhx. -•-• -- ----- - - j.- -7 Y {# L F r'' fI '4� I 1.� ;- 4 .. ...ice__ .i /' .� �f\+r- -`... ''� —:G ra • . _. �.. :� -�1, �- �' 1 r . fir` ' _ , 61k . I hri II i 2 i.-i - Y'. IC 0 0 �I -"rte ^ ;-'�..? a •— •'�"'�-.... _ «^' f� S p .. E� .. • , - "� = t �� ' r Hill 1- ,.. y�, a r.. O . �._ • ,_t•..!•. r .../..s �y r� �Jl i f .r"--� f Y ,;.T C.:l.`7a•• ;'J�r �/ /.t Q -�, .'l tit •;L Vii'. tRif.:�:: `�• + !�/ `.,..�1,. 'I, .__ to ii 4 ..•1 - { ^,. (t`(i�.` fib✓ , - , I- Ni - ^�'�, .� _ - .:I 'n'ifyy,..{�i�M1.M • ^ --..* ,• • 'r ._i_ , .`,^may,,,.g fyT t 7; i= ..r, UP. S . tilr .". /.. 'F,�3:.1•/: -'r ,.; �) .t ✓r ..__mss t c �/ i ,........„....t,\s -, :J..... 7 .-• - .'�;A ✓ J. ..7- M .' % ry �7n • v n y, J'J _ h ,^-- cal i a _, 1' .�...n�_� ..C_.4c..,•: .'•"'`r - 1•-•c....-- ti1�E .� L'W'..-�' a�- i'' S 1 a. ,4.?"-'4..., . "'4 ,a 1to re t41 c ~ 13 • • • Y •6 tr. G...-..—.. .�.. ; f • . .eql ice.. ( 1 .. '� ...tog , , ^• 1 tf - .t ♦s 1 •.r..."..•1 i y..,.�-.„ :." • ' L 4f 1 • ♦ 1 .t_ .-mow• •{ ; t ` ..° s- 2 't - # a: t t I IS 1 • 1�..r� �'• 1= ' 1 is • T • I WI -. •1: .,,Y• t•!' ...;:. i 11•14.2 ..:4-2-1:.;:.• I-. • 1.-... .it. - -.. ••• . ••• if . .. .1 1110 ii . I . .. .e....c.. 'w."'••...j,..........av .4 . --'' .....-s• —zi;F i _ t e • _ I p 1114 • 01. .t. '. Dr, • .31 re. . .I ' N—-\7, 1.* It roll gl 1 • • : o :, :���i OFF Sf �. y'; ` '�" • t`i=; '" f3: t a•s • .�'..:- fir t N 0.{'.i•!.; tv .,/ ? tr i '11' _ h • A 4 1 1 . i j ^ - �J '4W. • •• .....".1:.v..a•- I. (:_/"' • ! - J s j - rte`' '! �• —! c• • .., _•r.7.T.4 .�� 4-- i • its ! t3 a al ' :tit J, • �. 1� in.•T l�'L•'\ ?:Itk • ti - ' • < •' • • fl • _ 4,,`t • •.�.' St,WI • i •-_ -• _ Sr •1I'� L. .5,R .v % -4s f: .` ..,,c. i Q,I.A. •' �• ..; '• \• • l : -- --_ __._... _. ....._., t . • •.f: -- as n ma+ ,,_•« ---...-.; =•—.�...c. ..flJ r. ----- "•-••• .... ./ r • ; i ..�- ....i .rd ::I; i -I 1 ` ',�,, _.re, :v" I 1 I i s : i.e.:el— -—s-----1t• ' - t ° i = r I •- . , < I 1 .4 i I Ai - •• 1 • a i!tii„, i - -.. . . ; t.. i -.7 i?. 4 i.* -31........E y I• a , - {" 1y i R i ,:t. ... til.::::——I Ol • •OT- i F - •.1..}+....4r-�gq-- 1-`fir•" . - • t.- . pr )«a•i.. -.....#...... �`...♦J 1 froo• • I rip3 =_ 7 N,_ x.1 2 �t tz: tJ;.. f., is •�,..iY'..`' �. c, I. -..-it." e, f ; �-• , i• •- •i- 1 t ,» • •1 4:1 -1. `. • " . ri it Irill a i • . .: �t ,,; s� i . }s m r ill a3is s X11 jvv. .-• ►' .r7 <_ 1-- t .; _ I „f Y !r///��ri � y�" • M f • 2 - Tf',•: . -• • .f t'w / `...I ._ • -...N .. • p . `P. . +� � S � �! 111 1;el 1 i •: . •p., 3 J.., •• t•- , -.1.-e.... .. t... .• - . . ,S• :,..,:: :, . sr z.• i .a.. +/� > . i ,rte, Ill.". F�- .. tr , �:.`. • �y :r _ .f• {eY 1 t t g i i . G `� o• .k, Y 'i-..t:'i• c '-ry a ��.•/�� i}• to •.+ ♦ , C:,• •..• 7.:• t •Sid "•‘ , .. ..• • T^. fi11 �-�. • ' "7 •O• - ;Ste C. 1 ♦ „....1 - l i ... • -=r;ili.• c :•...wt .. :V; ,�y::�. ..1 sip e •'�,`• '• • . 'II// i t ... -i• I' . 'e W• :1.,...;Vii • j i ! '•�.; ••i► wow ,y! C.:c if ( _ ;-••'+' ` - �i. "! . }%', •; . V!y • ':++ ri !`. ;_ c; , t4•. o1�I . n ZA •' �...r'++w'.t Y sr, ice.-.,,,..1 ••••••04,...'.. •, V.ii... i x ! r e• as irN 15 • • I _ c I ) s a d I • . 's 1 s 4 s . .r s. y .s es i k I s z t -• J f • `d M ^._, -sue: _ i ii .. ce•....,. - - .y • ; i . • r I , t L __i _. i it.—!"' i.._..• ._.'333€€ • ik1t 'HHd i - - i z :. i ai . girt) . -....— , ........1-4-.i..-,- . .. .........,...•,.:-.41=-405-Infr-C-n-ik-'5152,•••..,-•-%•:-.4.- .- ..--artt, (4-.•:.-Y- ' k . • 41 •e• _� 't- I • F • A ,`sr" • • 1 n I. I i i• " _ ., s . N•. �> { •',; •, S-- i1\ jy i -'1-..;.• ,?' r,.1t +,• ::, it .1.• 'r _`. s'�•Y+� r { .'4lj.w.- a{..r A'�-'^i" ...-y+•w` r_ r �-�� _ xR'�' .` • R _ w se j.. 4O F A/• / r — .� z. ESN ' rwi ' :S g l � �t. ...'_ i.s ' f• N. 1 a�lii> • ; h k •:,?:: • �', ' r K r„•:=71.. 1 / ail • .,i.. ' . . �• • _ • tnlff .{�.. Ja "',t• ♦ `M • iiii •T• r. •`• �� y.��f ,A' • pys/—Cat / t ry ��• g% i' ///JJff�{' '�.' o • •-r. -`� ` • • •h'- •� ` 1• it •. . :', it s ' {_ - ~'n� ` _ - . 0 p' 'ice' • :•� Y_ ' • . .y , F+1.. .\ -,1- i1 •,,r •• •^t.. `�'nj•' f•1 !'�.. ••'t iii .. t ti 1;. • J Y _... •' .. • " '1 I.- `!' `L. - ' ' Y'. • {(�. 1,•, fir'. •` k .. ♦� !•J ' T'e;+*P rc:.• ;, ate• ;�Lt.se ]] . _:. _• L,7 rJ ` t �'• f• T✓ Y ,� . !•� :•`• to 1•A '• f'< -1) ~ ` N�♦`."•• 7 /' •• �,: • '%1.•w,'i...'•;0. -• 1,1 t '� di ' ! ►r . •. •i ♦efr . ..:1 J{ `.' : Tut • • • '• ''s- -.••••••...••}.,Ci.:-41- : i.$ �I • •,�' / • . t!. • • .' , .. , . • ;S .. r i' mot' i/ ._-...: :••�<i' c =ry w4,3;•+... ti p. �t '^ .+• i.fr_ • .:.•ta.:-.••••::••• I. r ',e•=-r . .�a . '••: a — • : L { i i - 1 ___-_.-_.-.tr.....-� __---_�- ._.. . __........_.. ............ .--_......._.�..__._.� �� .,�....._.._ r tb• 1 W ir M sa` { {I r 1I D. • 1 3 L • IK4/C: i. 1• F 1 r _ 1 i • 1 1 i. i • _— .__.. ` 1 • !• • Iiit.% -•,1 � � • 1 •.� g cer • .,_, f . 441—.....: .i E -1•:.y I • _ { / la's .1._.._ ` tA• ! { I 41, - • { E � { , 1 ••` :� /• ? fes, 3t: •'L r _ ••'�" 1_t.1 � y -.I�•_w.a�-` .�__ar''`....`* 1 _. - Vie•.__�A►-n-._.-v...• -•• \ ,:a „;,•E •'• •^ YAY if•�` ..�\ r' , _�'" • , ' / �ftlr it. -.> tiü! 1 • F �! i' :�. � " ter; It ;u�d • • O. F "4. 'r �- Is•' - `Ej .i rte. . ii h I e :•_ •dam' '' J. . > ., ' - t ?Jt. . T f'd/.. . " �..:' .. ei EEvy o fa +_ +. . ,E=��`=c. • @� c _ .` fi . ' .;a .• _..i;^I al • 1 65.1 '. '�.. ^•; I CC II /:. .'{• :v.a.* `r:. .,.. }/} �\ � ; r• i..'• =lit • .. ' � • '� at Eft Yt ii :�... •4.t4_.I•,1.w'•• ,.-..C • ...••.....-,i4%.* ST 4f?. „'.�-,'G.f •.t, ^ f•- • ... i" _ a4 .. 1 . a.�.,. hi 1 .~__.� j N. r ....,_., r, n 17 _el t Ii _ $ _........___ - - _.:: - , • pr-l-70_•x^- M.t—— it : I f' •_ I jx-' : I i I 1 1 _ : t 7 r __......_..;~ .( I yr :•ri , I .... i : ' f-t-4-----"-f--4-.7"--2. w t� 1 Ti [S- • ( JS • 111 I • ip t I 'It III 12 4 r t.•:..;tr.... i,,.-�� t.i ;at,. �. ;f� — ' `C. •+ _ ,t J �t.�-•r�_ 1 '.t II 7 I ill • ap qq � - +f yA +gyp 01 'x• . • rV��., `�, ` 71. u.:�,•� - _ - {7_# iaf IC illj 4110. 4..4: - - , . _. . : ... , , i . . • I . . .... . ,, it., . '�,C. ti ."t ; y-s ' • .r•' -�."' � r 1` T_e,.,.",. «._i 'y t t • { i ....1O I. ..%` .'`' ��� ,•, t rte p m �]�., !'v ;.d• '7 !err r e. i .`IL ,•b`1. ``._ + re '`�• �-• fr _ T,�. �' .. . ...., . — .c �.. iii F. •'j ...._... - 3 a .+ a • . .... 2r''l'. ... �yxi ._c.:J � ..•.,.--. _�.1. '-"`-'"`-•w a___ s T i et rr m .. t ta a.I ^ t 5 . it. :•I 1 ' •'1; 1 .( S } . a_ . l yt•r +^} S S i z t -t} iV 1 • .. • I\v S . ' 1• t r ,'n ..,t,„„scc S t, { ... t 1 a1 : J— ar-1 _3 '.t 1 t ':' \, I 1 ::‘ . / tri i .. i 1. 1 le,- ) 1.. c ti,- •° : v re '•! 1 _ Y 1 r1" - (• €•' 1 ! --.-: ;'• 1 F :; __ _-'--- Ti ' f; " : i a >_— —• .•- _^_____, i_ � • . \ �!!� .. -fir ./� � / 'tl ,_ -a.. I1 .._ I _ -..f p ... -z I 051 If ' :_. .1 rly��', a '_ • .i f t . "':';- • p. , r r l`i`�"' : .:J . • • t _ , IV"' 'a --rt..''t•-- -.' y.) ti.../•Al -}�_"•. - r' _ 1•�-i r+:r '•7 Ei• ._ri .`•' { <• .1 . . Q£ '1St •';~ _„ _• )`- ``T .ILC'S -• 1-E� // �•�>�Tl •�?, ' ' 1 % M1 X11 i ^Y ` S . LI - i si I s 4 m 19 • es �. - I ! C : . j ! < F ' ! i. i ,s . i < in . Pt A of • ! ....;:: : . t V 1 •\ ,, if- L1 _ _'1 1,2 } i t 1 i ) 4. i 4 i IA ,..... . . • . ! , ... : 1 17ttTcP ! I 3 ..i ! 1 E\Y� „Y` _ • i• y/ S4j j"it 74 ; Cr .T� era Cy3 lig •f" yy— ` /L�/' ,I4. -•Iii s.•E`.O' 'r L�}+�.*, j '.• 'J'(r�• "aM •' •I fyF� L'e , ' p: — • • '7.r+•"� Ka 1 • -,,, ,..-- }1 t' +�. .. :♦ - , .1 ♦. �..• � .r,•r t- gal at •` i •�'' r : + r`.L .ti • 3.eft .:: ••:"1.•% tit F. ♦i'� a r' 1` tic Jir•'g•..••t,• 1 a. Ci :: K ^.s•M1'• •1`,.i• ;?^ • .447 ..• •• S,j t,f',' 1:'•" i y : .i I �i.•...r 4.. • ..'.__ •rF,u. %I"i:•:. 10.... •�C,L'3.♦!s�~ C • y •on 2° .. C ar 1 fit }} i � • ....--+fit ! C I •1 r ..�.r_ f+�_— . _ a f r I re j :r t i ,' I4. r II I` :.,' i f •-lam}.' • J a kg I 't . I i _ ' t I -••.f.•t •,,, T �•• •�• , € I- 1—.. -Ylr^ ! ( zit f hoa�Y t 1 t isj { fiF :. o i : . . f. IN: t : ttr-..it '•�!r , 1�. cis,--- _ . .-r. .II •. SI. , i Lt J� f j _ f Z it i• { ' • �. •-•'•tt..- wf ' Iiit•• t f ~ .. —• • • .., \�\.• Y i t 1 C.... 2.617.1.4,..:, • ° t:, a �___. yam'` ` t 1 �Y'i_, ,: ; ...• :., ;, :•/ tt r, VI { 1 11P .... . . lee _ .. . i. . . ...) . i .sliii 1 ;;IIHTMP 14:4111 c -4. '$ • 1 { III --� y.'�'' _ . .. tr / ohj.�� . •..• rte • y _ Jt'i t �� '.yyfJ/.1 `K`r �L' LlS/ .����r� R T ;.'F ,� •d r .�i i ' ,� i�_::.� -" ''1�jir� JK 4. IC f • • :,. ' ''i�� .� .. .I •, ,r•�r-••, �`Jrfl�'`\ li! •. • . • .— - . +- 1' EMI `. ` !t I ''`«tit+ .i. '� L •Kt. r . L. ' ... \! . � - -s �-* c iii Ja. . t i-.... .--,,-1,%. y, .. ,,.1. ' : : ' •t! J . S r, •?� dw , to [ ... •- • - • CC 'I.y�• ti . •�IC,='I q•'Glls ft*:ldY!' .•.•a\ �' ,� - � Sf f j 4.0;I. 'X-• �- . L'• y• :O;,.....ti . . + ✓ ,`. x� .I '•..• • ,:r. t• i! •i/ .S ;/• 1 S.i • .i• if/ J ,. `4 C `• r+/,. } 'i _ Y ,e'S.7.t r•!L114L4JJ �• '.. L ' ..+i' - Yw-r 1c.` r., ♦' • i 'Irir�Y f::�: •• •'• ':::}7 `!.: , ,, i.�;•S t _ .S"i j} • j 4 It YS u f_yam ��fr'n• -••: n•.�++ —.-.! YP \ ♦ 'Y • T I 4�•MM•M�1• 4 t 4 A _ _ __ • h. • Z1 — o cw) .-y _ .. ' { — t r 17 i 1 1 s -.. f i t ; i -., -i s 1 1- i ; Y fi IC u O ` fir —i ' — �.,�.,.. __._.g'S�'= '--•-�� F , .P Ir i r • ee. .,,c: S {iIi 1.1 4, ;;:i'sr. .1 r...,::-.zi `•-.,,,,,‘,, ,frf.......:,,t,: .... ,...... ::::.... L.>;#1111..;18;i::::.-': .fril r:•••:::.7.:• • -- -\ I (C--;.i.{.. ‘'....;.-5- ?-. . • • P... ; '' - - L � ,�.f ,. '� • • Y t= ^. Y `Y_, ~ It, Fes ` • 1• 3/;: , , '� '� _':•, ,• ..''`. .a � •_:.� 'A•! • p• • ti. Le 1. , i , • ,-• c s , �Ft,• -; 1 ` ir �' J _rrK� L ' '!. • 't. �,`� � 1, - � .. .. � 1 .. 1 �. t y�♦ �n1t' ;: `i '+ } < r'. '� `. ^a • ...3 Cam. • - 1• (• �• 't y••��}} - • ._� :.r`• .;: � rev -`; ( S-i rJ :5 r _ • i i ;:: ,...is •.r_" f if i! . ,H.1� yy J.w} 'fi�tq '''.\....\ , ` < /!i' ' '+' • ',edit r/ `t•; r•:. - o+ t Ft .,S.,V T`�v i �..�• �+ zr �L <i 0 i t 01 1 ;, 1. i _._ ._�.._ in Cr" K Z • •i �.a........�.1...«r.:.-.- T j ai. I ;_ ...-•--'.'..4' ^. .'• t T••• — t i• i • I I �+• }Y1 1 ! .` ` ' •2. '. `' -• •� • wit " !•! •. • • .?..ice-'- ..'.^tj .....44t."4—:} ... . _ . i ::11:1.-• • 3 i., as .. .� a7. 1 i 1 S • ` ,.i''•::',1 fj�, i`Y • . ism" ' • • (� . 55••••<50-. I•t to tic a —. . ; .--j�r s —r , -1_L- " •�. — l� ..�� . _ �r 1 , ......... . '" _ :,�.e, lir 1 , •4 A;r�:' ` � �Q_r , _ - •-a ,. +may.+ ` • ! t5.\ o.' 1:^ 1F aY*Airs, - , 1 1-a� • .1 • . `'Z W YIIV 1 t ,�,� ,;:� t , .t `t 'a t:��t( �l. ; .� - i. i , . X t 4111 L c F • I. • {y� c..; f fr.� �� ,.:. ,Viesl1X. ...-a f ar— ,'w� ` wtM I3p ,r — Il`, ' ,ma • ti• ;•,- ��4 . =^ �•• t , t -a,a _v . �" 1 ' 'a ' .�`- �A•�t_ .. 'till! • i • • F: a •,. -.ors C.•'. • 1 $ ', IP; .a • v�� i I4 . • • .� .y .Q 1 i �-•�t i 4 • •t `• • "� I.1 .;a.. L,!: _ •'}'� • • — . it'll 1 I .3. •. ,•..� y�....$1/4 � —5.3 l•3 • c3.• " ,.v . _ • . :. •.4 . {jam " •t :�." J '7 �EI=I�- »tom (yyI 1.6"*.#.44.1-.....r".1... .....„„‘- •qt.t I-.:.0' a. es T i ; • ; i•— Y T IA :I Pi : . • 1 HISTORIC CONDITIONS H7 : HISTORIC SITE RUNOFF Land Use Area (ft2) I (%) Impervious Area, Grass 222430 2 Roofs 0 90 Concrete Surfaces 0 100 Driveways, Gravel 0 40 Wghtd Avg & Total Area 222430 2 DEVELOPED CONDITIONS SB1 : ENTIRE SITE Land Use Area ,ft2) I (%) Land Use Area (ft2) I (°/0) Impervious Area, Grass 16053 2 Impervious Area , Grass 67609 2 Roofs 0 90 Roofs 0 90 Concrete Surfaces 0 100 Concrete Surfaces 0 100 Driveways, Gravel 0 40 Driveways, Gravel 154821 40 Wghtd Avg & Total Area 16053 2\ Wghtd Avg & Total Area 222430 28 SB2: Land Use Area (ft2) I (%; Impervious Area, Grass 0 2 Roofs 0 90 Concrete Surfaces 0 100 Driveways, Gravel 156463 40 Wghtd Avg & Total Area 156463 40 Zit it a WERNSMAN PROJ. No.: ENGINEERING, INC. PAGE: jj ion 42nd STREET • EVANS, CO 80620 Phone (970) 353-4463 Fax (970) 353-9257 C (tie- 'B LO 0(,Jr % \iceJ 0 r- C R 5 ► at, r H S 10/1c- e_te. $"� ` fit.L L = 930 ' • - ©, 75- 1/ 0- 7 1)0 S /7 e ors .3 : 0 Q, t fl ) ( . o7) r t zl Ac ' e 1 a -1 n FA . t s 0411 V e • . . CALCULATION OF A PEAK RUNOFFUSI:NG:RATIONAL:METHOD Project Title: : . : .. ..... :: ::Barrett Catchment ID: ::: HISTORIC SITE : I. Catchment Hydrologic Data Catchment ID = ENTIRE SITE Area = 5:1:Q: Acres Percent Imperviousness = 2M0 % NRCS Soil Type = A. A, B, C, or D II. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = : . . . 100: years (input return period for design storm) C1 = 28:50 (input the value of C1 ) C2= : : :::: 10.0O: (input the value of C2) C3= .O.786: (input the value of C3) P1 = : 1 :49 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment .... .... Runoff Coefficient, C = 0.22 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration - - - - - - S overland LEGEND Reach 1 flow Reach 2 O Beginning Flow Direction * 4— Catchment Reach 3 Boundary NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input output output Overland :.0.0095:: : :50 © 00 .N/ 0:18 ..: .....45,:17 1 0 0095 : .: : :330 : 15.0Q:: .4fi :: .....3.76 2. 3 . 4: :: 5 sum > :83Q:: ::: Computed Tc = Regional Tc = : 1: 6 :'•:•:: User-Entered Tc = .14.61 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = . :::.::;:.,.:1 :72 inch/hr Peak Flowrate, Qp = ;::1.:91: cfs Rainfall Intensity at Regional Tc, I = 3 42 inch/hr Peak Flowrate, Qp = : 3:79 cfs Rainfall Intensity at User-Defined Tc, I = .. ;...342 inch/hr Peak Flowrate, Qp = : .., ; ;:3:79 cfs SITE5YRHistoric.xls, Tc and PeakQ 11/10/2015, 1 :38 PM Z.f Printouts for Storm Hydrographs flow in cfs LA - a 3 C E C_ 61 M N E O 1 0.06 0.03 2 2.38 0.48 3 29.43 20.33 4 83.44 64.49 5 138.98 109.13 6 180.58 137.13 7 204.42 147.66 8 215.34 145.08 9 215.95 132.51 10 208.54 119.96 11 200.81 109.26 12 190.53 98.66 13 177.50 88.55 14 162.91 80.42 15 149.43 73.47 16 137.40 66.93 17 126.44 60.74 18 116.56 54.64 19 107.12 48.56 20 98.04 42.52 21 89.22 36.95 22 80.65 33.07 23 72.23 30.32 24 64.69 27.96 25 59.02 25.80 26 54.32 23.71 27 50.16 21.63 28 46.40 19.59 29 42.92 17.58 30 39.66 15.58 31 36.62 13.58 32 33.74 11.57 33 30.89 9.57 34 28.06 _ 7.57 35 25.23 557 36 22.41 3.57 37 19.58 1.73 38 16.76 0.76 39 13.93 0.38 40 11.11 0.19 41. 8.29 0.11 42 5.55 0.07 43 3.61 0.03 44 2.40 0.01 45 1.58 0.00 46 1.00 0.00 47 0.59 0.00 48 0.30 0.00 49 0.12 0.00 50 0.06 0.00 51 0.03 0.00 52 0.02 0.00 53 0.02 0.00 54 0.01 0.00 55 0.01 0.00 56 0.01 0.00 57 0.00 0.00 58 0.00 0.00 59 0.00 0.00 60 0.00 0.00 61 0.00 0.00 7 • rs A fV lD cc L 4 0 CV. N '- E _ o H• •-• a0 n O 2 45 o _ C `° 00 y N u 0. 0 • Y a G Ea E 3 EQ, r` m b v o n CL u N • V us m IN y uJ O LA a N u a U D m x 4.1 u L 1 N W X G u c0 E c v oct. o v UI m > 00 N Y N R M N U a O ai▪ ro tr.- d: et E0. N M E 7 V u N CO In A O N ro 3 at a ci oc N m L d 461 m E N ry E L a O. o 16}}V s V1 CO Vp1 O CO ID a V N � O_ .-1 N N • n o 3 E N V r C 0 n n rs. co N u N N a O O .1 t0 f- y N in v O O O i d w m V r a E c R L E L L a 3 O C °1 u w E w C d 5 m Lv E L m d L a O L S O _M \ C V G Z e1 N V1 It, O O I .r. CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: High:Sierra Cel1 _ Catchment ID: QFF=SITE BASIN QS3 I. Catchment Hydrologic Data Catchment ID = O33 .: Area = i419: Acres Percent Imperviousness = X00 % NRCS Soil Type = A A, B, C, or D El. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = 10 years (input return period for design storm) Cl = 2850 (input the value of C1) C2= 10.00: (input the value of C2) C3= 0.786_ (input the value of C3) P1 = :: 1 :79 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment .. .. Runoff Coefficient, C = 007i Overide Runoff Coefficient, C = . (enter an overide C value if desired, or leave blank to accept calculated C.) . .... .... ....... 5-yr. Runoff Coefficient, C-5 = O;tQ. Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration - - - - - - - - overland LEGEND Reach 1 Row O Beginning Reach 2 Flow Direction Catchment Reach 3 Boundary NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 5 1 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input output output Overland : 0 024Q: : `200 0.00 N/A 016 21?04 1,033 : 15.00 2 .. .... 3 : Sum 1 ;233 '< Computed Tc = Regional Tc = User-Entered Tc = 16:85 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I 2.00 inch/hr Peak Flowrate, Qp = 0 84 cfs Rainfall Intensity at Regional Tc, I = inch/hr Peak Flowrate, Qp = `:1 12 cfs Rainfall Intensity at User-Defined Tc, I = inch/hr Peak Flowrate, Qp = ;1 12 cfs barrettlaydownOS3-10YR.xls, Tc and PeakQ 11/10/2015, 12:58 PM 29 • CALCULATION.OF A PEAK RUNOFF .USING RATIONAL METHOD Project Title: : : : ` HI9h:Sierra:C11 . . :: ` Catchment ID: ::: ::: :: : :: ::: OFESITE: BASIN:OS3..• ..:::.:: :,:..::: I. Catchment Hydrologic Data Catchment ID = OS31. :1::....: Area = ....... ••4 19: Acres Percent Imperviousness = • • Z001 % NRCS Soil Type = . ... ........ : A, B, C, orD U. Rainfall Information I (inch/hr) = Cl P1 /(C2 + Td)*C3 Design Storm Return Period, Tr = •• 4001 years (input return period for design storm) Cl = 28.50 (input the value of C1) C2= 10:00 (input the value of C2) C3= t)788 (input the value of C3) P1= 2;87 inches (input one-hr precipitation—see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = Overide Runoff Coefficient, C = .. . (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration . . .. . . . eve dad LEGEND Reach 1 Ray � Beginning Reack 2 Flow Direction • < Catchment Reach 3 nonaar- NRCS Land I Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales • • Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 5 7 10 11 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input output output 0 Overland v ri nd ::0:02d(3::: 2b0 1 : . 1,033 15.00 x.32 7 41= 2 4 5 ::.....:.:..:::::.::.. .. . ...... . .. sum 04.a3.3a . Computed Tc = Regional Tc = :::;::::4:0;85;::::::: User-Entered Tc = 16:85 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = ≥ 4 inch/hr Peak Flowrate, Qp = NiiNN412.2 cfs Rainfall Intensity at Regional Tc, I = wggolo inch/hr Peak Flowrate, Op = 5 6t : cfs Rainfall Intensity at User-Defined Tc, I t3:4 inch/hr Peak Flowrate, Qp = :5:60: cfs 7044RATIONAL-HISTORIC-0S3-100YR, Tc and PeakQ 10/13/2014, 6:59 AM <6 CALCULATION OF A PEAK RUNOFF USING RATIONAL: METHOD Project Title: :: High Sierra C11k:: Catchment ID: OFESITE. BASIN•OS4 I. Catchment Hydrologic Data Catchment ID = :OS4... . . Area = 6A.5. Acres Percent Imperviousness = 2:00: % NRCSSoilType = .. A; A, B, C, orD II. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)AC3 Design Storm Return Period, Tr = 100 years (input return period for design storm) C1 = -.-.--- 28:50 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1 = 2:87 inches (input one-hr precipitation—see Sheet "Design Info") Ill. Analysis of Flow Time (Time of Concentration) for a Catchment ...................... Runoff Coefficient, C = <z; za22: Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = _ ?0' Overide 5-yr. Runoff Coefficient, C = : (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration 'di" LEGEND Reach 1 flew Reach 2 . C Beginning Flan•Direction � t Catchment Reach 3 Beundazy NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input output output Overland EiiiI10420H 200 �:�:': NIA ,: a3.1. .... ....x`:49. .. : 1 . :::.0:0420::: 4;544..... 15:00 2 a 4 5 Sum 4674 Computed Tc =' : 25:86:::?:::: Regional Tc = User-Entered Tc = 19:6g::.: IV. Peak Runoff Prediction ................. . Rainfall Intensity at Computed Tc, I ` > 491': inch/hr Peak Flowrate, Qp = ?::::::::::::::::::::8:58 cfs Rainfall Intensity at Regional Tc, I = a ,a 6 : inch/hr Peak Flowrate, Op = 7 60 cfs Rainfall Intensity at User-Defined Tc, I = WigNS:69. inch/hr Peak Flowrate, Qp = Ta t? cfs 7044-RATIONAL-HISTORIC-OS4-100YR, To and PeakQ 10/13/2014, 7:00 AM 31- _ CALCULATION OF A PEAK RUNOFF :US)NG RATIOSL METHOD . .. .. Project Title: Bill Barrett ... Catchment ID: 0FF►SITE BASIN OS5 ::: • I. Catchment Hydrologic Data Catchment ID = 085:: Area = : :28i00- Acres Percent Imperviousness = :: :2 00 % NRCS Soil Type = A A, B, C, or D IL Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)"C3 Design Storm Return Period, Tr = :: 10 years (input return period for design storm) Cl = H ::: 28 50 (input the value of C1) C2= ` 10 00 (input the value of C2) C3= 6.786: (input the value of C3) P1= 1 .79: inches (input one-hr precipitation--see Sheet "Design Info") ill. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = Overide 5-yr. Runoff Coefficient, C = H (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration overly LEGEND Reach I flow Reach 2 * 0 Beginning Flow Direction *--- Catchment Reach 3 Boundary NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input output output Overland 0.0300 .: : ::::500 1 : . : 0.0300 :: :2,402 .. ::: 15:00::: 2,6Q.. .::. .. 15.41.:.... 2 3 4 5: . . :... . . .. Sum 2;902 r' Computed Tc Regional Tc = User-Entered Tc = 26.12'1: IV. Peak Runoff Prediction ......... ... .... Rainfall Intensity at Computed Tc, I = 2:15:: inch/hr Peak Flowrate, Qp = 4:1:7 cfs Rainfall Intensity at Regional Tc, I = D4 inch/hr Peak Flowrate, Op = $O1 cfs Rainfall Intensity at User-Defined Tc, I = 3 U4 inch/hr Peak Flowrate, Qp = : 5:91 cfs LAYDOWN OS5-10YR.xls, Tc and PeakQ 11/10/2015, 12:58 PM : CALCULATION 0F,A PEAK RUNOFF:USINIG RATIONAL :METHOD: Project Title: :Bill Barrett Catchment ID: 0FF'SITEBBASIN OS5 - . L Catchment Hydrologic Data Catchment ID = OS5 Area = "` 28.00 Acres .... .... .... .... Percent Imperviousness = :: 2:00 % NRCS Soil Type = A: A, B, C, or D II. Rainfall Information I (inch/hr) = Cl * P1 /(C2 + Td)AC3 Design Storm Return Period, Tr = . 100 years (input return period for design storm) C1 = ` 28.50 (input the value of C1) C2= : 10:00 (input the value of C2) C3= 0.786. (input the value of C3) P1 = 2:87' inches (input one-hr precipitation—see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = Overide Runoff Coefficient, C = H. .. . .. (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = Qa: Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration overland LEGEND Reach 1 flow Reach 2 . O Beginning Flow Direction Catehment Reach 3 Boundary NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity ' Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input output output Overland 0.0300 500 ":` I. :; •;;0.27 30:90 1 -: . :: _ 0:0300 2,402 :. ..15:00 2;50 1 41 :: 2 .: Sum 2,902 Computed Tc = 46 31- Regional Tc = User-Entered Tc = 26.12 •' IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 3.44: inch/hr Peak Flowrate, Qp = ::.. .. .::.20:92 cfs Rainfall Intensity at Regional Tc, I = 4..68; inch/hr Peak Flowrate, Qp = 29::617 cfs Rainfall Intensity at User-Defined Tc, I = 4,88: inch/hr Peak Flowrate, Qp = >2g.£ cfs LAYDOWN O55-100YR.xls, Tc and Peak() 11/10/2015, 1 :41 PM -33 CALCULATION OF:A PEAK RUNOFF USING RATIONAL:METHOD Project Title: .... .. Barrett Catchment ID: :. ...... SUB BASIN S1 .. ...: I. Catchment Hydrologic Data Catchment ID = S1 Area = : 0.40 Acres Percent Imperviousness = • .2:00 % NRCS Soil Type = A. A, B, C, or D II. Rainfall Information I (inch/hr) = C1 * P1 l(C2 + Td)^C3 Design Storm Return Period, Tr = . .. : 10: years (input return period for design storm) C1 = ;:.: :28:50: (input the value of C1 ) C2= 10:00 (input the value of C2) C3= . .: Q:785 (input the value of C3) P1 = 1 :79: inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = Overide Runoff Coefficient, C = :: :::: . .: :: (enter an overide C value if desired, or leave blank to accept calculated C.) .............. .. 5-yr. Runoff Coefficient, C-5 = ,:: ::;:..;0;00: Overide 5-yr. Runoff Coefficient, C = 1: : :: •:: (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration overland LEGEND Reach 1 HOW Reach 2 O Beginning Flow Direction S Catchment Reach 3 Boundary NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swedes Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input output output Overland : : 0.0100 300 ;:..Cl.{t0 N/A `> 15.00 • hi 2 _... • 4 . _. Sum ' .:;:300:,,,.: Computed Tc = ,3IQ . ;::: Regional To = User-Entered Tc = 11:.67 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = :. 259 inch/hr Peak Flowrate, Op = 0.07I cfs Rainfall Intensity at Regional Tc, I = .:;:::E:;::::: :;.:4.55 inch/hr Peak Flowrate, Qp = _. :. `:©;:13: cfs Rainfall Intensity at User-Defined To, I = 455: inch/hr Peak Flowrate, Qp = 013 cfs laydownS1-100YR.xls, Tc and PeakQ 11/10/2015, 1 :43 PM 3q CALCULATION 0FA P'EAK.R.UNOFF USING RATIONAL METHOD Project Title: ::: : : :. .._. ::Barrett Catchment ID: ._ SUB BASIN 5:1 :: : ::: I. Catchment Hydrologic Data Catchment ID = S1 Area = 0.40 Acres Percent Imperviousness = 2:00 % NRCS Soil Type = A A, B, C, or D II. Rainfall Information I (inch/hr) = C1 , P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = :: :: .1:00: years (input return period for design storm) C1 = . :28.5t? (input the value of C1) C2= 10.00: (input the value of C2) C3= 0.786 (input the value of C3) P1 = a87: inches (input one-hr precipitation—see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 022> Overide Runoff Coefficient, C = . (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = • : _ : Q00` Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration overland LEGEND Reach 1 , Reach 2 . O Beginning Flow Direction Catchment Reach 3 Bonndarr NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft tt C-5 fps minutes input input output input output output Overland .. 0.0100 : 303 .:.. ..: 15.00.: 3.: _. 4 5 Sum 303 Computed Tc = 34:57 Regional Tc = User-Entered Tc = 11.68 IV. Peak Runoff Prediction Rainfall Intensity at Computed 7c, I = 4.14. inch/hr Peak Flowrate, Qp = .:::0:36 cfs Rainfall Intensity at Regional Tc, I = 7:23: inch/hr Peak Flowrate, Qp = 0;63 cfs Rainfall Intensity at User-Defined Tc, I = 7 20: inch/hr Peak Flowrate, Qp = : 0:63. cfs laydownS1-10YR.xls, Tc and PeakQ 11/10/2015, 1 :00 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHO4 .: Project Title: Barrett . Catchment ID: SUB BASIN 52 . :! I. Catchment Hydrologic Data Catchment ID = S2 Area = 3.60 Acres Percent Imperviousness = 40.00 70 NRCS Soil Type = A A, B. C, or D • II. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)AC3 Design Storm Return Period, Tr = 100 years (input return period for design storm) C1 = 28.50 (input the value of C1 ) C2= 10.00 (input the value of O2) C3= 0.786 (input the value of C3) P1 = 2.87" inches (input one-hr precipitation—see Sheet "Design Info") Ill. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.41 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = O25` Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration ---Th .-- —"^� overland f` Reach l LEGEND flow Resch C Be inni g `r Flow Direction K Catchment Reach 3 Boundary NRCS Land Heavy. Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2,5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input output output Overland 0.0130 419 0:25 N/A 0.24 28.96 1 0.0100 163 15.00 1 .50 181 2 3 4 5 Sum 582 Computed Tc 30.77 Regional Tc = 13.23 User-Entered Tc = . 13.23 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 4.44` inch/hr Peak Flowrate, Qp = 6.51 cfs Rainfall Intensity at Regional Tc, I = 6.90 inch/hr Peak Flowrate, Qp = 10:12 cfs Rainfall Intensity at User-Defined Tc, I = 6.90' inch/hr Peak Flowrate, Qp = 10.12 cfs IaydownS2-100YR.xls, Tc and PeakQ 11/10/2015, 5:57 AM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD. Project Title: • Barrett Catchment ID: :<_ ENTIRE SITE .. I. Catchment Hydrologic Data Catchment ID = ENTIRE SITE Area = 5,10 Acres Percent Imperviousness = 28,00 NRCS Soil Type = A A, B, C, or D II. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)AC3 Design Storm Return Period, Tr = 100 years (input return period for design storm) C1 = 28:50 (input the value of C1 ) C2= 10,00 (input the value of C2) C3= 0.786 (input the value of C3) P1= 2.87 inches (input one-hr precipitation--see Sheet "Design info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.36 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0.18' Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration _ rte-- - - - - - - - - overland LEGEND Reach 1 flow Reach 2 1 0 Beginning Flow Direction ,r Cate}trove nt Reach 3 Boundary- NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input output output Overland 0.0170 286 0:18 N/A 0.20 23:55 1 0.0080 246 15.00 1.34 3.06 2 0.0100 209 15.00 1 .50 2.32 3 4 5 Sum 741 Computed Tc = 28.92 Regional Tc = 14,12 User-Entered Tc = 14,.12: H IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 4.60 inch/hr Peak Flowrate. Qp = 8,53 cfs Rainfall Intensity at Regional Tc, I = 6.70 inch/hr Peak Flowrate: Qp = 12.43 cfs Rainfall Intensity at User-Defined Tc, I = 6.70 inch/hr Peak Flowrate, Qp = 12:43 cfs barrett entire site.xls, Tc and PeakQ 11/4/2015, 6:03 PM 37 Normal Flow Analysis - Trapezoidal Channel Project: BILL BARRETT Channel ID: SWALE SECTION A-A F f�'• i � `s ter Zr0 ` 1 117 ir\N, e Design Information (Input) Channel Invert Slope So = 0.0072 ft/ft Manning's n n = 0.040 Bottom Width B = 29.00 ft Left Side Slope Z1 = 4.00 ft/ft Right Side Slope Z2 = 4.00 ft/ft Freeboard Height F = 1 .00 ft Design Water Depth Y = 225 ft Normal Flow Condtion (Calculated' Discharge Q = 399.59 cfs Froude Number Fr = 0.61 Flow Velocity V = .4.67 , fps Flow Area A = 85.50 sq ft Top Width T = 47.00 ft Wetted Perimeter P = 47.55 ft Hydraulic Radius R = 1 .80 ft Hydraulic Depth D = 1 .82 ft Specific Energy Es = 2.59 ft Centroid of Flow Area Yo = 1 .03 ft Specific Force Fs = 9. 14 kip IaydownSECTION AA-0.040.xls, Basics 11 /8/2015, 6:52 PM 30 Normal Flow Analysis - Trapezoidal Channel Project: BILL BARRETT Channel ID: SWALE SECTION A-A F .;1 Yo 1\ €10 i Design Information (input; Channel Invert Slope So = 0.0071 ft/ft Manning's n n = 0.030 Bottom Width B = 29.00 ft Left Side Slope Z1 = 4.00 ft/ft Right Side Slope Z2 = 4.00 ft/ft Freeboard Height F = 1 .00 ft Design Water Depth Y = 1 .93 ft Normal Flow Condtion (Calculated) Discharge Q = 401 .97 cfs Froude Number Fr = 0.79 Flow Velocity V = 5.67 fps Flow Area A = 70.87 sq ft Top Width T = 44.44 ft Wetted Perimeter P = 44.92 ft Hydraulic Radius R = 1 .58 ft Hydraulic Depth D = 1 .59 ft Specific Energy Es = 2.43 ft Centroid of Flow Area Yo = 0.90 ft Specific Force Fs = 8.39 kip laydownSECTION AA-0.040.xls, Basics 11 /10/2015, 1 :47 PM Si O � M 't .' OIOON O 0;1 r t-- N O L• w . • ON as w i J oOCoo • U '< cd b s � d � ~ � �°•l 'x c c% C% O . y O w 0O r•-+I M *-I �c CC Ct • V) 04 el S t 43 In rn en czi COQ C:1\ C\ wa N N N u hoI O V N ( sl x en &MC VI CV el el ita ts—i - M � � .. G� y 6 a *ea ti Lie fiZ C 64 Co � um 4• Z � � " . i fil! bA 3 U a. o A 1.--• — e - r 1. 4 W o o v) tn kra te) tr) kn J O o 0 r1 r1 AH Y yr t MK 41 , 04Lf-1 (-i--1 1 _._..w..,......__...w ,..0 A 7r czs d' r+ O N d' 7t C!} �aC '� b�C ta IR t � � CI 3ze.. 0 co ,ovel, u) ' (?Jd��wop o tratni III ,se PS g �, �. in CD o b r s Aff �� 'a': N .4 .4 O O v W • V ! 7 a ,t. Q as U U >� r2 a P4 ✓ ✓ v) a ... r s Co r- r- rail -.0 re) oc— p •-- C c O N no ciQ-., NNO 0 ct � N [- 0 a, .... 5 - `O N r) "+4- •-UO0N r ct lrzil 0000 4J H 00C) Cl) y CtCID En g (i) a Hi 7f ct 0 CO 0 O CA CO " •~ a E Ap ca knC mNQ0N C C ict N M N 30 ct l =I M M M o o T_cs -&,cie U z` C C E O q O U U Tiesiok p ggi. 60 • tti W t k464* k roa 1r al ,- C ^j t0 p �, 2 0. o03 • r _� p N d O O 0. II R iI ? fF1 �) Its �i , C ,. 4. f `"'' a x ifi a � co ,..' #,., o Q) �- r EZ te— �• 24 E L U U ,s- O cz 1.4 .4,7•,-- n -n c, dJ a) r `) a: r f fcc) V N:.. ... � gr_ U � a cY W pm rx » va a. a- 7,-; 3... . 00 /}■f a, r 4 CO N 0 CO M CO N O CO Z 0 (0 a N Q' N N d' (1") (-NI (- N O rn O O (,I,1 (I] O r+-) v-: rr1 c1i r N ON N N E co N co O O tn O1 M .'� O )-4 In O M t----- OG b VD 0G N co O 7# d O N .-� Ni G � � O O1 ( 1MN OC �7 d cn C d a H H - - - rip C i •- O O u D E 0 O 4 o o t H 0 CV I! •> a II N y F-- ,4 II II III CO II II II I r-� II II I! b co tn v) . �\ * z QJ `. N F / v , y .. O /� O 03 C N N Z� f a II N .-, { y I N 0 NCQN 0 -< y CL. tt � �`t ��, c + n �' NO.� N cC c '�3 C� tiC Q U ct u : C .Nr cv C, `s � . y zl Q U Q I I II L -6- Q C rim © I`' 0 I I cif., I I 11 I I o • !I I I i y �, id) I I I 11 ^�', Q E 1-1 4 c.> .i; =� 0 :-L, © '0 O O c3 et1 L. II II ,-: '�' LY ;r, I I in wow = c4 Gam; O' >• > U HU W HJ tt dcr.\ UL.) ei U < ¢ < < wawa = x 3 0 N coC c I , r CO N E / E 0 / LI a 7r In E o In W m / - Cl cl c f Do DO E — — \ 2 E \ \ : m Plz ® / II / N it . rt / \ - H _ / m » II Cl') m 2 0 l_< - / Cr + O O O II . ' .174 4. E * t v) * — — V0 t rt 2 ,-C c \.\ IIPC c.S2 - ' w b Va. \ oc �, d > + - .\ •/ § : / ca c / E ■ II q i II 0 c H H I' = _ _ _ e_ 7. G > H u W H U / ct < c4 u Cl)u / $_ r 5 c Normal Flow Analysis - Trapezoidal Channel Project: BILL BARRETT Channel ID: SWALE SECTION C-C F Ito 7 ''fZi r' 1 _ Design Information (Input) Channel Invert Slope So = 0.0085 ft/ft Manning's n n = 0.040 Bottom Width B = 0.00 ft Left Side Slope Z1 = 5.00 ft/ft Right Side Slope Z2 = 5.00 ft/ft Freeboard Height F = 1 .00 ft Design Water Depth Y = 1 .00 ft Normal Flow Condtion (Calculated) Discharge Q = 10.68 cfs Froude Number Fr = 0.53 Flow Velocity V = 2.14 fps Flow Area A = 5.00 sq ft Top Width T = 10.00 ft Wetted Perimeter P = 10.20 ft Hydraulic Radius R = 0.49 ft Hydraulic Depth D = 0.50 ft Specific Energy Es = 1 .07 ft Centroid of Flow Area Yo = 0.33 ft Specific Force Fs = 0.15 kip IaydownSECTION CC0.4.xls, Basics 11 /10/2015, 1 :51 PM Lig Normal Flow Analysis - Trapezoidal Channel Project: BILL BARRETT Channel ID: SWALE SECTION C-C F Yo I1 1 f Design Information (Input) Channel Invert Slope So = 0.0085 ft/ft Manning's n n = 0.030 Bottom Width B = 0.00 ft Left Side Slope Z1 = 5.00 ft/ft Right Side Slope Z2 = 5.00 ft/ft Freeboard Height F = 1 .00 ft Design Water Depth Y = 1.00 ft Normal Flow Condtion (Calculated) Discharge Q = . 14.24 cfs Froude Number Fr = 0.71 Flow Velocity V = :2.85 fps Flow Area A = 5.00 sq ft Top Width T = 10.00 ft Wetted Perimeter P = 10.20 ft Hydraulic Radius R = 0.49 ft Hydraulic Depth D = 0.50 ft Specific Energy Es = 1 .13 ft Centroid of Flow Area Yo = 0.33 ft Specific Force Fs = 0.18 kip IaydownSECTION CC0.4.xls, Basics 11/10/2015, 1 :51 PM tic Normal Flow Analysis - Trapezoidal Channel Project: BILL BARRETT Channel ID: SWALE SECTION D-D F YO 1 Z1 <- Design Information (input) Channel Invert Slope So = 0.0105 ft/ft Manning's n n = 0.040 Bottom Width B = 20.00 ft Left Side Slope Z1 = 6.00 ft/ft Right Side Slope Z2 = 8.00 ft/ft Freeboard Height F = 1 MO ft Design Water Depth Y = 0.62 ft Normal Flow Condtion (Calculated) Discharge Q = 37.46 cfs Froude Number Fr = 0.60 Flow Velocity V = 2.48 fps Flow Area A = 15.09 sq ft Top Width T = 28.68 ft Wetted Perimeter P = 28.77 ft Hydraulic Radius R = 0.52 ft Hydraulic Depth D = 0.53 ft Specific Energy Es = 0.72 ft Centroid of Flow Area Yo = 0.29 ft Specific Force Fs = 0.45 kip IaydownSECTION DD0.4.xls, Basics 11 /10/2015, 1 :56 PM Normal Flow Analysis - Trapezoidal Channel Project: BILL BARRETT Channel ID: SWALE SECTION D-D F 7. Yo 1 %e Z2 Design Information (Input) Channel Invert Slope So = 0.0105 ft/ft Manning's n n = 0.030 Bottom Width B = 20.00 ft Left Side Slope Z1 = 6.00 ft/ft Right Side Slope Z2 = 8.00 ft/ft Freeboard Height F = 1 .00 ft Design Water Depth Y = 0.52 ft Normal Flow Condtion (Calculated) Discharge Q = 36.70 cfs Froude Number Fr = 0.78 Flow Velocity V = 2.99 fps Flow Area A = 12.29 sq ft Top Width T = 27.28 ft Wetted Perimeter P = 27.36 ft Hydraulic Radius R = 0.45 ft Hydraulic Depth D = 0.45 ft Specific Energy Es = 0.66 ft Centroid of Flow Area Yo = 0.25 ft Specific Force Fs = 0.40 kip IaydownSECTION DD0.4.xls, Basics 11/10/2015, 1 :55 PM DETENTION VOLUME BY THE MODIFIED FAA METHOD Project: Basin ID: (For catchments less than 160 acres only. For larger catchments, use hydrograph routing method) (NOTE: for catchments larger than 90 acres, CUHP hydrograph and routing are recommended) Determination of MINOR Detention Volume Using Modified FAA Method Determination of MAJOR Detention Volume Using Modified FAA Method Design information (Input): Design information_(Inaut)_ Catchment Drainage Imperviousness le= ::::.28:00 . percent Catchment Drainage Imperviousness la= 28.00 percent Catchment Drainage Area A= :E 5:100 : acres Catchment Drainage Area A= 5.100 acres Predevelopment NRCS Sol Group Type= A ``': A, B,C,or D Predevelopment NRCS Soil Group Type= A A,B.C,or 0 Return Period for Detention Control 7= 10 . years(2,5,10,25, 50, or 100) Return Period for Detention Control T= :: :::1 011.. ..: years(2,5, 10,25, 50, or 100) Tine of Concentration of Watershed Tc= • 10 minutes Time of Concentration of Watershed Tc= 10 minutes Allowable Unit Release Rate q- • 0.20...... cfs/acre Allowable Unit Release Rate q= 0.21 • cis/acre One-how Precipitation P1 = ''` 1.47 inches One-hots Precipitation P, = 2.81. inches Design Rainfall IDF Formula i=CI*P,!(C2+TYC3 Design Rainfall OF Formula i e CI*P,!(CZ+TJ*Cl Coefficient One C1 = 28:50 : Coefficient One C, - 28.50 Coefficient Two C2= ..... .'f0 Coefficient Two C2:-. 10 Coefficient Three C3 a 0/89 . . Coefficient Three C3= 0.789 Determination of Average Outflow from the Basin (Calculated): Determination of Average Outflow from the Basin (Calculated): Runoff Coefficient C= 024 Runoff Coefficient C = 0.36 Inflow Peak Runoff Op-in- 4.82 cfs Inflow Peak Runoff Op-in= 14.13 cfs Allowable Peak Outflow Rate Op-out= 1.02 cfs Allowable Peak Outflow Rate Op-out- 1.07 cfs Mod. FAA Minor Storage Volume= 4,321 cubic feet Mod.FM Major Storage Volume= 19,772 cubic feet Mod_ FAA Minor Storage Volume= 0,099 acre-ft Mod.FAA Major Storage Volume= 0.464 acre-ft ' "'30 :. 4 Enter Rainfall Duration Incremental Increase Value Here(e.g.5 for 5-Minutes) Rainfall Rainfal Inflow Adjustment Average Outflow Storage Ranfal Rainfall Inflow Adjustment Average Outflow Storage Duration Intensity Vohme Factor Outflow Volume Volume Duration Intensity Volume Factor Outflow Voknne Vain minutes inches!hr acre-feet "m" cfs acre-feet acre-feet Smites inches/Fr acre-feet 'm' cfs acre-feet acre-feet (input) (ouutput) (output) (output) (output) (output) (output) input) (oput) (output) (output) (output) (output) (output) :0 0.00 0.000 # 0.00 0.00 0.000 { 0.000 0 i 0.00 0.000 0.00 0.00 0.000 0.000 30 2.28 f 0.115 1 0.67 0.68 0.028 0.087 30 4.45 0.338 0.87 0.71 ; 0.030 0.308 60 1.47 5 0.148 , 0.58 0.60 { 0.049 0.099 60 i 2.86 # 0.435 0.58 0.62 0.062 0.383 90 1.11 # 0.168 # 0.56 0.57 # 0.070 0.098 90 2.16 0.492 0.56 0.60 # 0.074 0.418 120 { 0.90 0.182 i 0.54 0.55 { 0.091 { 0.091 120 t 1.76 0.533 0.54 0.58 0.096 0.437 150 0.78 # 0.193 0.53 0.54 0.112 0.081 150 # 1.49 0.566 # 0.53 0.57 0.118 0.448 180 0.67 0.202 0.53 0.54 0.133 0.069 180 ) 1.30 0.593 • 0.53 { 0.57 0.140 0.453 210 # 0.59 # 0.210 0.52 0.53 0.155 0.056 210 1.16 0.616 r 0.52 { 0.56 # 0.162 0.454 240 0.54 0.217 0.52 0.53 0.176 0.042 240 1.05 0.637 0.52 0.56 0.184 0.452 270 0.49 S 0.224 0.52 0.53 0197 0.027 270 0.98 0.655 0.52 0.56 S 0.207 0.448 300 0.45 0.229 0.52 0.53 0.218 0.012 300 0.89 0.672 0.52 0.55 4 0.229 0.443 330 0.42 0.235 0.52 0.53 0.239 -0.004 330 0.82 0.687 0.52 0.55 0.251 0.436 360 0.39 0.239 0.51 0.52 0.260 -0.021 360 r 0.77 0.701 ( 0.51 0.55 D.273 0.428 390 i 0.37 0.244 0.51 0.52 0.281 -0.037 390 0.72 0.714 0.51 0.55 0.295 ! 0.419 420 j 0.35 n 0.248 0.51 0.52 0.302 -0.054 420 3 0.68 ; 0.726 0.51 0.55 , 0.317 0.409 450 ; 0.33 0.252 1 0.51 0.52 3 0.323 ' -0.071 450 0.65 0.738 0.51 0.55 0.330 t 0.399 480 0.32 0.256 0.51 0.52 0.344 -0.089 480 0.62 0.749 0.51 0.55 . 0.361 0.387 510 0.30 0.259 0.51 0.52 0.365 -0.106 510 0.59 0.759 0.51 1y 0.55 0.384 0.376 540 0.29 0.263 0.51 0.52 ? 0.386 -0.124 540 0.56 0.769 0.51 0.55 0.406 0.363 570 0.28 s 0.266 0.51 0.52 } 0.407 { -0.142 570 0.54 0.778 0.51 0.54 # 0.428 0.351 800 0.27 0.269 € 0.51 0.52 1 0.429 i -0.180 600 0.52 0.787 0.51 0.54 0.450 0.337 1 t S 4 630 0.26 0.272 0.51 0.52 # 0.450 -0.178 630 0.50 0.798 0.51 0.54 0.472 } 0.324 660 0.25 0.275 { 0.51 ,, 0.52 f 0.471 -0.196 660 0.48 0.804 0.51 0.54 4 0.494 0.310 690 0.24 0.277 0.51 I 0.52 0.492 + -0.214 690 ? 0.47 0.812 # 0.51 0.54 0.516 0.296 720 0.23 t 0.280 0.61 0.52 i 0.513 -0.233 720 0.45 0.820 0.51 j 0.54 0.538 0.282 750 0.22 # 0.283 # 0.51 # 0.52 ? 0.534 -0.251 750 0.44 0127 0.51 0.54 0.561 0.287 780 0.22 0.285 0.51 ( 0.52 j 0.555 ry -0.270 780 0.42 0.835 0.51 0.54 # 0.583 0.252 810 0.21 r 0.287 0.51 0.52 # 0.576 -0.289 810 0.41 0.842 0.51 i 0.54 0.605 0.237 840 0.20 t 0.290 ; 0.51 j 0.52 # 0.597 -0.307 840 0.40 0.848 011 0.54 0.627 0.221 870 0.20 0.292 0.51 0.52 0.618 -0.328 870 0.39 # 0.855 # 0.51 0.54 0.649 0.206 900 0.19 0.294 0.51 0.52 0.839 s -0.345 900 0.38 0.861 } 0.51 0.54 a 0.671 0.190 930 019 0.296 0.51 0.52 0.680 -0.364 930 S 0.37 # 0.868 ! 0.51 0.54 0.693 0.174 960 0.18 0.298 0.51 0.52 0.681 -0.383 960 j 0.36 0.874 0.51 0.54 0.715 , 0.158 990 0.18 0.300 # 0.51 # 0.52 0.702 # -0.402 990 0.35 0.880 0.51 0.54 0.738 0.142 1020 0.18 0.302 ( 0.50 0.52 r 0.724 s -0.421 1020 0.34 0.885 0.50 0.54 t 0.760 0.126 1050 0.17 i 0.304 0.50 # 0.51 0.745 -0.440 1050 0.34 0.891 0.50 # 0.54 # 0.782 0.109 1080 0.17 j 0.306 0.50 j 0.51 r 0.766 -0.460 1080 , 0.33 0.897 0.50 0.54 0.804 0.093 1110 ; 0.16 0.308 0.50 = 0.51 0.787 -0.479 1110 # 0.32 0.902 0.50 0.54 0.828 ? 0.076 1140 0.16 0.310 0.50 i 0.51 0.808 -0.498 1140 j 0.31 0.907 0.50 0.54 f 0.848 i 0.059 1170 0.16 0.312 0.50 # 0.51 0.829 -0.517 1170 0.31 # 0.912 n 0.50 # 0.54 0.870 0.042 1200 { 0.15 i 0.313 0.50 ( 0.51 0.850 ` -0.537 1200 0.30 0.917 0.50 0.54 0.893 0.025 1230 0.15 1 0.315 0.50 1 0.51 0.871 t -0.556 1230 0.30 0.922 ; 0.50 0.54 # 0.915 0.008 1260 0.15 , 0.317 0.50 0.51 0.892 1 -0.576 1260 t 0.29 I 0.927 0.50 0.54 0.937 -0.010 1290 # 0.15 0.318 # 0.50 # 0.51 # 0.913 # -0.595 1290 0.29 0.932 0.50 0.54 0.959 -0.027 1320 0.14 ( 0.320 i 0.50 0.51 ( 0.934 t -0.615 1320 0.28 0.937 0.50 0.54 0.981 { -0.044 1350 0.14 0.321 # 0.50 0.51 # 0.955 -0.634 1350 0.28 0.941 0.50 j 0.54 1.003 -0.062 1380 j 014 0.323 0.50 0.51 j 0.976 i -0.654 1380 0.27 0.946 ; 0.50 0.54 1.025 -0.080 1410 0.14 0.324 0.50 0.51 # 0.998 -0.673 1410 0.27 0.950 t 0.50 # 0.54 # 1.047 •0.097 1440 0.13 0.326 0.50 0.51 ( 1.019 -0.693 1440 0.26 0.954 ( 0.50 j 0.54 1.070 -0.115 1470 0.13 0.327 i 0.50 0.51 1.040 -0.712 1470 0.26 { 0.959 0.50 0.54 } 1.092 -0.133 1500 0.13 ` 0.329 0.50 0.51 1.061 -0.732 1500 0.25 0.963 0.50 0.54 j 1.114 5 -0.151 1530 0.13 t 0.330 0.50 0.51 1.082 -0.752 1530 0.25 0,867 s 0.50 0.54 1.136 3 -0.169 1560 0.13 S 0.332 0.50 j 0.51 1.103 -0.771 1560 0.25 { 0.971 } 0.50 0.54 1.158 S -0.187 1590 0.12 0.333 0.50 0.51 1.124 -0.791 1590 0.24 0.975 0.50 f 0.54 1.180 1 -0.205 1620 5 0.12 0.334 0.50 0.51 1145 -0.811 1620 { 0.24 0,979 0.50 0.54 1.202 -0.223 1650 0.12 # 0.336 0.50 j 0.51 1.166 -0.831 1850 # 0.24 0.983 # 0.50 # 0.54 1.224 -0.242 1680 D.12 0.337 0.50 1 0.51 1.187 -0.850 1680 0.23 0.987 0.50 0,54 { 1.247 j -0.260 1710 0.12 1 0.338 # 0.50 # 0.51 1.208 -0.870 1710 0.23 0.990 0.50 0.54 t 1.269 -0.278 1740 0.12 1 0.339 0.50 t 0.51 1.229 -0.890 1740 i 0.23 0.994 0.50 0.54 1.291 -0.297 1770 0.11 0.341 0.50 0.51 1.250 -0.910 1770 0.22 0.996 0.50 0.54 I 1.313 -0.315 1600 0.11 0.342 = 0.50 0.51 1.271 -0.930 1800 0.22 1.001 0.50 014 i 1.335 -0.334 Mod. FAA Minor Storage Volume (cubic ft)= 4,321 Mod.FAA Major Storage Volume(cubic ft.)■ 18,772 Mod. FAA Minor Storage Volume (acre-ft)= 0.0992 Mod. FAA Major Storage Vohane(acre-ft.)• 0.4639 UDFCD DETENTION BASIN VOLUME ESTIMATING WORKBOOK Version 2.35, Released January 2O15 barrettlaydowndetention.9s, Modified FAA 11/1012015, 2:00 PM II DETENTION VOLUME BY THE MODIFIED FAA METHOD Project: Basin ID: i inflow and Outflow Volumes vs. Rainfall Duration 1.6 3 t £ • E s 1.2 ; • E s l I i - 1 1 i it { d I . w 3 s S ' Cj ' n 0.8 s v • • 0.6 ## £ f ' {{ { 1 • • a • • • • • • i 0A I ,• • S . s ... .. •• 0.2 i :,c • • • . ;` •• i . I ise •o :r • • • • v i• • Ow.wnMWIMMIJIJ. Wwv•WtryMV•I /.vw.•.v.Y.••n•w.r•n.r•vw-v.t-M'_v_-•v_-•vv_Wvm'_-ivvew•_v - teun..•_-•wvwv-•.'.r. .n •vwnvl ///.-•./i.e.-. 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Duration (Minutes) ••.••Minor Storm IrflowVolume --a--Minor Storm Mellow Volume e Minor Storm Storage Volume—a—MaJor Storm lrflowVolum•—w—Major Storm Outflow Volume • Majoratonn Storage Volume UDFCD DETENTION BASIN VOLUME ESTIMATING WORKBOOK Version 2.35, Released January 2015 barretflaydowndetention.xls, Modified FAA 11110/2015,2:00 PM '/1 iSTAGE-STORAGE SIZING FOR DETENTION BASINS 1 Project: Basin ID: Dart Sid:Slur 2 Site SLpe Z Side apes Darn pp I Flo�5 Dan } r sic :iii*.iiiiiii:iiiqa:aiMi Se Side Shp i >. flaw L < L >� Side Slope Z ÷...... ). Sib Slajs z I. Desltfn Information (Input): Check Basin Shape Width of Basin Bottom, W - :::: :: ::.:: :::: ft Right Triangle (40R .. Length of Basin Bottom, L = •-• : ft Isosceles Triangle OR... Dam Side-slope(H:V), Zd _ . : : ft/ft Rectangle :: OR... Circle / Ellipse :: :::::: :::...... OR... Irregular - - .•.. •••. ••• (Use Overide values in cells G32:G52) MINOR MAJOR Storage Requirement from Sheet 'Modified FAA': [ 0.10 i 0.45 :`:acre-ft. Stage-Storage Relationship: Storage Requirement from Sheet 'Hydrograph': 5 • Y :acre-ft. Storage Requirement from Sheet'Full-Spectrum': i :`::;: rVrrrf:`i: ' iMi :: acre-ft. Labels Water Side Basin Basin Surface Surface Volume Surface Volume Target Volumes for WQCV, Minor, Surface Slope Width at Length at Area at Area at Below Area at Below for WQCV, Minor, & Major Storage Elevation (H:V) Stage Stage Stage Stage Stage Stage Stage & Major Storage Stages ft ft/ft ft ft ft2 ft2 User ft8 acres acre ft Volumes (input) (input) Below El. (output) (output) (output) Overide _ (output) (output) (output) (for goal seek) 13.00 (input) :: D 0.000 0.000__. 13:50 • • :::: 0.00 0.00 ' •. ::`7:4.25 ... 1,856 i 0.170 0.043 14:00 Q.00 0.00 :: ::1:1;835:::: 6,621 Q �. .267 , Q.152 ..,n w , w , ,,, , :: 15.00 0.00 i 0.00 -11,151::::. 21314 c 0.408 ' 0:489 #NIA #N/A. mot, . _ _ _ r ,---:—...—...--t.----- r #NIA ,,....n—...n,,,.,,,., 1 n #N/A , #_ #NIA n ,,n ,n ,"n' #NIA �_.. ....,.._. A ,...... , _. , n.., n... n _.n,.__..._.. — w , ,. _ n#N/A #N/A . „nit, w w .,,, ,, .. M ,. ,... . w .n,,..n, . : . #N!A #NIA^..... "" #N/A : i #N/A + .... w . , . w ., .. #N/A'.. ..5.. . . .. . .#N/A w ._ ww I #N/A i i #N/A #NIA i ' #NIA w #NIA #N/A _ .nnvinwwriw-_.•_Mnnnnnnnnn,nvtiwn.N'/•,/rvn.v.N.w..i... •••• •. •• .y.vnnnvnnnnw.nv.n ,. . . #N/A #NIA #N/A 3 #N/A 3 #N/A 5 #N1A .._ .. ,,,nnvwi.Y.n,w.n,,,,•n.•.v�n,•W.n,•wv.•.•w.-.,-n,-�, .. #N/A i #N/A . .... #N/A r,w #N/A „.. -----w,,M M.,,k.,,,n_,,..,,..w.....w_ ~ #14/A ` #N/Am #NIA : #N/A —#N%A.--.—..._... _..—.. —#.._ ~_ NIA ..,w..w w.. w.i...... .. ..:,. . .. . ........ ... .:: ..._.... ....,n.. r . ..n. y nnn. ..nn....nn....: ..... . _ _ _ #NIA 4 #N/A _ ... .... .... •.............. .. ,, .,n n,,, .r .nn, n ,x. ...... ... .. #N/------- :. mm ,,,,` } , #N/A .. #N/A #N/A n wM„w w .wM,w �,n.__ .. ..... n.�.,.• w.. :, a r ,,,._,,,..n,,.. :: ..•,4••• e. .... ... — #NIA-.,, ,. .. #N/A ._.. #NIA , #N/A ..w : .,,...:w w:w..-t...,.... ._,... .. . .. # n,..�nn. .,.., , n M i ::: ::` ••• #N/A s #N/A • — ....... . .. #N/A I #N/A ...... . . w :.w� ,w ..•- i #N/A ..... n.. .,�n.. #NIA #N/A m _.., ,...nnn w -4 • . .... ..... ..... #N/A f #N/A . .... :• #NIA I #NIA t #N/A #N/A .... . #NIA l #N/A . t . ......... #N/A #wA —... ..n• x n . - .,„ ,.:. ,nn . ... a t #N/A #N/A -M; #N/A #NIA barrettlaydowndetention.xls, Basin 11/10/2015; 2:12 PM M a Ce 0 ca W N I- CO 16 U (A O C CD CI) =► CD v� t c C N O O +- r W E'..) O or O O O I ' - (1) a) 0) O Q) (d (>3 t4 U U U tII 0 U ' a a ._ ._ ._ s 7�ca w N co U. M ti CO O O r : O M In CD e- c- O �� r O O O O '. ge 1' O : O O O 0 Nil'O Z N II II II II II II fI II II 11 CO o z = U U > Q d Q W o 0 0 ° C� aN o > `Jc 1- a) O o — -O 4:1 IX O Ca- I.- --E4 O a) * a) cv ca Q Cl) O) E E a) Q = = a) z i (U Q Q. a) _ p Q C c i ♦ ♦ 4_ N a) t) a) ow (+ Q O O- 4- _ >✓ tQ (B > O O O CI E U U II Z � C-# c co W co '- CO 03 (N9 r0 = (I) < '- a E ai 3 0 O I— o -(II p s _C in c U U +" (4 RS V) Oci) O a) 4,..,*CD cn a) i a) U O 0 O o O O O_ as .a .C o 0 a) a) as co co r _ O O O O N EV [ti; tip N :O 0 r O a) ./ O O as CC3 II II II II II II II II II II II O O —t° < i _ Z U w -0 < CO 0 HI- -L- a) ti (4 C (!) C O Q Q U C < t o a) c a) 1— H a CO i O U CO L — — >+ 5 O C `" n }' 'p 'd H o "- a) o a O •E _C� U).. i a) a) .� o.- a� :2c c u) a) -n a) U U a) c c cz rZd a) . . CD CU cn cQ p C a = v o O - O O o E o o > > c uc U x 0 o O c 0 o L. > .7)Loi C c Cu C c C a) CO N a N C ❑ ❑ a) r a) o — p ❑ °) -O Io •N U a) c ca r,,,, a ca a to .,S O a) ca 01 RESTRICTOR PLATE SIZING FOR CIRCULAR VERTICAL ORIFICES Project: Basin ID: Bia. To X O o / — \ o O O O O OJ r . 1 Yo e J #1 Vertical #2 Vertical Sizing the Restrictor Plate for Circular Vertical Orifices or Pipes (Input) Orifice Orifice Water Surface Elevation at Design Depth Elev: WS = 15.00::: : • ... . . .... . feett PipeNertical Orifice Entrance Invert Elevation Elev: Invert = • 13.:00•:: • : feet Required Peak Flow through Orifice at Design Depth Q = ••• :1.07 •• . cfs Pipe/Vertical Orifice Diameter (inches) Dia = 18:0 • inches Orifice Coefficient Co = 06 .. ... , .,, • Full-flow Capacity (Calculated) Full-flow area Af= 1.77 sgft Half Central Angle in Radians Theta = .. .".3.14 ww _M ., rad Full-flow capacity Qf =",,.:.... 10.6..,..,:,.„ :., �� Percent of Design Flow = 993% Calculation of Orifice Flow Condition Half Central Angle (0<Theta<3.1416) Theta = 0.76 w� VA rad Flow area A0 = . .__ .0.14 _ .....__v ...... , ,,..,,..,.. ,.;sq ft Top width of Orifice (inches) To = " ""12,35 ''inches Height from invert of Orifice to Bottom of Plate (feet) Y, _: 0.20 ;feet Elevation of Bottom of Plate Elev Plate Bottom Edge = _. 13.20,_____" __ w#feet Resultant Peak Flow Through Orifice at Design Depth Qo =r 1.,T . , �,..,,,"� icfs Width of Equivalent Rectangular Vertical Orifice Equivalent Width = 0.70 feet Centroid Elevation of Equivalent Rectangular Vertical Orifice Equiv. Centroid El. = 13.10 i feet barrettlaydowndetention.xls, Restrictor Plate 11/1O/2O15, 2:06 PM Determination of Culvert Headwater and Outlet Protection Project: Barrett Basin ID: Green cells are calculated values I ,- :ra^e::LE i f N ) r> 1 —_1 r, L - .. Lp ` . `--........, ti, ,„ 1 -. _,,.. a v GGa�it ,f-. CFaoseven : ,'"-: '.--H 'PM d' t.',.tr.....tC:7777/1------ [OSandy CNon-Sandy Design Information (Input): Design Discharge 0 = 1.08 cfs Circular Culvert: Barrel Diameter in Inches D = 18 finches Inlet Edge Type (Choose from pull-down list) Square End_Projection_ w Box Culvert: OR Barrel Height (Rise) in Feet Height (Rise) = ft Barrel Width (Span) in Feet Width (Span) = ft Inlet Edge Type (Choose from pull-down list) i v ; 1 Number of Barrels No = 1 Inlet Elevation Elev IN = 13 ft Outlet Elevation OR Slope Elev OUT = 12.9 ft Culvert Length L = 34 ft Manning's Roughness n = 0.02 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kx = 1 Tailwater Surface Elevation Elev Yt = ft Max Allowable Channel Velocity V = 5 ft/s Required Protection (Output): — Tailwater Surface Height Yt = 0.60 ft Flow Area at Max Channel Velocity At = 0.22 ftz Culvert Cross Sectional Area Available A = 1.77 ft' Entrance Loss Coefficient ke = 0.50 Friction Loss Coefficient kf = 1.46 Sum of All Losses Coefficients ks = 2.96 ft Culvert Normal Depth Y„ = 0.55 ft Culvert Critical Depth Y, = 0.39 ft Tailwater Depth for Design d = 0.94 ft Adjusted Diameter OR Adjusted Rise D, = - ft Expansion Factor 1/(2*tan(O)) = 6.70 Flow/Diameter25 OR Fiow/(Span * Rise' ) Q/D^2.5 = 0.39 ftu5/s Froude Number Fr= 0.50 Tailwater/Adjusted Diameter OR Tailwater/Adjusted Rise YUD = 0.40 Inlet Control Headwater HW, = 0.54 ft Outlet Control Headwater HW0 = 0.86 Design Headwater Elevation HW = 13.86 ft Headwater/Diameter OR Headwater/Rise Ratio HW/D = 0.57 Minimum Theoretical Riprap Size d50 = 0 in Nominal Riprap Size d50 = 6 in UDFCD Riprap Type Type = VL Length of Protection L p= 5 ft Width of Protection T = 3 ft £2 Size Overflow Wier FOR SITE H = (Q/Cd"VV)^.667 Q= 400 cfs Cd= 3,1 H = (Q/Cd*W)^.667 W= 70 ft H = (69/3.1*24)^.667 Height= 1.50337332 ft r_ r. "OMoN E •� 0 � ON OU ctp r- - NO O cz ,st eD ale _cal COoo o • WW i 04 • v siHw W W W c cu en WSW ~ ,in__. 4 z% E H CLe 2 ._, 44 N O u as F4 � �• � �-+ '—' _L."r+ te et tip ae U, `� N Ncv e � � � � y S ITS 00 tei 0O NN �j r N 8 w IC.) tai G N V 1 ►� .mo yN 4 13 CO AO cetera '." -' v-� Uet c Z cie � > � Uz = NN C> ,ry susM M i hi o Al Au VS O Co) a .C A �+ c+ 8 000 tkoti ;r£ w o w Z ` C/] V] its, c4 u 40 en M en Islet a) bA 1" U U U .%al O O O .4 O. Od• O d. -O a r `e CD o 04 O� it `t Cn Q N co TAWop Ne O T >w ��WI U co {:._; .< '� 46 c� i it in ... --, cido ca co "f�u,...'4k "LR'RSu O QZR6ye+ . 3 O V � rn Cn U Cn c� +".' k r' N E 8 tg $§$as ax v ct cd eQ o e+c�i r' p cu cu O O a o0 C3) Mil i R., Al Q or) r • -oe, oh p - o ctrndd .- ovooN o c� c:4hc 0 . •r, •O cd 't oo � • Tit T,-.-4 Cu o 1 00 c - H YIi P t o :itV) Up CD H � a.) ti 4• co N O co co a VA cc O0 LPL ,r., C co z O E C:-.) tC O d N in CT, �. C J -+ a CT. h a :I CA V C E G C 0. O .C U V .o o .4 r— ukait y N- CO CN O Ed O Ed a co x CD ts;a ov .— � � � d � -� O ��, J II 6, II co r V _ o IIa ci_i eat ia. tit CO izi: O •-.. < r-I CD O > u. O JUiilii: 1IJ $ w - O II !I CO all 7 8 a r t c6 n Co co N O co co c0 N O 0O Z 0 c6 Q ' O� GQ1 --- M in OOww G NG1 �1G'1 O� O�. C o N O co N 00 00 00 00 O - 1 a ,--4 C. -- Gam, N OO l` 00 �D N (--Ni O 0 N Cl N O � O iO CO � N Cl 0 c E ,_ _ L/2 0 O U) E U a) s✓= 0 U 7:5 co CD H I jy A r cri ey II NI a? II a t> II II co Ii d ct II rc3 in to . H II II a) c� H t II II + v� `' a �+ .+it O !I * * # �. ± ^ + W a + � N O U] O II ,� N � �! — r cs ;� r ^" � -O � II NN .� O PG O N CC) N cet d p s" ;to C O. s C + a� a) E a. N c4 N cC c n ctl O .--� r�l C� 4) V 41 O 0 - H cn Q/ ,----. 4-i r cg QI G14 +.. +-' •Psa O a C U = G' d 00 G .� G" p w '% •n .� bl C/� + N O N "C + a) —� ui Q U Q cQ N--' Zt ..r Cr N Q)) 1- r0 R` cCi = it �f -7-1 n C. = �. CC ' Zi II Ii II ^d ¢ O O vp CA Ct .. ll.C44II II �, a Q U Q d ;., I! o II y II 11 ct I! II II .^. c F to, II a x °� II II II H "d II La a °aa = x ≥� 0 > U E--� U W Ec- 0 - cA ¢ Ci) UU 7 U ¢ ¢ ¢ ¢ a. � � = r m a CO N- CO N O cc CO N O CO Z 0 (0 E oG oo � 00 d d N W W a o 0 C� N N 6 cr1 C aF-' F-d C/) /D 0 0 vi -o a a? '--S '_' op it bk o co N .x I i C a (/) {! �¢ HII y c3 C:O el CO Cel :4 PI" P4 ci) * C) O C) it E 5"* ' fa.. Can .-. U O . E1 0 H * c a� y a o a d "+� 'cri ..-4 p U con „D . ._ c II C:)" II .� a II II oE MI d Cl)>- > U HU W cu .T.., rn Q U0 a a Q 5 0 t • ::CULVERT STAGE-DISCHARGE:SIZING (INLET vs_ OUTLET CONTROL WITH TAILWATER EFFECTS) Project: ................ ... v wwvlvrwwvv.w.w.me.......ww Basin ID: .I.l.....A.....A w Y...h...ya . Status: WeeeAIY!! lJMWwWW HIN!l1JlN!lJJIJI.VIIA ••••^ lhlrOMMVIJHIVNJAV.Y.1•ANN.VJJ.YJJMJ.W.ClV A .L.4W WWP•••••••• NYINA M•WaRNWI••••.'✓••••••NW•1IJIA.1AWJJIJlIAAVJAAJlIYr.•••••* YV ~0~.. Wife t artct*steam co3wff):3»iJ Oo : -rirrriT i t A : fly : : iLt. .sir .. 1cr .. p �.•. mar fa'li.lee.--.......„ ,• a . , s`x is,. •• step sx Design Information (Input): • secatht Mittal Circular Culvert: Barrel Diameter in Inches D =I 15 1' yw%wn,..,A, „•------.....---..........1 inches Inlet Edge Type (choose from pull-down list) 1.1 1 Beveled Edge: • Anrrecnavflawn•vvranam. ♦ OR: Box Culvert: Barrel Height(Rise) in Feet Height (Rise) =I ft. MJ e a Barrel Width (Span) in Feet Width (Span) ift. Inlet Edge Type (choose from pull-down list) 1 1.5 : 1 Bevel w/90 Deg Headwalls ,4.4.YIAYIa•.. Number of Barrels No =I 2 Inlet Elevation at Culvert Invert Inlet Elev=L 15 85 ft elev. Outlet Elevation at Culvert Invert OR Slope of Culvert (ft v./ft h.) Outlet Elev=I...15.45 a ft elev. Culvert Length in Feet L =; 97 ft. Manning's Roughness n =i 0.0200 ZIL.V,..MA. .a MMw.V•WA V. Bend Loss Coefficient K. _( 0.00 Exit Loss Coefficient K x =)z� 1.00 Design Information (calculated): K9=Entrance Loss Coefficient "!"lA,ll"'"`0.20�"" �"!"�s Friction Loss Coefficient Kr= ' .... $ 5.30 # Sum of All Loss Coefficients Ks=1F1'""—.' ••6.50 -.1e Orifice Inlet Condition Coefficient Cd=' 0 »wr.YJJJA• 9i Minimum Energy Condition Coefficient KEti=tp'""!"`" -0.09 " ""L'4 Jreverreate fJ�Y...gee••• Calculations of Culvert Capaci out ut : Water Surface Tailwater Culvert Culvert Controlling Inlet Flow Elevation Surface Inlet-Control Outlet-Control Culvert Equation Control Elevation Flowrate Flowrate Flowrate Used: Used ft cfs cfs cfs (ft., linked) (output) • "Wet ••• v..eh rAM1v"ir ww.vfWe eefleteeeV levee /reeete Yeteeno .'enem temenewnnem.re.n✓wive etenNlt 16.00 0.00 1 0.20. `: 3.37 t 0.20 �s Min Energy. Eqn. s INLET ee ♦ \ Y»YY.»Yti»V.l ..»»\llYlY\7»vVYa»l'a♦Yl♦ rYNerllrllrrrre.• • 'r• lr r vr.rl:✓rvvrrrrr lrrrrrrrrrrrlrr.- ". rr•. 16.10 0.00 0.40 s 3.67 0.40 J Min. Energy Eqn. s INLET `YLIW..W µy.{y., sJMJJ.1.. M..IUNw.wif...Y..I...VIlMJ..1MAW.V...Vw.Ewa•w..JJI.VJA..•M}....wY..wRY.Y1.;yJ...Y.Y ... .11..l,..Vll.\YJ.YM5V...aN.J 16.20 IJM 1.00 # 3.94 # 1.00 1 Min. Energy. Eqn. # INLET 1 - AYY.•.4V M•.•.Y••• •eeneemeenMn"Peeeµw.•✓dJ.IHUV1Al1f/y 1 .•hL .-Wee aM1eejir.rA•JAY. eeeee neee NyyS 16.30 n 11 1.60 iftA✓l 4.18 1.60 s Min. Energy. Eqn. # INLET s LLLL\\Ml 1. .wwreeee .anwe e eeemee Ifneime eene!Menen- es-ne,... /V\Yr 16.40 2.40 # 4.42 nS 2.40 # Min. Energy. Eqn. 3 INLET 1 vvrr..... . ♦ v"elv.ell.vlerrrrrrrrrvrrr rrrr .. . ..wrr `vrrrrrvrr•Yv r e r evwewv✓wJ reexe✓eete.e..••.tr.ten, #reerrrreferrrrt.....•..rrrrerr3 16.50 N a 3.00 # 4.66 3.00 Regression Eqn. r INLET s -�-••M• 3.60 t4VA1.•AAAV \ AM•6 1aww.MYr1J�AaaaaMl .eVAL.•...M.AM.3Y6.....VAKLMA. n. !M INaVLNA.MA.VI.YhJ.8 0 ET--"16160. M 1.YA..�J...J hnw.tat Feflee eeeflAweatee hIernefl4.8refle eeeet t.J.Y•-•e m.•-„•••tree Regression.ei,JJJJJ -•-•nm Egn.. iis renem..AYtl enNA.wA:. 16.70 t 4.60 # 4.91 ' 4.60 1 Regression Eqn. # INLET 1 r.nl.vvw r-mwmverwy✓✓ #.,eew• J v✓.•r\w✓:w.w.v v w....L.-era..cede rewr•✓✓✓rl✓✓eeten..rv"rew.mm.•.•e.• 16.80 5.40 3rrrrrrrrrrr 4:99 1 4.99 tet� Regression Eqn. OUTLET s Yr.....\..\Y1\Y\Y11Yr eeirol\♦l Wet»1.1♦1Mvaaleee•W rree ...♦ r.errrrrrrrr ✓rr 'rr . 16.90 1 6.40 $. 5.07 33 5.07 s Regression Eqn. S OUTLET # alY.\\\M.\.Y.V.µl.11\W.Y VIAMYM �JJJ...M.•JMMA.wVIIIJANM..A.A. .. ..V.N.MVMJJIJJ.•.YJJ...Yl.1• ..•Ja...... . A.N.VhN.NJI.l.yay,Y.•.N \a..wwV.. .. •JJJMJtJMJ....N... .N . J..MNMIAf 17.00 ( 7.60 s 5.20 5.20 1 Regression Eqn. •$c' OUTLET ? 17.10 1 8.40f 1ML\L1alY.M•.V..J.v.•wvv •Axaswi. w„••\Y✓W.IM•JM•y. o t. W.% M1.• T'•' JJJJ✓JJVVIhW.tM••fJAM.J3 3 5.31 )s 5.31 s Regression Eqn. s OUTLET �1w •• . •.ua1Lt 1Ltttt N IWJ N• wn.Y4!aAt nt...ln.,tenMrv��mv� Wi�IIIII.Yr✓rr✓flel teeeMMee4we.we weeemeetenterX.•!mean M•✓!✓N✓✓XenteewX• } 17.20 Ar Yt tl 9.40 1 5.61 5.61 Regression Eqn. # OUTLET ........ erereeten .ver verve""rrr lw•fVeevote rw.or..."".wrre.vrr�rrrrrren.r.....Yrwvvr"lrvv tin- r•••Th4 - 17.30 10.20 t 5.96 3 5.96 rRegression Erin., I OUTLET wi . 7.30 ... Y..I♦ka. ...A.MIM0.20 aaaalaa..1.Y. • ya•....••.RW.MM•A1wYIf\VJA4YMY1aMM.lh1•l.w.•..JJs. ..W••M•J•..Yl ion E. „�w1740 w , 11.20 , M 1 6.28 6.28 JA Repression Eqn. lrAa4JJAt•IJJJOUTLET s .V.Y.tY•••i1:80 J...JJ✓ .✓•JJJJNJJ.•nn.,nn.em"e n •e_I.pen#w w!!!!AYllIIAL•I.•.N 17.50 w ••••••,„ res 8 eentoem.•-•-sew,YY,6 63w•rnw•••a•✓:✓le.Lww t sa A wA'A•!✓twei Regression Eqn.eenwit»!.OUTLET l �.... . ' 17.60 t 12.60 %i 6.98 ' 6.98 '1 Regression Eqn. # _OUTLET 3 mw•v\»Yw •-•-•a4w.♦w•••••• rrerreetterrrr.vrrr✓.ru.•rtt•••''.e•..Yv ytw 7.YYAY 17.70 YYY....wYY.w.....YMY. tA...M1I.A•13.20 .1.MIAAw3 MJA•-.• •......MMJJ...M ' 7.31 Regression Eqn. 's•A.J OUTLET t....I.w•l!r•JJlA..•I.•...JJAA.t4J.� A•.Y.•J,w.AM ..•l..•l!� . 17.80 13.80 �A JJ hw 7.66 : 7.66 Regression Eqn. ✓ OUTLET J l4•hWILM.NWAMYlI-•••mm• •.•..J.YMNML .•••WW M14N .OflaM...•.NMVI.•••• a leeeM eeeee AM1eeeree N!!!AJ!ellllNl.•JI.Pa%M1M1WV.I i 17.90 14.40 # 7.95 7.95_ # _Regr.ssion Eqn. s OUTLET s M 18.00 r sw """env. - . Y,1Y"'rrrrrJr 15.00�1k11 w i' .11 wwlt 8.28 ✓t w✓w J3IrJJIw we 8.28 "lrrJrr i — Regression lEgn lr ✓S e✓err.•,OUTLET rry`w t ;,•. .w.....•... »Yvvv✓✓r••✓r✓rr.vrtww✓rrvvrswrwe✓rteeet.r,.rr..werl we ..".er..e 18.10 r.revrrrvre:e.Y...w ,.rr rr Erw rwY. • •-•-- YYI-•-•-- 1_5.60 # J� 8.57 8.57 s Regression Eqn. I •,,.YJ OUTLET s 18.20 1YaNh11.16.20 ,18.87 Yaa�1YA„�MMA M 8.87 aM.w MMwwM1 Regression Eqn. OUTLET •Y LLLLM.MLµM.1AL L JJVM\YJlI.NJJJNJJJIJJJ.WAVYMAI ARAJ 11 wNllNN4•.w. WMIWM.P K ...•4•J.•JI...•••a• wA..verve.xn irpe».w.....w.YJALYJI...wal 18.30 k 16.60 3, 9.14 9.14 Regression Eqn. `€I OUTLET r v w.v mw.Yw✓.wmwnY.wrwrrAM1w..wt»va•.• ........v.lrevv. , enae.nt ♦ . .... wrrw 'M'a rCWemer✓reNeee✓✓ I` 18.40 17.20 $ 9 41 9.41 rrre✓eeeel✓r, Regression Eqn. ; OUTLET • •YY•Y Y1»»»♦\Y\Y\ww.vvaa•Ys•Y1 •e..r..-4. .vleerrrverrlrr, v tl ✓rr tee eft rr.rrrrrrrrrvrrrer•rrrerr rate eeeee rr.v.VI a.*•.V d 18.50 17.60 s 9.68 t 9.68 # Regression Eqn. OUTLET ♦�M.M.\aLa.LW...... eeeee •t AY&at&tt.•\IYJ. ..Y •.VJA.wA.MVAYYI..t.J/a..YJa4•MAJPM.•IJw.P.1l.IIM.w•lM. ..1.V1!..MIA..•.. ...MIIJ•.1M.MAJ.......NAVMJr�.J...IM.M.• IA1NI.• ..W... •• JA1VA.3 t 18.60 1 18.20 3 9.95_ ' 9.9_6_ : Regression Eqn. s _OUTLET J _ 3 1 18.70 18.60 10.19 1 10.19 Regression Eqn. ! MOUTLET aS t,.—WYN\M\ v\atwLMN1 1lleeneenwerce Mermen✓wY✓Terre✓✓nmeeennoweneen JNY!✓!eneemellr tv«< ! ayeee✓r✓eeeter•••• to llrMfl : 18.80 lw.w.., e 19.20 rrr~.r r 10.46 r 10.46 ; Regression Eqn. 1 OUTLET # . .e.Y r✓en ereverereereen ett"tet..wve -newts.✓ rr ern were v deter ertr weir..." e e e e e " 3 18.90 19.60 s _ Regression Eqn. OUTLET MYM L., Ma MM M :M aa10 70M1M .,M�„M 10.70 aMMa M. ....-..N___,. . . Processing Time: 00.47 Seconds Iaydownculvertwestentry.xls, Culvert 11/10/2015, 1:10 PM . .' ". ". .._.-.... :velnn�Nvw.vrwwefuwvm '+w•roeoaoYavoxaE' .Qllv.�TEe�9T S r to... S2n+Fx6kkE D Y {'i p I • • f4 tea. • • • • W .• • • a: 4 • t11` ;~ • 7� f� • :..... ............ ..... ... ...._. ... Rte(. xis . .,• v . -:c s *}g w' ivy ,..,.i :4nsay :• " �i:T a � `] . .w - : .. V • a i TS •• tit �r H og CJ Q J f la la m ga • 'w 9C c •av z $cor• 111_f' ffflJ ii t a li salC s•"loot : sia us • SE �0r .. 0a2 0 fi Cab m a p �/• 0 S apII• • • •.eseacc-#.7• ID V) M • • •.....t.. to.V.7 • \dr\ • • • • • -�_........ 4...i..►e a e.�..^.._s S .........S S4 SO4 �..� SS S S S �.....�.rSOSp • . . l CO • N • Ohl • M • • • • • • • , • 1 J _ • 2 N -t 0 Q n V V 0£889* 08189* 0£189* 08989* 0E999bb 08589* 0£589147 VV to - M xOZ Ti ot'0T IR $ 9 p $ C% §d ' 4 rL S 1>' 1 tp x V . y M,pZ AT obOT O O '�$.« I. j a ` .t.^° 0j. P !Yy 1 x *x # sx C. r . x>� ^.Xea«.•«.-x'.a+` • P ₹-., • x „>., 8°4a$ N ,r �v� ' •• >• a2" r ga. CD Z EIIay '�Y� ! •'r x 1 • S�? �C.gt�'34^ YF �se�]f 'v. ca Cl7 vJ y.• g„ > d4$a r y # Y S ` a a rrx«d.ov B E�q Sir p£• ,k:i ast ;044 .Q₹ F? i max` 5 }h'- '; .r41:•":"q K 7 :r` . 4 ( '"�F gY94 st .:may z • 8 < "'a.Y�p'x $. `— a ...4 eJ • x t�n •Taa P i •"' <g t dS FSskiR ns». �.W i #tr.. Y°4 r CO 'R qq F .y s a. •a #g 0> ' : 3 '}� >) • A a t q x a",F'xewia"`� f� 4:y u to �tS s$ R< Y$ 1 31 ».' '4 {7 a '?a' ai , ..lw++«a" YY x£ it C x ¢`a.`,F�S OF < f NZFN '..y °3i d.. i Genf• >.1 . :'' s a f} • 3 i' `°'"w\L i I �Y • e -'". a g f RD\ v x�tS. • ¢ �� . .:.�'°` .y? .# R $ a d „�a�<�i'6( PR1 /. ' F� '1,•' i0 .L $ s £. . `i ,o x a `•47 F'S °". :"p ,-• -Lib, ••:- ec a 3. �a ,' :{g�!`.;Lt f' a • -≥ f a y,g(433 tilt ¢ :41. aw�e$r a Lti t • - S y"`N" ae 4: Pte°m>a✓. '''%' '. 81 raj' 7#t`,ti!!.L .� •> $ • ne s' :, I. ¢¢ •..• d„igi ' •'Sa ° F�L .a ws Sa < g.3 4 P'tx?. ..--41. ♦,Gr . P $"1" c c3�F £: t> » P £ r xt`T rC• aL. , r c ¢¢ .vxa 4 t+d' lrP;a •� j. E .«..e.t : $ Y.�s� tg`) a '�.' � '��� ₹ �"r..i .:y x ii } V�i xYyxi (<S a yq� ' �a II xci... v Q tyv . a \ £a La t aH+a x+. .�.. j x 3,� ra »" a '°w';°:. YT a ,Y}� t,sr%•.""�!'• .• 7 "> F ') : t t v • $ GAS+ '+ n t� i».v n.:>M . 8')k 't'0 +! °`"�• w•x x. %>t3¢ g x X�! > .r SaS rF as r3£ - g .✓ s.rs<.r y,.f q -w Q$ 3 y„ d f v 4•y - O � § $E P a 0s r ji 1 BQ � ..ss..a $ Y� >;—"` auae°«.. 3. ?� u• r 1'm . " ; l�p�ppj sii% a'° r 3 s Y 1.1-1W T w`6 s` a.a w s. :. s• \ i Yln` C gg "f S �' r t k Z.xy /.wn.. t. "`a:'a k ?'^°'°"xb ..w'44.). 0},, {� gg ff R j ,rlsrge- )%"' a L ✓S $a L 3 �.« x",.::: 1L 5 y t ,? 3y�.J " }. ^ �t \.. f i . 3r: ## y �''d` 5 i EEE < d al a�"; •.r dkt C"' s !. .tny¢ xa`a ) { S Awa .f E. .. { rg °es i xs • z ¢g��q c., • gghy t;da C.x $Z� •" �gxx y sa .. ., a }F>4. •'eery,yi .i t! $ x ,#47nV"+cs.+"e<° 4 ^yZy'31-'" 33:4''v4,� ggk +as a' 1 ;aa P a g \ 3r °°'. �a:?at.# .4Fi • ?x �$ x,1 r" a "< 3 iii 411111'''' '₹ Cas�, S ..�. S S.:.y: &1 a�.. . Sa`X 8 S\v F ! 4113"3-3:13Xtg a '• & > t w'< t('d '.✓. w"$ 8 nE.`. • ay. ••. .." "3'i a`T <a avn j „II,F " ill /ba:l :4 :.-4444.,..$ s ii. . 5 ;1,0101' .§ u S •�a� 3 ",r /A § II . >j. . q .:ti $ 6a.. • I / 3 Y . 7� .YS: ro\.e . O . J >.}r�< 7 ' t yq .a>L, • - 4 L ! M I�,� ,3..,.i.A: .dg i's• II .,§€ +(^.�Sy)X31. 1 : .tu,' a• lI a .- -,4 '_Re Sio (y.g fi' ?^a:..}. ZY��U aRi'H.¢ ..a,...a.. '� ai�. ` L :.x ? ,:A i P ii y> ) �d 3 S r�l' �tT Y€ " 'S[: ^Y t a '..,a' 3 Q �. pp gg ` •.. }g a,y^.' a. ₹rg ^ a.^ �y (Cxt(•t8 CS?,f >ti. a e '"€$c • ^ t . Yc� `..), ₹rid q t s ii Itlit•Ili aa: F aa" a,. rya•pp�ppp -yq q'" t.g ,47{ a 44 r*Pipa . ! a L -• w .t tl 1; 4 c\.^ xro t . l R In ° . ,.l,nrai $ rt :3"I ass t"'"'. .$'' g 1 .•�i .3" .'i"a Y• ':l3 x«..2�$ 6 $"'L'a"4 S� >, %` pp 3 tit ¢ Z N to �,rt ! T °d•Y$ • .�q,, • • g d pp 'x`x'x $g�S3a..xw 11 44t ₹ �AY , 3't .' �'' (a ��' ` i,. R'a*. '.La .xYF . . . $z3_₹� 't:. f „ j&�,�, 1p > tx t w9}Y9}ff)) t! ':#f yam"[ �`[a •Y .e.. a ¢ -. > p�(Y��$5$s r 'p' £d3s 172 Y q�{f{ i[aq}�'g}� l 'u�.w�j (a s s��� f. ''/hpv 6. i �tyy.��,;�< ₹9 .sY�y �M�' ; �Y.]'.¢,j¢I` yw, • xT ilia 1-eta 's .,YaFi:a. It > •... ' t �'T' G "� g 4t c.. \ N'K E rtK'g va b a'4$1 1 .rIV ill:• 1 a y�s°C4^•8 .• > : .. •s•e:J.aa. d f e a.•e ) r >>s t za,. as i w ,w �1 "XzZs R i a`Et '£ gp, t e 'p s '^4 :. Axi°1 xx 3 yg r3 w.3FA+.. V x A3R -'>C.'.0`'""'"> '3a �x } a 4113.^. '-a. $ 8. s 2 $a F�• N, P;Fc d. .�" ;at <!'t �6. m . St'^7. • an<+�°..y+ran > 41 >2t°a l'.;,$ . Y as #v • a S£ a c S N Aaa _ ,r g•' k \x4 •x i, .) e I3 6 . a 8a '" ,.,. tip₹₹ $$< c st» ,/, A <r R8 It. x+ i� a ',`° `C 1 S y..5 �` k .\I. III; ,- .. ��,,, . `_ '..,.. .x • S ti I Y6i R � , °a:/¢jaH • .'.w•>Sw. ., > agw"^yr'f'1i:+ ' ₹qpl s�f.' <i Tls>5)rs: t i§$ 's�.' s a }{g {€ga< ,... 3 }° vj` uE' "q kg $g x.+; ,c`"' l 'f,rt✓` Y " ty{R4 O .�i ,.:a v f •i' Qdvt�' ` "' .• ,i`On .' lRo y,t #₹ •I k •a, �t' ,»'� Y x• b q • 4.s .1.44;;; O �� +:'iZt. 's. LLili . 4 L �. :tit :2,.4 a sg{ pets a :- - \ ), `"7 a yes -.:.y� ,t. 3 TT os Ot S a • " ,: t§ + r to S 3 f�vs, r 'j�>/ :Peace f3;t w l>+ ''' x..ma <t ;Nu w °i� .; tg R- ff - f1 �3 i tl�i,SSfS ' Cy< a � 4 5 ` 4 . ° T wf � a $ S . /> s' M " ✓JF d :." •Y4 i r a . )a[a > a • g 4 � _ 1 S:IL)!i F �$t.. yi 9z it `' l k • ;g $F n nF "' �Ea .V.S.saw-���$�yy4�� i $$ \� fC.R^F• ("�` •�"c E.: ` , �� fr E a " -343.33:41°1 nig 4 4 S. DI 3 - ,a$ . c < a°a wt,`x .m .d, i'ty. .. gg • . a 1 i.. . g '3a ,. • S 1 r' L. BBB .: b }7 <,a • ES$$ k4 A 5 ^k 4' a(3. . '°� awkv sy.;..84 s } X'y 7 `("'fi".' gi •L� • T r i sxt` z Z ss �>. FE rvx E� � �. r1� Y��{ F • /'� ((( \y q L .at t Yi.' w'x x -M Y3•Y' ''iw4 4' a< L �4 ST'L' '' b M•1 I � a a O W 'ty'' .Yn' iFi a x< .11M r':3 41:" +° tFu P EyAy! �iin F ° C°`. c y<° <t x $ace\ � P, V $s i r°c'n • ,4 4 +—' • m � Vi\ < i a>"r ,' 3 i. fir R w :: $;�}yF s:.,r. t¢�..�a Y „,,51.,•44. }}1.,•4� `x we E2:.• :TS,I;a ...Fm • xg 84 .� C $ a .t 'y,N Ykr , " p : al •N 3.,. s t r a . . fi •—41a"it ij !" . v R 11.al �( S' L: wx` 3@. «. a` .< c•F�its' Y a t q� 'E8 qKy• �h� a y�" + ��'$ • 1$lg.>, F F 79 i, are ' $ "<'t`a . "^,yF4�a K ,:.gib sgy> ,.x - " $d��a j i t t � b.'"6F aw« a' \.<!^C.a ''j'" II 1O !a a'c+�. . F tt /t g 1, v " `a 'r.s jai, • #"1.4" S.BC X' +s8c' ₹is... g3 R § $ `�''°. 4, .r/ .$ a^ ; ° 'a T�.. n i ..F 'Alit "1$ $' ' $ 1 i� 'Yt` ¢ co a ,yy,44 $ �� Arra s a :VII_ Why ,px,"° i lice ?^. • ¢• sL FitS*vo' 1 1. *� w �x is ggq Zt Y₹' } a,9 s ., a A wxa.' a : "lig 34d ° F,r + • fi,�a cf a, a O a`a� � I,iE p-$ p4•ix $.. `? �t ` t .1...t.„.•,,,: . f>ty /f' f 2.L$. �.'�. g Y Sxg(s . ,; yY ` y� osa PSe kti.: "4' '¢g /`S ' �t $ j• 34 f .j. $ App.,. xa .E'S .xx4 •,5 ?.. • !a .v' ` xiYa w:+ # xE sg 1�4 r.»»aaaE 3 LY aMw'e• <S ! $ .,•, .�� ti:7• �°a�"ae+. ��i`fx g`'.j a v� y (/l `./ 3 a,{^a.ea >tP/,�i Ya°b, $ > 1 x1 3 \ i� e�J y"`¢t s kk„ x � a ; # -x:.. Y 3 p ppp�4v a e ) f $ _ C£Y.` S * -a°` >y F. °. rsr 4 Z i E x • ;}',Is r j yam.N .So. Y �a .J> • ]sg'�t41( `'.z ..011� .tx 9 AA a t,' y S j .64144; xr» it ) �;r� n £ ' •`•xxh.- • . .e.aL�!' ,. • °'fib: O CO O C O x8E a> ; a: \s . 3a ‘,1• . < '"Ra w y 3 „,,,,.,,.,..,,L, °Y $�t. K1 < 3! s t>t� >x>.44 le 0 ';..'Y Ws > ¢ < ( x Tex rti ✓ x tt>•R , a 8 31 ✓ (x va ♦ C O " Y� • rI T 3 eE d. "^ ca 'f F;6> S'e'v i «W�-"!"\`e• ,�ca"v\Fsik3;�yy pY a<€ i xft O COJ O $$m tt" k P n 6 a 9t' a n�crl y S a a ( �J 0 U UI .t.6.!.41.• r•.e • e „ `y` i'CE P' A �.i'�5 v.V t t ,`x.�."<.«. e°\'F':'$.5t @� ? Ada`!: E• Qf ; z• : - SLOP,- 4sF (((///��� ff .4.xi��.r\ i 4+Aiv 3:*• P • ?j J1 AY$ O O•..F'+. bkf 0 )... xw�w • • 1 • xWa`�i..az9( ' "` id� y ':i �<{ < - , 't•"a .„.E v gi '� r y L as y�Po SQi } \B $ £A . r C w $. ;il a x r kabrf r r " \at 1' x + f? >• 3 y Q) O as F. a -Ft . O ₹ . -• a, - aa•m+a:e -:..c t`ia au..a R : i n £0 52A 9„ `• '. ,. .-.: x` g`"^ av^w a t 'c 4 '}'aE K.r T, i xTs Mmx a .X`i t aa • .>y e > A. a awe '«+ ..r � y. < >* n e p T E N U_ ' & • L '' \.7 x Fn. %r °b'-'°8a'° �1 •p 'ywtt w'of i , $4 a nn r 4 r 8 f: 6 .: £ . �a,;t .r c f. S _ # L m % Fi F :. 1Y � 3:.:"4.. w*'M p a `Y� all h tl:p A •NY') \ .thY .J H CI:n ,-f 1 x _.SYS`� • 3x •9 • > F, • bj > C4� Y /p ,�' a :. a S°({ ., . r Y f Z 2 a}[ Qpg( 4' S T p1<₹g$Fg' ^4 4` a �' ` r ₹: +-)t M O v �_ a� t11,11: ( t `, «i to f .f +: $'°v,,`S� �`g< .6 $3 •£` r6' ° .<i €� E ( • `?. •�a >R k>F kxT x .�T,¢28tFy o f7' ~ kg: ' ,,.x r` YAK_-III 4 47<" : vx- g ^`3'°`>3 ,; t nttr s.� " c b x,}¢L -•''i t.)Ty �r .,n ," ��hyy \ .s. Rn E LLCC (B '.iG • r s[� ."Y, 7 ) .t. ..:✓ R d „ 'F♦. +•.r+. t ,{�j$� j ^ a ft ✓�. • ) } l9.. > in .� O F o y. 4'. t _ .4,1- Y . y-„,„,-.4„; Kttt i.7 .� ,fi� . • q �'' t-;wx s x •'. A,III x�<,'$g .c .. x ✓,✓sz. K((D3.$ i I' (� 1d or 3,y`y� t ! 3>,'._,a t „a S '¢ ,< •§ d. l.�:.�'479r? 'a° ....“: eyfF} (T,k i c Y. t 1. (� KK.yn, u.E1,1 'Ire. # t A e`.- >�( . c t W+ R aJ�lj ve V i t ':t\ • � '-tAi _3r d:ia't�ao<a VL a La :. y .i.�>=.t ¥$7 $II In U • S-9$ . „x I. 4 't sf. ) 40 v..v 9 H v yam .yaTh. �ay3.Z > ' SCE n ia. 4 Y s< a�NF °.S a ..1 , .i„ i d'a t s jj Sg$ • `F Y Z: °@ -� £ ¢f w.'s:zi`3 . g. °'"'xxta t... a ty., :. 4 m.�Y > r aai T' F ` > $? ' 3 f ""ycYq j�- .., ,ty, ..q fx.: tt�f ,j$ jj r ` ( Z ,f tki j y$¢ ^st^x 9 . O { .". A e t 4 $ Es? • L,R .; q , $ ro f ki R s1 S € "? S •FL:'G fr k 3 e i yf t'a v"J«Z. ' �'� .. F S$ �> c r« • °gg t$ '+\.<a y� 3x x S , ' '� axR,\' .# Q a. N 'd ♦ j D S W a $ Gy .a. 3 .p CCy a i w.v x• p , Lx TL?\ $ n3 S f ax nn i1 } .a i, Y' t .w':£ t {i Px):E:. a\�0 �yf.t� §3,,Y>3'r fl$' ?a M i E r .tt { e„'a`` . .r:1'irk •Frt.. ; s' Ij[[ "k(i <• . + ' N 3 ":4 8 ��yTs ..l'x,�'j .. o s 3"t? ¢• a . ' E t 'r3v rS , zt° f �Q71 Y [� E: •s .< `\Fak`.�' t - V tm .>r ...., s R L.fY'i-t ' ' '°�'ww$:S t. a3( g �°L, - W 1 _Sg • watt`Y°. ',<O. :;S•-tF• jry x. jg �it2f a g�j > ( yp >t E a r?e Ra Es t ay pp yPt faab�i P1EFF r S: 3 {^{n•a' ,i ne�.t� {3 is f $ss E .,x x'x 4.:t ><„ '� t .. },{y���(L ~ La tr: La fss c - • �k4xR "ia $ rZ it r FLx ax'^.`«x.r k t,.a E.f.ts .41.a. -.¢ j `¢' L���111 0 j€ '> :.Fd c Fj ! seat( el „¢ $•xg 111 6.' di ,:i4 .�rt�x�' p� _�r•i$a>b� shy •a +kQ a'a.w.. .�2Q, f D \e5„'"Ay SC H f r s�"�' 1 - vu �x S Yi: ' '& R.,a ii 4 — § O ° a,i>x, y P n ..o ) ?it,i s 4y x,, iE v>� i w 'kvr\•vat$Q �.!� T <' :3x si ,�T t �Y� ; U1 4 !, s. S 'i.x/"'� y IF .�c. 'C' a' t <r. w s 4 ₹' -.nip r C f"�'G>4,.r 3 < s yf[g Y'``e z\/l• t ✓.✓r riF+ P. \. t.W, SS 'l. t ( co V •� • R 'L' ' g °�� $ ^a°\2 ix v s p.n r €Sw a`' 6 r '4 g $Q .. S: a F`. A)eai txra jj !.P.. aj• X g , F{{rbfaa 4'l +, t`\lc € \ . .\>'�a Ya`\ :f xayaE "P £;t; a a g y3��y� . 4¢. • $&>�z'a ,S?.l° gp� '''''T&TIT t .P::,:i :.✓a.. Fy 4 5 "" "L' E 't:3""st \ 'S $ a E k°!'� i •# i �rw a' i Tx " s` L s { ' a w $h t\ .Y Af . ;6 e a2 . • x.a FE^ ss,S • rd all ,>.`2 ! \+Sd f R r? as `G.' S 3 \) ..a. d ) YMa - < ;. g rl Fd ( ' i.i S �' at sale C' a "A' v XV. r .✓ r a u i i"" -F k,.41,41,..„..�..'.` c1 K l aK %Mee ' ♦ • f'^.i., 8 f 'c G9c y r°s st . 5, sx 4 K-grip.s" ip: .a a .aF r •N ra,£"al 4a„� j�s.e t• ;ew C t f S., �. x 3* ".s ZL2.L" `� SQ\�" '1190 ^'°.8,F$` .XJ e`¢`°Fw 'L<.?' a F' - a t�$a�.+ s:a w ?,a:. -v:.r 'Y'< > 1a Ca \w¢ O'` at a U ER ��7a + ! ZK 4, �> ra fj Q qE#. Fi?f` �,�^>R5.!, , >x u.» th . $` ya..$ ₹. ,Sa �FT;a;`aba „ "�^.(QpQ� »a y•PI >ss tfP t;. �a�S <-">'.f:. T j}j }#f > - Y fit ou $pQ} a�a` a Ys s„ }; • ij2 G n ti • .) xt a V fx+.+a> ANs x : a `2\v t. ,r"9hE .. zfa ,"$ S ¢Se 'A` yR<`,j• ¢${ Q �Y���� k, . ti? ..T:', yi`d hii°yak y ; p r A :.cs•,ry?R' 1 l .9=1, III • ut L ,t411:11,44 8W P.x.r >t• CAI' • ?[ V .Lt$� t c. a₹$ g ' w xP iyt: $tiaaa AFY fi �' q .. • 8} 3, a e $„ .b „y..� 'e. N fi^ > i <�'� £` •k'3�«`.°,,,\ L ysy F,V s �' 5:•( ' : �F§r F �.3 .° �'�rrar iw • 4 t � < "� .•s tTit l �f�t` C.. m..YAb i. bt a i . { .�� 11 1•sRo ;till BaR E F. , x"aP>_ f c xj' _ bL a, s - i 3>°.t V R` a r . . 4 3 "Frw. ?a RixT `"..r�₹ T n fit $ ,as"i a t::ii •• ,e • �$ L rSy . tic. r^Ya I>Dry>.>� ' d > w,'°°• ''"\ s$}C f, °' T;' s a Y $' 9Et.� et ..yc ¢li x7�`a i o. .-'°' . < 5 ₹ .<v 9 a, v a Q400 ^a,.P'.a\ yi a{<,ki( xo+�?'°..S°t (, �g1, }LS • M`Y }:�\>rn R' 5 of�(A S3al .s; 3��I?„ F° . �t,s i ¢ wy:y�ac\. . c • •Sj FiA? ti'�a'w;($w .'�a r� y'•i ..! ,•:.,,, § 1 .�j g ' 's•Y II• ?i.'✓' SR, .p� t °x""�'x VA>n &. r � Ri `a sY.: {S° { t�tgY� §. J a it r ya' *4442? , , gig,': N� ( C Fw Yl yy tgt: °x $ ,a ,' y .. f' �d' "a' y sh,t,Y f i F$34 •cg5s< �bx jg 1 .y�• �Y • t M R' gypv a`E C0g y r" .( >1t,y$ i � 0. t 1 '�i iS1� '2 '\" Y ₹₹ ..W ' t '$� �`lY< ≥ a"i rl ` vI at' E`g < ...Ili pp V\i && ,,$E i (#i $¢ • k f : a7 - ` {YyF�<¢ ,Ys°" ..yt�,r o f \ .: 3 1. al az s $ -ot<e g�{' a •' ^' Y3•• j3�Fj it��k1 =C /y 'a µ6:'b E a $ >,.P 8 x .?F! @@ a r{, \2 E' `'%g ai a"1 O O 4i x ce es nt.xa.. aL $ c.rr � f S xA' �SLt �da ey. ro.s ):sa is .a Pke`0ea h�q"\r•ag,It•�, p• ' 'aL�g"y^` R.y �Ei k.� ;� .w tR r' ? ? > '` 4a \ � a a1!.5.A.,..,1.<,.»k`1 'Y' w'.' g ,�0 ,l•' R .a :r,6P .f. I t FS.. �' - 2x.' a �. ♦� x 8 a( P\ >•r s. i'i T 444 r 3 4 \•oi. a ° £ i L c art K Aiarx ✓aY 0 3 1 Sk`.F43 " "' i "R? Y$ 4 wt...' a. ,E,- : .R ' ..yw Ac <x�. S.. C P ( t fir, x�` Y< p¢$ q p 44. C 1 ' t 3' 44 7 <` 111 m'?..a i ' 3 S # . t S. • v„ ` i Q O 0 i y a L yya Fa J 'v yy Vx<Yx cS .'�{hv t 1 ra Fr x'> .T`. x>a�•a> < 1, '✓ <� gY ).c VA h2l ` e w;'t`'ycw tax #;v F'�. \ ..,M 414 °lam' L ' rY. { „,4�F $ (�'.', ¢ Ax ..!'. •I iR { S' '•?.� e a ) R `: F'3 E .. yYdRiga b„ xw< � -a R Y .e "<"'. k x . . L n ' ' c F ^^V`i,y �t � :. / 'a<la p` ` . +'1< •M t }g ae'!: 3' ry `x �J co, 4 5`x tYd It ex .t 2'.R 3 '.$ ♦ b' x a r P • E •" fiE ° P y^ 3 ..b} � we c in y1 $ >rvsy��„f{F -�`O i' a its{ a !x .., `A\• 4 R 5y 8(a<• P'».F C .. S T ^Ja xY s: & Q ♦Y O (NmD y aa ) )pqf /, ✓Nax-•"Y- • F ( 1< ., $ ,i fig$}{ ¢ .T. wY Q r� t, P E6$ .cl x.; Y> �r a $ 9s `':i%y.F • 1° S"En₹ s ''.> yE>'\• a.Mx• .i 3 : � � t L Y a S�A� S L \```','<.• t•F'ka t 3.. at. yj} .rye �pMpp L Z V • g tY ' ,yxf^ `t z : a a 1.t.tit , i✓ "ai '�*�'t'" :.-,.t.4i ' ,; aar.AakP. 0'E�p,`• "Y^ (�F ,t t. a fx� � k '•Ir sa t •'Lt. , l!1 d R a i >3.,i gg .d s, s<-, C' °ate° a a44E > 4 . )? > . r T 4 .<f,: . .a y L..'. .. ml P E3", f > <r!` Q ' ^ `t1 tt ai .. .F" i j M al,iTT obOT - • - '' 4, xa a> ., c :x ga+ > s< Ls i,;.�e?; , ,4.x„ 1n t1" a .? . {s .' 1$si xas"x. ti� 1 M 2t,,IT oDOT r`1 0£889* 08189* 0EL89M' 089991 * 0£989* 08589* 0£589* b z z N t4 tn •a N N $ V inIt a • 0 0 C C p 0 2 0 N co .O 2 .c r co 6 U a) co N u? Q a� �i, (ES CL ai c°5' �, o as I 3 S- r LL c- cUo a Zca - c..) Lo v a w r 0o ,c a) L Cl)a m ° 4- E n � to 0 E � 0 N cY E 'E a`) cn c•i — c� m Z a) D coV N w n° r a) t coa N a O E Q. a� ca c CO o e o u) O m asc _ � a> ma i0 000a� � o o Q - Q •,22 o ca o a � � y � � � z � N o aO�i — f 0 'a E V now '0 c Q LC'l ?, a) L L E .� ca L O a o cv O 3 c0 +: Q cC ca an co N L O C !] 0 O. ti a C L Cb 15 -a con (Ow-. c' 00o coc — `oa> > Ua' m ° CO, O °, > CD a�i = 3E o � woc`a � � O) � - a. 4) .. c O -- 0 >. 0 c w as c � a E >, � Z .0 c .� O aioc Zaom � Eo occo L 0 -� Eo Z a � � o cn a) CCt �CD � ot; io CO o76 U .0 co a w .a a) a 2 0- E >, ovow o O MI m � _ o0 130 a v n � E k).-- Na) N .c Q E n. �- CO y c`6 0 • to• m e� o N > n a�i a -o CO O co co Z � (p DE N a crs (3 c0 (� � � a) O om 13 'O um) L 0 C co O 'o crf-. O oc o0to c -cs c ° .«. v Q ;� oaQ 't ccn • E 17,-; U N C (n 7 c aO- o '� O m N 3 calla ci N oa CV v c a o O) oroE -$ or a) co o cv0iCa om Za a Z' a ce E a) ca zoo � co ono fl n � `� � � E c`a °� � m E co co t C '- t6 'o ). N 0 L ._ a ca .E 0 O O o L coo _co , 's w E a0 n—. E co 'SU a •S < O !- S co co coo acv I-� c� o 0 V) 6 a -D a> 2 z 0 o CO U •b- >, aa) in n O co U coo a) o c° o so o co co co c 0 c. C U r 2 -o I31 N o To 0 ° ( N -, 03 :1-2 as E ° o cr c° d Z cu 0 •c U U O z o 7 fA re c j 2 J a Q O �O�r T ` D O El W 0 0 1 ill w si. C :` W J N m Q. 0 O a °' C `O 0 0 c ° CD< a 4) aai c� c o c a eCtl a o 0 2 o f o o o o a o 0 Ca a CO 0 � a a CO m U U o z = Q a m m o in to cni- igt, L Li o {l 4. ` 0 a.) O ClEin L 0 Ca CD a td i 0 to 0 ZqU -' eip i Hydrologic Soil Group—Weld County, Colorado, Southern Part Hydrologic Soil Group Hydrologic Soil Group— Summary by Map Unit -- Weld County, Colorado, Southern Part (CO618) Map unit symbol Map unit name Rating Acres in AO[ Percent of AOl :55.CY 70 Valent sand, 3 to 9 A 27.9 100.0% percent slopes Totals for Area of Interest 27.9 ' 100.0% • Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or CID), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified u DA Natural Resources Web Soil Survey 11/8/2015 Conservation Service National Cooperative Soil Survey Page 3 of 4 l( Hydrologic Soil Group—Weld County, Colorado, Southern Part Tie-break Rule: Higher USDA Natural Resources Web Soil Survey 11/8/2015 Conservation Service National Cooperative Soil Survey Page 4 of 4 REFERENCES 1. URBAN STORM DRAINAGE CRITERIA MANUAL VOLUMES 1,2,3 DATED JUNE 2001 REVISED AUGUST 2008 2 . NOAA ATLAS 2 VOLUME 3 RAINFALL MAPS 3. RUNOFF ANALYSIS- UD RATIONAL SPREADSHEET v1 .02a DATED SEPT 2005 FROM URBAN DRAINAGE CRITERIA MANUAL VOLUME I 4. CULVERT DESIGN-UD -CULVERT SPREADSHEET v2 .04 DATED JULY 2012 FROM URBAN DRAINAGE CRITERIA MANUAL VOLUME 1 5. CHANNEL DESIGN-UD-CHANNELS SPREADSHEET v1 . 05 DATED OCT 2013 6. UD-DETENTION_2. 34 DATED NOV 2013 7. COLORADO URBAN HYDROGRAPH PROCEDURE 1 .40 DATED JULY 2, 2013 1.111 WERNSMAN iL : fi 11M1 ENGINEERING , INC . 1011 42nd STREET • EVANS, CO 80620 Phone (970) 353-4463 Fax (970) 353-9257 November 10, 2015 Mr. Wayne Howard Development Review Engineer Weld County Public Works P.O. Box 758 Greeley CO 80632 RE: Preliminary Drainage report and plan for the Bill Barrett Laydown Yard Facility Dear Mr. Howard : Attached is the Preliminary Drainage Report and Plan for the Bill Barrett Laydown Yard Facility. This report addresses both the on-site and off-site hydrology that affects or is affected by the proposed development. If you have any further questions or comments regarding this matter, please contact this office . Sincerely, 45«i'���t:,,,1,1 . .,p.;:i? o,. lad Eric Wernsman P. E . " I hereby certify that this report for the final drainage design for the Bill Barrett Laydown Yard was prepared by me (or under my direct supervision) in accordance with the provisions of the Weld County Storm Drainage Criteria for the owners thereof" ,4tiil6aililt rote y/� uti , - _�11 Ic.) : 33 y't i polo..:. ....:t:;‘-e so07,- .1:a-kiii\-\t‘esi,40- .ohmultmte Registered Professional Engineer State of Colorado No. 33371 CERTIFICATION OF COMPLIANCE ENGINEERING DESIGNED TO WELD COUNTY CODE STANDARDS AND CRITERIA I Eric Wernsman , Consultant Engineer for M3 Construction ("Applicant"), understand and acknowledge that Applicant is seeking land use approval of a USR on parcel 096927400002 ("Application") for the property described in the attached Exhibit "A." I have designed or reviewed the design ("Design") for the proposed land use set forth in the Application. I hereby certify, on behalf of Applicant that the Design will meet all applicable drainage requirements of the Weld County Code with the exception of variance(s) described below. This certification is not a guarantee or warranty either expressed or implied. �11t1iUrgpr „�. �:��OG• (Engineer's Stamp) �. WE4, . )44%* 33371 ai I et* s�lf• ..... \���` Engineer of Record Signature VARIANCE REQUEST 1 ) Describe the Weld County Code criteria of which a variance is being requested. 2) Describe why it is not possible to meet the Weld County Code. 3) Describe the proposed alternative with engineering rational which supports the intent of the Weld County Code. I understand and agree that the intention of the Code is to reduce impacts of development on neighboring downstream properties and the public. I understand if this variance request is approved it is not precedent setting and is based on site specific constraints. Planning Director Approval indicated when signed by director or appointee: Planning Director Name Signature Date of approval 1/13/15 Index Page 1-9 DRAINAGE REPORT 10 IDF TABLE AND FOR ZONE 1 FOR STATE OF COLORADO 11 RAINFALL DEPTH FOR ZONE 1 FOR STATE OF COLORADO 12-23 RAINFALL MAPS FOR NOAA ATLAS 2 VOLUME 3 24 BASIN AND SUB-BASIN IMPERVIOUSNESS CALCS 25-26 PEAK RUNOFF FOR HISTORIC CONDITIONS 27-28 PEAK RUNOFF FOR HISTORIC CONDITIONS OS1 & OS2 CUHP 29-30 PEAK RUNOFF FOR HISTORIC CONDITIONS OS3 31 PEAK RUNOFF FOR HISTORIC CONDITIONS OS4 32-33 PEAK RUNOFF FOR HISTORIC CONDITIONS OS5 34-35 PEAK RUNOFF FOR PROPOSED CONDITIONS S1 36 PEAK RUNOFF FOR PROPOSED CONDITIONS S2 37 PEAK RUNOFF FOR PROPOSED CONDITIONS ENTIRE SITE 38-39 SWALE CALCULATIONS SEC A-A 40-43 SWALE CALCULATIONS SEC B-B 44-45 SWALE CALCULATIONS SEC C-C 46-47 SWALE CALCULATIONS SEC D-D 48-49 DETENTION VOLUME REQ' D (MODIFIED FAA METHOD) 50 DETENTION VOLUME PROVIDED 51 WQCV ORIFICE PLATE SIZING 52 HISTORIC RELEASE ORIFICE 53 OUTLET CULVERT EROSION CONTROL 54-58 SPILLWAY CALCS 59 VICINITY MAP 60 NATIONAL FLOOD INSURANCE INDEX MAP 61-65 NRCS SOIL MAP AND INFORMATION 66 REFERENCES General Description : The proposed site is located on the west side of the Weld County Road 93 (WCR 93) Right-of-Way and the north side of Weld County Road 52 (WCR 52) Right-of-Way. The proposed site is located mainly within an existing native grass pasture in the southeast 1/4 of Section 27 Township 5 North, Range 61 West of the 6th Prime Meridian . The legal description for the property is Lot B RECX 14-0010. The site is approximately 5 miles north of State Highway 34. There are no major waterways, water holding areas or water resources on or adjacent to the property. The project site contains approximately 5 . 10 acres (The entire property contains 75 acres, but this report only addresses the 5 . 1 acres that is going to be developed ) that is planned for a proposed gravel loading pad, parking lot, drive way and storage yard . A detention pond with a water quality control volume is proposed to hold developed flows from the remainder of the site and release at a reduced 72-hour drain time and a five-year historic rate, respectively. The ground cover on the existing site consists of mainly natural grasses . The soil type present on-site and portions of the contributing off-site basins is Valent Sand, with slopes ranging from 3 percent to 9 percent ( Index Number 70 shown on the map). Valent Sand is classified in the hydrologic soil group "A" . See NRCS soil report in the appendix for the location and description of the soil type . There is an existing injection well facility to the north of this site. There are no major open channels on or adjacent to the property. In the proposed condition, offsite flows draining toward the site from the north will enter the site via a swale along the west side of the property and direct them around the site into the detention pond . Most of the runoff generated by the proposed development will be collected via swales 1 flows will sheet flow into the detention pond . The detention pond is located in the southeast corner of the property and releases developed runoff through a staged outlet. A water quality capture outlet will release minor storm flows over a 72-hour time period and a major storm orifice opening will release flows at a five-year historic equivalent rate . The released flow will be directed to the south, toward the borrow ditch on the north side of WCR 52 . Riprap is placed at the end of the pipe outlet to protect the ground surface from erosion . Drainage Basins and Sub-Basins: There is no Weld County Master Drainage Plan for this site at the current time . The Riverside Canal lies to the south, about one mile downstream of the project site . The closest major basin is the South Platte River Basin, which lies approximately 4 miles to the south . This project site is not located within the South Platte River 100-year floodplain . Historically the site slopes generally to the south at approximately a 0.8% slope. Drainage basin, H1, represents on-site drainage patterns on the 5 . 10-acre site which produce five-year and 100-year runoff rates of 1 .07 cubic feet per second (cfs) and 3 . 79 cfs, respectively. Off-site flows enter the site from the north, east and west and are designated as OS1, OS2, OS3, OS4, and OS5 in this analysis. The off-site drainage basins, O51 and OS2 were calculated using the Colorado Urban Hydrograph Procedure, due to the size of the basins exceeding 160 acres. Off-site basins OS3, OS4 and OS5 are each below 30 acres in size, thus the Rational Method was utilized to calculate those runoff rates. All of the off-site basins are undeveloped and contain native vegetation . Flows from all off-site z basins drain toward the site and are directed around the property via swales. Off- site basin OS1 lies north to northwest of basin OS2 and contains 179 . 2 acres, which outfall to the north boundary of O52. The peak 100-year runoff rate is approximately 216 cfs. Off-site basin OS2, with 217 . 6 acres, lies directly north and east of the project site and produces a 100-year peak flow of about 148 cfs. Off- site basin OS3 contains 4. 19 acres and lies to the west of the property. This basin drains to the west of the site boundary and generates 100-year runoff rate of 5. 60 cfs. A 10- year runoff rate of 1. 1 cfs was also calculated for the basin . Off-site basin OS4 lies directly north of OS3 and directly west of the project site. With an area of 6. 15 acres, the basin outfalls to the northwest quarter of the site to the north at a 100-year runoff rate of about 7.60 cfs. OS5 off-site basin contains 28 acres and lies west of the site. This basin drains onto the west side of the site and into the borrow ditch along CR 53 . The basin generates a 100-year runoff rate of 29. 66 cfs and a 10-year runoff rate of 5 .91 cfs . OS1, OS2 and OS4 all enter the site at the north east corner of the site via an extension of the swale on the property to the north and drain into the detention pond . OS3 and OS5 drain to the existing borrow ditch along the north side of the CR 53 The land to the south of the project site is undeveloped and drains to the south, toward the South Platte River. Therefore, stormwater from this area does not enter the project site. The on-site developed flows are mainly directed to the detention pond in the southeast corner of the property. Sub-basin S1 contains 0.4 acres and represents the flows within the undeveloped western portion of the project site . The basin contains a swale that carries flows from off-site basins OS3 and OS5 . SB1 will be released un-detained since it is mainly offsite flows and the area that carries the offsite flows around the site . The 100-year runoff rate is 0.63 cfs. The 10-year runoff rate is 0. 13 cfs. Sub-basin 52 is located in the central portion of the site and contains 3.6 acres of almost entirely gravel surface. The 100-year rate is approximately 10. 12 cfs. The entire site with an area of 5 . 10 acres, produces a 100-year runoff rate of 12.6 cfs. Drainage Design Criteria : There is no Weld County Master Drainage Plan or project master drainage plans for this site at the current time. The undeveloped and developed land to the north contributes offsite flows onto the north east corner of the site. A swale will direct these flows directly to the detention pond . A proposed swale will redirect offsite flows from the west sides of the site toward the borrow ditch on the north side of WCR 52. The existing drainage pattern of the area will be maintained by directing all on-site and off-site flows to WCR 52 . Using the NOAA Atlas 2 Volume III maps an IDF table was generated . Please see calculations sheet 2 . A one hour rainfall depth of 1 .49 inches and 2 .87 inches was determined for a five-year and 100-year event, respectively. The rational method was used to calculate runoff and release rates. The detention pond was sized using a 5-year historic release rate . A water quality capture volume is designed within the pond to release minor storms over a 72-hour period to maintain water quality. The on —site swales were sized to pass the 100-year events. The runoff for specific design points was calculated by inputting the area, imperviousness, soil type, one hour precipitation values, slope, length of travel and conveyance into the peak runoff spreadsheet. Please see the corresponding peak runoff and feature design for each point. The release rate and developed runoff amounts were calculated using the rational method . The detention pond volume was determined using the Modified FAA Method with one exception , The discharge rate did not use the soil type value . The discharge rate was determined by finding the total historic runoff rate for the site and then dividing by the site area per Weld County recommendations . This value was then input into the detention pond spreadsheet to determine the volume required . c Drainage Facility Design: The 100-yr storm volume required by using the Modified FAA method was determined to be 19,772 cubic feet. The historic release rate was not decreased even though SB1 releases un-detained. The majority of the runoff associated with this site is off-site and in a large storm event the pond will fill up much faster than it would under normal circumstances. The release rate was determined by using the 0. 21 cfs per acre on 5 . 1 acres. With a pond outlet invert of 4513.00, the 100- year high-water elevation is 4515 . The available volume provided is approximately 21, 134 cubic feet. The water quality capture volume (WQCV) can be included in this volume per the Weld County Addendum to the Urban Drainage Manual . The minimum WQCV allowed for the site is .068 acre-feet. The water elevation of the WQCV basin is 4514. 12 . (At elevation 4514 the volume provided is 0.267 acre-feet.) The proposed detention outlet has an initial orifice plate to provide water quality capture volume in an extended detention basin . The first stage orifice plate shall have (2) 1/2-inch holes to release the water quality capture volume runoff. The orifice plate is set at elevation 4513 . 12 due to the 1' minimum depth requirement in the Urban Drainage Manual . The second orifice plate with a 2-1/2" high opening at the bottom of the pipe releases flow to an 18- inch diameter corrugated metal pipe (CMP) that directs flows to the east. A seven-foot by three-foot bed of Type L riprap will be placed at the pipe outlet at a depth of one and a half feet. An emergency spillway is designed to allow off-site flows from sub-basin (s) OS1, OS2, OS4, the NGL C11 site and the entire Bill Barrett Laydown yard, once the pond is full and to allow on-site flows to leave the detention pond in the event that the pond outlet is clogged . The emergency overflow is provided at elevation 4515. The spillway base shall be a minimum of 70 feet wide and will limit the flow depth to 18 inches at a discharge rate of 400 cubic feet per second. Slope protection on the downhill side is provided by North American Green P550 fabric. Please refer to the appendix for the calculations regarding the spillway. An additional 15" CMP culvert should be placed next to the existing one at the driveway. In combination the two are designed to pass the 10-year storm from OS3, OS5 and S1. The combined flows generate 7.67 cfs. The dual 15" cmp culverts can pass over 8 cfs prior to the flow overtopping the driveway. Swales are designed throughout the site to direct storm-water flows to the detention pond . Flows from sub-basin OS1, OS2, O54 are intercepted by a grass swale along the east site boundary, designed at a 0.7% slope . The flow used to calculate the swale parameters are the sum of the peak 100-year flows from OS1, O52, OS4, the NGL C11 site and the entire Bill Barrett Laydown Yard Site . Although the times of concentrations for each basin are different, it was determined that the total sum of the peak flows would be used to calculate the swale parameters in order to provide a conservatively sized swale . This swale is designated as Cross-Section A-A in the design calculations and on the drainage plan . In the new condition of the swale, the manning's "n" is 0 .030, which creates a 100-year water depth of 1 .9 feet and a Froude Number of 0.79. In the mature condition of the swale, the manning's "n" is 0.040, which generates a 100-year flow depth of 2 .25 feet and a Froude Number of 0. 61. There is a fabric lined section of this same channel that has a 4% channel slope to eliminate 1' of elevation to help control Froude Numbers in the rest of the swale . The swale is represented by Cross-Section B-B on the drainage plan . According to the software provided by Tensar ( North American Green) The channel has a depth of 1. 17' and has the ability to safely pass the required flow. Within the southern side of sub- basin S2, a swale directs water from most of the project site to the detention 7 pond . The swale, Cross-Section C-C, is designed with a longitudinal slope of 0.85%. In the new condition, the manning's "n" is 0.30, with a depth of 1 feet and a Froude number of 0.71, the channel has the ability to pass 14.2 cfs. When the vegetation matures, the manning's "n" increases to 0.040 and creates a 100-year water depth of 1.0 feet and a Froude Number of 0.53. The channel can pass 10.7 cfs . Cross-Section D-D is located in the west portion of the site, within sub-basin Si. This swale is set at a 1 .0% slope . In the new condition, the manning's "n" is 0.030, which produces a water depth of 0. 52 feet and a Froude Number of 0.78. When the channel vegetation has matured, the manning's "n" is 0.040, resulting in a flow depth of .61 feet and a Froude Number of 0. 6. The spreadsheets included in the report detail the physical requirements to provide adequate drainage ways. Please refer to the spreadsheets for the specific design. Once the site vegetation has been re-seeded very little maintenance should be required for site operation . Care should be taken to keep trash and debris out of inlets and pipes to prevent excess water from building up on the site. If complete blockage would occur in the detention pond outlet the water would release through the emergency spillway. If blockages occur they should be immediately cleaned . All storm water pipes shall be kept clean to maintain full capacity. Conclusions : The proposed site will control developed storm water flows through an on- site detention pond . The allowable release rates from the detention pond include a water quality release rate that allows minor storm flows to release over a 72- hour time period and a major storm release rate that is equivalent to the five-year historic runoff rate. Off-site flows that drain toward the site are directed through the property and the detention pond spillway. All of these storm water flows are conveyed off-site to the east. This report and design will meet the Weld County Code without any variances. This design should be more than adequate to prevent either on-site or off-site runoff flows from creating damage . The site is not part of any Weld County Master Drainage Plan . Please see the reference sheet for a complete list of references used for this design and report 1 IDF TABLE FOR ZONE ONE IN THE STATE OF COLORADO Zone 1: South Platte, Republican, Arkansas, and Cimarron River Basins Project: Barrett Enter the elevation at the center of the watershed: Elev = 4,520 (input) 1 . Rainfall Depth-Duration-Frequency Table Enter the 6-hour and 24-hour rainfall depths from the NOAA Atlas 2 Volume lit in rightmost blue columns Return Rainfall Depth in Inches at Time Duration Period 5-min 10-min 115-min 30-min 1-hr 2-hr 3-hr 6-hr 24-hr (1 ) (2) (3) (4) (5) (6) (7) (8) (9) (10) output output output output output output output input input 2-yr 0.30 0.47 0.59 0.82 1 .04 1 . 16 1 .25 1 .40 1 .70 5-yr 0.43 0.67 0.85 1 . 18 1 .49 1 .63 1 .74 1 .90 2.30 10-yr 0.52 0.81 1 .02 1 .42 1 .79 1 .93 2.04 2.20 2.60 25-yr 0.63 0.98 1 .24 1 .72 2.18 2.36 2.49 2.70 3.20 50-yr 0.73 1 .14 1 .44 2.00 2.53 2.69 2.81 3.00 3.60 100-yr 0.83 1 .29 1 .64 2.27 2.87 3.05 3. 19 3.40 3.80 Note: Refer to NOAA Atlas 2 Volume III iscpluvial maps for 6-hr and 24-hr rainfall depths. 2. Rainfall Intensity-Duration-Frequency Table Return Rainfall Intensity in Inches Per Hour at Time Duration Period 5-min 10-min 15-min 30-min 1-hr 2-hr 3-hr 6-hr 24-hr (1 ) (2) (3) (4) (5) (6) (?) (8) (9) (1 0) output output output output output output output output output 2-yr 3.60 2.80 2.36 1 .64 1 .04 0.58 0.42 0.23 0.07 5-yr 5.20 4.03 3.41 2.36 1 .49 0.82 0.58 0.32 0.10 10-yr 6.25 4.85 4.09 2.84 1 .79 0.97 0.68 0.37 0.11 25-yr 7.57 5.87 4.96 3.44 2. 18 I 1 . 18 0.83 0.45 0.13 50-yr 8.82 6.84 5.78 4.00 2.53 1 .35 0.94 0.50 0. 15 100-yr 9.99 7.75 6.55 4.54 2.87 , 1 .53 1 .06 0.57 0.16 RAIN.xls, Z-1 11/10/2015, 1 :14 PM /� 1 One-Hour Rainfall Depth Design Chart 3.50 3.00 - - 2.87 2.50 2.53 • 2. 18 • 2.00 1 .79 ♦ a 0 is 1 .50 1 .43--♦ too1_O4 ♦ - . 0.50 0.00 - - 2-yr 5-yr 10-yr 25-yr 50-yr 100-yr Return Period RAIN.xls, Z-1 11/10/2015, 1 :14 PM i1 c V IS — - — . • • I Ike • . 1 tr 2.....--.1et i . t 1 1 .11•1 , I •• 'p i I . I i4. I 1 - 1 1� • 1 1.. III 1, , I ( i Ir 7 .., i I' :,.1 It ( 0 1 _ ' —fit •--6 / ' 1 .„....-. t 1 •• I I t • :} 1 �� 1` �` S I � • ai. '. I • .1 1 . 1 ..y• _ _ _ _ _ i I ,..1 '. • 1 L v.'• 1 1 , i•1 R .J 1 ' — I 1 1 . I cif 1 • 11 I ' I .....t.."..........i..i...,:..—,' —4,....t.... ti I es jt - .., .. .1:. : 2 .-c - -is - "41 -t-k... ..*:: ---c41-\ a • • ealk•nf .• . lit I .1....., _dif , Aii, . , ,,,L. , li, . t..,:„. . .- _--.- „,„,--- - , 4„...‘ , 1 hi II BIY04. cs., . + _'. % 4, t. H it.�i de `, -,� ,T ., �' IC, , , per �y o A • •-A . . . . - . : - ..i ,Th.n. - ..„, .4 .,re: lam. t1� P • , ' I 4, J `t :t:1--.1•44014.2a".. *HP jifi:•:111/ !. /7: %.• ) ` •Fir 0. i♦4, . 6 etTA , •� r ',fir r ,) i' •3, • •• `t_t• tTit i'1_ fir. r 4 ) t i •;513.at; i 1 , er4). 1 ...,. ..,44c3„...,4i. .. ..„ AIL .1, , :. . ... o K.A e I .4,- )s--- „N.,... -_ . g lit .„.. .,.... 14 `• 1i• 7: J,•• 4 it. of \ 5 I if'• M� • ;Pillv4. lf Ft s !I. r Pr a: Ada.. "•• -." ( 4 •% :.:so•: te ••• '2, "...... gtst• •.. .. a_a •-y • I C •�i• - 444irtii t �L.L+r`v....1 1- i sis A • • , • 1Z • I_w�'��-�� -ter .�� �� - :. , -' -i �_ 1 __•-i. •{. 0 .....--.71,•�•1 1 � I 1 •-1S''• t • . .t •••-v1 i�r j • 1 1 i 1 1. t �.� ,. N. �S 1 1 ,.- 1 a • it 1 a '• ' •.....4=•fin- it-1 L- I 1. 1 1 :•.• 1 • t • r r :. `-1 I--- ( 1 ark I •• , 1 . ‘ i I 4 g it 1 `I , -f ! s--.. ,- 1 j , i 1 44 V . V • I. {.e -_tea/--- Y 1 1�• '!� ' - •- r /�` T � ' .y „ , ' +t I . :t `.�^ )�r .J i 'I err J� y` y �/ ^�+In.as °!Lit'A.-4-'). • it Lf. it, A IP i —° %II; S. . „ Z• ' hill , • • .. ,,„_. . ... .... ...„ iiiiii . . . ,, ...„0 ; . . .. • 6.1+�_��i ^=LY��.�/,_ .t. ^y�rr�L!�\' it . 1 1 r14 ,~ •% vy` CI 1 1 tom! . t t (� 1 ' , -1�- • 1 "■� "'� � `f� CI 0I; - 3 • •ii IC % ••fr: I t . . . . . l.i :It% '11 atc)Ccogsrild.fr.^r t� :�i' •:"• ; - •",•fin: \,`• +�`41 s' ' j: h; 7C. :. " ..�• ^ - .. i - � r - a Jr r. /_ • ` s�.Y,•sect • a 'ii •, „±.;.........• • ' 1 ' ..... r "-•V s a q ft 13 9rt_s12*t4 --!— _T_� ` —�— _...-me ---- x•-r--1 --7--a-TyIS 2. _ f" _ •1 i 1 • a 1 �' _ ` jT Tl ' t 1 1 t' . '_•_ •t_ .�� T ref •♦— I:y_•..— — —.___—i 1 1 1 ` sEE g •1 ��' 1 ' • . �' ! L . 1 . •"� • ` fir' Ss`66.•_-__ I . • i i 1 •;-..1 1 , mac, •' , .. 1 I etc i- `I _—1r I . S �� • - • •1 1 .' I . i.- -r; o. �@ t } • 1111/2 'It • iiiiii ; • f a it h - a 1 et.. �� • I 1 �4�y 1�f ti •• • ITt1x ea. i, _ , , . .,,. t. .. .. 16 r.i •-_-!-...: t'ilIT :_:.,‘41 :j :i -;".-.1* i. . 4 ...ti• : -,...; at . , ' .1 It 1_ - •• 1 .a! t7 ...6 ti1--- 4ti.d�.rr�virt 1. G •—_ __.--.... .^ �•. S. ,r.. _= ': H a : ; I-1 ..• ft i , .1 i X { i 1 ' y S s1 -g t• - ` i •t i • a •. .$ t , • JI is 1 �' { •' • 1 ' 1 •+ -- • ----1 1 ✓ —1.. y 1: - 1 tl I r - ` . I p 12 on -1. r• . iv:4...st-n.--Ltr,it I ••N i L t.1 • I •1 :~ I v, 4: •:4 1 : .. 1 y► ~' a T {O•. • I C I t. .+• .. 1 / iS'' i % '• st at •'^• • .. ` I_ I SIT �: f.. Vi= r• -t S 3 • ......$N... 1 • • • ig • /�� ,` •� , ; tr. at r e ! >•...�lcf�- 'y..it�fi�gg•• .„, '. • ►i.. :• r'-� ., /� • ft sd . '•-• I ill Iii 1 F 1V• • . . �:' .LF ` „" -• 1 • i �� ‘7. O. n. - S •� ate.' . �t •_ y♦,,, :► O•c...:-~L• I • • �i~ /s S •., ii l' • y'. - ,' .` tom'- `G�. r, � 1• 4: 1 ; d �Ji; •. • , • till. .,.. am,♦...3.1* I I. y-•1� j. • r•{-'•rt•: f."••t• • 1 j 1 - . ._ +I �— F 1• Jc - 7 - _..__ - ___..: ....-----w. ___.. r- is k:ti ITtt\.... .....4. ,� • •i •, i �!. 1 t l I • i jl '• •• I 4• Si ----i.—. • t.. .----L— -- -4Nc :... rs4.4 . tE r 4; -,..... • • . I r• LPs it '_i. 4. i� l 1 • 11 ' I •''1- 1 t -• i c' l i : lI e; �'77 • e • . �per\ _ .. ♦ •`;•; r • • t . ` I ‘ 4. I all•rIa—.•--rr..*.s.• . - •• t 1 v•_ f '1 I it t , I I• O 1 , • , 1 • . c 1 x t S E. �— I r I ••..Z• • I •ni li•: ..4.1 I. $4: ..,,l ... / 1 S •;. �.: -- - '1 • _ I ..: . �`. „fir 11111 • • N 't • ..... it Y - t • i . �-•, . � IIill i iA•�%~ Its R ° r = + s % I * • `l x,44 t +� 8a.}'r1 y r T • // 1 �1 s j . • • •.. . . . . . V• ] O 1 11 • Og• se • N y • C L elm. ` '• ' BI. - • ' . ` •�, 1. . •�'� •• 1. •.�.• • 1 7 ..{((1jjj��' ••T 'l i' !- • • 1 • ' •:•• • it • •; ' • ••• ; .a ,•• Y .... <• J i T1 • •j ..., • teas 'leo ra 4-bi i;�: 5•, >,r• �. • r,_ .y r: • .i� • �N r . is• a Siti- ---^-tic-•- •--- ........°6 v It a n 1 („P 4 ea I r--__ ,--� s -- F- '-2..I• ---_ T 8 ,.....,-,-a—I-4-*--Sr_Tc.„Nj----1.• ---- - : .... ,. . "zydr-W—. ...1. : • i + `A i —7— G` 1 .. 1 1•' i • • •`"' ;:fle i �, i �.. + a .i° gi . . i '1�� L vi C. • I 1- - 1 • lf•:• I • . 1 -•• • t • v trate\ • i NA• i ' Ill al II :, . ts.:•-•:....AWist. f r !Pe' alp 8 jam/an--/A---'39.11)r► J `l •••11•. _0 _ �.: 1. E[- r r1 f ill ,�,,, jell- • chi' :44.1} ► `....sue- If I' ie. 'T/�/'to J'' , �.'•_..„; .'l•9, 1 . •Natira:-.1191r Al ,Alt - -.A' .... . alsq APA-4 Jr, . . .. \ '.. mot s„sit`f P ,J' l�1 .. �f� It;-• . • ' . •� i. . c (.liar •ci . ..k • 'FYI i. a giltr.. ,. - mss . I gJ fiA + • _ t - �)titAg de' lr tY• .1.--••••,. Ir �. /x'.11 y� i - 13114%) . •• • ikritidg•A . .. .j. . ;I. .. I I 4.4.\\ Lab!' An.'6%\‘' •• 'P.-I i , ..f g oti, - A., --.e. I l; a• •of t.h set; ik7a:\ 3 I , . 1 IF Lei A ' CM i I—%1 LL O - i 17 • • f r yam...-•.� •..•�.r.,++ •�. w�•i -— �.__- te a. .. — - 1—\"7"-7 i . *It * 17 I 4 I t • •.4.. • %A 7,ti Z tr.I • • y I ! • i „- T t.2 I--;..:4-"'-:' t __1 -----L -• I • : .. .. t 4 .. •. i go :.... 1 o . • sit la .,, t t ,1 1 1 ( I t • t i' 0 a I ,jjam 1 , �- ti 1 rt: - r X at �' i.Ufle:ii'LS' a1i•S.. • 1. t •. '_-,• Lay..l' .^ •f/: •, i.74:at , �•.. •y,./• r '�•{��t.- Aik .. • �7-.�+�' �_ al RRil il �lGr � . ; e 'thu !i aj w icnirsetzesTitt''•• Ne 112:f 4.../.... .S.).-16 r;.: ,^ .. << f�r`� fir! '!# jer .r y 1 sisec _ pi-10,t.t.r,ifitLfr.,. -,_ ....:.,-- sit -; . 1.,-, a • . . . .! . rldirisoly•-c .. a te. pit �i, t � q ,rte 'l:. r ate 0 .. •fel!StaCt•4_ 1 . 'IS ••••• 1 t• 4 • 0 Pirit t .i . .7, % it, rai - � t •,1 ateet retL,. \If 1 4 C‘ :V) at t ir:74-..Lei ,. �`• i i� -4,1r,.. .. .,':h` rl� } w - cc c • tit ..,st: I . . . M alli . cc . , •.v :, , J.' t, S om Nilli 'Ss ,- .+w.-2 et •W F • — 1 , 1t i. r ^. ••••4:14 .i ter : • • .•i•1•���777• s s 1 2 t - s A II ■,Y. To • t t I 'q '8 at .._a-Z-7C lt . .....\.:411 . 4 . i t le- t 0. I I r� } ► f .,1 es , ti..4 1 + I ; lb, ...N-4:‘.1:41—:sssts ,1/4, i "I 1 '�.. 1 ` 1 1 Co ` 1 ► '^ '' t. pr'• a •' i : ..3 ,.. _kir) \ -a' -- e a i " . loosisria—.. ._..,"' ; '41 ,700_,_.. ,1:rjenipri. • ki st I esti !. • gildillepiry. • t~Z.:kv{� V . .:. .z. lioe i-, 14e . -.7..?,,,rer------ ' ill! !! a ipi• detie�.,.�' �`�� 'ma "� '� ��y� �cR*+tz {t 42 it t . I . ...me. (,,f,� �t'� 1 1 �� ! i s 3 _ : ►?��= 'T •: ' . lier---gip s..0 •-rao-nr... I • :re .. .. 46;alliirizihAlladlyir.:11 •:1415 thice .. „I cb vrae_4•Ct.,‘144 4-0 2 IP I il l I"Illt"IS' :; '-iti •I c C i 4 tj r ea--.‘" - 4. - -.1 ,tit, .i'•• „.. p tib:.: • 4 — ter. ‘1,i(2 -;-• ...eli• • ffrifili ?I „. N--.' -271%.1.4 - Ak..e.1 - ' r(ed;r1. •ra."&g.; •• t r %kti r e ?Ai'k.f ,7gOtilThs. ' -diprsitts109 I . ;e . . "st........it jor TO , 4:71.%1 axl I _3 i Et 111 I •• -6 t'sae 1 ' i , . .. r /VA, i CD a I : ) VI• i ri a 1 : S. + ; ` . • a en• •Q O'. • / J y ,.•• I- ,1111 _el Z t �1 .. 1jj�JTJi^� f.t � i pit.' t f • I ,,jj�� t • • 1nl • �r4i A!' 1F,� �,,tkYJ � , S • _- a e n nA- 19 P - -. - •:-.4-1. --"e •in try 4---"---r-r-4-77-- -liro -r t ' I C 1 .r . t • I `= 1 . t 1i1wat t _ .: 1.i 1 - _ r �� t _ . - - - . --L• 1 I 1 . . c g 4 dr g15 i• ; • ..., .. ,.........t.... 1 ; ..•- / a q : • _,tt �! t . ti • .21--- •t."-r. .-rte. �^ /�^r1► 1 iq . 4... • D. ....... .... 1 0- I �,/---V 47•' ?tea t•_� . ti•'/ t _� y . ,'• * 1 �• r :� - t.-� ` ._ It. ,• f. aftili I it I ' „..,II ail •. • rte"" /.i.• r . Vrr ` .dam ; • •1.p. �_ ��.� „• y Y r ip rti • . • • .... I i 4 ... •/4:itill 0. C3 X. 1 -:`t •\•'►.\i •• ii.l—C4 . •/ II'-d� '• y..•. . 7 � . • / ••• .I r�• j ' � ,� 24. I �T ••• ' ,• '� �I Ir' .•. I �rr. w:3 11 t ��� i�'• .1•• >; li s q' f • � • t� r t � •� �• i• tir •5. 1t � ►= Ft- r�:. . y- .. v_ , ! • , . .� ,b r .:, r .'• I M j • , •may. •1 r s 1--1 CI 4. ;� rib s 20 1 f • S ... I I 1.� I . $ .•fir _ j•1 �0a 1 •� •f ( y\, �' 1 ' •S rs lb 1' 1 7 . st i7'- I l 1 I =" L`• 1 I �..l� �wAir I 1 _ - -r ... J ' •'•- I r 1 .q.r ,1.-.•.� . .. ..1.',�• I -• . I X1.1• . 1 i ..� • s\ FA '• • 't - t r y? �a L •.. .. .r1 .__1 • %,... 1 1 1 II �% ' ( iii . 1 �i ... • I 1 I / • •�l 1 j • K L.r.�. i1 0 2 =r • i • i •- s. • •• r, -•,p it ` 1 ; _ ;.. .4 - ... v 1 -. .- i i • • a ' 4••\ ill 1 '•1. .-• - . . it iT _ •�rF :',(• , . � r •. ./.jam�� ---"1' .y• ^�� \: I • v� i`,., 1�'.. ii �t Z 7 ed q ierk.icass4-- ..10‘01??4,v ',..:-.,... 4 !0 fp . ,�'% � 11TH' •,S!"1\, _ 4-..----Cr. !T'Yr� i 'li ` ii l r a�1 , : ,-- a:1:::1 - 14 : 7 ;5 L.:::7 I DI h nr— 1...\\ 1....0 ---_ - 7 a:-:1/24* cfn.ft• - tie Xi, , , : ;lap p gp...wat--.......tscei er is Irigk...z.., _Air, " w F1 Abcf‘Ww•Aral'Ull .41. 17:b2J- , 114,,k. t,..r...vH.,_Ht riert-n- , Jrt4T4:jingevitiis,M1--ei ir S '.lkS•‘7re it Wideale -.. d t&phi -tect,,c ...,,S,p• ....1. --D, ... O Or) i 4. - Vellr.12'1. t‘s.". ‘.„. 1 --1-eg47---s0 a 2 :. * 1 -zl ts.44Lcdc id.; iti 4 ' _ I -t w rifkWitVir-akt,b, \kk ilt!da444 ..ga, Air is I 0 st I ..-• ... ..... wit ti • ?..44,,,1 \ /.0: ittit- 41.36 •$ O g -I. 4: ez. e%1 f ' A I CC S i• si :41 i i ( . L..�ir..�Li. a it a i. �i/J .. --s.' .., yY'�^_"1 v. • • —r 41 4r ZI ca t a" a... ..8''''''"--1"7-- --t-r---'-it,r—i ----F --T 1 " ,\:•hy i •.1 t' ll 1•••11 I . ; ..,_a. ,.... - ;..... I 11 i , - 7 • tt t •• •.:...••- I a €.. I i I if 1•• ♦ I r 1 1 7 1 • . •' III• , ,.... .. ., , . 4._ ___ _, ,,..., - 6 •�— r — I ll I4. I �' t '•'i . I = cr I - •-� C_ r 4r-----7-•r. ... .. - 1 . , 1 , • N •••_— r !) �' I /�.; ;` llt. • 1 sq I III II 1 41 $ - ` • A : -44:17.,...,:..,.. ill b • • ,..A. II 1 rf•�` r` _ rte` V •• '' `' 1 c � 41� L j.• OR 'I . \ • .) , I ;._.\• s • 1 RV •I • r :. �j_ /' Kai• ,�. • - �, " _ •• a !, `I 11 ��' .•" ,rte K -�� w =� go sill • •.. • -'fie. -s: .` '4•• �ii. . •-•., L,• : Ci ,aj'_ a R � • 8 ,.i „ • / I' G,r••- 1. p 1T .• .-1710 4•4°•-f• .?`, . • I -4�' A .'. y a Malls - _ O I i ii -6-- I 7•••le - A Ai - --FT gI __at. - ..._ '"_- "'�1 --"fit . 1 1lie 4 .b.: 1 * I �•..-1 1 1 1• . •r Z.. 1 - ./ 1 ' 1 •. in es 8 , .:.4.-.,---- • ' 1 •. 93 •1 1E Q 1 I •t �' K' 1 • • S /:_ ♦ lam':1/4.'• ..-. \ . et fator it. r ,...0•:10-ralik 2 2 II Van*, )... ", 4 - -4-Irc. • all,ljr\_es,,•`•f�• • :. .•I,Y••;• • 9 1 1f Vii;(' r.� 16 _ < ° r-�� �'•. A ' E # • t; 4SC ;. s. V�.'1 , ,� -% N .:11.-i i ~ 9 1 I i riii -4 4.,,CP,>1) ijk,:••••••••-• g .: - : ; \-% Wrr lir Ind a '1/4. ..); A -...tielsfi -%se 77.- - tor,„ ‘ St •- I likSikkedirli r -- ..., sair - it-- silt froirsi,i --..a..--,411 , ,,,,, , ,, „a ,c... , , ,t,.. ..„,t,. .... .A.,,, .., ,... _,,,, „if . . ,. ,, • r-t4,4•21.2.%`-"`"1. 1/41 144? ..• •• 116(- X WI WO1 it 41.10•r. ! 'F ! t t _f ' `'R,�� '� cam' f \` 112 te 21 HISTORIC CONDITIONS H1 : HISTORIC SITE RUNOFF Land Use Area (ft2) I (%) Impervious Area, Grass 222430 2 Roofs 0 90 Concrete Surfaces 0 100 Driveways, Gravel 0 40 Wghtd Avg & Total Area 222430 2 DEVELOPED CONDITIONS SB1 : ENTIRE SITE Land Use Area (ft2) I (%) Land Use Area (ft2) I (%) Impervious Area, Grass 16053 2 Impervious Area, Grass 67609 2 Roofs 0 90 Roofs 0 90 Concrete Surfaces 0 100 Concrete Surfaces 0 100 Driveways, Gravel 0 40 Driveways, Gravel 154821 40 VVghtd Avg & Total Area 16053 _ 2 Wghtd Avg & Total Area 222430 28 SB2: Land Use Area (ft2) I ;%; Impervious Area. Grass 0 2 Roofs 0 90 Concrete Surfaces 0 100 Driveways, Gravel 156463 40 Wghtd Avg & Total Area 156463 40 !au WERNSMAN PROJ. NO.: ENGINEERING, INC. PAGE: J� // 42nd STREET • EVANS, CO 80520 DATE: /_�_�/ J.i 1011 Phone (970) 353-4463 Fax (970) 353-9257 ['CAC- d �J�� yet c)r C R 5 z- Mu- 5-7 e- • ai lc- er-Ce- Rafe L -17 8.3o ' S - a 93 7o 0. 7 ePS ...L. 34 fl ) ( , o7) , i / c 4 At "- e ( gefort PonA( f ^L a. �� CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title; Barrett Catchment ID: HISTORIC SITE 1. Catchment Hydrologic Data Catchment ID = ENTIRE SITE Area = 5.1O Acres Percent Imperviousness = 2.00 % NRCS Soil Type = A A, B, C, or D II. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = .. .. • 1'00 years (input return period for design storm) C1 = '':':28.50. (input the value of C1 ) C2= :: : :: 10:00. (input the value of C2) C3= = 0.786 (input the value of C3) P1= . 1 .49 inches (input one-hr precipitation—see Sheet "Design Info") ill. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.22 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0.00 Overide 5-yr. Runoff Coefficient, C = • (enter an overide C-S value if desired, or leave blank to accept calculated C-5.) Illustration �--r overland LEGEND f Reach 1 �y Reach 2 C Beg3mung Flow Dint don Cathuweat Reach 3 Boundary NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convoy- Velocity Time Coeff ante V Tt ft/ft 9 C-5 fps minutes input input output input output output Overland 0.0095 500 0.00 N/A 0.18 • ;45.17 1 0.0095 330 15.00 1 .46 3.76 2 3 4 5 Sum 830 Computed Tc = 48.93 Regional Tc = 14.61 User-Entered Tc = 14.61 W. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 1 .72 inch/hr Peak Flowrate, Qp = 1 .91 cfs Rainfall Intensity at Regional Tc, I = 3.42 inch/hr Peak Flowrate, Qp = 3.79 cfs Rainfall Intensity at User-Defined Tc, I = 3.42 inch/hr Peak Flowrate, Qp = 3.79 cfs SITE5YRHistoric.xls, Tc and PeakQ 11/10/2015, 1 :38 PM Printouts for Storm Hydrographs flow In efts L: d C E E v vii r O 0 1 0.06 0.03 2 2.38 0.48 3 29.43 20.33 4 83.44 64,49 5 138.98 109.13 6 180.58 137.13 7 204.42 147.66 8 215.34 145.08 9 215.95 132.51 10 208.54 119.96 11 200.81 109.26 12 190.53 98.66 13 17750 88.55 14 162.91 80.42 15 149.43 73.47 16 137,40 66.93 17 126.44 60.74 18 116.56 54.64 14 107.12 48.55 20 98.04 42.52 21. 89.22 36.95 22 80.65 33.07 23 72.23 30.32 24 64.69 27.96 25 59.02 4 25.80 25 54.32 23.71 27 50.16 21.63 28 46.40 19.59 29 42.92 17.58 30 39.66 15.58 31. 36.62 13,58 32 33.74 11.57 33 30.89 9.57 34 28.06 7.57 35 25.23 5.57 36 22.41 3.57 37 19.58 1.73 38 16.76 0.76 39 13.93 0.38 40 11.11 0.19 41 8.29 0.11 42 5.55 0.07 43 3.61 0.03 44 2.40 0.01 45 1.58 0,00 46 1.00 0.00 47 0.59 0.00 48 0.30 0.00 , 49 Oil 0.00 50 , 0.06 0.00 51 0.03 0.00 52 0.02 0.00 53 0.02 0.00 54 0.01 0.00 55 0.01 0.00 56 0.01 0.00 57 0.00 0.00 58 0.00 0.00 59 0.00 0.00 60 0.00 0.00 61 0.00 0.00 27 � . r $ ( q s of 6 � CC \ \ 5 en k2 \ • o "6 � A � a la 1:•• f0 § R a ow / } / ) • ) to 01 I,vLJ O3 vs V vi ; f § { § _ $ § k %.0 $ § § z / } E CC k l c. ) § CX) t k7 § n. _ « r . q@ $ § zeg C & § E sie a § ) C " 0o 2 S m ± t E � t ! a _ , \, f E 4.0{ co o 2 E E � 2 � L ______ _ - CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: High Sierra C11 Catchment ID: OFF-SITE BASIN OS3 I. Catchment Hydrologic Data Catchment ID = O.S:3 Area = 4.19 Acres Percent Imperviousness = 2.00 % NRCS Soil Type = A A, B, C, or D II. Rainfall Information I (inch/hr) = Cl * P1 /(C2 + Td)"C3 Design Storm Return Period, Tr = 10 years (input return period for design storm) C1 = 28.50 (input the value of C1 ) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1 = 1 .79 inches (input one-hr precipitation—see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.07 Overide Runoff Coefficient, C = . (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = • O:00 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5 ) Illustration ,rte " - _ - - weed:and LEGEND Reach 1 flow Reach 2 - O ag FM,Direction -- Cate)antent Reach 3 Boman y if- NRCS Land t Heavy Tillage/ Short Nearly Grassed Paved Areas 8 Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground \Natenrnys (Sheet Flow) Conveyance 2.5 5 7 10 L 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft It C-5 fps minutes input input output input output output Overland 0.0240 200 0,00 N/A 0.16 21 .04 1 0.0240 15.00 2.32 7.41 2 3 4 _ 5 Sum_ 1 ^_.'', Computed Tc = 28.45 Regional Tc = 16.85 User-Entered Tc = 16.85 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 2.90 inch/hr Peak Flowrate, Qp = 0.84 cfs Rainfall Intensity at Regional To, I - 3.84 inch/hr Peak Flowrate, Qp = 1 .12 cfs Rainfall Intensity at User-Defined Tc, I = 3.84 inch/hr Peak Flowrate, Qp = 1 .12 cfs barrettlaydownOS3-10YR xls. Tc and PeakQ 11/10/2015, 12:58 PM Zq CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: High Sierra C11 Catchment ID: OFF-SITE BASIN 0S3 I. Catchment Hydrologic Data Catchment ID = 0S3 Area = 4.19 Acres Percent Imperviousness = 2.00 % NRCS Soil Type = A A, B, C, or D II. Rainfall Information I (inch/hr) = Cl ' P1 /(C2 + Td)'`C3 Design Storm Return Period, Tr = ::1:00 years (input return period for design storm) Cl = 28.50. (input the value of C1 ) C2= . 10:00. (input the value of C2) C3= _3:786 (input the value of C3) P1 = : •_.:::=:2:87: inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0,?_2. Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = . 0.00 Overide 5-yr. Runoff Coefficient, C = (enter an overide CS value if desired, or leave blank to accept calculated C-5.) Illustration overlaid LEGENDReath 1 flag Rea&2 O Baginiag now Direr do n Reach 3 Catchment Beisi aarj A_ NRCS Land j Heavy Tillage/ Short Nearty Grassed Paved Areas & Type 1 Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 5 7 10 f 15 If 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input output output Overland 0.024O'x. -200 : : 000 • N/A 016 21 .04 1 0.0240 :: .. ..4;033 :: 15.00 `t2.32 >7.41 3 Sum ` * 1't233 Computed Tc = .28.45 Regional Tc = 16.85 User-Entered Tc = 16.85 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 4.65 Inch/hr Peak Flowrate, Op = . .. : 4.22 cfs Rainfall Intensity at Regional Tc, I = 6.16 inch/hr Peak Flowrate, Qp = 5 60 cfs Rainfall Intensity at User-Defined Tc, I = 6.16 inch/hr Peak Flowrate, Qp = 5.60 cfs 7041 RATIONAL-HISTORIC-0S3-100YR, Tc and PeakQ 10/13/2014, 6:59 AM 36 CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: High Sierra C11 Catchment ID: _ OFF-SITE BASIN 0S4 I. Catchment Hydrologic Data Catchment ID = OS4 Area = '' '' 6.15. Acres Percent Imperviousness = 200 % NRCS Soil Type A A, B, C, or D IL Rainfall Information I (inch/hr) = C1 * P1 1(02 + Td)^C3 Design Storm Return Period, Tr = 10D years (input return period for design storm) Cl = •2850 (input the value of C1 ) C2= . 10.00 (input the value of C2) 03= 0.786 (input the value of C3) P1= . 2:87: inches (input one-hr precipitation--see Sheet "Design info") III. Analysis of Flow Time (Time of Concentration) for a Catchment ...................... Runoff Coefficient, C = :: ; : 022: Overide Runoff Coefficient, C = :-:::::::::::: (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = s? - ::tad. Overide 5-yr. Runoff Coefficient, C = ---• ....... ..... (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration LEGEND /r Reach 1 flew Reach 2 O Beg " ing Flaw Malian E— Cwtxhnent Renck 3 Hsu:any NRCS Land Heavy Tillage: Short Nearly Grassed Paved Areas &Type I Meadow Field Pasture/ Bare Swales/ Shallow Paved Swates_ 1 Lawns Ground Waterways (Sheet Flow) I Conveyance II 2.5 I 5 L 7 i _ 10 15 I 20 t Calculations: Reach Slope Length 5-yr NRCS Flow Fkm ID S L Runoff Convey- Velocity Time Coeff ante V Tf ft/ft ft C-5 fps minutes Input input output input output output Overland ::::0[}42(3::: 200 0.00 NJA 0.19 1749 1.......... .:;.00420 :. .. :1,544 15.00 3.07 8:37: : . , 2 :•: 4 ..- . Sum : �'f 7.44 —. `Computed Tc = 25.86 Regional Tc = 19:69 User-Entered Tc = 19.69 IV. Peak Runoff Prediction Rainfall intensity at Computed Tc, I = •' ' 49:1> inchfir Peak Fowrate, Qp = 6 55 cfs Rainfall Intensity at Regional Tc, I = 5.69 inch/hr Peak Flowrate, Qp = 7.60 cfs Rainfall Intensity at User-Defined Tc, I = 5.69 inch/hr Peak Flowrate, Op = 7 60 cfs 7044-RATIONAL-HISTORIC-0S4-100YR, Tc and Peak() 10/13/2014, 7:00 AM 3 I- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: Bill Barrett Catchment ID: OFF-SITE BASIN OS5 I. Catchment Hydrologic Data Catchment ID = OS5 Area = I: 28.00 Acres Percent Imperviousness = .. ...:: ..:2:00 % NRCS Soil Type = ::.;:::.:: :::A A, B, C, or R II. Rainfall Information t (inch/hr) = Cl * P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = 10 years (input return period for design storm) C1 = 28.50 (input the value of C1 ) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1 = 1 .79 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.07 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0.00 Overide 5-yr. Runoff Coefficient, C = •:_ (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration overland LEGEND Reach I they Reath 2 .1" Beginning Flow Direc don -------Reach 3 Catchment Bt undarr NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas 8 Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flnw) Cunveyane 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input inpul output input output output Overland 0.0300 500 0.00 N/A 0.27 30.90 1 0.0300 2,402 15:00 260 15.41 2 3 4 5 Sum' 2,902 Computed Tc = 46.31 Regional To = 26.12 User-Entered To = 26.12 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 2:15: inch/hr Peak Flowrate, Op = 4.17 cfs Rainfall Intensity at Regional Tc, I = 3.04 inch/hr Peak Flowrate, Op = 5.91 cfs Rainfall Intensity at User-Defined Tc, I = 3.04 inch/hr Peak Flowrate, Qp = 5.91 cfs LAYDOWN OS5-10YR.xis, Tc and Peak() 11/10/2015. 12.58 PM 3Z CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: Bill Barrett Catchment ID: OFF-SITE BASIN OS5 I. Catchment Hydrologic Data Catchment ID = OSS Area = 28.00. Acres Percent Imperviousness = 2.00 % NRCS Soil Type = :.A A, B, C, orD II. Rainfall Information I (inch/hr) = C1 ' P1 /(C2 + Td)"C3 Design Storm Return Period, Tr = ,. 100 years (input return period for design storm) C1 = .: 28.50 (input the value of C1 ) C2= 10:04 (input the value of C2) C3= h0 (input the value of C3) P1 = H. H : 2.87 inches (input one-hr precipitation—see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0:22 Overide Runoff Coefficient, C = • (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = : . 0:0O Overide 5-yr. Runoff Coefficient, C = . .. : (enter an overide C-S value if desired, or leave blank to accept calculated C-5.) Illustration averland LEGEND / Reach 1 flow• O Beginning Btash 2 LJ � � Flaw Dim:lion Cairn ent Sc Roach 3 Beundnr? NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations. Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input output output Overland C'l m 500 0.00 NIA 0.27 30.90 1 0.0300 2,402 15.00 2.60 15.41 2 3 4 5 Sum •2,902 Computed Tc = 46.31 Regional Tc = 26.12 User-Entered Tc = 26.12 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 3.44 inch/hr Peak Flowrate, Qp = :::..20:92 cfs Rainfall Intensity at Regional Tc, I = 4 88 inch/hr Peak Flowrate, Qp = cfs Rainfall Intensity at User-Defined Tc, I = 4.85 Inch/hr Peak Flowrate, Qp = _".: . : :$6 cfs LAYDOWN OS5-100YR.xls, Tc and PeakQ 11 /10/2015, 1 :41 PM 33 CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: Barrett Catchment ID: SUB BASIN S1 I. Catchment Hydrologic Data Catchment ID = S1: Area = 0.40 Acres Percent Imperviousness = 2:00 % NRCS Soil Type = AA, B, C, orD II. Rainfall Information I (inch/hr) = Cl * P1 /(C2 + Td)AC3 Design Storm Return Period, Tr = 10: years (input return period for design storm) C1 = 28.50 (input the value of C1 ) C2= •: 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1= H1 .79 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.07 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0;00; Overide 5-yr. Runoff Coefficient, C = = = (enter an overide C-5 value If desired, or leave blank to accept calculated C-5.) Illustration • overland Reach 1/' LEGEND Reach 2 _!i O Beginning Flow Direction 4 Catchment Reack 3 Bouadery NRC5 Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2.5 ( 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Ti 11/it tt G-5 fps minutes input input output input output output Overland 0.0100 H. 300 000 N/A 0.15 34.40 1 15.00 2 3 4 5 Sum 300 Computed Tc = 34.40 Regional To = 11 .67 User-Entered Tc = 11 .67 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 2.59 inch/hr Peak Flowrate, Op = . OQ7: cfs Rainfall Intensity at Regional Tc, I 4.55 inch/hr Peak Flowrate, Op = 0.13: cfs Rainfall Intensity at User-Defined Tc, I = 4.55 inch/hr Peak Flowrate, Qp = 0.13 cfs IaydownS1 -100YR.xls, Tc and PeakQ 11/10/2015, 1 :43 PM 31 CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: Barrett Catchment ID: SUB BASIN Si I. Catchment Hydrologic Data Catchment ID = S1 Area = 0.40 Acres Percent Imperviousness = 2.00 % NRCS Soil Type = A A, B, C, or D Il. Rainfall Information I (inchlhr) = C1 * P1 /(C2 + Td)AC3 Design Storm Return Period, Tr = 100. years (input return period for design storm) C1 = 28.50 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1 = 2.87 inches (input one-hr precipitation—see Sheet "Design Info") 111. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.22 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr Runoff Coefficient, C-5 = 0.00 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration arsrland LEGEND Reach 1 flew Rcack O Beginning�!'' ter_ 1 Fin Dirac don E-- - Csth7n4nt Reach 3 Bena+ry NRCS Land Heavy Tillage' Short Nearly Grassed Paved Areas & Type Meadow Field Pasture! Bare Swates/ Shallow Paved Swates Lawns Ground Water ays (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ft/ft ft C-5 fps minutes input input output input output output Overland 0.0100 303 0.00 N/A 0.15 34.57 1 15.00 2 3 4 5 Sum 303 Computed Tc = n.57 Regional Tc = 11 .68 User-Entered Tc = 11 .68 IV. Peak Runoff Prediction Rainfall Intensity at Computed To, I = 4.14 inch/hr Peak Flowrate, Qp 0 36 cfs Rainfall Intensity at Regional To, I = 7.2.9 inch/hr Peak Flowrate, Op = 0.63 cfs Rainfall Intensity at User-Defined To, I = 7.29 inch/hr Peak Flowrate, Qp = 0.63 cfs IaydownS1-10YR.xls, Tc and Peak() 11/10/2015, 1 :00 PM 35" l_ CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: Barrett Catchment ID: SUB BASIN S2 I. Catchment Hydrologic Data Catchment 1D = 52 Area = 3.60 Acres Percent Imperviousness = 40.00 NRCS Soil Type = A A. B, C, or D II. Rainfall Information I (inch/hr) = Cl * P1 /(C2 + Td)"C3 Design Storm Return Period, Tr = 100 years (input return period for design storm) Cl = 28.50 (input the value of C1 ) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1= 2.87 inches (input one-hr precipitation—see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0 41 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0.25 Overide 5-yr Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration — overland EGENI) Reach 1 flow_67—Reach2 O nminning Flow Direct-inn C atchnte nt "Reach 3 ' NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2,5 5 J 7 10-1 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ante V Tf ft/ft ft C-5 fps minutes input input output input output output Overland 0.0130 419 0.25 N/A 0.24 28.96 1 0.0100 163 15.00 I 1 .50 1 .81 2 3 4 5 Sum 582 Computed Tc =I 30.77 Regional Tc = 13.23 User-Entered Tc = 13.23 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 4.44 inch/hr Peak Flowrate, Qp = 6.51 cfs Rainfall Intensity at Regional Tc, I = 6.90 inch/hr Peak Flowrate, Qp = 1O. 12 cfs Rainfall Intensity at User-Defined Tc, I = 6.90 inch/hr Peak Flowrate, Qp = 10.12 cfs IaydownS2-1O0YR.xls, Tc and PeakQ 11/10/2015. 5 57 AM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: Barrett Catchment ID: ENTIRE SITE I. Catchment Hydrologic Data Catchment ID = ENTIRE SITE Area = 510 Acres Percent Imperviousness = 28.00 % NRCS Soil Type = A A, B, C, or D II. Rainfall Information I (Inch/hr) = C1 * P1 /(C2 + Td)"C3 Design Storm Return Period, Tr = 100 years (input return period for design storm) C1 = 28.50 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of O3) P1= 2.87 inches (input one-hr precipitation—see Sheet "Design info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.36 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 018 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration -Thm overland LEGEND- beach 1 flow Reach 2 rtd O Beginning Flaw Direction Catchment Reach 3 Bonn#lcny NRCS Land Heavy Tillage) Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swales Lawns Ground Waterways (Sheet Flow) Conveyance 2 5 5 7 10 [ 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V TI ft/ft ft C-5 fps minutes input input output input output output Overland 0.0170 286 0. 18 N/A 0.20 23.55 1 0.0080 245 15.00 1 .34 3.06 2 0.0100 209 15.00 1 .50 2.32 3 .: 4 5 Sum 741 Computed Tc = 28.92 Regional Tc = 14.12 User-Entered Tc = 14.12 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 4.60 inch/hr Peak Flowrate, Qp = 8.53 oft Rainfall Intensity at Regional Tc, I = 6.70 inch/hr Peak Flowrate, Qp = 12.43 cfs Rainfall Intensity at User-Defined Tc, I = 6.70 inch/hr Peak Flowrate, Qp = 12.43 cfs barrett entire site.xls, Tc and PeakQ 11/4/2015, 6:03 PM 37 Normal Flow Analysis - Trapezoidal Channel Project: BILL BARRETT Channel ID: SWALE SECTION A-A F '+ T 17 ,,xi Z1 < Design Information (Input) Channel Invert Slope So = 0.0072 ft/ft Manning's n n = 0.040 Bottom Width B = 29.00 ft Left Side Slope Z1 = • 4:00 ft/ft Right Side Slope Z2 = 4.00 ft/ft Freeboard Height F = 1.00 ft Design Water Depth Y = -2.25 ft Normal Flow Condtion (Calculated) Discharge Q = 399.59 cfs Froude Number Fr = 0.61 Flow Velocity V = 4,67 fps Flow Area A = 85.50 sq ft Top Width T = 47.00 ft Wetted Perimeter P = 47.55 ft Hydraulic Radius R = 1 .80 ft Hydraulic Depth D = 1.82 ft Specific Energy Es = , 2.59 ft Centroid of Flow Area Yo = 1 .03 ft Specific Force Fs = 9. 14 kip IavdownSECTION AA-0.040.xls, Basics 11 /8/2015, 6:52 PM 38 Normal Flow Analysis - Trapezoidal Channel Project: BILL BARRETT Channel ID: SWALE SECTION A-A F I \To 7:> 1 � Design Information (Input) Channel Invert Slope So = 0.0071 ft/ft Manning's n n = 0.030 Bottom Width B = 29.00 ft Left Side Slope Z1 = 4.00 ft/ft Right Side Slope 72 = 4.00 ft/ft Freeboard Height F = 1 .00 ft Design Water Depth Y = 1 .93 ft Normal Flow Condtion (Calculated' Discharge Q = 401 .97 cis Froude Number Fr = 0.79 Flow Velocity V = 5.67 fps Flow Area A = 70.87 sq ft Top Width T = 44.44 ft Wetted Perimeter P = 44.92 ft Hydraulic Radius R = 1 .58 ft Hydraulic Depth D = 1 ,59 ft Specific Energy Es = 2,43 ft Centroid of Flow Area Yo = 0.90 ft Specific Force Fs = 8.39 kip IaydownSECTION AA-0.040.xls, Basics 11 /10/2015, 1 :47 PM Si r .2 OrOON a aie U ; •.d g cv c�ow W W _ tli �� 0000 a p Y as"Ti i icis h. ~ Hi F4 Q' IX fir! V) a d c C%1 O u Ca N�• cr., M OO •--a t•in r� ta a h.. CZ cc � „ ra is N N cke L. N N cR N i g CI N 0 co (/) N Ni. N M*en tilt °� 4 U) •Q • rl •• ;; •2 M i.i A CV 'ti e ~ E �' •� S al a. Coe v T I Cise amN Na) p CI\ ON 4) fu O O G CC L 6 ,_el OO 3 U ap., V S a O A w �. N N N -, r--+ W 0 z i S Ca VS V; fides aaI 7-0 � � ce ita Lii > 600 0 X ft as •� C$.0 u U U U v V1 cn kel y ..r ..-, v. 1 '1' - Q d' lf� — •—• la g fn . z C ezi /�• 000 O N w j in N tit 0 a) § 8., a 611 a) ti 'P = O Cn CZ- a oo ,.. E _, AO W as Oo -� a� a� CI r-+ it .� ++ tn a. ,� E C d 0 3 .2 6n an .r O o r r s co C -Id Mor— E0 al 7t- •— ova O cp4r- csJo o c � r N— � N ia ad Rs gh00• Ho U � g0000oc 5 ov ai� au ci 4) 0 CO 4E Ce Ct CA V) D Nkr) a, ct co 0 o (/1 co ct o -at O •y O y OE AO y � o M (- 0OC'--- ait a a O re) hl M N .2 O E • �E c c izui CI U V C 0 V) O WO W as a z2 0 X tx 2 4 0 us a o o fl_ El -0 II pc 8 CD a� -n •— (NIa) ii .,:0 Pi tts . b gip; ,_1 °> I I1 ! a L — ad Ov1 c-t UU-74 tr. NQ a) z C) Q O * G4 �?v'p •h •O f.� C� ' �?g. F RS ci .� • , < ,I I II rte.., c�., g vgi• o_� U_m � l Wcooe > � rm U V < <1. • a,a i)•�{jf r i k- • a N O 00 M co N 03 5 a N ON N N '7 ir, N N N O r•i O C LT..; L7.] O re, �r, cri 'r r', r•J O\ N c`1 C v-, ^. M O\ M t— y N •c f O a '� N C.C. O - r in C r\j .- Ni C If) T lV , Ni x cr C 'y Q M M cr. . C. E- H E - - - V (.4 0U ti E U r- 4 0 O v Pt a A Emg E' 2 II ro .... C, N II «0 " , A ! II a� ctS 72 IIr. 2 i, .o 'n t/3 �.." .I r- es a I, It .-C In i c, cn � I p0 E— CZ o ti--. rI y y O N is, _^ �i vo nj NN .� ... ni t a� II E CJ� U Oa _ o N W N eC _� ? G> 1... w ., .1.-c2 ca •� Ga a O -}- a 3 0 0.4 N aq N }1:4 c c R -[ v II `--, a Y. c^ Leo , H ✓ v ._ y p .: = =� II E ,> �y4mi n) 7 7 , cl V] o _I ..c o O 11 11 11 '� Q p `1 sI 11 4� 11 I I Pa t 3 U +r I I I I I i G. !I I I !I �p /� , as: r..�/ 1�� III/ r�C II cJ •ICI �! ....+ e�" rr II •A . ..- "7 el �s r CZ 11 _I re\ _ti H . ..... _ 7. id) T "' W t • U V1 d ✓5 U U 2 •�1 U c4 1� � � a. a a., a, t r� N a r , /1 Cr) ?5 N 8 C>'5 CO N O (3- O CO 8 In � � o� � o N .-irilW 0 N O N NO M r-+ � a a H H E — f'1 Cr) O C.) ti E U LU 3 3 U It Ei ti G 8 N y H II N H Iit I R = II II Q 'et,' 72 VS ils I-4 0 a ci) * ≥ O `. O II Y x.. * fr .� rrit r- Cam.? '� • 3* * C' 'O r G%� c- cn `� t%] ri a w cu a � ... II C/� el v O .� 0 0 ail p II S Cy A 'IU .V 4 I� w II C 5 OO o 'C in Ws O' �' ✓ C ) HU W HU 4 v] ¢ c° UU V) -. W k !� c T Normal Flow Analysis - Trapezoidal Channel Project: BILL BARRETT Channel ID: SWALE SECTION C-C F T n Ye 1 \ ® v /; 1 Y i Z1 c_ _ Design Information (Input) Channel Invert Slope So = 0.0085 ft/ft Manning's n n = 0.040 Bottom Width B = 0.00 ft Left Side Slope Z1 = 5.00 ft/ft Right Side Slope Z2 = 5.00 ft/ft Freeboard Height F = 1 .00 ft Design Water Depth Y = 1 .00 ft Normal Flow Concition (Calculated) Discharge O = 10.68 cfs Froude Number Fr = 0.53 Flow Velocity V = 2.14 fps Flow Area A = 5.00 sq ft Top Width T = 10.00 ft Wetted Perimeter P = 10.20 ft Hydraulic Radius R = 0.49 ft Hydraulic Depth D = 0.50 ft Specific Energy Es = 1 .07 ft Centroid of Flow Area Yo = 0.33 ft Specific Force Fs = 0. 15 kip IaydownSECTION CC0.4.xls, Basics 11 /10/2015, 1 :51 PM LH Normal Flow Analysis - Trapezoidal Channel Project: BILL BARRETT Channel ID: SWALE SECTION C-C ce Yo Y ; 1� EID w Design Information (input; Channel Invert Slope So = 0.0085 ft/ft Manning's n n = 0.030 Bottom Width B = 0.00 ft Left Side Slope Z1 = 5.00 ft/ft Right Side Slope Z2 = 5.00 ft/ft Freeboard Height F = 1 .00 ft Design Water Depth Y = 1 .00 ft Normal Flow Condtion (Calculated) Discharge Q = 14.24 as Froude Number Fr = 0.71 Flow Velocity V = 2.85 fps Flow Area A = 5.00 sq ft Top Width T = 10.00 ft Wetted Perimeter P = 10.20 ft Hydraulic Radius R = 0.49 ft Hydraulic Depth D = 0.50 ft Specific Energy Es = 1 .13 ft Centraid of Flow Area Yo = 0.33 ft Specific Force Fs = 0. 18 kip laydownSECTION CC0.4_xls, Basics 11 /10/2015, 1 :51 PM L' 5 Normal Flow Analysis - Trapezoidal Channel Project: BILL BARRETT Channel ID: SWALE SECTION D-D F o r� Yo Y 11 \ v Design Information Qnput) Channel Invert Slope So = 0.0105 ft/ft Manning's n n = 0.040 Bottom Width B = 20.00 ft Left Side Slope Z1 = 6.00 fttft Right Side Slope Z2 = 8.00 aft/ft Freeboard Height F = 1 .00ft Design Water Depth Y = 0.62 ft Normal Flow Condtion (Calculated) Discharge Q = 37.46 cfs Froude Number Fr = 0.60 Flow Velocity V = 2.48 fps Flow Area A = 15.09 sq ft Top Width T = 28.68 ft Wetted Perimeter P = 28.77 ft Hydraulic Radius R = 0.52 ft Hydraulic Depth D = 0.53 ft Specific Energy Es = 0.72 ft Centroid of Flow Area Yo = 0.29 ft Specific Force Fs = 0.45 kip IaydownSECTION DD0.4_xls, Basics 11/1012015, 1 :56 PM 4.6 Normal Flow Analysis - Trapezoidal Channel Project: BILL BARRETT Channel ID: SWALE SECTION D-D F > ' 1N v Y° 1 Z1 _ Z2 Design Information (Input Channel Invert Slope So = 0.0105 ft/ft Manning's n n = 0.030 Bottom Width B = 20.00 ft Left Side Slope Z1 = 6.00 ft/ft Right Side Slope Z2 = 8.00 ft/ft Freeboard Height F = 1 .00 ft Design Water Depth Y = 0.52 ft Normal Flow Condtion (Calculated) Discharge Q = 36.70 cfs Froude Number Fr = 0.78 Flow Velocity V = 2.99 fps Flow Area A = 12.29 sq ft Top Width T = 27.28 ft Wetted Perimeter P = 27.36 ft Hydraulic Radius R = 0.45 ft Hydraulic Depth D = 0.45 ft Specific Energy Es = 0.66 ft Centroid of Flow Area Yo = 0.25 ft Specific Force Fs = 0.40 kip IaydownSECTION DD0.4.xls, Basics 11/10/2015, 1 :55 PM 117 I DETENTION VOLUME BY THE MODIFIED FAA METHOD 1 Project: Basin ID: (For catchments less than 160 acres only. For larger catchments, use hydrograph routing method) (NOTE: for catchments larger than 90 acres, CUHP hydrograph and routing are recommended) ' Determination of MINOR Detention Volume Using Modified FAA Method Determination of MAJOR Detention Volume Using Modified FAA Method DesignJlnfosb$(lon (Input): Oeslaft_Informa((on.11nput): Catelment Drainage Imperviousness I._i 28.00 paean! Catchnent Drainage Imperviousness I,• 28.00 percent Catchment DralnageArea A= 5.100: ' earn Catchment Drainage Nea A■ 6.100 acres Predevetopment NRCS Soil Grow Type= A A, 8, C, or D Predevelopme:t MRCS Soo Grow Type= A A. B,C, or D Rebm Period fo-Detenbon Control T- . 10 years(2, 6. 10,25,50. or 109) Return Period for Detention Control T- 100 years (2,5, 10, 25,50, or 10D) Tune of Concentration or Watershed Te • 10 inflect Time of Concentration of Watershed Tc- 10 'Yates Alowable Unit Release Rate q= 020 : ch/a/re Allowable U4it Release Rate q= 0.21 cis/acre One-hotr Precipitation P1 = 147 Inches One-horn Precipitation P, = 2.87 inches Design Rainfall IN Formula I a Cr"Pn/(C2+TJ^C1 Design Rainfall 1DF Fomada I s C1"P,/(C2+TJ"C,1 Coefficient One C, = 20.50 Coefficient Ore C1 - 28,50 Coefficient Two C2- 10 Coeffiejerd Two C2= 10 Coefficient7hee C2a 0:789 CoeffieienlThee C3= 0.789 Determination of Average Outflow from the Basin CCalculated): Determination of Avesaaae Outflow from the Basin (CalculatedR Runoff Coefficient Cr 0.24 Runoff Coefficient C- 0.36 Inflow Peak Rung Op-in- 4.82 cis Inflow Peak Runoff Cip-t a 14.13 efe Allowable Peak Outflow Rate Op-out= 1.02 cis Plowable Peak Outflow Rate Op-out= 1.07 efs Mod.FM Minor Storage Volume a 4,321 ethic feet Mod. FM Major Storage Volume a 19,772 pubic feet Mod. FAA Minor Storage Volume- 0.048 acre-f1 Mod. FAA Major Storage Volume= M54 aore-ft 30 c-miler Ranta1 Durban Incremental Increase Value Here(e 9.5 for Sdtiates) - RattailRailal Inflow Adjustment Average Outflow Storage Rainfal Rainfall Inflow Adjustmwd Average Outflow Storage 01ralion YtensIty Volume Factor Outflow Vohtne Volune Dt ation Intensity Volume Factor Outflow Vokme Volune minLLes inches/IT acre-fat -m cIs acre-feet acre-feat mattes Inches/hr act-feet 'm• cfs acre-feet acre-feet 1 Grout) (output) (output) (output) (ottpt l (output) (outpu0 (input) (output) (output) (output) _ (output) Ioulprt) (output) 0 „•• 0.00 4 0.000 , 0.00 0.00 0.000 0.000 0 0.00 0,000 ' 0.00 0.00 0.000 0.000 30 2.28 I 0.115 0.67 0.68 0.028 0.087 30 • 4.45 0.338 , 0.87 0.71 0.030 0.308 60 1.47 i 0.148 0.58 0.80 0.049 • 0.099 60 • 2.88 • 0.435 r 0.58 0.62 0 052 0.303 4. 90 t `1.11 0.188 056 0.57 0.070 0.098 90 2.10 ' 0.492 ' 0.56 0.60 0.074 0.4111 120 0.90 0.182 0.64 0 55 0.091 0.091 120 1.76 r 0.533 0.54 0.59 0.096 0.437 150 076 0193 0 53 054 Olt? i 0.081 150 ( 1.49 0.566 0.53 0.67 0.111 0.418 183 0.67_,,. 1,.••• 0.202 0.53 „ . 0.54 0.133 0.069 180 t 1.30 . , .r 0.593 0.53 „ 0.57 0.140 0.453 210 : 0.58 0.210 0.52 0.53 , 015$ 0.058 210 .. 1.16 • I 0.616 1 0.52 ••y 0.56 0162 ' 0,454 240 , 0.54 ; 0.217 0.52 • 0.53 i 0 176 0.042 240 j 1.05 1 0.637 , 0,62 . 0.55 0.184 0.452 270 0.49 0.224 0.52 0.53 0.197 . 0.027 270 090 1 0.055 1 0.02 • 0.00 0.207 ' 0 449 300 0.45 0.229 032 053 0218 0.012 300 0.69 • 0.672 ; 0.52 o 0.65 0,229 0 443 330 0.42 0.235 0.52 053 0.239 -0.004 330 0.82 1 0.587 0.52 1 0.5$ 0.251 0.436 360 0.39 j 0239 , 0.51 0.52 0.260 -0.021 380 ' 0.77 3 0.701 4 0 51 • D.55 0.273 0.429 380 0.37 0.244 0.51 052 0.281 -0.037 390 1 0.72 : 0.714 0.51 0.55 0.295 ' 0.419 420 0.35 ' 0.248 ' 0.51 0.52 0.302 -0.054 420 . 0.68 r 0.728 0.51 , 0.55 0.317 0.409 450 1 0.33 . 0.252 0.61 . 0.62 • 0.323 -0.071 450 •` 0.65 , 0.739 s 0.51 0.55 0.339 i 0.399 48) 0.32 0,256 0.51 : 0.52 , 0.344 -0.089 480 • 0.42 9.749 ( 0.51 1 0.55 0.361 0.387 510 • 0.30 0 259 0.51 05 0.365 -0106 ..510 ._„ .,• 059.•„ 0.759 I 0.51 I 0.55 0.384 0.378 540 019 f 0 263 . 0.61 • 032 0.386 -0 124 540 0.56 0.789 0.51 i 0.55 0.400 0.363 . 570 0.28 ; 0.266 0.51 : 0.52 0.407 -0.142 570 . 0.54 0.778 0.51 0.54 0.428 0.351 600 i 0.27 0 260 051 : 0.52 0.429 -0 100 600 t 0.52 0.787 J 0,51 1 0.54 0 450 0.337 633 i.... 0.26 0.277 0.51 : 0.52 0.450 -0178 630 ' 050 0 7901 i 0.51 ? 0.54 0.472 0.324 / fin03 0.25 _ , ..,_0.275 , 0,51 • 05.2 0.471 .-0,196 660 0.48 0.804 0.51 11 0.54 ..j• 0.494 0.310 0.24 0.277 0.51 0.52 0.492 -0.214 690 i 0.47 0.812 I 0.61 1 0.54 . 0,516 0.296 720 0 23 0.280 0.51 052 : 0.513 -0.233 720 0.45 • 0.820 0.51 t 0.54 • 0538 ,.' 0.282 750 0.22 0.283 0.51 : 0.52 ` 0.534 •0.251 750 1 0.44 0.827 0.51 1 0.54 0.561 • ' 0.267 783 0,22 0.295 0.51 ' 0.52 0.655 -0.270 790 0.42 0.835 0.51 , 0.54 0.593 0.242 et0 0.21 • 0.287 0,61 032 0.8 0.678 -0.289 810 0.41 42 0.51 i 034 0.605 0.237 840 0.70 f / 0.290 0.51 0.52 i 0.597 •0.307 840 , 0,40 0.848 0.51 j 0.54 0 627 0.221 870 0.20 0.292 031 0.52 0.610 -0.328 870 i 0.39 1 0.855 1 0.51 - 0.54 0.849 1 0.200 900 0.19 0.294 0.51 0.52 0.639 -0.345 900 i 0.38 j 0.861 0.51 0.54 0.671 0.190 030 , 0.19 0.296 0.51 0.52 0.660 ' -0 364 9'30 I 0.37 0.088 0.61 0.64 0 603 , 0.174 980 a 018 0 798 0 51 0 52 0.681 •0 383 960 ( 0.36 0 874 0.51 0.54 0 715 0.158 990 0.18 ....l 0.300 .,,,j.,,_ 0.51 0.52 • 0.702 1 _ -0 402 990 0.35 0.680 0.51 ' 0.54 0 738 0.142 1020 i 0.18 0.3!2 0.50 • ' 0.52 0.724 t -0421 1020 0.34 0.895 0.50 0.54 ••j'•. 0,760 0.126 1050 0.17 t 0.304 1 0.50 0.51 0.745 1 -0.440 1050 0.34 0.891 0.50 054 0.782 0,109 1060 f 0.17 ' 0.300 • 0.50 0.51 0.780 , -0.460 1080 r 0.33 0.897 0.50 0.54 J 0,804 0.043 1110 0.16 0.308 0.60 041 0.787 -0 479 1110 0.32 0.902 0.50 0.51 • 0.826 0.076 1140 t ale 0.310 0.50 r 0.51 0.808 r -0.498 1140 f 0.31 4 0.907 . 0.69 0 54 .....j_j 0.848 0.059 1170 1 1 0.18 I 0.312 I 0.50 0.51 0.829 t -0.517 1170 0.31 0.912 0.50 ( 0.54 0.870 f 0.042 1200 0.15 I 0.313 4 0.50 0.51 0.850 -0.531 1200 0.30 0.917 0.50 $ 0.54 0.893 0.025 1230 0.15 1 0.315 i 0.50 0.51 0.871 /. •0.556 1230 0.30 0.922 1 0.50 1 0.54 0.915 0.000 1200 f 0.15 r 0.317 0.50 le 0.51 0.092 , -0.570 1200 1 0.21 0.927 • 0.50 0.54 jf 0.937 •0.010 1290 { 015 i 0.318 0.50 0.51 0.913 I -0595 1200 0.29 0 932 ( 030 1 0.64 0 959 -0 077 1320 0.14 I 0.320 : O.so l 0 S1 0.934 : •0.615 1320 0.28 5.937 0.50 0.54 1 0.961 .0.044 1350 ' 0.14 0.321 0.50 } 0.51 0.955 4.634 1350 0.28 0.941 0.50 , 0.54 1.003 •0.052 13110 i 0.14 I 0.323 t 0.50 II 051 . 0.976 t -0.654 1380 0.27 0.946 0.50 4 0.54 1.025 -0.090 1410 i 0.14 0.324 0.50 0.51 0.996 4.073 1410 0.27 0.950 0.50 1 0.54 ( 1.047 1 •0.007 Imo L 0.13 .i 0.321 0.50 i 0.51 1.010 .0 803 1440 � 0.26 0.054 i 0.50 ; 0.64 1.070 1 .0.115 1470 , 0.13 • 0.327 0.50 0.51 1.040 -0.712 1479 . 0.26 0.959 • 0.50 1 0.54 i 1.092 ; -0.133 1500I. 0.13 0 329 0.50 051 1.061 -0 732 1500 j 0.25 i 0 963 0.50 0.54 1.114 •: •0.151 1530 i, 0.13 1, 0.330 I 0.50 • 1 051 1.082 1. -0.752 1530 0.25 1 0.967 1 0.50 054 1.130 -0.159 1560 0.13 0.332 0.50 0.51 1.103 •0.771 1560 0.25 1 C.971 $ 0.50 0.54 j 1.158 ' -0167 1590 0.12 0.333 0.50 1 031 1.124 4791 1590 024 0.975 j 030 0.54 1.100 t -9.205 1620 l 0.12 0.334 • 0.50 J 0.51 1.145 -0.611 1620 ! 0.24 r 0,979 0.50 0.54 I 1.202 -0.223 1650 0.1; 0.338 0.50 p 0.51 1.166 .0.931 1650 ; 0.24 1 0.963 1 0.50 0.54 , 1424 -0.242 1680 0.12 0.337 I 0.50 0.51 1.197 r -0.850 1690 0,23 0.907 1 0.50 0.54 1.247 1 .0.250 1710 ` 0.12 I 0.338 I 0.50 ••, 0.51 1.208 -0.870 1710 : 0.23 i 0.990 0.50 0.54 1.269 .0.278 1740 f 0.12 2, 0.339 a 0.50 0.51 1.229 -0 890 1740 f 0.23 ( 0 994 0.50 0.54 I 1.291 .0.297 1770 0.11 0.341 0.60 E 0.51 1.250 ti -0.010 1770 ' 0.22 i OMNI 0.50 t 054 1 1.313 .0.315 1800 0.11 0.342 030 0.51 1.271 . -0930 1900 • 0.22 ` 1,001 0.50 0.54 1 1.335 .0.314 Mod.FAA Minor Sono*Volume (cubic IL)• 4,321 Mod.FAA Major Storage Vei nro(cubic 114 a 10,772 Mod. FAA Minor Storage Volume (acre-ft.)= 0.0992 Mod.FAA Major Storage Volume(acre-ti) • 0.4639 UDFCD DETENTION BASIN VOLUME ESTIMATING WORKBOOK Version 2.35, Released January 2015 ban-etWydoveindstentiorudc, Uodiced FAA 11/10/2015, 2:00 PM lig DETENTION VOLUME BY THE MODIFIED FAA METHOD Project: Basin ID: Inflow and Outflow Volumes vs. Rainfall Duration 1 6 r •" I c . 1.2 E 1 -- - _ : • • . } A a t {i di 1 o 1" . 1 06 I . � • • • • • • � ' • ' • 0.4 •• • . r •Imo: • • . • 02 iee •• • • • • • 0 ....M .._. :.,:.. . . . . . ..... .... ...... • • - ... . 1 .._..... ..�.� 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Duration (Minutes) •a..PAW 2011.IMoyVaun --A—MM or Rolm OWWNVolun o Mlnr Ram flema•VohrI—•—Major Sloan Idiom Vd urn—. "tear Roan OW ow VOMn. • iligor Reny Steno Voir• UDFCD DETENTION BASIN VOLUME ESTIMATING WORKBOOK Version 2.35, Released January 2015 bsrretdsydowndelentionlds, Modified FAA 11110/2015,ZOO PM I/ ISTAGE-STORAGE SIZING FOR DETENTION BASINS Project Basin ID: Dart sa,sjgZ stdeskpi -,�` Dar sresMpe: Da noW VII ›P - > lin. 4k Eree°ennr ' suessapee L ) < L , Z t------ > side Shims L Design Information (Input): Check Basin Shape Width of Basin Bottom, W = ft Right Triangle OR... Length of Basin Bottom, L = ft Isosceles Triangle OR... Dam Side-slope (H:V), Zd = Nit Rectangle ' • OR... Circle/ Ellipse 'OR... Irregular (Use Overide values in cells G32:G52) MINOR MAJOR Storage Requirement from Sheet 'Modified FAA': i 0.10 : 0.45 'acre-ft. Stage-Storage Relationship: Storage Requirement from Sheet 'Hydrograph': a acre-R Storage Requirement from Sheet 'Full-Spectrum': tz�) ">> ` r'Ki`xh�L�"j acre-ft. �• ivtl�'J.u�Laa6��1�'tiifcaor�+. Labels Water Side Basin Basin Surface Surface Volume Surface Volume Target Volumes for WQCV, Minor, Surface Slope Width at Length at Area at Area at Below Area at Below for WQCV, Minor, & Major Storage Elevation (H:V) Stage Stage Stage Stage Stage Stage Stage & Major Storage Stages ft ft/ft ft ft ft2 ft2 User fts acres acre-ft Volumes (input) (input) Below El (output) (output) ;output) Overide (output) (output) (output) (for goal seek) 13.00. (input) 0 0.000 0.000 .... -In......,_.......,..4..,......... .i.... ._.�. 13.50 0.00 0.00 7 425 1.856 3 0.170 0.043 14:00: 400 OW - 11635:. 6.621_ ' 0.267 0.152 15.00: 0.00 0.00 : 17.751.::: 21 314 : 0,408 0.489 ? #N/A .... _.» »#N/A • • #N/A #N/A I .....,.d._. • #N/A » #N/A #N/A #N/A_ : �- _ #N/A _#N/A_ : — #NIA . 1 #N/A r. #tN/A_ #N/A c • _- #N/A _ - #N/A : *NIA #N/A I #N/A� r #N/A t i ,,.......- - ._ .. ...... �.. i _ #NIA #N/A #WA #N/A i�.. c . ' #N/A *NIA e i #N/A 1 #N/A I liN/A : #N/A a _ #NIA 1 !tN/A • » #N/A i I #N/A • 1 »..__.w»_ #N/A r #NIA ..»......»._.. #N/A .;,__........�.,1.... #NIA wM • -- »i : #N/A .._. .. � UN/A • .�.w._. ...w-.. wwwww.. --- 1 -#N//A $ #N/A j .. .__, _ #N/A - -- • #N/A _ #NIA _ # #N/A _4_ r..._... —#N/A : ... ......... •.....0N/A --j- ,;. ..... .......... .,. _ #NIA } #N/A , _,,.. . _ #N/A I *N/A o i• #N/A ...., ._....,. I *NIA i ......_ WAj #N/A i i #N/A .--I - i #N/A ,,... ....j... 1 — - wr #N/A 0N/A , #N/A #N/A - -- : #N/A i I #N/A #N/A #N/A� b w #NIA.. . .. ._,w, .. ._ #N/A • #N/A : 1 #N/A .._ ww...... .-. • #N/A s #N/A . ...a..._..._........w........�..,.w.... #wA #N/A a 4 - • #wA = #N/A barrettlaydowndetentionxis, Basin 11/10/2015, 2:12 PM 2 a Et a NIA I- 0 tl) < O Sc (A 0 to C O O 4-' O t• 7 U V (1)Q) r) d iC .C +� r al en W 2 y.. O O O I cu O w N▪ a) Q? i� (a ca I— O 0 0 O 0 O u. �' cr a- C C .C 3 (a RI co co co • M r— co : O7 a r O M u, toil- 1-- O CID r C? *Thai o Q CD XI OT.. T O O ' a C7 O Z N II II II II II II 11 II 11 II Co o � Oj <CC W O *-10- CY d N > > I 4- +- dO CC5 CO C1) o E Ea) 2 Q 5 QO a) D �. (tz 12. Q i Er = 5 j dQ E . C L ✓ t v ? d a? a) u0i con = T C N Q z Q a O a 0 o 0 I Z 2-' c a) N III n3 : fl -c O � 33 O E . r a- = 0 O(ilC (i) a) a) a) w O co C) v CU 0 a) V O o 0 0 Ct Ca a M v- .= = = \ \ \ a) O v 2 C9 CV o O O tr) in *O d N O CD O C C N Lf) on; Ni O ® r O CL) (1 i2 O O (a CV 11111111 it II II 11 11 11 11 O O Q = � zow er, dmo 1— 1— '4-(v C vi _ O O a) z3- 0- c . tit 0 3 CD C O HIT a Cn E 0 'U crs r _ — �+ T C O C L r'' O 3 F" O 02 C C O .C s:l. O .�G CO a O -O O V OOC E (C3 w a F C2 .E o . . Q] L_ a) w O V Z .c .C O T n- tl L.. . . c C O ij E O E > n el) m �` a • • 0 a 'U O `�- C 5 > I 45 to tr0 0 O U ca U Q o E C E v S E cti >c L O ._ c c c .. U) — a) ca c m •_ Scc O -0 ,_ C a)a s d M U w O 0 -O O 'v)ams V d m Coa m Ci a 5 = O c co 61 RESTRICTOR PLATE SIZING FOR CIRCULAR VERTICAL ORIFICES Project: Basin ID: D . o . !' T -i X o of —' � o of O O ; O O i Yo e #1 Vertical #2 Vertical Sizing the Restrictor Plate for Circular Vertical Orifices or Pipes (Input) Orifice Orifice Water Surface Elevation at Design Depth Elev. WS = !15.00 feet PipeNertical Orifice Entrance Invert Elevation Elev: Invert = 13.00 feet Required Peak Flow through Orifice at Design Depth O = 1.07 cfs Pipe/Vertical Orifice Diameter (inches) Dia = 18.0 inches Orifice Coefficient Co = 0,67 Full-flow Capacity (Calculated) Full-flow area Af 1.77 lsq ft Half Central Angle in Radians Theta = _ 3.14 r irad .r Full-low capacity Cif=i 10.6 i icfs Percent of Design Flow=i 993% i �] Calculation of Orifice Flow Condition """"' Half Central Angle (0<Theta<3.1416) Theta =f---- 0.76 a _� rad Flow area A0 ='.___.,.614 !stiff sq ft Top width of Orifice (inches) To -e '1r-'3 a--""'-?r-"^`�'�"'^�^^^^^'"'inches Height from Invert of Orifice to Bottom of Plate (feet) Yo s" 0.2O....4 'feet Elevation of Bottom of Plate Bev Plate Bottom Edge = 13 20 :feet Resultant Peak Flow Through Orifice at Design Depth Qo == T:1 Ida Width of Equivalent Rectangular Vertical Orifice Equivalent Width ■0.70 i _Feet Centroid Elevation of Equivalent Rectangular Vertical Orifice Equiv. Centroid El. ■ ,:13.10 � tweet barrettlaydowndetention.xls, Restrictor Plate 11/10/2015. 2:06 PM Determination of Culvert Headwater and Outlet Protection Project: Barrett Basin ID: Green cells are calculated values r ) u L t � I_- t L Lp IS ! I [---------- ti _` ' Ate-t �* �—�-.-_ hVo�,cY8r e:•"ex.f......i.t.....4.... . ['Sandy %, Orion-sandy Rtrr,>r - I 'Design Information (Input): Design Discharge 0= 1.08 CIS Circular Culvert: Barrel Diameter In Inches D =1- 18 finches Inlet Edge Type (Choose from pull-down list) ISqureEnd Projection w Box Culvert: OR Barrel Height (Rise) in Feet Height (Rise) = ft Barrel Width (Span) in Feet Width (Span) _ Jft Inlet Edge Type (Choose from pull-down list) n _ v 1 Number of Barrels No = I Inlet Elevation Elev IN = 13 ft Outlet Elevation OR Slope Elev OUT = 12.9 ft Culvert Length L = 34 ft Manning's Roughness n = 0 02 Bend Loss Coefficient kb _ c Exit Loss Coefficient kr = f Tailwater Surface Elevation Elev Yr = ft Max Allowable Channel Velocity V = 5 (Us Required Protection (Output): _ T aitwater Surtace Height Yt = 0.60 ft Row Area at Max Channel Velocity Al = 0.22 ft' Culvert Cross Sectional Area Available A = 1.77 ft• Entrance Loss Coefficient ke = 0.50 Friction Loss Coefficient kr - 1 46 Sum of Ad Losses Coefficients ks - 2.96 ft Culvert Normal Depth In = 0.55 ft Culvert Critical Depth Ye = 039 ft Tailwater Depth for Design d = 0 94 ft Adjusted Diameter OR Adjusted Rise L) = - ft Expansion Factor 1/(2'tan(Q)) = 6.70 Fiow/DiameterZs OR Flow/(Span * Rise' 5 Q/D^2 5 = 0.39 nu'ie Froude Number Fr - 0.50 Tailwater/Adjusted Diameter OR Tailwater/Adjusted Rise Yt/D = 0.40 Inlet Control Headwater HW' = 0.54 n Outlet Control Headwater HWo = 0.86 Design Headwater Elevation HW= 13.86 ft HeadwaterJDiameter at Headwater/Rise Ratio HW/D = 0.57 Minimum Theoretical Riprap Size ds = 0 in Nominal Riprap Size dso = 6 ;n UDFCD Riprap Type T ype _ VL Length of Protection L p = 5 tt Width of Protection T = 3 ft £2 Size Overflow Wier FOR SITE H = (Q/Cd'W)".667 0= 400 cfs Cd= 3.1 H = (Q/Cd`W)".667 W= 70 ft H = (69/3.1.24)".667 Height= 1.60337332 ft r 0 • MON E O co MC' d' 'Pm O 'D O (NI Ov cd a4 t-- N O . (OC. c3 � (�l ,i.�.� A4> h• c oI �.W.� .eu b1 el Vim•+ "kap . ..4 2 F+ LT.) LL) i � X0000 Q It. •ER et' O CZ � 1. Fw a call W L 0 6 cu at ra te a" x HHE ctV) au o te H 't � CT � kn ea 1 05 N N N ea - I 1:2 00 R co co N NN h. R co CNI CO5 O L co (/) Vl CN Of M N 4= 00 °; � •-r 2 Q c� ►-� Ln CD v2 � Coq �; � 4 . c in • • d (7 .: M o q 0 r„ = E pd Liiz4 a z E — > u U Z ao N. n 144 a 0 0 0 occ 00 �o Amp. s 1 c .41 U4' I W F o00 0 kJ a z i-a Co, virte-• y vi v O M OO 0MO OM4 0 1 ce Cia C10 2: CC �V e7 mg U U U if. 'e? 4 O it - 0kr° o -a pi 4110114C/] C/J C/} 'i N -. O ( • .r co "Cl Icziz >.. O oz witt--• . .N Cd N .� w •� ..r 0 c PAO •� � O o A O 0 > GCa. a> O el E V A a c �. O a *tat a) o V t, a ill T tio ..L:4) — — p.m 3 a1 w b a o o a -1 .8 ,,,,4-4 N im ,5,--iin li ft A w V V g �-.7 G4 > > rn 76 ran •._, tu ..ci ,..O (I) •.--e a 0.) 0 CL) 0 ci ten tn 6—,l2 M_ •t 0 � ON O ctNNN0 U fro E0 el N N D cc N00 174 >, 000O 33 —la a en a) o Ein -i 7I- 101 CO CI CO CD W Cl) O 1;" Vh - 'a p E. + g Aet � o � NONv, ON OO1 o c 0PA7.4 i E Ti c al , 0 U U Z .� 0 W X IX Z 4 1.3 +.. cn a. O tyco O c 2 8 CO O o o 5. -D _ II N O 0 o �CD � � �r �tc,1/40 -( cn O a 1+004 v Q II a II z • a) . . o � ] a� � ^ c W `a�� N Q �N a 2 C s .�. c09. Q II h+ O. `4 a ti. _ a) /,. a ,t� a � 0 p ',,,u N �"' per ' � Q p � �y pa. q .�. U �, It I b O CA .a Utz o p p2. c a c �g brC -} ..�V p N it,P-Ic... • .� •r. I Ei 4miI . ' '.. U, cd at .N .'r bt M +-� = ed el Cr. II a) II 8 un a. a' . a� ,4 o a, .4 R al a) 0 a� •o C ) ° s VS r ) .. cy r I icni1-.410 i i�ir it:+i Ic l�l;≥ICIH - Iwl I l'_ I' 'I _ I ,I �I 'I 'I I""I 3 rn r a r v/ L SV�' N. oo O no C co N O CO Z O gc IT` O ^ .r M v U'; O �• C O Lu W Oct' N ON �1 dl O O1 O ON t� E Y t'� ,O �.0 x 0O• , • oC O I/) O ,--! ON •-+ ON. H DO N CO VD r, ri O S (` N N o � O BOO � N N O c H g _ — -- ci' cn — U (f E 8 :.-n-, 0 E 'or. _' co ty N II 54- '5 a II N II v II I N II :� v v= ED II rteC.) CI: d ..*: 9.: Fe 1 9: --2, g era . o. ii, II II �� rr _7. II 4 11 II �in . � co Z -- �.• o o V� a�oz c .. „....... c..., N E. 2.4�, 4. O c3 it :;...- •., •. r� N a> 11 O E .-3 O x .d 7.4 ':r Cl) `� O .rJ A U O CI < r ^ ' C? c4 ..� O h; r.r O NWN ca v c � �.. cci t ra co C� v C + � r Q E aNpN 0 c_ * > J G� -- U r , .0 II O a a = a, d Q a, - r > * CI?4•, C) .., . e 1 H + Q, + [a 52 c. A-, u /ti•� U = x •r' '" -v L4 .actt c,..•ptl 2 n ...r C! =. I i O 'a • r• Q U Q II II II ^C Q �+ O C� II y? II it a a c p ¢ II II II t cLI II 11 II b .e4 ;r ..a a 11 ,o II ,� t = 4.* r, .L4 it •0 -- c O O �.., �. II p� II u) a, a. a r�i cw CT: O' > U E--, C.) W HU V) ¢Q ✓: UU > U Q: � d aapaa..a = a S. N g. r 57 M N. co N 0 cc co E :a Q E00 0 0 0 3" O T C N F--) C O N N d' Ni O M CJJ cr. a U Cc U m 3 3 'a' .a O Vi cc 173 co H w., 0o I iCO bd HCV .4 I1 ;I' T) N G7 II H. Vil rn (AII II N /- .- cur II -- c4 O 0 Cst G) �a — VD 1r s-, c-- > > �j n ac- r y ' ,o I; -. = i., E * v� r (Fr] t 4- ri .L0 * .., II U1 s V1 —� ct , _ O CA 0 u >, "'. cn .X A) co a 0 R w •.-•• •Pv. rte+ rt 44 O I) E y la II ~cu , 5 - O a ' U r w 0 ►`� > V E— U W H+ U CA << cn U U c1i N En ii. 5-6 t CULVERT:STAGE-DISCHARGE SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS) Project: Basin ID: ........a.-. Status; Was s died*medial CD3W4 xvel1KA 4%040 l mdt+ D S .. .... . . . . . . H • : " • 4 ' Si y- ger P" Design Information (Input): sK&he N.)-(4): Circular Culvert: Barrel Diameter in Inches D=1 15 Inches Inlet Edge Type (choose from pull-down list) 1.1 : 1 Beveled Edo OR: Box Culvert Barrel Height (Rise) in Feet Height (Rise) 4----------71t Barrel Width (Span) in Feet Width (Span) = ft Inlet Edge Type (choose from pull-down list) 1 5 : 1 Bevel w/90 s. Headwall ..W...\\W..W m.M KnNn.M�.w\H.M Number of Barrels No = 2 inlet Elevation at Culvert Invert Inlet Elev= 15.85 ft elev. Outlet Elevation at Culvert Invert OR Slope of Culvert (ft v./ft h.) Outlet Elev= 15.45 ft. elev. .. Culvert Length in Feet L = 97 ft. Manning's Roughness n = 0 0200 Bend Loss Coefficient K . = 0 +''I Exit Loss Coefficient K. = 1. .W.M.nMM...M.W\... Design Information (calculated): Entrance Loss Coefficient Ke= A""I' Friction Loss Coefficient Kr' nm.g. Sum of All Loss Coefficients Ks c Orifice Inlet Condition Coefficient Ca= .9 Minimum Energy Condition Coefficient KEt„= ..... Calculations of Culvert Capacity (output): Water Surface Tallwater Culvert Culvert Controlling Inlet Flow Elevation Surface Inlet-Control Outlet-Control Culvert Equation Control Elevation Flowrate Flowrate Flowrate Used: Used ft cfs cfs cfs It. linked) outp 16 00 0,00 0.20 3.37 0.20 )' Min, Energy. Eqn. INLET , ........ ....WM\\N\M\V,......1M......IIIY ....IIn n LNLINN.fNI// en•nf.n..n ..Na Y m.2I C....N 1NN/1.I /Nte.lfl/ N.IN. IH/NNIV+Y+w v......... 16.10 0.00 0 40 E 3.67 0.40 Min. Energy. Eqn. INLET .M.MYNYW\I.\.M.M.YNY.�.11yV.YY.YYNY\W ` y. nI 'C —.......-379.4" »II..H..a...u-f!W , .Y4. a...............Y....L. »1..u.Y...WY.! • 16.20 1.00 # 3.94 1.00 Min. Energy. Eqn. INLET 16.30 1.60 1 : 413 1.60 Mine Ener• E•n. INLET 16.40 2 40 4.42 2.40 Min. Enetay. Eqn INLET .... .IIM.II'/Nfl �M1.. w..N a........— N•.NNv. Swan 3.00 r 4.65 3.00 Regression Eqn. INLET 16 60 3.60 4.83 3.60 Regression Eqn_ » INLET 16.70 4.60 4 91 4.60 R •ression E•n. • INLET 16.80 5 40 4 99 4.99 Regression Eqn. OUTLET ..i..M...aN\....M.'bM�....1r?.1W.Y..N...Ah....sY.�.Na-veee.INN. •./N IIININII.f1. N..en#n .. NI /NNNN .. .... . N...N. 16.90 6.40 507 5.07 Regression Eqn. OUTLET aW4t_"_, w.w...\Y.Y•.au.w .awllwMY.r S. WAD .... .......uuo..On.._...Yu1 u. . .L.10 1700 7.60 5.20 5.20 Regression E•n. OUTLET 17.10 8.40 5.31 6.31 Regression Eqn. OUTLET h M. ( 17.20 9,40 5.61 5.61 R ression Eqn. OUTLET 'me.. w.. 9.40 n. NW...6NM1.....VI...ANNNNNM ..'Ile .IOUT L N.N.n.N 17 30 10.20 5.96 6.96 Regression Eqn. OUTLET !.Y , ........................4..A...............\Y» •.IW.Yf»..WNy..Wy:G.Y..\... U\ \\N.\......ya..µyYY YY.YY...u.n..........y 17.40 11.20 6 28 6.28 Regression Eqn. CU CLE I MMMW/ MHN 17.50 11.80 6.63 6.63 Regression Eqn. OUTLET YY 17 60 12.63 6.98 6.98 _ Regression Egn. OUTLET a Ww.faVa.�hW.'..•i fin %n �/.II en..v.N.N.NWV N Neten t./NI�/ N..•........ .MN..... NN .NIM f 0 1..l.....M 17 70 ...,......•w............« 13.2....... l:.3.�..Y..,..�........... 7:31........... ; n Regression Eqn..... »...._..OUTLET Y. Y».. 17.80 13.80 7.66 7.66 Regression Eqn. OUTLET 17 90 r 14.4D 7.95 7.95 i Regression Eqn, OUTLET n.NVNN..A. N. MN./......en....% ...n.._,....y 18 00 ..,. 15.00 8.28 i NN 8.28 .1:32s ssnoa Eqn ..� , OUTLET, Nentn•in*WOO••NM KWMW.Yrrent•.../ 18 10 15 60 857 8.57 o Regression Eqn. ,. OUTLET Yu.YM. Avy\. u...• 1820 16.20 8.87 8.87 J Regression Eqn. OUTLET �� 1830 16.60 9.14 9.14 Regression Eqn. OUTLET N/ 18.40 17.20 9.41 a� //// 9.41 Regress;onnEgn. /.« OUTLET \.\.MYY.\M\N..�1\1\MW.N.M\.VIN.n...N\. N.n/I/NINI•In...Y.en./1 M/../IIINN/ 18 50 17.60 9.68 9.66 Regression Eqn. I OUTLET ...M\.Y-.NM.MY.....n..Y.4WW.\..n... ...�..A..W..0 u... ..AMY.. . VY.YIJ.u.YM.»M.AYU -..I..W..M.r........ .A...... . • ../.u-un...u..w.I,$ MI..Y 18.60 18.20 9.95 9.95 Regression E n. � � OUTLET 18.70 18 60 10,19 10.19 Regression E•n. OUTLET 18.80 .. .. 19.20 10,46. •10.48Re�ression E�n,. T�N ,�, /•, TLEOUTLE 18.90 . 19.60 10.70 _ I 10.70 Regression Eqn. OUT »!�- . J...,M,.M......Y ...... .-A....W...,... ......,z,...\_..........»..... »......u....... Processing Time: 00.47 Seconds laydownculvertwestentry.xis, Culvert 11/10/2015, 1'10 PM u▪7 Cr• : `... ILO N a Q Cl) C') U • C a .� u� __,�_ - _.. . = -- 6S Qom/ g� .tr•��j +�wntj - T r :-- W V 3 4 s k i U4 arsc6 ...c . i N m '- S Hill lic 0. . 1 E .3E -0 tia;re Q. O -070 4., La W q 111 0 ;�• Q et u9 4+ its d;O: ta ; t :.dc• li Sia X .., r'7 �. � � z re cc 4. W r. ..• Q r0. 0 ' 2 a IC ! -- - ____________=A1:67-- ' I • • E N CE YF • • M:7 N M • 77777 . l� n 00.e."....." 1 N ti tr N N M • • 07.0.#0„.....,...............er..< . OD te) • i z z iv in Nin Q qQ 7-1 Qp 0(889* O&89YY 0fZ89bb 08989* 0E989147 02589* 005891* L cr M•OZ•TT otOt I ......• .2-.1 ..•.!. MiAZ o40T 0 „wt.. f '14400.--,-',1" �.� '▪"rn .• 1 l4 ••♦+ w xT> �' r 1 -r Y J' r � ! '; • 7y�(jQj ,.♦ `'•' " lA T 1 . ?IN. * = , + :i.. C•._` r t'1 :r i1 ▪ J 7 A��1 •'"e '`t • '• Q t6 ;WA,„ . +:- X.4_ 1•..'�,: `.t �,. . �.'• 't.' al •' ♦.t •� , ,. ) 1 • :1•e• ,�j• lTl a •11‘`,.'it < • ti tir ` �• .79 „ Triitc •M`N . •'" Y 4 �I 1 '•�� . .� ..w�sl�..••)i, •J' �'�� ta •: �'v,;^ ,J,y�.y • 1 ra ♦ •< /L • L : i 3SL- VI �• �•• 7.i 1 �'' fr _ o �� .1 Y I ar ..1 •'• s• ° ✓' �'a ! � ' k- 1 ' 1 1"►j • % t 8 t� a� •- • - •- •...-..-t.,„ , ./ s. .- .1.4 j( !• lpUOpl %•�'„et .1ipl{ :,yT , AS ','c 'J.�r.� .v:-. • /� A• ' ' :.* •; 1,.., "�(�7• .j('0'i. ►►{{ , _ • . • � t .� \ , Y M' ...tar- n] • <4• 1'it_ {•I w _ a • f.a• y it •1 IC; 1 t �f - • -yl 'd 1ti 1S • . i•- • } _ `1 <.f fY1• . ` Vii' •t• � • . 1.. 9 t ...It, t•. .. A �•! ......„,/7.-}. ... 1r - , • • • Yr f 1 ` • t, -i It t .tom ••:,-.. - • - .. +'. fi tf�rl.7 - . •k, •,t • �1'1��y+•= , - } .4 "♦' • _ • •• �� la r1• l •'. •. r'� •KA:J o• ` -1 f' r•. 1:f' J• ' •x r •� ' . S M •.1-♦�y? / �•�-�})y�(► '^', S: .S =1 •• ' A•y.:T ♦ ' V�✓ ,i_. .� F, fm •� 1 '� Y+1 • �• 1 jt /• ,T+' •, '' � I - ' • i . ♦ - �•c- '� f' ' !.!r• i • Lr +r • a -t t ' r'`' tf'..•t • - • ti. 8— 'ri ,. , J•r• `� f 1. pTr r / r te• I ' �'!1 �;-� (U ! •.' ...pl., ....e•`• • : ' QU a. •! i / f .. y • 1•r• !�♦� L a�%�r.�1{, n a 11'. • ' • • 1 •1 •t.�,'•�'!1 sa ♦ • • k./ \1 .l ` •.' +k}_ . •: • ��jq• 11•. � 1 'i • - �f,_ ' ✓f ri `•Y .fir\' •y {-t/.t. '• .CJ• • r` _ •••. , 1......i. flu Lb .,s -• I..-• �, y:;to♦ t`_ t1 ♦ �n• .-3 ''. • • :�a .t1•. sa♦• '.:.i 1 t -1'i, r.. • a + 1 •7_ r. �. • •AaYt .♦ 7'r r-•.;• ♦ .w, •• �f 'P yi�' • l ♦ 1'. CO O in �s • � • t f;�Y 414' , • .r� ♦ ' i i..r , . '- T1•'.t.,r �. •. V.1► +' �. j .., , «r♦., . . o 1: it O • i t J l i•••'� • :h., 1 a 'I !q' a 'i 1' Alt. t. • •U • AhiJY YF •• aT-: i • '• 1�.I� •�•y�"+` �4r1 y.?,.� � (fir ,�otl 7�. _ itic •_ lC ` y��.,tS" i 'f;1;..• • 4N• ,-. ' 1•• ••• • • t • • �.• r ; U J11� r � , •• • 1! , I� • '�'i a•1• . •rat i "'V*.' 'r4..— tiri — 1 di • _ • ♦ + ; -•1 - r ,If ,• .... • • •r . :4�•I L •_ 1r a' T _ t. ` .OC0 • / - '� ':1 . .� • VV. •TF`� i. . - Iti�,y;��5_• 1'9 Sr�.�f;} �ii • 11._ r r t , 1 t• t. r (n O. • . i 0 ••• 1• ).• ..'r•-14-‘•-•( �i.'� ! ♦ [ ,airt,tir�•/• �J♦ .tl .4,-.. �� .•'1 ,•� <1++�' s 3 s •�� �. r -144.-�y t r! ly r („� 'w ., `,h ;701• .� Z • �M]� ,•� Ll:1 • .-1!• ;• t.. • ti ^ r 1 I• .• c 11::77 -3,1 s, y. Sri K I 1':I.' 1-•!I y• _ • �I C I 1 1: TO Q • i'1• t`a�� _I �' •' • �• ,='i� ••. ��'. •x�. 'I i••] .:l�Kt • ! �� •..t + tol•t s. I. .— ,. Z a '�LR t • )J - ,�'.t w 11i 'F �, ' • • •y• tTT�:�y1',• • 1�. 1.4 _ � .w' , f •≥t• 1, 'a ti l .r--tl •O V ,;^ ' ..' , s Yf 2 • r � �Z�, l � -. -�♦ r . `'; �., ; '• --. •' S� ; ` • .• �f.1 QC1 Z .Q - •� •`f•'IL -.7.114. �. .r1 a•• ..... a �}... :-.•- :,,>,••••• }�. It �' • • .i� i4 '0-1.11: a + t. • a. I .Q U) 1!1 LILT:- - 7 - y ' , Jyi • T . • .S. '• . .r W INV aN '(r,♦'f{ , . . . �••1 1 . a- - ^I �1 �` I j '1 • 1 • n� ) -. 2r/c•X•1 r - '� •'n, �•� I ••• { • �, ti 1+L.• VUII E U •l D.' l 4 w'• 1046• .� ar • W'rf ,•141 '4 1 , '] •. l .L�' , .. ear:�r .• �; 1..♦ •':•L $a < ,l , • , ♦ • 1 •¢ti i�Y••YIM !11 • •,t,{,••`•t 1µ• �. ;' :Lr. O • !1 1 • j a1' y'• {Z r �t ,( + .`t 1 i L, •• ♦ 1 Ty •< 5# 1^J 1 i • • ♦ 41:. •f 1 ♦ a. CD ',.; , ti � A 1. .•, .a •rlL .�."1� ��y..!! 4 51 r fI V ♦,,1'_ l 3 !, ,.•. 'fit s � ts� ; Cn l7 • - • /t . hx'1RY - .ra •` '.r , ' 't •/ A' ' .."1.'''� ' - " trip • r y t •F). OD•1 .w11S..s.. .. • 1-NN .1; ' � ' • 1 r �• , •� •'t •l :�S:•1/ • {l, • F; • r (•y •• • D • 1 \ TS ` � ,i.P`_ t ` �v'•'t, i.' - .,� � . 17i, '1 ^' ,••rt �♦ •+Y..`,� Y•1.t 1 (1•:•lYf� 'a C_ :,:4....-:. . ,� 1. 1 aR1' t -'r•. 1 ♦.• , ty 4 ••v 1 1 .� • 1.411 y : it p Ir. Y•. � rI i 1. IT�4 .�. -• • • .?...1..4 •• ' `•Y. }• 'Cr • t • !�i • I '1..'. r •! '1•:• a, \ I S �•R w..J'. ♦ . _ 1* j ! •, 1 Q • .• :`I .•4.c.,... •Il,. I • }?+r�•♦l • t la� �' - •' ,' •TY},[�1y �1.., a1_ ti lY. 1 �1 S/ ••• ' O . . r• ` 1 i 1 ri• ,.1 { l { A I = -• V '',C••- .� 1 i � . �',♦ r r} r1 < • . , I• mo: •• t ; � ' ��•�� '�• •• • ylj%1 • - •1�'=1•_ �7 pO ioi3 tit' '•\ -7M r. a 't1tJ • ..;41.-:‘,-,< .� y`. �' •:~"' '• f'y•1 � • isr ♦ la ��.._ a j/vj1'It�.a ,r hj�•' "ih�rr�j•A�� `"4' 1�^ r •j�1•„f `� d .• t T 11•� ,.1 lrr':'. . 1 t t L• �t ♦ `r ''T • J5a ♦ { y QQQQQQ t •:t. t.\ • 1 ,<• t 1• • _ i�r1.1 1. 1 �.••, i� IIL ���,ys.��.IT• '^ { • ♦ •. r .it•I•�<.1 � S� L �• • } ` ,..,,..f..;" • •� ;Alf,* i } I .,rl t ' •, •.,.. r(t 1'v l' ♦) i • •',►�2TCf_•{�• I� •G .� .{ r I •.,y�• M ♦ r r-' • `) •�• Kt D` r <.. i• ' '' • 1 1'• 1 en S C• •' j, • eV A . kay.N 14 tic • . . 1 . y• 4. �. �;1<N .r ;w. L ,•1 � ,• - ✓ w: ' •.� •j 1 ♦ .•1 .-t t� d rtp Itt2; ; T • .j.•: ; .':- �; V . •` ,l: Sr " ••� }`_ 4.S[ _• t• `• 14 .tI�'.l • t 1 I o csit: ' Y O ' V .::hI/ ., •/.3A.yX_r l•[: �'', r; aJ .� iN �• _� ; .. .�,..IS l �� 1 t!,_ Clti'��••.y:::1* Y a a CU 0 .... " •k'• r -•�'`i • Yy��l .'f f• • •• t.�_ •� (,'�' �• T J ; • . _�1�� % •aj { $ t,. y 1.�.-.4.;.,4 1 • • l. ' 1 } a ..• ' .�•.wi III •1'• lr 11�`. • - t♦ ' • ✓r ., ., r •▪ �• 1 • A a.� • T .• le '.�.- y� • • f 3' •i* 1 • � • ,if • ! .�:ri'♦ •- -�<t '!{ ' f� '� T. V a� ` t .♦. S •• : .� t•. 1 • 1 1 •'.J' fi• rt•at' I` i •`.y,♦•1<``' • ••G•{ 1'1 Z t .....7k.1..:.- '' cry' _ S . I • 1 1,. t. • •{• �.I/1• .�C'` r..i . `.r_i� ..t' ./}.1'f ,f !�• ``,• �T r �L�' i t•� 7•♦ a♦t• /r s Y i1� r w' • l ♦. �+ c v MZbtT °{O !.3iet v-. a1 • • , • ii • - i,al1 •, tl t'. 1 : r r•f�•' 7• .)� } ! l�,:ta o60T �. �. l.la • I ....• • a.^I• �....._:.:1i• ' r .I ♦ •4 • '..� :�•I- L ••• . ' It •w a. tit•Zb,IT ObOT i..•II 0E889bb 08L89bb 0£189* 09489* 0£989* 085 if/ 0£589* :L1 z z N a N VI N N Q N 4Z Inmr r 0 0 C O) L. 0 y o r 0) N N O a) - G O .c J co O U O L e` O N a 0 pa C.3 J 0 to U «O IP a) Uj N w m O y N l0 fa aJ 'C r q 3 c 6- N- d �a cc>. oiccc a a cd o a n. w r �' o o a) a) 0 3 .� cn E a) =o N E E 8 CN o _c a) E O a — = m to — v N C a 2 laa c w O N f j N 0 f6 N a a O O E _0 afacoO es 8 lac00 f, alato CO Oin E a O O H c /0 W W N 1- 0 ¢ t = FrE f0 Ti a) CO m O •C N1:1 G O O t ` O Q V. .6-- a) m o0W 0c j 4 3 toy 2 O w E U co 02 O fT 0 O O N CO ••: Ce f to =s lD . (� p C a N U a. Tv a) EOC /U rie .0 .. �°. > so � 3 m -j32 •, mSs0CU r S � Et o ca� na>i leL a) CD -' = w � 0 y m c a CO 4- c r a 0 E ), CO 0 In .0 Eli o C a°i a) a c z v .2 2 E o oc cb .0 a) 'C E Z a o a) a t .o a u, o .o as 2 m U .o ca a w $ >. a. E �+ t7aC U iaLm � � ono` a � � � v 3 � ` 0E 2 L a E o M m ZD t m a •s $ � a) oN o ca cu E t t a) co a 00 id 0 C C b N r- _C >+ 1C1/11) t a1 N 'fl Dry N m O 0) a) c T, _ O 'fl a .- a a) a) f) co ca coca i- O ca p p M 0 'p C C O O C O j0 tL -D —' O +„ -0 Q 2 ca 0 .0 a .0 o t4 .: °� 3 c o c 0 O > ca c •c c c In le fR e C .� E 4- (4 ,2 E N a wan a) o t0 (5 - Eh aU d Q) d d O 0 C O Q m g ...3 p •y Z < a ": fa t 7 a o E ma E a, n) •mow > >. m E y c m = s N 2 w eat us air o d O � > cow E ._ 0r o .58) CD a) = fB ctnca •o CD CD ova � � n � O t � o � � � � � mEeaE E I— 'S w E acn a E co 5O 2 a5 < o F- coo coo 0ccf is ° .E o 0 U) 6 T 0 a) 2 a o o 0) O co o co .0 a) TD .08 � W a y q) 0 a2as r U la a a g c 2 a ±-co N V)co 13 il O 0 03 CU 4) O O M 03 .2 Z o o o W rc a V) E m v n o a) 2 c m a m ° •m o U U O Z El fn S 0 a 3 Ts ed fg G G O y r a Z O ® ® O " •, o. 2 4 ra w 2 G v p atm CD 3 m W J 0 a) e a. r... _ co Q O 07; Co Q la m 22 a a r to ` 8 •••••• C C �O o V a) S U) CD C N C to 92 QL Q Q o Z ❑ a a o d O 0 E Q o) a m m c0 c) o z rn a a moo U o z fA < a m m a c C C a, O 4 j 'o ® M a l :sl E o f l 1 ( 1 a a ® ® S • w a Q • : tp co co y a c O d +% OC L w = to 03 0 Z / 'R1 61-3 Hydrologic Soil Group—Weld County, Colorado, Southern Part Hydrologic Soil Group Hydrologic Soil Group— Summary by Map Unit --- Weld County, Colorado, Southern Part (CO618) Map unit symbol Map unit name Rating Acres in AO1 Percent of AOI 70 Valent sand, 3 to 9 A 27.9 100.0% 1 percent slopes Totals for Area of Interest 27.9 100.0% Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and CID)_ The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (ND, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified USDA Natural Resources Web Soil Survey 11/8/2015 rnricartiatlAn Servire Nat!cnn! Cccpernti.. EcU csurvc.y n, 3 f Hydrologic Soil Group—Weld County, Colorado, Southern Part Tie-break Rule: Higher iii Natural Resources Web Soil Survey 11/8/2015 Conservation Service National Cooperative Soil Survey Page 4 of 4 (Q.5— REFERENCES 1 . URBAN STORM DRAINAGE CRITERIA MANUAL VOLUMES 1, 2,3 DATED JUNE 2001 REVISED AUGUST 2008 2. NOAA ATLAS 2 VOLUME 3 RAINFALL MAPS 3. RUNOFF ANALYSIS-UD RATIONAL SPREADSHEET v1.02a DATED SEPT 2005 FROM URBAN DRAINAGE CRITERIA MANUAL VOLUME I 4. CULVERT DESIGN-UD -CULVERT SPREADSHEET v2 .04 DATED JULY 2012 FROM URBAN DRAINAGE CRITERIA MANUAL VOLUME 1 5 . CHANNEL DESIGN-UD-CHANNELS SPREADSHEET v1. 05 DATED OCT 2013 6. UD-DETENTION_2.34 DATED NOV 2013 7. COLORADO URBAN HYDROGRAPH PROCEDURE 1 .40 DATED JULY 2, 2013 66 aw Construction, LLC 120th`t 2861 W. Ave., Suite 250 Mt- Westminster, CO 80234 Phone: (720) 708-6535 November 13, 2015 Ken Wonstolen Bill Barrett Corporation 1099 18th Street Suite 2300 Denver, CO 80202 Re : Laydown Yard Facility USR Authorization Dear Mr. Wonstolen, On behalf of NGL Water Solutions DJ, LLC, M3 Construction, LLC has permission to act as an authorized agent of Bill Barrett Corporation and Circle B Land Company, LLC for the laydown yard facility. Written : N wo " h Signature: L/f, L) v ? ce , evo2C1 & tQTitle: � i Date: III 13 Is EXHIBIT A MAILING LIST Mineral Leasehold Interests Mineral Owners James C. Williams & Jean T. Masterson PO Box 352 La Salle, CO 80228 Lance Frizell Huff PO Box 70608 Seattle, WA 98127 James W. Bartlett 643 Oenoke Ridge New Canaan, CT 06840 Patrick J. Mullady 243 North Peark St. Stockton, IL 61085 Vicki L. Bagley 700 New Hampshire Ave. NW #508 Washington. D.C. 20037 Bill Barrett Corporation 1099 18th St, Ste 2300 Denver, CO 80202 AED Group, LLC 6301 Gaston Ave. Ste 240 Dallas, TX 75214 6 44414:3' DEPARTMENT OF PLANNING SERVICES 1555 N 17th AVE O GREELEY, CO 80631 • PHONE: (970) 353-6100, Ext. 3540 COLORADO FAX: (970) 304-6498 A HO " ] ZA IIO �ii FORM ➢ M3 Construction, LLC represent Bill Barrett Corporation for the property (Agent/Applicant) (Owner) located at North of and adjacent to WCR 52, approximately 9,292 ft east o₹ WCR 89 . LEGAL DESCRIPTION : SEC 27 TWN 5N RNG 61W SUBDIVISION NAME: NA LOT B BLK NA I can be contacted at the following phone #'s: Home NA Work 720-708-6535 Fax # NA The property owner can be contacted at the following phone #'s Home NA Work 970-353-0407 x6015 Fax # NA Correspondence mailed to (only one) : X Agent/Applicant Property Owner DATE 11 ZC / (tp OWNER'S SIGNATUREl -b3A ( L c_s--A h i o Y of c 6-e rn .P Arai CO U K S ed 1 S N ` 1 .6°/0 I I — � � - - \\ \ {�p�� - . . - D - \A\ .cc 8 {(n — — - 521 x 4522.80 aar at's ii( aY4'S � � ' ' °� — 4517 + • �, \ 49' x 35' CHANNEL RUNDOWN I x - -¢r3' ';i ;;^' :" - CO .. _ - - _ _ +° 51 \ \t WITH NORTH AMERICAN GREEN N I N. ,,:.:- ' x 4521 .94 1 4 . .'n.: ':,. ' - ..:J..r_;Y : '•mj�;jl, , . ._a 4 . 0 FABRIC �p _ y1r �:1.-.�.:.� . :`•• t . ' . .\ 1 • 1(f v1I i d . .. , aw T •' 1 .L �T ''t ' �' •} W' • I n i - a ' ' \ .. al t a .' ♦ � � � a Cr3 2? • a . .n ... ,. •1 : Y ! v w .., .. _ 1 Ian t :: a .,' . . . , ' al�., � ,_ ... . . r. � 1, . . , . . . r ...al •. .I.a . t `:: 1 \.: JI < f r \ 1 ✓a: • 15\ `N ry• , teer+4?, '.:**3 ".,..,k( ' ,z 4521:5b ,. :: .... . ..: . .. . .. .., , a _ : - ,: . .. . • , - ,; ... .. '- .,. . .. , �:, . irI B I : \ /� I`�, \ \ 4520 \ • 1 s 9 \?� \ �9 �. ,04.-..•. 451 ffor i ------% 'r • *. • • •. ' +. • I 3 8 t •D I xan.72 0 40 80 120 `— . ..:. . . ....... ..;:..,.:, .. ; ... ry ..:: „T ... :.:. ♦:f ' • STAGING AREA, , 4 5 1 rrrr� : .... >. ;. ..a.. . ..:<.. w . o� sroasce ' . rrrr� 100- YR EVENT . . . ., I . ,: r , : .,. . .1. .;. . vl _ ;.. :,.;....: ' : 'r , .,. ..:. J GND HINGE REAJ6Cf .:.:t \eNOe lye/U . I . rvy . `e. .>Y .. y: .. .: ..a / :Iw ..: ♦. .a . :, x .v. ...} y 'a i:. .:; ev . .. :., ' .......... \\\\ I/// ..: . ,: . , . . . . ELEV . . . . . . . 1 . .. , 'lo�j < . t .� : : : 9: 9:::' _ . . : ,. . ... WORK AREA ;.::, ;::: WATER o 1 = 4515 • 6 4 Ilio . .. , .. : .. w .. , t . r .. . .. . ,a : .. . , . .. . . '• . 15' �5 \ $ J: .. .. 1 . I ♦ r .. J' J .r/ Y / v. J .. - o - ................... .... .... ig I . . /� . . . .. .. . e '. •.. .-/' . , . , , J.. . V .. . L , .. . a , 1. „ I , l }}YY O I in .. -.:.: ... . ry e. ....,. .. . . w . .. .r'•'.. J . . .. . . . ....•.. � a. .: � 1' f , % jam T I r , I/ •'.,: . 5FFFEY:i5F2r.F2v:Fi1:Yi ��' : •. 1.. -:: ... .. 15 X 94 EMERGENCY V / f:. . ., .. u , , Y. : , .=• ‘ ,. : ...... ..••, ....; . :••:'''... '. 1 : •q�'A� V'(. SPILLWAY WITH NORTH ... ............... ..•. .: . ..�...L :u . nl: :.a::." ,, . .:. ..� , �t. . .. . m . . ... ,v t .::...... t. : :v ..�i.:'p: r ».: ya ... . .1{ { . . ... I/ a/irainuuunmmn�°oe I • // : .. . . :. : ': . . . ` � /V J.15 AMERICAN GREEN P550 FABRIC I nit' rar�l` 451'8. .. K • • • • :, �/ 94 ADD (1 ) ADDITIONAL 15" CMP I r e � . ... . :.....:4t4 4%A EMERGENCY OVERFLOW I \ o x ': :'a EW:i:# ETEI TI41,:PONE):::::::.::::::.:::s .• �/ AT ELEV 4515 CULVERT W/ FLARED END SECTION e ; ' :.: . . ... .. ..... ...:::.:::::.. , L= 94' SLOPE = 0. 4% I - ;::'.: ':':' .. �� •' '''''''''''''''''''''''.. ...................... .. . . . ..''. � � „ .. . .:.; \ ° \s isisia . ,: :>:Ctt >:> ETiiiii≥i :iii :iii: ii : � 18 CMP CULVERT INV IN = 4515.85 I jY , ; : ^.. I 'r / W FLARED END SECTION I 1 � / INV OUT = 4515. 45 I E:₹EN: fOPF: ::: :ia i 5 , ,..,2 ©� ,_: � ii:'i; i:≥ i ::....................................................................... .. �,01 L= 34 SLOPE =0.3% �N 'f ND:.:' 0V 1 Ti: ': »:: : :.:. :.:. ' - . . A� INV IN = 4513 �� Illnill 4 :i: : ... �II s �ti INV OUT = 4512. 9 RATE 1 t37:'::'CFA.;'::':':;:':'::':;'....... . y y I '... '.� 9 . 5 4 18.30 5(t.Di( 17 Gj2 Ie :;a:':::o::::::::::::::............. . .: .M ,::.: ::. ....... .. 7 X 3 X 18 THICK • , _ ... .,. .. C� 0.85 Is i.. .:'.:.j . e. •.; . ... ... .r♦Y.. —.m....................... I ,, 9 D50 RIP RAP PAD SEE 7 17 p� x a52o.o0 19 DETAIL SHEET A-51\ I - .' . - ' x 451 / U 19 17 15 - 14 — I I X 4513.41 ^� — 19 1 ' ° S ` x , ssa x asTnra TOP OF BERM x 4512♦7t 4512♦a0 x 4512, 82 5 14. x 4515.18 4513. 97 x L / �• O x asu.zs ELEVATION = 4517 L N 2cr4�'nn" Ex 451S 73 45T��3 4515 00 - - x 4314.38 O - - - - - 1E D COUNTY ROAD ' 52 - 770.022' - - - - - _ _ - - - U x as, s.sz \� _ x 4519♦71 ( 0 0 ' Row ) EDGE OF EXISTING ROAD I LEGEND : J Cr Q GILIDING PLAN EDGE OF BUILDING Ca SWALE CENTERLINE - - - - - - - - - - W 74 I USR BOUNDARY - - - - - - V Ct EXISTING GRADE CONTOUR V FINISHED GRADE CONTOUR I Q lx za 55' 7 20, W ct el 0 ce Zo 7m W xW 11 O xQa , 3 Z 1 4 I I 5 I1 1 5 5 I1 /Z� Pd EE F • 29' • 1 V Trz0 I SWALE SEC A-A SWALE SEC C-C Z g a> CHANNEL SLOPE = 0.85% w CO 41- W I CHANNEL SLOPE = 0.7% Z Q ' IIIc 49 za 43• 0 INS ,_ wSal� w o te MOO - - - - - - - - - . 7 m 1p, N3 10 � W -I p XE I` w DRAWN N ..---.31 h NORTH AMERICAN GREEN CHECKED I 4 5 P550 FABRIC Ii 1 I SWALE SEC B-B a DATE l• 20• 1 a 11/s2015 CHANNEL SLOPE = 4% SWALE SEC D-D SCALE E CHANNEL SLOPE = 1.0% PROJECT # SHEET 13 OF SHEETS Noe I Nam Mew men . . . . . . . �� ��� girl _ --.�—rr_ _ - `��\ 49' x 35' CHANNEL RUNDOWN .... � .. .: �.IL ..,:. . ... ...f. .J. _ . . , . . .. .• . .. :, . . ., . ♦ ;. ,. g. . ry . . . . . .. . . . _ . . � ♦ �. , � "��� WITH NORTH AMERICAN GREEN . . .., , ♦ �. . .....:J . FABRIC yy,Y, siikRl°, - P550 . . t: S.. .�, 4:\ '\ ... A _. YfY . .'.. .) \ . ]♦ \" A \': .I . . . . .. .. /.. • v (:::.= 44 -f i•�I �� / y ..- .. . : . . .. 4 a. .. . .. ..: : ._ . .:. .1.. ,_ ',: . ♦Y •:: ..: : .... . \. .� , . : <: o ` liki , OS1 216 CFS N . • • ♦ J , ... J ♦. • . . '. Y ... �L:. ` ,♦ ... � . J: •'/i. J:.\. ::�.:-.ten', ^ . .�. YF O.'� :I • ' •>. � \ J.f'.♦f • t ' • 4�u, . <' .: ♦ . h ..^ \ Js :nf ,. .. ':F• d ' vI S ,'N ._Y .. .. + 1 ♦ , l . ♦ . . 1. ...♦.♦ ♦. , . , .. ...- .. . . , r -. IJu. . . .. J \. ♦ J . . . .. .. .. 1 i' .. IP: I ' h`.. . ., .v:.n-�`.� .. ' nlr: Vl. _ i yL.'. : �...A' gin'., J •}. �:� rv . . :,. .:a ... . t� � ,,.. ,� ' : c.: :.Y. ..J ; . .; . . .. . . .. . . ..:: .: J: . .4. :: r \ .:Iw ,.• .. , . , .. � 1 .. . . . 4 � � OS2 148 CFS S4 - 7 6 CFS �j Q �p�� B + lL Cj U� T�, 2 l � ,I� 45 •� CO 1•. :. .. ♦ �i i o aV I\ QQ ` `.` . . >. ::: : \'ice J it �i3 \ ° ®� %e aeaa. 4519 C11 SITE = 15.2 CFS OC ca 0 1 all 2 1 0.4 0♦63 • RRETT SITE= 12. 6 CFS BA . ., ... .,• •�: � .. . t— tsc4 . . � . • �:: • :A :::% '> \ � : �. : r. . 'q . .;� r.;.r:,f: .. . . :.\: :.;.. :: ' ..� \ ,.,.., �. '; •.�,�' o .,..., , ,:.ir'...:.:.....:.i5i%:'�F1i?:�:.1:1. :' <:. 35"• : . x:: : ::::: :[ .. .:: : 45 TOTAL FLOW TO = 399 .36 CFS w, Y. O R V yr \..../ ♦wy :. /•. ♦V: : • ♦ ♦ : t. L :./. ...: ' , \ \♦, .. . . {.. . ' . : ~..y :' > .. .'. � ♦ .. ^ .t \ ♦ ' ` \. .. . L I . . ♦ • u.... :. _.. .: v ♦ Y • •:• : . , .. . .. . '• .. � Y.� .YL e. .• ..rv, J r.::/ :..1•. ♦. . v• ' : : :: SEC A A AND D i c,, I . . . > ;:,::::,. :,, . 1 OVERFLOW 00 YR EVENTS) 1 �h. . . .. . Si '�C : . _.. . '.. � ;.: �;.� �1• � . ... � .. � :" ,:: ,r' . •••••••• • . ... .. , . � � � -�. • !� ` 451 . II : 40 : :.ra ,., ; . inaaSTAGIN3fGRAGa 100 YR EVEtot7r,�oR rxaRcr. . . .f ' • : ' :`" : J ' , AdRY AREA.� •. .� : . ::. ::. ::. ::. ...... WATER ELEV �• 4515 . 15 II .1 ♦. f . . YY Z ) ! I I .✓ II rv:. n..,. .. . ♦ Y . . ...i. ._} vi • '.:e ..J .4. • , . 4 '. . f:: X.�.C::: Y: Y t i (OS : ♦' .lA ; .• , :•.C : l : N ^ ' . . .. . ,.: . . .. . . F • ` iii wu/ 29, 6 ..... -- '� "�'�'��' � ���'� �"�� �� 15 X 94 EMERGENCY 4 :.411:1. I . . Y • 1 L\ .: ) ' ±' �(::y .. .: > \ (•w . . . s' : i: :2 :• ............>:::: " �I SPILLWAY WITH NORTH: ..n .,. ;\.p' •4� ::�.. :. :. '.JJ' .,.• •Y . :.Y' :.. . ♦.J 4 ..>.,..... .. Y.... . .'.:. l:,.w : :. :n ♦ .)i. '. I ` ` : r` • • • �i f 5 ....,/'��.1 AMERICAN GREEN P550 FABRIC ;I(•5:I . : 1 ♦. . , > ' •• : •• ` .. � ~ ` � ` +Y..r11�ia: T _ nw : <c yax�e SITE sa ADD (1 ) ADDITIONAL 15" CMP 0 EMERGENCY OVERFLOW I -. � ; s 5.11 •2s :`:::::::N:EW:::DET N O 1:S :f 44N:Qii:i iiiiSi:ii::: iSi: . i / AT ELEV 4515 ,..% _. CULVERT W/ FLARED END SECTION //,�12.6 �/ `� ��` L= 94' SLOPE = 0. 4% w I ;• ":: ...♦ : ., .. 3� TC 3 iyftt ;': VfJL1tiE' RQ;O:i ° i : :;: : >::>::::::: : :; iii 80 u ° 9 r 18" CMP CULVERT n,,. ..at%%*` INV IN = 4515.85 : :.: : : : . r o\ \ 1: ::: :e : ' :: : :: ...-: :: ::: :: :: : /� _ I :. .,. . \ I. a:::::::::a:::::::::::::::::::::::::::::::::::::::::: . :.: // 14 W/ FLARED END SECTION INV OUT — 4515. 45 I • . :... .. I ♦ a: >: 31TENITIO ` ::`::: ::::::::::::::`:::::::: :::::`::::::: ::::•••:: ::: :::: ' :i` �0 • 55 — _ I ,,.d..,:.,. O T . .. , � / L 34 SLOPE 0. 3%........... �i /1,N. ..:. INV IN =4513 (O� I �/ � .4 w INV OUT - 4512. 9 Dc �� 1 46,1 ::::: :::::: :: ::.ATE.= .'7i :0:T : F ......:::::-..••• : : : :: II' �G:Z _ is -_ • f _ mom — .. , �.frarf .. a., -..o 7' X 3' .X 18° THICK � : ,• :; to - - - � ar. = r..................................................... 9 D50 RIP RAP PAD SEE 1g 19 _ ie 17 —. 17 DETAIL SHEET 45A O� TOP OF BERM �� �� ELEVATION = 4517 _/ ) I z - - - D COUNTY ROAD 52 Q t I • I. 11 EDGE OF EXISTING ROAD _ I Illerek 0S3 = 1 . 1 CFS Q t ► OS5 = 5. 9 CIiiSIN MAI'S z S1 = 0. 13 CFS ICIK Co p + Co C11 SITE (S2) = 0.09 CFS I M ° R W C3_ _ + "� . TOTAL FLOW TO = 7.2 CFS r . .. .. i Flat vsENTRY CULVERTS Ill • \ IL46624 ( 10 YR EVENTS) I J 11 '4 - • • 500 LF. OVERLAND FLOW • 1,6% Il M• Ct \‘'''‘,. Ayb. • 4 • r"-*---dri . i 11 I .t 179 216 ` ` - - \\\_. jac.. .+ \rnacib-, • - - ok ft Z N ti • W tD Ile Se _ ' ♦ M DRAINAGE LEGEN : W o I Pi Z I ! \� L, '' '. SUB- BASIN BOUNDARY Z esi ass Q (� dzo • `809ttF. SHORT GRASS PASTURE • 2.3% I W g �j " j • T __ T _ T __ T — T -- TIME OF CONCENTRATION LINE I L. \1/4.. 000% DIRECTION OF FLOW 4 '� �� ( N h s4 CO- + 4605 � V I II a • lii Z ry OS2 Iii ItllaiK—A- I di zn I 1 ` ` C A = Basin Designation / \ ROJECT ' B = Area in Acres ®� ! 1 SITE C = Percent Impervious ► _ 500 L.F. OVERLAND D = Q( 100) cfs DRAWN • � = - i FLOW • 0.95% I OS4 � � �� •� :` 330= LF. OVERLAND 0 40 80 120 I CHECK o ` FLOW • 0.95% WCR 52 6.15 2 \ - +FS9I DATE 4 i \ J .� m *4 I 11/9/2015 0S3SCALE 25.6 , 0S5 1' = 40' 4.19 f t\ 28.0 29.7 SHEET OFF -SITE BASINS EXHIBIT I SCALE : 1 "= 1000' C2 } - OF SHEETS L DECEMBER 15,2015 RESPONSES TO 7-DAY REVIEW COMMENTS, received from Applicant's Representative: Environmental Health request the following amendment to the questionnaire The site plan indicates a portable toilet will be provided which is acceptable. Please include in a revised questionnaire that a portable toilet will be on site at all times Please see the attached updated questionnaire which now includes a description of a portable toilet that will be on site at all times. Planning, Department requests : A Letter of Authorization for M3C to act on behalf of Bill Barrett Please see the attached authorized letter from BBC to M3C providing authorization to act on their behalf. Please identify the person who signed the application and who he/she is employed by Nick Valencia signed the application and is employed by M3 Construction, LLC. The application file to be placed on a CD, please break down each component as a separate file I will hand deliver a flash drive with the USR application package broken down by each component on a separate file on Wednesday, December 16th . Please define size of sign, both in area and in height 3'x5' Please define if gate swings or slides The gate will slide. Please provide additional comment on the communications component (Q#6 response) No communication tower, relay or otherwise delineated on USR map Please see the attached updated questionnaire. We have removed the description of the communications component as there will not be a communication tower or relay at this facility. I apologize for the confusion . Please provide cut sheet of light standard to be employed Please see the attached specs from the lights BBC installed at another yard . They will be placed on a pole that extends app. 29 feet above the ground surface. On map, please provide Legend for surfaces by type Please see the attached updated site plan which now provides a legend for surfaces by type. As reference the Legal Description is Lot B RECX14-0110 being part of the E2 SE4 27-5-61 Also on the attached updated site plan, you will see the legal description now reads RECX14-0110 and not REC14-0110. Hello