Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Browse
Search
Address Info: 1150 O Street, P.O. Box 758, Greeley, CO 80632 | Phone:
(970) 400-4225
| Fax: (970) 336-7233 | Email:
egesick@weld.gov
| Official: Esther Gesick -
Clerk to the Board
Privacy Statement and Disclaimer
|
Accessibility and ADA Information
|
Social Media Commenting Policy
Home
My WebLink
About
20252323.tiff
i Weld CountyDrinage Code _CertIcate of Compliancetr „, _ . .4. 4 ealai ` I - " Weld County Case Number : PU DF24 - 0001 _ _ � r N Parcel Number : 121308000014 , 121317100016 and 121309000026 Legal Description , Section / Township / Range : Part of Sections 8 , 9 and 17 , T3N , R65W Date : May 7 , 2025 I Todd A . Johnson , Consultant Engineer for Terra Forma Solutions , Inc . ( Applicant ) , understand and acknowledge that the applicant is seeking land use approval of the case and parcel in the description above . I have designed or reviewed the design for the proposed land use set for in the application . I hereby certify , on behalf of the applicant , that the design will meet all applicable drainage requirements of the Weld County Code with the exception of the variances ) described on the attached exhibits . This certification is not a guarantee or warranty either expressed or implied . Engineer ' s Stamp : epofin �e�ll�ltit � l � � � � �1�/������ , •, ,, rs- : A® .; �� : • .e • me • + %0, �• 5 / 7 / 2 5 4.00 * Ss/ � • • • • • • . . . . • . • • . • . . G Variance Request Of Applicable ) • • • . a • ;. 4,ONAL 1 . Describe the hardship for which the variance is being requested . 2 . List the design criteria of the Weld County Code of which a variance is being requested . 3 . Describe the proposed alternative with engineering rationale which supports the intent of the Weld County Code . Demonstrate that granting of the variance will still adequately protect public health , safety , and general welfare and that there are no adverse impacts from stormwater runoff to the public rights - of - way and / or offsite properties as a result of the project . Retention ponds are not permitted per Section 8 - 11 - 40 - E of the Weld County Code . Additionally , Section 5 . 10 . 1 of the Weld County Engineering and Construction Criteria states : " Stormwater retention facilities ( stormwater infiltration facilities ) normally are not allowed in Weld County but shall be considered for special circumstances with the issuance of a variance . Variance requests shall only be considered in situations where there is a proven hardship on the proposed site . A hardship would be considered where there is not adequate topography to physically drain a pond ( sump in basin ) , refusal of an irrigation ditch to accept additional drainage , or some other physical site constraint . " The proposed project site meets both hardship criteria . The site includes several historic low points that are infeasible to drain by gravity without extreme excavation ( > 50 feet ) or the use of mechanical pumping . Given the presence of Type A sandy soils , these areas currently allow stormwater to infiltrate naturally . The proposed design seeks to minimize disturbance and preserve existing drainage patterns by placing retention ponds in the general area of these larger depressions . Due to the topography , there is no feasible way to drain the proposed ponds using a typical gravity outlet structure . Therefore , runoff entering these ponds will infiltrate into the ground as it does under existing conditions . Furthermore , the Farmers Reservoir and Irrigation Company ( FRICO ) , which owns and operates the downstream Milton reservoir , does not permit stormwater discharges into their system . As a result , all developed runoff will be captured by the proposed retention ponds and infiltrated on site , with no negative impacts to surrounding areas . We are proposing retention ponds due to these historic site constraints . The ponds will be sized for 1 . 5 times the total inflow volume from the 24 - hour , 100 - year event and will include 1 foot of freeboard to the spillway , in accordance with Section 5 . 10 . 1 of the Weld County Engineering and Construction Criteria . The site is composed of highly sandy soils , making it unlikely that water will be retained in the ponds for any longer duration than occurs under current conditions . This proposed condition is also consistent with existing conditions in Filing No . 1 , and the associated maintenance requirements will be similar for the Metropolitan District . Public Works Director/ Designee Review ( If Applicable ) Mike McRoberts , P . E . � ' y� � ; itta - Public Works Director / Designee Name Signature July 16 , 2025 Date of Signature .— Approved ❑ Denied Comments : Department of Public Works Development Review 1111 H Street , Greeley , CO 80631 I Ph : 970 - 304 - 6496 1 www . weldgov . com / departments / public_ works / development _ review 08 / 02 / 2019 i Weld CountyDrinage Code _CertIcate of Compliance it Weld County Case Number : PU DF24 - 0001 _ _ � r N Parcel Number : 121308000014 , 121317100016 and 121309000026 Legal Description , Section / Township / Range : Part of Sections 8 , 9 and 17 , T3N , R65W Date : May 71 2025 I Todd A . Johnson , Consultant Engineer for Terra Forma Solutions , Inc . ( Applicant ) , understand and acknowledge that the applicant is seeking land use approval of the case and parcel in the description above . I have designed or reviewed the design for the proposed land use set for in the application . I hereby certify , on behalf of the applicant , that the design will meet all applicable drainage requirements of the Weld County Code with the exception of the variances ) described on the attached exhibits . This certification is not a guarantee or warranty either expressed or implied . Engineer ' s Stamp : 410.9. . . .1!9/ 5/0 Q • I • � ` , j • • r • � �0, 5 / 7 / 2 5 . � _ ��i Cam . • • • • • • . . . . • • • ' • • . G ~�. Variance Request Of Applicable ) cfr,,�ss�� • • • • �NAL �����`` 1 . Describe the hardship for which the variance is being requested . 2 . List the design criteria of the Weld County Code of which a variance is being requested . 3 . Describe the proposed alternative with engineering rationale which supports the intent of the Weld County Code . Demonstrate that granting of the variance will still adequately protect public health , safety , and general welfare and that there are no adverse impacts from stormwater runoff to the public rights - of - way and / or offsite properties as a result of the project . Per Section 5 . 10 . 1 of the Weld County Engineering and Construction Criteria , an emergency spil way is required for all retention ponds . Retention Pond W3 is located within a deep natural depression . When the required volume 1 . 5 times the 100 - year , 24 - hour runoff is calculated , the corresponding storage elevation is approximately five feet below the natural overflow point , which discharges off - site to the east . Due t0 the topography and existing site constraints , it is not feasible to raise the pond elevation without creating a low point directly over an existing Oil & Gas facmlity . As a result , there is no practical way to construct a concrete emergency spillway within the reasonable limits of the pond area that would provide positive drainage . However , there should be no adverse impacts to any proposed lots by omitting the spillway . The pond will infiltrate all runoff and will provide significantly more storage capacity than required , including the necessary freeboard . Public Works Director/ Designee Review ( If Applicable ) Mike McRoberts , P . E . _ � __—/t t dsals - Public Works Director / Designee Name Signature July 16 , 2025 Date of Signature Approved ❑ Denied Comments : Department of Public Works 1 Development Review 1111 H Street , Greeley , CO 80631 I Ph : 970 - 304 - 6496 1 www . weldgov . com / departments / public_ works / development _ review 08 / 02 / 2019 i Weld CountyDrinage Code _CertIcate of Compliance it Weld County Case Number : PU DF24 - 0001 _ _ � r N Parcel Number : 121308000014 , 121317100016 and 121309000026 Legal Description , Section / Township / Range : Part of Sections 8 , 9 and 17 , T3N , R65W Date : May 71 2025 I Todd A . Johnson , Consultant Engineer for Terra Forma Solutions , Inc . ( Applicant ) , understand and acknowledge that the applicant is seeking land use approval of the case and parcel in the description above . I have designed or reviewed the design for the proposed land use set for in the application . I hereby certify , on behalf of the applicant , that the design will meet all applicable drainage requirements of the Weld County Code with the exception of the variances ) described on the attached exhibits . This certification is not a guarantee or warranty either expressed or implied . Engineer ' s Stamp : 410.9. . . .1!9/ 5/0 Q • I • � ` , j • • r • � �0, 5 / 7 / 2 5 . � _ ��i Cam . • • • • • • . . . . • • • ' • • . G ~�. Variance Request Of Applicable ) '/�i,,ss�o • • • � �NAL \�����` 1 . Describe the hardship for which the variance is being requested . 2 . List the design criteria of the Weld County Code of which a variance is being requested . 3 . Describe the proposed alternative with engineering rationale which supports the intent of the Weld County Code . Demonstrate that granting of the variance will still adequately protect public health , safety , and general welfare and that there are no adverse impacts from stormwater runoff to the public rights - of - way and / or offsite properties as a result of the project . Per Section 5 . 10 . 1 of the Weld County Engineering and Construction Criteria , an emergency spil way is required for all retention ponds . Retention Pond W3 is located within a deep natural depression . When the required volume 1 . 5 times the 100 - year , 24 - hour runoff is calculated , the corresponding storage elevation is approximately five feet below the natural overflow point , which discharges off - site to the east . Due t0 the topography and existing site constraints , it is not feasible to raise the pond elevation without creating a low point directly over an existing Oil & Gas facmlity . As a result , there is no practical way to construct a concrete emergency spillway within the reasonable limits of the pond area that would provide positive drainage . However , there should be no adverse impacts to any proposed lots by omitting the spillway . The pond will infiltrate all runoff and will provide significantly more storage capacity than required , including the necessary freeboard . Public Works Director/ Designee Review ( If Applicable ) Public Works Director / Designee Name Signature Date of Signature f 1 Approved ❑ Denied Comments : Department of Public Works 1 Development Review 1111 H Street , Greeley , CO 80631 I Ph : 970 - 304 - 6496 www . weldgov . com / departments / public_ works / development _ review 08 / 02 / 2019 1ea TERRA FORMA SOLUTIONS ( AKA BEEBE DRAZZ ( t ! 2 FINAL DRAINAGE REPORT JANUARY 2025 REVISED MAY 2025 For : RE I Limited Liability Co P . O . BOX 156 Red Feather Lakes , CO 80545 By : Terra Forma Solutions , Inc . Todd Johnson , P . E . Todd@terraformas . com 303 . 257 . 7653 Weld County Case Number PUDF24 - 0001 PELICAN LAKE RANCH F ING NO . 2 FINAL DRAINAG REPORT Page 1 Of 21 PROFESSIONAL ENGINEER ' S CERTIFICATION I hereby certify that this report for the Final Drainage Study for the Pelican Lake Ranch Filing No . 2, was prepared by me ( or under my direct supervision ) in accordance with the provisions of the Weld County Engineering and Construction Criteria Manual for the owners thereof . Jaya ti . e tt • 376611 G41/ / Qat \ \* Il00 ‘ 5 / 8 / 25 Todd Johnson , P . E . Date State of Colorado No . 37660 For and on behalf of Terra Forma Solutions , Inc . PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 2of21 TABLE OF CONTENTS 1 . GENERAL LOCATION AND PROJECT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 A . Project Location 3 B . Project Plan 3 C . Site Features , Existing Land Use & Constraints . 4 D . Floodplains & Wetland Areas 4 E . Soils & Groundwater 4 11 . DRAINAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 A . Existing Onsite Conditions 5 B . Existing Offsite Condition 5 C . Historic Conditions EPA - SWMM Results 5 111 . DRAINAGE FACILITY DESIGN - PROPOSED CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 A . Developed Onsite Condition 7 B . On - Site Retention - Infiltration 7 C . Erosion Control 8 D . Drainage Facility Design 8 V . VARIANCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 V . SUMMARY & CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 VI . GENERAL DRAINAGE MAINTENANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 VI1 . LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 PELICAN LAKE RANCH F ING NO . 2 FINAL DRAINAG REPORT Page 3of21 1 . G NERAL LOCATION AND PROJ CT DESCRI PT ON A . Project Location The Overall Project Site is located in the Sections 3 , 4 , 5 , 8 , 9 , 10 , 15 , and 17 of Township 3 North , Range 65 West of the 6th P . M . , and is currently within Weld County , Colorado . The Second Filing is located west of Milton Reservoir and State Own Land with a total area of approximately 854 . 2 acres . The Second Filing is bounded on the east by the State own land , on the north by the First Filing of Beebe Draw , on the south by County Road 32 and on the west by County Road 39 . A Project Vicinity map and Drainage Plan are included within this Report . This site is in a non - urbanizing area . According to Weld County ' s online GIS database , no portion of this project area is located within any Weld County MS4 areas and therefore this project is not subject to the requirements of the County ' s MS4 program . B . Project Plan In 1989 , a Zone Change was approved that included this proposed development . Also in 1989 , a portion of the approved PUD was platted ( Corrected First Filing of Beebe Draw Farms and Equestrian Center ) . The First Filing is located near the center of the PUD , and it is adjacent to WCR 39 . The First Filing also included outlots that are east of the Platte Valley Canal . In 1998 , A Phase III Drainage Report for Filing 1 was approved by Weld County . Subsequentially , additional drainage letters / calculations were approved by the County as different phases of Filing 1 were constructed . The proposed Second Filing consists of two areas of development with a total of 283 residential lots and associated infrastructure and open space . The area that is located between the First Filing eastern boundary and Milton Reservoir is called the East Area of Filing 2 and consists of 31 lots . The area that is located south of Filing 1 boundary , between WCR 39 and the State Land , is the main area and remainder of Filing 2 consisting of 252 lots . The minimum lot size is 1 acre . The Developer intends to utilize the natural grade and terrain as much as possible to facilitate adequate drainage of stormwater to the proposed retention / infiltration basins . All of the area within Filing 2 drains toward Milton Reservoir . The Farmers Reservoir and Irrigation Company has been contacted and they do not allow stormwater to discharge into their system . Infiltration basins will be used to eliminate , as much as possible , the storm runoff from the development . The development will have private maintained streets with borrow ditches on both sides . The roadway network will connect to the ex ' sting roadways that are located within Beebe Draw Farms & Equestrian Center First Filing . In addition , there will be two new accesses off of County Road 32 and 39 . The total area of Pelican Lake Ranch Filing Number 2 is 854 . 2 acres , of which approximately 723 . 5 acres will be developed . PELICAN LAKE RANCH F ING NO . 2 FINAL DRAINAG REPORT Page 4of21 C . Site Features , Existing Land Use & Constraints . The site can be characterized as relatively flat to gently rolling . There is approximately 96 feet of vertical elevation drop across the site . Numerous gas / oil wells are located throughout the site . The remainder of the site is currently being used as grazing land or dry farmland . The exiting runoff generally drains to the southeast and into the Milton Reservoir . There are several low areas on the development that don ' t have an outfall , however , the soils in these areas are sandy and any runoff to these low areas currently infiltrates into the ground . D . Floodplains & Wetland Areas Based on the FEMA - Weld County , Colorado Flood Insurance Rate Map ( FIRM ) Community Panel Number 08123C1935E ( 1 / 20 / 2016 ) , the flood plain for Milton Reservoir does not encroach into this development . The proposed construction within Filing 2 will not impact the any FEMA flood plain . E . Soils & Groundwater Per the Geotechnical Due Diligence Study for Pelican Lakes , Filing 2 , prepared by AGW and dated April 29 , 2025 , the subsurface conditions in the project area consist of topsoil , clay , sand , and gravel overlying sedimentary bedrock . According to the USDA MRCS Web Soil Survey , the surface soils are primarily a mix of Valent sand and Vona loamy sand . These soils are classified as Hydrologic Soil Group A , indicating low runoff potential and high infiltration capacity . All soil types are considered suitable for residential development . Groundwater was generally encountered at depths ranging from 16 to over 40 feet below existing grade and is expected to fluctuate seasonally and with future irrigation . Notably , groundwater levels are more than 15 feet below proposed finished grades across most of the site , with the exception of Pond E1 , where groundwater was observed in the worst case around 4 feet below the proposed excavated pond bottom . 11 . DRAINAGE This section discusses historic , existing , and proposed , drainage basin hydrology . Since there are basins that will be larger than 160 acres , EPA - SWMM computer program was u sed , in addition to the rational method , to calculate the Historic and Developed Runoff for retention pond sizing , as well as the peak flows for several channels and culverts where the tributary areas exceeded 160 acres . The calculation conforms with the appropriate sections of the " Weld County Engineering and Construction Guidelines " u pdated January 2021 and the Weld County Code , as well as Mile High Flood District ' s Drainage Criteria Manuals . The site is located in a non - urban area and therefore , the 10 - year storm was utilized for the minor storm event . The Rational Method was used to determine runoff to the proposed culverts and drainage swales . The on - site swales were sized to pass the 100 - year event . Per the Weld County Engineering and Construction Guidelines , the culverts n eed to be sized to convey the 10 - year runoff with no more than 6 inches overtopping the roadway and convey the 100 - year runoff with no more than 18 inches overtopping the roadway . In addition , the maximum headwater to depth ratio ( HW / D ) shall not exceed 2 . 0 for culverts under 36 " in diameter , and 1 . 7 for culverts 36 " to 60 " in diameter . This criteria was used as a minimum design standard . PELICAN LAKE RANCH F ING NO . 2 FINAL DRAINAG REPORT Page 5of21 The Rational Method utilized the one - hour storm event . Using the NOAA Atlas 14 Volume S version 2 maps , point precipitation values were obtained to develop rainfall intensity calculations . One - hour rainfall depths of 1 . 39 inches and 2 . 69 inches were determined for the 10 - year and 100 - year event , respectively . The EPA SWMM computer model was used to calculate the major runoff , retention volume and release rates . The SCS Type II — 24 Hour hydrograph was used as the model storm in the SWMM program . The 100 - year , 24 - hour rainfall is 4 . 64 inches . The infiltration ponds will be sized assuming no infiltration rates . The infiltration rate that was used in the Filing 1 calculations was approximately 1 inch per hour . The SCS Soil map has predominately 2 types of sandy soil located in Filing 2 . One type ( Vona Loamy Sand ) has published infiltration rates between 2 and 6 inches per hour . While the second type ( Valent Sand ) has published infiltration rates between 6 and 40 inches per hour . Given a 24 - hour design storm , there will be infiltration occurring at the ponds and the assumption of no infiltration results in higher calculated volumes . The water quality capture volumes are designed within the pond to infiltrate into the soil . A . Existing Onsite Conditions The Site is in unincorporated Weld County . There are numerous gravel / dirt access roads located throughout the site that provides access to the existing gas / oil wells and tank batteries . The remainder of the site is pervious with the ground cover consisting of grasses and sage brush . There are several depressions that infiltrate the tributary runoff . The existing soil is capable of infiltrating runoff . The site drains toward the southeast and eventually into the Milton Reservoir . B . Existing Offsite Condition Approximately 1 , 956 acres of offsite tributary area historically drain towards / thru this site to the outfall into Milton Reservoir . While the roadside swales that are adjacent to the County Roads ( WCR 39 ) will intercept some of the runoff , it is not anticipated that they will be able to convey a significant amount . Therefore , it was assumed that the runoff from the offsite tributary areas will drain across the county roads . The offsite runoff will be conveyed to the proposed retention / infiltration ponds via open swales . In addition , the bottom of the proposed retention ponds will have native vegetation and sandy bottoms which will infiltrate all of the runoff . Where necessary , swales and pipes will be constructed to convey the runoff around lots and under streets . C . Historic Conditions EPA - SWMM Results The EPA SWMM model was set up for the historic conditions . Historic Conditions estimates the expected runoff prior to Filing 1 construction . The Horton ' s Equation for infiltration loss were used to model infiltration losses for the basins . The SCS Type II — 24 Hour hydrograph was multiplied by the NOAA 100 - year value for the 24 - hour storm and was used as the rain gage . The following table shows the results of the SWMM model for the historic conditions : PELICAN LAKE RANCH F ING NO . 2 FINAL DRAINAG REPORT Page 6 of 21 Historic Conditions 1.11 Sub - Design Basin Area Basin 100 r Combined Combined Total g Y Total Trib Basin Point ( Ac ) Runoff ( cfs ) Area ( Ac ) 100yr Runoff ( cfs ) OFFSITE ON1 DP ON1 307 234 OW1 DP OW1 48 41 OW2 DP OW2 182 93 OW3 DP OW3 66 45 OW4 DP OW4 81 42 OW5 DP OW5 591 284 OW6 DP OW6 174 93 0S1 DP 0S1 187 140 0S2 DP 0S2 23 8 ONSITE H 1 DP H 1 666 521 1107 541 H2 DP H2 63 47 H3 DP H3 35 43 H4 DP H4 258 210 H5 DP H5 30 33 H6 DP H6 39 47 H7 DP H7 5 5 H8 DP H8 272 128 750 189 H9 DP H9 99 42 861 290 H10 DP H10 90 98 681 277 H 11 DP H 11 39 33 900 269 H12 DP H12 81 23 981 238 H13 DP H13 26 37 H14 DP H14 51 29 H15 DP H15 1475 625 2127 765 H16 DP H16 28 16 H17 DP H17 22 28 H18 DP H18 111 24 H19 DP H19 134 122 PELICAN LAKE RANCH F ING NO . 2 FINAL DRAINAG REPORT Page 7of21 1 I . DRA NAGE FACILITY DESIGN PROPOSED CONDITIONS Due to the large size lots being proposed , the existing drainage patterns will remain as much as possible , with the exception of the flows to the existing sumps . The existing sumps will either have a retention pond constructed in their location , be filled with dirt , or be drained via swales . Some of the smaller existing sumps within the lots will be filled at the time of individual lot development . A . Developed Onsite Condition All roads will be paved and maintained by the metro district . The minimum lot size will be 1 acre and there will be a 150 feet setback from all existing ( active ) gas wells . With the setbacks from the wells and the access to the wells , areas of open space will be created . It is anticipated that approximately 15 to 20 percent of the land will be impervious due to streets , houses , paved driveways and auxiliary buildings . Per Mile High Flood District Table 6 - 3 , for residential lots from 0 . 75 to 2 . 5 acres , a 20 % imperviousness is recommended . Therefore , a 20 % imperviousness was used for developed area in Filing 2 . The runoff coefficient for the developed condition incorporates the anticipated impervious areas . Filing 1 lots sizes were 2 to 4 acres in size . A half dozen lots that have been built out were selected at random and their percent imperviousness was calculated including the area of the street adjacent to their lot . These lots imperviousness varied between 10 . 4 to 13 . 8 percent with the average being 12 . 1 % . In addition to lots , there is a significant amount of open space in Filing 1 that was not included in the 12 . 1 % calculations . A 12 . 1 % imperviousness rate was utilized for Filing 1 area that drains onto Filing 2 . B . On - Site Retention - Infiltration In order to reduce / eliminate the total volume of runoff from the site , infiltration basins will be utilized . The infiltration basins will be sized to infiltrate 1 . 5 times the 100 year 24 - hour storm event for the tributary area including onsite and offsite tributary runoff . A conservative infiltration rate of 1 inch per hour has been used to demonstrate appropriate drain times in accordance with Colorado Revised Statute 37 - 92 - 602 ( 8 ) . Overflow swales will be provided at infiltration basins that will safely convey runoff in excess of the retention pond volumes . The retention ponds will provide for stormwater quality treatment in accordance with Mile High Flood District criteria . The Water Quality Capture Volume ( WQCV ) will be captured in the lower stages of the retention ponds and allowed to infiltrate . The swales leading to and from the proposed ponds will be grass lined with slopes as flat as 0 . 2 % . With the sandy soil , these swales will encourage the storm runoff to infiltrate and thereby reducing the volume of the runoff to the ponds . For calculations purposes , the swales were assumed not to have infiltration . Once the location of the infiltration ponds are finalized , infiltration tests will be conducted in accordance with Mile High Flood District criteria and an infiltration rate for each pond will be determined . Per Mile High Flood District criteria , the infiltration rate that is used in the design will be 50 % of the measured rate . PELICAN LAKE RANCH F ING NO . 2 FINAL DRAINAG REPORT Page 8of21 C . Erosion Control Erosion control will be provided and will be consistent with the Final Phasing P lan . More specifically , BMPs will be installed as appropriate to minimize erosion due to wind and surface runoff affects . BMPs during construction may include sediment traps , tracking pads , silt fencing , inlet protection , rock - lined rundowns , revegetation , and contour roughening . Post - Construction BMPs may include infiltration basins , vegetation , and proper maintenance of open areas . D . Drainage Facility Design General Concept The majority of the onsite areas will drain to the proposed infiltration ponds . The infiltration ponds were sized to hold and infiltrate 1 . 5 times the 100 - year developed runoff . The emergency spillway was sized for the developed onsite and historic offsite 100 - year runoff . No developed runoff from the West Area will be release into the Milton Reservoir during the 100 - year storm event with the exception of about 5 . 6 acres that drains easterly onto the State Land . This area is comprised of the very rear portions of several lots and the downstream end of the Pond 4 Spillway and therefore will have little to no imperviousness and should not result in any adverse downstream impacts . S pecific Details The onsite grading will convey the 100 - year storm event to the infiltration ponds . Offs ite Basins : Sub - Basin ON1 , 307 - acres , 2 % impervious , undeveloped offsite area that drains onto future phases on this development and will drain to the proposed Retention P ond UP1 that is located north of the Beebe Draw Farms Parkway . This basin ground cover consists of open range . Sub - Basin OW1 , 48 - acres , 2 % impervious , undeveloped offsite area that drains onto future phases on this development and will drain to the existing Retention P ond 9 that is located south of the Beebe Draw Farms Parkway . This basin ground cover consists of open range . Sub - Basin OW2 , 181 . 8 - acres , 2 % impervious , undeveloped offsite area that drains onto the First Filing and into the existing retention ponds . This basin ground cover consists of open range . Sub - Basin OW3 , 66 . 4 - acres , 2 % impervious , undeveloped offsite area that drains onto the First Filing and into the existing retention ponds . This basin ground cover consists of open range . Sub - Basin OW4 , 80 . 7 - acres , 2 % impervious , undeveloped offsite area that drains onto this site and combines with onsite Sub - basin W2 to drain to Pond W1 . This basin ground cover consists of open range . Sub - Basin OW5 , 590 . 74 - acres , 2 % impervious , undeveloped offsite area that drains onto this site and combines with onsite Sub - basin W1 to drain to Pond W1 . This basin ground cover consists of open range . PELICAN LAKE RANCH F ING NO . 2 FINAL DRAINAG REPORT Page 9of21 Sub - Basin OW6 , 173 . 92 - acres , 2 % impervious , undeveloped offsite area that drains onto this site and combines with onsite Sub - basin S1 to drain to Pond S1 . This basin ground cover consists of open range . Sub - Basin 0S1 , 1876- acres , 2 % impervious , undeveloped offsite area that drains onto future phases of this development . This basin ground cover consists of open range . Sub - Basin 0S2 , 23 - acres , 2 % impervious , undeveloped offsite area that drains onto future phases of this development at the southeast corner of future development . This basin ground cover consists of open range . Rational Method Calculations : Main Area Basins : Sub - Basin W1 , 11 . 3 - acres , 20 % impervious , onsite area within Filing 2 . This sub - basin combines with basin OW5 and drains to a culvert under Fairbanks Road to basin W - la and then continues to Pond W1 . Sub - Basin W1 a , 10 . 26 - acres , 20 % impervious , onsite area within Filing 2 . This sub - basin combines with Basins W - 1 and OW5 and drains via a grass - lined channel to Pond W1 . Sub - Basin W1b , 8 . 6 - acres , 20 % impervious , onsite area within Filing 2 . This sub - basin combines with Basins W1 , W1 a , and OW5 immediately before Pond W1 and drains via a grass - lined channel to Pond W1 . Sub - Basin W2 , 32 . 2 - acres , 7 . 3 % impervious , consisting of a small area of Filing 2 , and larger areas on Filing 1 and open space . This sub - basin combines with Basin OW4 and drains to a culvert under Fairbanks Road to basin W2a then continues to a grass - lined channel to Pond W1 . Sub - Basin W2a , 4 . 4 - acres , 13 . 8 % impervious , consisting of onsite area within Filing 2 as well as open space . This sub - basin combines with Basins W2 and OW4 and drains via a grass - lined channel to Pond W1 . Sub - Basin W3 , 15 . 6 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located south of Morning Dove Lane and drains via a culvert to Basin W3a then continues to a grass - lined channel to Pond W1 . Sub - Basin W3a , 26 . 6 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin combines with Basins W3 and W3b and drains via a grass - lined channel to Pond W1 . Sub - Basin W3b , 1 . 0 - acres , 20 % impervious , consisting of onsite area within Filing 2 southeast of Morning Dove Lane and Falcon Way . This sub - basin drains via a culvert to Basin W3a and eventually to Pond W1 . Sub - Basin W4 , 46 . 8 - acres , 9 . 5 % impervious , consisting of onsite area within Filing 2 as well as area within Filing 1 and open space . This sub - basin drains directly into Pond W1 . PELICAN LAKE RANCH F ING NO . 2 FINAL DRAINAG REPORT Page 10 of 21 Sub - Basin W5 , 37 . 2 - acres , 14 . 5 % impervious , consisting of onsite area within Filing 2 as well as open space associated with gas well production . This sub - basin is located south of Morning Dove Lane and drains via a culvert to Basin W6b then continues to the storm sewer system that discharges to Pond 4 . Sub - Basin W6a , 23 . 2 - acres , 10 . 5 % impervious , consisting of onsite area within Filing 2 as well as area within Filing 1 and open space . This sub - basin drains to Basin 6b then continues to the storm sewer system that discharges to Pond 4 . Sub - Basin W6b , 6 . 54- acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin drains directly into the storm sewer system that discharges to Pond 4 after combining with Basin W5 and Basin W6a . Sub - Basin W6 , 9 . 7- acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin drains via a culvert to Basin W10 , then continues into the storm sewer system that discharges to Pond 4 . Sub - Basin W8a , 1 . 1 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin drains via a culvert to Basin W8 and into Pond W3 . Sub - Basin W8 , 23 . 34- acres , 20 % impervious , consisting of onsite area within Filing 2 as well as open space associated with gas well production . This sub - basin drains directly into Pond W3 . Sub - Basin W10 , 18 . 2 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located between Morning Dove Lane and Ledyard Road and combines with Basins W7 , W9 , W11 , and W12 and drains directly into the storm sewer system and outfall channel which drains to Pond 4 . Sub - Basin W11 , 1 . 44 - acres , 12 . 1 % impervious , consisting of onsite area within Filing 1 . This sub - basin is located north of Ledyard Road and drains to Pond 4 via the Pond W1 outfall channel . Sub - Basin W12 , 8 . 1 - acres , 19 . 4 % impervious , consisting of onsite area within Filing 2 as well as a small area within Filing 1 . This sub - basin is located north of Ledyard Road and drains via a culvert to Basin W10 , then continues into the storm sewer system that discharges to Pond 4 . Sub - Basin W13 , 13 . 7 - acres , 10 . 4 % impervious , consisting of area within State Land ( which is considered open space ) , open space and lot area within Filing 2 as well as a small area within Filing 1 . This sub - basin directly drains to the Pond W1 outfall channel and into Pond 4 . Sub - Basin W14 , 179 . 2 - acres , 9 . 2 % impervious , consisting of 125 . 5 acres of residential area within Filing 1 and 51 . 18 acres of open space within Filing 1 . This sub - basin directly drains to Pond 4 . Sub - Basin W15 , 4 . 7 - acres , 2 . 0 % impervious , consisting of area within State Land ( which is considered open space ) . This sub - basin directly drains to Pond 4 . Sub - Basin W16 , 2 . 4 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located northeast of the intersection of Fairbanks Road and Morning Dove Lane . This Basin drains via a culvert into Basin S2 and continues into Pond S1 . PELICAN LAKE RANCH F ING NO . 2 FINAL DRAINAG REPORT Page 11 of 21 Sub - Basin S1 , 27 . 7- acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located between County Road 39 and Fairbanks Road and drains directly into a culvert under Fairbanks Road which drains directly into P ond S1 . Sub - Basin S2 , 22 . 0 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located east of Fairbanks Road and drains directly into Pond S 1 . Sub - Basin S3 , 6 . 1 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located northeast of the intersection of Falcone Drive and P elican Lake Lane , and drains directly into a culvert under Falcon Drive into Basin S4 . Sub - Basin S4 , 21 . 1 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located west of the intersection of Falcon Drive and Pelican Lake Lane , and drains directly into a culvert under Pelican Lake Lane which drains directly into Pond S2 . Sub - Basin S5 , 8 . 6 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located east of the intersection of Pelican Lake Lane and Falcon Drive , and drains directly into a culvert under Falcon Drive which drains directly into Pond S2 . Sub - Basin S6 , 26 . 2 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located south of the intersection of Pelican Lake Lane and Falcon Drive , and drains directly into Pond S2 . Sub - Basin S8 , 1 . 9 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located northwest of the intersection of Falcon Drive and Nuthatch Way , and drains to a culvert under Nuthatch Way into Basin S9 . Sub - Basin S9 , 10 . 4 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located north of Falcon Drive , and drains southerly toward the culvert under Falcon Drive into Basin S10 . Sub - Basin S10 , 12 . 9 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located north of Meadowlark Lane , and drains southerly toward a culvert under Meadowlark ane into Basin S13 . Sub - Basin S11 , 11 . 2 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located northwest of the intersection of Meadowlark P lace and Nighthawk Way and drains easterly to a culvert under Nighthawk Way and into Basin S12 . Sub - Basin S12 , 18 . 2 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located north of Meadowlark Lane and drains southerly toward a culvert under Meadowlark Lane into Basin S13 . Sub - Basin S13 , 72 . 8 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located between Nighthawk Drive and Meadowlark Lane and drains easterly to a culvert under Nighthawk Drive directly into Pond S 4 . PELICAN LAKE RANCH F ING NO . 2 FINAL DRAINAG REPORT Page 12 of 21 Sub - Basin S14 , 22 . 8 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located northwest of the intersection of Pelican Lake P lace and Fairbanks Drive and drains southeasterly to a culvert under Pelican Lake Place directly into Pond S3 . Sub - Basin S15 , 23 . 3 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located between Fairbanks Drive and County Road 39 and drains southeasterly to a culvert under Sora Way into Basin S16 . Sub - Basin S16 , 2 . 9 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located southwest of the intersection of Fairbanks Drive and Bunting Way and drains easterly to a culvert under Bunting Way into Basin S17 Sub - Basin S17 , 29 . 2 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located south of Fairbanks Drive and west of Pelican Lake Drive and drains easterly to a culvert under Pelican Lake Drive directly into P ond S3 . Sub - Basin S18 , 12 . 2 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located west of Fairbanks Drive and east of County Road 39 and drains easterly to a culvert under Fairbanks Drive into Basin S19 . Sub - Basin S19a , 2 . 2 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located northeast of the intersection of Fairbanks Drive and Pelican Lake Lane and drains to a culvert under Pelican Lake Lane into Basin S19 . Sub - Basin S19 , 67 . 4 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located between Fairbanks Drive and Nighthawk Drive and drains southeasterly to a culvert under Fairbanks Drive into Basin S20 . Sub - Basin S20 , 60 . 2 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located south of Fairbanks Drive and south of Nighthawk Drive and drains easterly into Pond S4 . Sub - Basin S21 , 7 . 1 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located northeast of the intersection of Meadowlark Way and Nighthawk Drive and drains southerly into a culvert under Meadowlark Way into Basin S22 . Sub - Basin S22 , 17 . 1 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located south of Meadowlark Way and east of Nighthawk Drive and drains southerly into Pond S4 . Sub - Basin S23 , 7 . 0 - acres , 20 % impervious , consisting of onsite area within Filing 2 . This sub - basin is located along the eastern boundary and drains southerly into P ond S4 . Sub - Basin U1 , 5 . 4 - acres , 2 % impervious , consisting of the rear portion of residential lots and open tract area . This Basin is anticipated to be almost entirely undeveloped and drains onto the State Land , following existing drainage patterns . PELICAN LAKE RANCH F ING NO . 2 FINAL DRAINAG REPORT Page 13 of 21 Sub - Basin U2 , 2 . 8 - acres , 20 % impervious , consisting of the rear portion of residential lots . This Basin is anticipated to be mostly undeveloped and drains onto the County Road 32 and 29 ROWs , following existing drainage patterns . Sub - Basin U3 , 2 . 6 - acres , 2 % impervious , consisting of the downstream side of the Pond 4 spillway . This Basin will remain undeveloped and drains onto the State Land , following existing drainage patterns . East Area Basin : North Basins Sub - Basin H4 , 255 . 4 - acres , 2 % impervious , consists of an area that is north of the existing Beebe Draw Farms Parkway and will be a part of future development of Pelican Lakes . This sub - basin drains Pond 9 . Sub - Basin H4 was used in the EPASWMM model , and the Rational Method runoff was not calculated for this sub - basin . Sub - Basin EN1 , 3 . 9 - acres , 20 % impervious , onsite area within Filing 2 . This sub - basin drains to a culvert under Egret Road into Basin EN6 and then continues along the south side of Beebe Draw Farms Parkway and eventually to Pond E2 . Sub - Basin EN2 , 2 . 1 acres , 20 % impervious , onsite area within Filing 2 . This sub - basin drains to a culvert under Blue Huron Street at the northern intersection with Egret Road and then continues to Basin EN6 along the south side of Beebe Draw Farms Parkway and eventually to Pond E2 . Sub - Basin EN3 , 2 . 2 - acres , 20 % impervious , onsite area within Filing 2 . This sub - basin drains along the southwest side of Egret Road to a culvert into Basin EN4 and eventually to Pond E2 . Sub - Basin EN4 , 10 . 8 - acres , 20 % impervious , onsite area within Filing 2 . This sub - basin drains to a culvert under Blue Heron Street and then continues north to toward Beebe Draw Farms Parkway and eventually to Pond E2 . Sub - Basin EN5 , 3 . 7 - acres , 20 % impervious , onsite area within Filing 2 . This sub - basin drains north to toward Egret Road to a culvert into Basin EN6 and eventually to Pond 2 . Sub - Basin EN - 6 , 12 . 1 - acres , 20 % impervious , onsite area within Filing 2 . This sub - basin drains toward Beebe Draw Farms Parkway and eventually to Pond E2 . Sub - Basin EN7, 18 . 5 - acres , 20 % impervious , onsite area within Filing 2 . This sub - basin drains towards Beebe Draw Farms Parkway and eventually to Pond E2 . Sub - Basin E9 , 8 . 3 - acres , 20 % impervious , onsite area within Filing 2 containing the existing Pond 9 from Filing 1 , as well as the rear portion of several lots . This sub - basin drains directly into Pond 9 , following existing drainage patterns . PELICAN LAKE RANCH F ING NO . 2 FINAL DRAINAG REPORT Page 14 of 21 S outh Basins Sub - Basin Fl , 12 . 3 - acres , 12 . 1 % impervious , consisting of offsite residential area within Filing 1 . This sub - basin drains to the overflow swale for Pond 9 and eventually to Pond El . Sub - Basin F2 , 6 . 9 - acres , 12 . 1 % impervious , consisting of offsite residential area within Filing 1 . This sub - basin drains to the overflow swale for Pond 9 and eventually to Pond El . Sub - Basin ESI , 24 . 9 - acres , 20 % impervious , consisting of open space areas and residential areas . This sub - basin drains to the overflow swale for Pond 9 and eventually to Pond El . Sub - Basin ES2 , 8 . 8 - acres , 20 % impervious , consisting of residential areas . This sub - basin drains to a culvert under Blue Heron Street , continuing to the overflow swale for Pond 9 and eventually to Pond El . Sub - Basin ES3 , 27 . 7 - acres , 20 % impervious , consisting of open space areas and residential areas . This sub - basin drains to the overflow swale for Pond 9 which drains to Pond El . Sub - Basin EU1 , 14 . 8 - acres , 2 % impervious , onsite area within Filing 2 . This area will remain undeveloped and will drain to the southeast , following existing drainage patterns . Retention Ponds : S ince the tributary areas to most of the Ponds are greater than 160 acres , the EPASWMM Computer Model was utilized to model the ponds . In addition , since the irrigation company who owns / operate the downstream reservoir doesn ' t permit storm water to drain into their facilities , the 100 - year runoff must be retained onsite and infiltrated in the sandy soil . The ponds in the EPASWMM model have no infiltration . Upon review of the SCS soil map descriptions , the expected infiltration rate will be between 2 inches per hour and 40 inches per hour . Therefore , the assumption of no infiltration is very conservative . Upon construction of the ponds , infiltration tests will be performed to confirm drain down times . S ince the ponds will retain stormwater and infiltrate it into the soil , the 100 - year , 24 - hour storm was used to size the ponds . The 100 - year , 24 - hour rainfall is 4 . 64 inches . U pstream of Filing 2 are the existing retention ponds located within the First Filing . The 1998 Drainage Report for the First Filing has a table listing the volumes for each retention pond . In order to determine the runoff from Filing 1 that is tributary to Filing 2 , the Filing 1 retention ponds were modeled within the EPASWMM model for Filing 2 . With the exception of one small pond , the EPASWMM model shows that all of the existing Filing 1 ponds will retain 100 percent of the 100 - year runoff . Upon additional examination , Pond 9 , as constructed , will retain the 100 - year historic runoff but does not provide the additional required volume ( 1 . 5 times the 100 - yr volume ) plus the one - foot freeboard , and therefore will be expanded with the development of Filing 2 . PELICAN LAKE RANCH F ING NO . 2 FINAL DRAINAG REPORT Page 15 of 21 P onds for West Area Pond WI , tributary area of 828 . 00 acres , of which 671 . 44 acres is offsite area from west of CR 39 and 42 . 01 acres consists of Filing 1 residential area . Per the EPA S WMM model , the peak 100 - year flow into Pond W1 is 355 . 07 cfs . The County requires 1 . 5 times the 100 - year volume for retention ponds . The 100 - year retention volume is 40 . 96 ac - ft . The bottom of the retention pond is at an elevation of 4884 . 5 and the 100 - year water surface is 4890 . 09 . Multiplying the 100 - year volume by 1 . 5 gives a required volume of 61 . 44 ac - ft of storage . The corresponding water surface for the 1 . 5 times the 100 - year volume is 4892 . 58 . The elevation of the spillway is 4894 . Per the calculations in the Appendix , the length of the spillway will need to be 365 feet long . The 100 - year water depth is approximately 5 . 59 feet deep . Using an infiltration rate of 1 inch per hour , the 100 - year volume will drain in approximately 67 . 1 hours . Pond 4 , tributary area of 301 . 88 acres , of which 133 . 6 acres is offsite area from Filing 1 residential area . Pond 4 is an existing infiltration pond that was constructed with Filing 1 but will be expanded with developed tributary area from Filing 2 . Per the EPA SWMM model , the peak 100 - year flow into Pond 4 is 97 . 31 cfs . The County requires 1 . 5 times the 100 - year volume for retention ponds . The 100 - year retention volume is 16 . 63 ac - ft . The bottom of the detention pond is at an elevation of 4831 and the 100 - year water surface is 4835 . 10 . Multiplying the 100 - year volume by 1 . 5 gives a required volume of 24 . 95 ac - ft of storage . The corresponding water surface for the 1 . 5 times the 100 - year volume is 4836 . 65 . The existing elevation of the spillway is 4839 . 08 . The length of the existing spillway is approximately 128 feet long . Per the calculations in the Appendix , the length of the existing spillway is sufficient to pass the 100 - year developed flow at a flow depth of 0 . 5 ' and therefore no changes to the existing spillway are necessary . The 100 - year water depth is approximately 4 . 10 feet deep . Using an infiltration rate of 1 inch per hour , the 100 - year volume will drain in approximately 49 . 1 hours . Pond W3 , tributary area of 24 . 36 acres . Pond W3 is a natural depression / sump that will be utilized as a retention pond for this Filing . Per the EPASWMM model , the peak 100 - year flow into Pond W3 is 34 . 79 cfs . The County requires 1 . 5 times the 100 - year volume for retention ponds . The 100 - year retention volume is 2 . 24 ac - ft . The bottom of the detention pond is at an elevation of 4891 and the 100 - year water surface is 4894 . 04 . Multiplying the 100 - year volume by 1 . 5 gives a required volume of 3 . 36 ac - ft of storage . The corresponding water surface for the 1 . 5 times the 100 - year volume is 4895 . 20 . Since this pond is located in an existing natural depression , no feasible overflow path exists and it will be allowed to pond several feet above the required volume . Therefore , no adverse impacts are anticipated to any proposed lots . A variance request has been included for the absence of a spillway on this pond . The 100 - year water depth is approximately 3 . 04 feet deep . Using an infiltration rate of 1 inch per hour , the 100 - year volume will drain in approximately 36 . 4 hours . Pond Si , tributary area of 225 . 93 acres of which only 52 . 01 acres are within Filing 2 . P ond S1 is situated on land that is planned for Open Space . Per the EPA SWMM model , the peak 100 - year flow into Pond S1 is 107 . 38 cfs . The County requires 1 . 5 times the 100 - year volume for retention ponds . The 100 - year retention volume is 12 . 46 ac - ft . The bottom of the detention pond is at an elevation of 4915 and the 100 - PELICAN LAKE RANCH F ING NO . 2 FINAL DRAINAG REPORT Page 16 of 21 year water surface is 4918 . 06 . Multiplying the 100 - year volume by 1 . 5 gives a required volume of 18 . 69 ac - ft of storage . The corresponding water surface for the 1 . 5 times the 100 - year volume is 4919 . 43 . The elevation of the spillway is 4921 . Per the calculations in the Appendix , the length of the spillway will need to be 105 feet long . The 100 - year water depth is approximately 3 . 06 feet deep . Using an infiltration rate of 1 inch per hour , the 100 - year volume will drain in approximately 36 . 8 hours . Pond S2 , tributary area of 62 . 06 acres . Pond S2 is situated on land that is planned for Open Space . Per the EPA SWMM model , the peak 100 - year flow into Pond S2 is 88 . 66 cfs . The County requires 1 . 5 times the 100 - year volume for retention ponds . The 100 - year retention volume is 5 . 66 ac - ft . The bottom of the detention pond is at an elevation of 4887 and the 100 - year water surface is 4891 . 98 . Multiplying the 100 - year volume by 1 . 5 gives a required volume of 8 . 49 ac - ft of storage . The corresponding water surface for the 1 . 5 times the 100 - year volume is 4893 . 76 . The elevation of the spillway is 4895 . 0 . Per the calculations in the Appendix , the length of the spillway will need to be 81 feet long . The 100 - year water depth is approximately 4 . 99 feet deep . Using an infiltration rate of 1 inch per hour , the 100 - year volume will drain in approximately 59 . 8 hours . Pond S3 , tributary area of 78 . 17 acres . Pond S3 is situated on land that is planned for Open Space . Per the EPA SWMM model , the peak 100 - year flow into Pond S3 is 87 . 22 cfs . The County requires 1 . 5 times the 100 - year volume for retention ponds . The 100 - year retention volume is 6 . 93 ac - ft . The bottom of the detention pond is at an elevation of 4889 and the 100 - year water surface is 4893 . 45 . Multiplying the 100 - year volume by 1 . 5 gives a required volume of 10 . 39 ac - ft of storage . The corresponding water surface for the 1 . 5 times the 100 - year volume is 4894 . 88 . The elevation of the spillway is 4896 . 00 . Per the calculations in the Appendix , the length of the spillway will need to be 55 feet long . The 100 - year water depth is approximately 4 . 45 feet deep . Using an infiltration rate of 1 inch per hour , the 100 - year volume will drain in approximately 53 . 5 hours . Pond S4 , tributary area of 304 . 48 acres . Pond S4 is situated on land that is planned for Open Space . Per the EPA SWMM model , the peak 100 - year flow into Pond S4 is 286 . 84 cfs . The County requires 1 . 5 times the 100 - year volume for retention ponds . The 100 - year retention volume is 26 . 99 ac - ft . The bottom of the detention pond is at an approximate elevation of 4854 and the 100 - year water surface is 4857 . 89 . Multiplying the 100 - year volume by 1 . 5 gives a required volume of 40 . 49 ac - ft of storage . The corresponding water surface for the 1 . 5 times the 100 - year volume is 4859 . 64 . The elevation of the spillway is 4861 . 0 . Per the calculations in the Appendix , the length of the spillway will need to be 275 feet long . The 100 - year water depth is approximately 3 . 89 feet deep . Using an infiltration rate of 1 inch per hour , the 100 - year volume will drain in approximately 46 . 7 hours . Ponds For East Areas Pond 9 , tributary area of 366 . 6 acres , of which 48 . 0 acres is offsite area from west of CR 39 . All of the tributary area to Pond 9 is undeveloped therefore , 2 percent imperviousness was used in determining the runoff to Pond 9 . The existing pond encroaches onto existing lots within Filing 1 and the existing pond doesn ' t have the County requirement of 1 . 5 times the 100 - year volume for retention ponds . Therefore , Pond 9 will be enlarged to provide the 1 . 5 times the 100 - year volume plus a PELICAN LAKE RANCH F ING NO . 2 FINAL DRAINAG REPORT Page 17 of 21 minimum of one foot freeboard above the water surface associated with the 1 . 5 times the 100 - year volume . Per the EPASWMM model , the peak flow into Pond 9 is 210 . 52 cfs . The County requires 1 . 5 times the 100 - year volume for retention ponds . The 100 - year retention volume is 28 . 28 ac - ft . The bottom of the retention pond is at an approximate elevation of 4829 and the 100 - year water surface is 4834 . 73 . Multiplying the 100 - year volume by 1 . 5 give the required volume of 42 . 43 ac - ft of storage . The corresponding water surface for the 1 . 5 times the 100 - year volume is 4837 . 05 . The existing elevation of the overflow is 4838 . 66 and is 194 . 4 feet long . Per the calculations in the Appendix , the length of the existing spillway is sufficient to pass the 100 - year developed flow at a flow depth of 0 . 55 ' and therefore no changes to the existing spillway are necessary . The 100 - year water depth is approximately 5 . 73 feet deep . Using an infiltration rate of 1 inch per hour , the 100 - year volume will drain in approximately 68 . 8 hours . The enlargement of Pond 9 will lower the 100 - year water surface thereby reducing the impacts on the existing residential lots on Filing 1 . With future development on the northside of Beebe Draw Farms Parkway , it is anticipated that would reduce the runoff to Pond 9 . Pond El , tributary area of 80 . 52 acres , of which 19 . 2 acres consists of Filing 1 residential area . Per the EPA SWMM model , the peak flow into Pond E1 is 101 . 80 cfs . The County requires 1 . 5 times the 100 - year volume for retention ponds . The 100 - year retention volume is 7 . 05 ac - ft . The bottom of the retention pond is at an elevation of 4815 and the 100 - year water surface is 4819 . 87 . Multiplying the 100 - year volume by 1 . 5 gives a required volume of 10 . 57 ac - ft of storage . The corresponding water surface for the 1 . 5 times the 100 - year volume is 4821 . 65 . Since Pond E1 is a temporary pond , no overflow is provided . The 100 - year water depth is approximately 4 . 87 feet deep . Using an infiltration rate of 1 inch per hour , the 100 - year volume will drain in approximately 58 . 4 hours . Pond E2 , tributary area of 53 . 32 acres . Per the Rational Method model , the peak flow into Pond E2 is 82 . 26 cfs . The County requires 1 . 5 times the 100 - year volume for retention ponds . The 100 - year retention volume is 5 . 06 ac - ft . The bottom of the retention pond is at an elevation of 4803 . 5 and the 100 - year water surface is 4807 . 19 . Multiplying the 100 - year volume by 1 . 5 gives a required volume of 7 . 59 ac - ft of storage . The corresponding water surface for the 1 . 5 times the 100 - year volume is 4808 . 90 . Since Pond E2 is a temporary pond , no overflow is provided . The 100 - year water depth is approximately 3 . 69 feet deep . Using an infiltration rate of 1 inch per hour , the 100 - year volume will drain in approximately 44 . 3 hours . V . VARIANCES The following variances from the Weld County Engineering and Construction Criteria are proposed as a part of this project : 1 . Allowing Retention Ponds • Per section 5 . 10 . 1 " Stormwater retention facilities ( stormwater infiltration facilities ) normally are not allowed in Weld County but shall be considered for special circumstances with the issuance of a variance . Variance requests shall only be considered in situations where there is a proven hardship on the proposed site . A hardship would be considered where there is not adequate PELICAN LAKE RANCH F ING NO . 2 FINAL DRAINAG REPORT Page 18 of 21 topography to physically drain a pond ( sump in basin ) , refusal of an irrigation ditch to accept additional drainage , or some other physical site constraint . " • The proposed project conditions have both hardships . There are multiple large existing depressional areas throughout the development that do not surface drain . With the presence of Type A sandy soils , these areas currently infiltrate into the ground . The proposed design is attempting to minimize disturbance and maintain existing drainage patterns as much as possible by placing retention ponds in the general area of the larger depressions . By doing so , there is no feasible way to drain these ponds with a typical gravity outlet structure , and therefore , runoff entering these ponds will infiltrate into the ground , as is occurring in the existing condition . In addition , The Farmers Reservoir and Irrigation Company who owns and operates the downstream reservoir , does not allow stormwater to discharge into their system . Therefore , all developed runoff is proposed to be captured by retention ponds and infiltrated into the ground with no negative impacts to surrounding areas . 2 . Emergency Spillway • Per section 5 . 10 . 1 , an emergency spillway is required for retention ponds . • Retention Pond W3 is located within a deep natural depression . When the required volume 1 . 5 times the 100 - year , 24 - hour runoff is calculated , the corresponding storage elevation is approximately five feet below the natural overflow point , which discharges off- site to the east . Due to the topography and existing site constraints , it is not feasible to raise the pond elevation without creating a low point directly over an existing oil & Gas facility . As a result , there is no practical way to construct a concrete emergency spillway within the reasonable limits of the pond area that would provide positive drainage . However , there should be no adverse impacts to any proposed lots by omitting the spillway . The pond will infiltrate all runoff and will provide significantly more storage capacity than required , including the necessary freeboard . V . SUMMARY & CONCLUSIONS In summary , the Pelican Lakes project will make use of existing grades to the greatest extent possible , minimize impacts to on - site environmental amenities , provide conveyance of on - and off - site storm flows through the site , and provide storm retention in manner consistent with Best Management Practices . Under the Plan , no adverse impacts to the local community or environment are expected . PELICAN LAKE RANCH F ING NO . 2 FINAL DRAINAG REPORT Page 19 of 21 V1 . G NERAL DRAINAGE MAIN ENANC The following is the drainage / site maintenance plan for the project : 1 . At all times , any erosion that may occur shall be corrected as soon as possible to mitigate the chance of sediment leaving the site . 2 . All outlet structures , storm pipes and swales shall be inspected regularly and cleaned if necessary . 3 . Any seeded areas that are not covered with vegetation shall be re - seeded and irrigated as necessary to establish permanent vegetation . 4 . Snow should not be piled in swales or near the detention pond . 5 . Any necessary repairs shall be made as soon as possible . Repairs to privately owned stormwater facilities shall not be the responsibility of Weld County . Retention / Infiltration Pond Maintenance : The following description was taken from the Mile High Flood District Urban Storm Drainage Criteria Manual volume 3 ( November 2010 ) and modified for this specific situation : Inspection Inspect the infiltrating surface at least twice annually following precipitation events to determine if the retention area is providing acceptable infiltration . Retention / Infiltration facilities are designed with a maximum depth for the WQCV of one foot and soils that will typically drain the WQCV over approximately 12 hours . If standing water persists for more than 24 hours after runoff has ceased , clogging should be further investigated and remedied . Additionally , check for erosion and repair as necessary . Debris and Litter Removal Remove debris and litter from the infiltrating surface to minimize clogging of the media . Mowing and Plant Care All vegetation : Maintain healthy , weed - free vegetation . Weeds should be removed before they flower . The frequency of weeding will depend on the planting scheme and cover . When the growing media is covered with mulch or densely vegetated , less frequent weeding will be required . Grasses : When started from seed , allow time for germination and establishment of grass prior to mowing . If mowing is required during this period for weed control , it should be accomplished with hand - held string trimmers to minimize disturbance to the seedbed . After established , mow as desired or as needed for weed control . Following this period , mowing of native / drought tolerant grasses may stop or be reduced to maintain a length of no less than 6 inches . Mowing of manicured grasses may vary from as frequently as weekly during the summer , to no mowing during the winter . Irrigation Scheduling and Maintenance Adjust irrigation throughout the growing season to provide the proper irrigation application rate to maintain healthy vegetation . Less irrigation is typically needed in early summer and fall , while more irrigation is needed during the peak summer months . PELICAN LAKE RANCH F ING NO . 2 FINAL DRAINAG REPORT Page 20 of 21 Native grasses and other drought tolerant plantings should not typically require routine irrigation after establishment , except during prolonged dry periods . Sediment Removal and Growing Media Replacement If ponded water is observed in a retention pond for more than 24 hours after the end of a runoff event , maintenance is needed . Maintenance activities to restore infiltration capacity of infiltration facilities will vary with the degree and nature of the clogging . If clogging is primarily related to sediment accumulation on the surface , infiltration may be improved by removing excess accumulated sediment and scarifying the surface with a rake . If the clogging is due to migration of sediments deeper into the pore spaces of the soil , removal , and replacement of a portion of the underlying may be required . The frequency of media replacement will depend on site - specific pollutant loading characteristics . Based on experience to date in the metro Denver area , the required frequency of media replacement is not known . Although surface clogging of the media is expected over time , established root systems promote infiltration . This means that mature vegetation that covers the filter surface should increase the life span of the growing media , serving to promote infiltration even as the media surface clogs . VI LIST OF REFERENCES 1 . Geotechnical Due Diligence Study , Pelican Lakes , Filing 2 , AGW , Project Number 247117 , April 29 , 2025 . 2 . FEMA Flood Insurance Rate Map , Weld County , Colorado Unincorporated Area , Community Panel Number 08123C1935E , January 20 , 2016 . 3 . Weld County Engineering and Construction Criteria , Updated January 2021 . 4 . Weld County Code , Chapter 8 , Article XI — Storm Drainage Criteria 5 . Mile High Flood District , Urban Storm Drainage Design Criteria Manual , V . 1 - 3 , 2001 , latest additions . 6 . Phase III Drainage Report for Beebe Draw Farms Filing 1 , June 1 , 1998 , by Milestone Engineering . 7 . Drainage Letter Beebe Draw Farms and Equestrian Center Filing 1 — Phase 5 , December 29 , 2017 , by Crestone Consultants , LLC . PELICAN LAKE RANCH F ING NO . 2 FINAL DRAINAG REPORT Page 21 of 21 APPENDICES APPENDIX A — Referenced Material APPENDIX B — Hydrologic Calculations APPENDIX C — Hydraulic Calculations APPENDIX D — SWMM Calculations APPENDIX - — Drainage Plans APPENDIXA - RE RENCED ATERIAL i Weld CountyDrinage Code _ - � ► Erg CertIcate of Compliance ealai ` I - " Weld County Case Number : PU DF24 - 0001 _ _ � r N Parcel Number : 121308000014 , 121317100016 and 121309000026 Legal Description , Section / Township / Range : Part of Sections 8 , 9 and 17 , T3N , R65W Date : May 7 , 2025 I Todd A . Johnson , Consultant Engineer for Terra Forma Solutions , Inc . ( Applicant ) , understand and acknowledge that the applicant is seeking land use approval of the case and parcel in the description above . I have designed or reviewed the design for the proposed land use set for in the application . I hereby certify , on behalf of the applicant , that the design will meet all applicable drainage requirements of the Weld County Code with the exception of the variances ) described on the attached exhibits . This certification is not a guarantee or warranty either expressed or implied . Engineer ' s Stamp : epofin �e�ll�ltit � l � � � � �1�/������ , •, ,, rs- : A® .; �� : • .e • me • + %0, �• 5 / 7 / 2 5 4.00 * Ss/ � • • • • • • . . . . • . • • . • . . �� •Variance Request Of Applicable ) / • . . . . t\' \ck��®��,iNAL 1 . Describe the hardship for which the variance is being requested . 2 . List the design criteria of the Weld County Code of which a variance is being requested . 3 . Describe the proposed alternative with engineering rationale which supports the intent of the Weld County Code . Demonstrate that granting of the variance will still adequately protect public health , safety , and general welfare and that there are no adverse impacts from stormwater runoff to the public rights - of - way and / or offsite properties as a result of the project . Retention ponds are not permitted per Section 8 - 11 - 40 - E of the Weld County Code . Additionally , Section 5 . 10 . 1 of the Weld County Engineering and Construction Criteria states : " Stormwater retention facilities ( stormwater infiltration facilities ) normally are not allowed in Weld County but shall be considered for special circumstances with the issuance of a variance . Variance requests shall only be considered in situations where there is a proven hardship on the proposed site . A hardship would be considered where there is not adequate topography to physically drain a pond ( sump in basin ) , refusal of an irrigation ditch to accept additional drainage , or some other physical site constraint . " The proposed project site meets both hardship criteria . The site includes several historic low points that are infeasible to drain by gravity without extreme excavation ( > 50 feet ) or the use of mechanical pumping . Given the presence of Type A sandy soils , these areas currently allow stormwater to infiltrate naturally . The proposed design seeks to minimize disturbance and preserve existing drainage patterns by placing retention ponds in the general area of these larger depressions . Due to the topography , there is no feasible way to drain the proposed ponds using a typical gravity outlet structure . Therefore , runoff entering these ponds will infiltrate into the ground as it does under existing conditions . Furthermore , the Farmers Reservoir and Irrigation Company ( FRICO ) , which owns and operates the downstream Milton reservoir , does not permit stormwater discharges into their system . As a result , all developed runoff will be captured by the proposed retention ponds and infiltrated on site , with no negative impacts to surrounding areas . We are proposing retention ponds due to these historic site constraints . The ponds will be sized for 1 . 5 times the total inflow volume from the 24 - hour , 100 - year event and will include 1 foot of freeboard to the spillway , in accordance with Section 5 . 10 . 1 of the Weld County Engineering and Construction Criteria . The site is composed of highly sandy soils , making it unlikely that water will be retained in the ponds for any longer duration than occurs under current conditions . This proposed condition is also consistent with existing conditions in Filing No . 1 , and the associated maintenance requirements will be similar for the Metropolitan District . Public Works Director/ Designee Review ( If Applicable ) Public Works Director / Designee Name Signature Date of Signature f 1 Approved ❑ Denied Comments : Department of Public Works Development Review 1111 H Street , Greeley , CO 80631 I Ph : 970 - 304 - 6496 www . weldgov . com / departments / public_ works / development _ review 08 / 02 / 2019 i Weld CountyDrinage Code _CertIcate of Compliance it Weld County Case Number : PU DF24 - 0001 _ _ � r N Parcel Number : 121308000014 , 121317100016 and 121309000026 Legal Description , Section / Township / Range : Part of Sections 8 , 9 and 17 , T3N , R65W Date : May 71 2025 I Todd A . Johnson , Consultant Engineer for Terra Forma Solutions , Inc . ( Applicant ) , understand and acknowledge that the applicant is seeking land use approval of the case and parcel in the description above . I have designed or reviewed the design for the proposed land use set for in the application . I hereby certify , on behalf of the applicant , that the design will meet all applicable drainage requirements of the Weld County Code with the exception of the variances ) described on the attached exhibits . This certification is not a guarantee or warranty either expressed or implied . Engineer ' s Stamp : 410.9. . . .1!9/ 5/0 Q • I • � ` , j • • r • � �0, 5 / 7 / 2 5 . � _ ��i Cam . • • • • • • . . . . • • • ' • • . G ~�. Variance Request Of Applicable ) '/�i,,ss�o • • • � �NAL \�����` 1 . Describe the hardship for which the variance is being requested . 2 . List the design criteria of the Weld County Code of which a variance is being requested . 3 . Describe the proposed alternative with engineering rationale which supports the intent of the Weld County Code . Demonstrate that granting of the variance will still adequately protect public health , safety , and general welfare and that there are no adverse impacts from stormwater runoff to the public rights - of - way and / or offsite properties as a result of the project . Per Section 5 . 10 . 1 of the Weld County Engineering and Construction Criteria , an emergency spil way is required for all retention ponds . Retention Pond W3 is located within a deep natural depression . When the required volume 1 . 5 times the 100 - year , 24 - hour runoff is calculated , the corresponding storage elevation is approximately five feet below the natural overflow point , which discharges off - site to the east . Due t0 the topography and existing site constraints , it is not feasible to raise the pond elevation without creating a low point directly over an existing Oil & Gas facmlity . As a result , there is no practical way to construct a concrete emergency spillway within the reasonable limits of the pond area that would provide positive drainage . However , there should be no adverse impacts to any proposed lots by omitting the spillway . The pond will infiltrate all runoff and will provide significantly more storage capacity than required , including the necessary freeboard . Public Works Director/ Designee Review ( If Applicable ) Public Works Director / Designee Name Signature Date of Signature f 1 Approved ❑ Denied Comments : Department of Public Works 1 Development Review 1111 H Street , Greeley , CO 80631 I Ph : 970 - 304 - 6496 www . weldgov . com / departments / public_ works / development _ review 08 / 02 / 2019 Cheyenne s 1171-Mli WELD COUNTY ONLINE E L � VICInIty Ma I &art Map Cs I 71 all t ri --ti J'' Leirp IV err' . SOUP deg st i J g1/4- -__ / - 41 _Wm . ..0 II eIt e 7 iiif � � � ., r :�. " a r Legend • 1 $ ii, .. Ar I Ai L2 i; Lill I , Highway _ VI. - jli • . . ,-2 • r �« Road a ,�, _ si il vile b._ t • �,' , -4 Road gi. rwcRI1 _ - \let q :l - Highway lall { a Y -� �_J County Boundary O if' -lbill, t SITE f _, h LifirealI - 4 'Wk.- Ilts. .11 = , r e . A t i I 2 ' et- a ..p'Y Y �' : ♦ f 1_ rit ,ij { _ Sfax 1 . 1 , .., _ _ , i t I . , i „, ilg ),‘ . R 404, , 4.... ,, . 01 : IA ti i a. ce 11 , lit . '1/4. I lir i ,. ik , I. I ,I I. I I L gds. „. 7 . %It _ . ... . 4_ _ _ _ iii 1 ..._.. . . _ I,,tea. _ry��1,. u.I. t' .III lip, . - - - - tee. r�, _. - � ' _�:. _ � _ - v .. , -.. C. - 4111 3 • ' e s y �_ 'I 1(t 4 ar _ 1 4 : ci ; at - �1; , �•V a I i s _ .40 aii r1/411. ,III il ik - „ tx 0. rte . f x 1. 1 : 94, 128 Notes - - - - t _ _ _ - 15,688.0 0 7,844.01 15,688.0 Feet This map is a user generated static output from an Internet mapping site and is for reference only. Data layers that appear on this map may or may not be accurate, WGS_1984_Web_Mercator_Auxiliary_Sphere current, or otherwise reliable. © Weld County Colorado 28 THIS MAP IS NOT TO BE USED FOR NAVIGATION 10/ 14/24 , 5 :00 PM Precipitation Frequency Data Server NOAA Atlas 14, Volume 8, Version 2 000 ui Location name: Platteville, Colorado, USA* �J'' ' fi o Latitude: 40.2288°, Longitude : -104. 6816° f10AH g Elevation : 4919 ft** 1 1 a rif w * source. ESRI Maps %,� se °4 ** source: USGS • POINT PRECIPITATION FREQUENCY ESTIMATES Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin NOAA, National Weather Service, Silver Spring, Maryland PF_tabular I PF graphical I Maps_&_aerials PF tabular PDS-based point precipitation frequency estimates with 90 % confidence intervals ( in inches 1p p q Yinches ) 1 recurrence interval (years) Duration 1 2 i 5 h 10 1 25 1 50 I 100 200 l 500 _ 1000 5-min 0.240 0 .290 0.388 1 0.482 0.632 0.764 0 .909 1 .07 1 .31 1 .50 (0. 194-0.299) (0.234-0.363) (0.311 -0A86) (0.385-0.608) (0.494-0.853) (0.576- 1 .04) (0.658-1 .27) (0.739-1 .54) (0.861 -1 .93) (0.953-2.22) 1 -min ' 0.351 0 .425 0.568 0.706 0.926 1 .12 1 .33 1 .57 1 .91 2.20 0 (0.283-0.438) (0 .343-0 .532) (0 .456-0.712) (0.563-0.890) (0.723-1 .25) (0.844- 1 .52) (0 .964-1 .86) ( 1 .08-2 .25) (1 .26-2.82) ( 1 .40-3.26) 15 min 0.428 0 .519 0.692 i 0.861 1 .13 1 .36 1 .62 1 .91 2.33 2.68 (0.346-0.535) (0.418-0.648 0.556-0.868)( (0.687- 1 .08) (0.882-1 .52) (1 .03-1 .85) (1 . 18-2 .26) (1 .32-2 .74) (1 .54-3.44) (1 .70-3.97) 0. 575 0 .694 0 .924 1 .15 I 1 . 51 1 .83 2 .18 2 .57 3. 15 3.62 30-min (0.464-0.718) (0.559-0.867) (0 .742-1 . 16) ' (0.917-1 .45) (1 . 18-2.04) (1 .38-2.49) (1 .58-3.04) (1 .78-3.70) (2.08-4.65) (2.30-5.37) 60-min 0.709 0 .845 1 .12 1 1 .39 1 .84 2.24 2.69 3.20 3.95 4.58 (0.572-0. 886) (0.681 -1 .06) (0 .897-1 .40) y ( 1 .11 -1 .75) ( 1 .44-2.50) [( 1 .70-3. 06) (1 .96-3 .77) (2 .21 -4 .61 ) (2.61 -5.84) (2.91 -6.78) 2-hr 0. 844 0 .996 1 .31 1 .63 2. 17 2.66 3 .21 3.83 4.75 5.53 (0.686- 1 .04) (0 .809-1 .23) ( 1 .06- 1 .63) ( 1 .31 -2.04 ) ( 1 .72-2.93) (2 .03-3. 60) (2 .35-4 .45) (2.68-5.46) (3. 17-6.96) (3.55-8.09) 3-hr 0.921 1 .08 1 .40 1 .75 2.33 2.86 3 .46 4. 14 5. 16 6.02 (0.753- 1 .13) (0.878-1 .33) (1 . 14-1 .74) (1 .41 -2. 17) (1 .86-3. 13) (2.20-3.86) (2.55-4 .78) (2.91 -5.88) (3.47-7.52) (3.89-8.76) 6-hr 1 .08 1 .25 1 .61 1 .99 2.62 3.19 3 .85 4.59 5.70 6.62 (0.888- 1 .32) (1 .03-1 .53) (1 .32- 1 .97) i ( 1 .62-2.45) (2. 11 -3.48) (2.48-4.26) (2.86-5.26) (3.26-6.44) (3.86-8. 19) (4.32-9.52) 1 .27 1 .49 1 .92 2.33 " 2.99 3.57 4.21 4.92 5.97 6.83 12-hr ( 1 .05- 1 . 53) (1 .24-1 .80) 1 (1 .58-2 .32) _( 1 .91 -2.84) (2.41 -3.88) [(2.78-4.67) (3. 15-5 .65) (3.52-6.79) (4.08-8.45) (4.50_9.70) [ 24-hr 1 .50 1 .77 1 2.26 2.71 3.40 1 4.00 4.64 5.35 6.36 7. 19 (1 .26-1 .80) (1 .48-2.12) (1 .88-2.71 ) (2.24-3.27) (2.75-4.34) (3.13-5. 15) (3.50-6.13) (3.85-7.26) (4.38-8.87) (4.79-10.1 ) 2-day 1 . 2 .05 2.64 3.15 3.90 4. .1 .82 6.76 . (1 .45-712.03) (1 .73-2.44) (2.21 -3.14) (2.63-3.77) I (3. 15-4.86) (3.54-505.70) (3.905 -64.67) (4.215 -7.76) (4.69-9.27) (5.057 -5010 .4) 3-da 1 .88 2 .22 2.81 3.33 fl 4.09 4.70 5.35 6.03 6.97 7.72 y ( 1 .59-2.21 ) ( 1 .88-2.62) (2.37-3.33) (2 .79-3.96) (3.32-5.07) (3.72-5. 90) (4 .07-6.88) (4 .39-7 .98) (4.87-9.50) (5.23-10 .6) 4-day 2.00 2 .35 di 2.94 3.47 4.23 1[ 4.85 i 5.50 6. 18 7. 13 7.89 ( 1 .70-2.36) (2.00-2.76) (2.49-3.47) (2.92-4. 11 ) (3.45-5.22) (3.85-6.06) (4.20-7.04) (4.52-8. 14) (5.00-9.66) (5.37-10.8) 7-day 2.29 2 .68 3 .32 3.88 4.67 5.30 5.94 6.62 7.54 8.26 (1 .96-2.67) (2.29-3. 12) (2.83-3.89) (3.28-4.56) Y (3.82-5.69) (4.23-6.54) (4.58-7.53) (4.87-8.62) (5.33-10. 1 ) (5.67-11 .2) 10-day 2.54 2 .96 3 .65 1 4.24 5.06 5.70 6.35 7.02 7.91 8.60 (2. 18-2.94) (2.54-3 .43) (3 . 12-4 .25) (3.60-4.96) y (4. 15-6. 11 ) (4.56-6.98) (4 .90-7 .97) (5. 19-9.06) (5.62-10.5) (5.94-11 .6) 20-da 3.24 3.73 4.53 5.19 I 6.09 6.77 7 .45 8 . 14 9.04 9.71 y (2 .81 -3. 72) (3 .23-4 .29) (3.91 -5.22) (4 .45-6.01 ) (5.03-7.25) (5.47-8. 18) (5 .81 -9 .23) (6 .07-10.4) (6.48-11 .8) (6.78-12 .9) 3.80 4.36 1 5.26 5.99 6.97 1 7.71 8 .44 9 . 16 10. 1 10.8 30-day (3.31 -4.34) (3.80-4.98) (4.56-6.03) (5.16-6.89) (5.79-8.23) (6.26-9.25) (6.61 -10.4) (6.87-11 .6) (7.28-13. 1 ) (7.58-14.3) 45-day 4.48 5. 14 6.19 I 7.04 8. 16 8.99 9 .79 I 10.6 11 .6 12.3 (3.92-5.09) (4.50-5.84) (5.40-7.06) (6. 10-8.05) 1 (6.80-9.56) (7.33-10.7) (7.71 - 11 .9) (7.98-13.2) (8.39-14.9) , (8.70-16. 1 ) 5.03 i 5.80 7.01 7.97 1 9.23 10.1 11 .0 11 .9 12.9 13.7 60-day (4 .42-5. 69) (5 .09-6 .56 (6 . 13-7.95) (6 .93-9.08) (7.71 -10.7) (8.30-12.0) (8 .71 - 13 .3) (8 .98-14 .8) (9.40-16.5) (9.71 -17.8) 1 Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series ( PDS) . Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval . The probability that precipitation frequency estimates (for a given duration and average recurrence interval ) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information . Back to Top PF graphical https://hdsc. nws.noaa .gov/pfds/pfds_printpage . html? Iat=40.2288&Ion=- 104.6816&data=depth&units=english&series=pds 1 /4 10/14/24, 5:00 PM Precipitation Frequency Data Server PDS-based depth-duration-frequency ( DDF ) curves Latitude : 40 . 2288 ° , Longitude: -104. €81& 14 - i ' I j i i iAverage recurrence r° interval � 12 - _. <years) el? — 1-. 01 F_ 24-0 01 8-CD - — 10 — 25 6 - ai" - — 50 — 100 200 adoodisillilliiiiii.... ....C..---rasiteuw#Pesesse".17' .— 5,00 2 -r- Laa...e — 1000 0 -: I I I i i i w I I I I I _ I— II t-1 rn Ii Duration 14 1 12 -2 illi rsre 10 PIP Duration PPP1PP- rostigH 4.4 0 5-m5-mm — 2 -day Iaill_asissairilli Pir — 10-mon 3 -day 6 10 -- 15-mon 4-day ry fir_. i' 30-min — 7-day .0 ----------e--- - ,ad1....11! — 60-mon — 10-day Gj 4 -_ { 2-hr — 20-day 2 _ _ __� a - — 3mr — 30-day — Nam — 6-hr — 45-day — 12-hr — 60-day 24-hr 1 2 5 10 25 50 100 200 500 1000 Average recurrence interval (years) N•OAA Atlas 14r Volume 8. Version 2 Created COATI Mon Oct 14 23: 00:09 2024 Back to Top Maps & aerials Small scale terrain https://hdsc.nws.noaa.gov/pfds/pfds_printpage.html?lat=40.22888don=-104.6816&data=depth&units=english&series=pds 2/4 10/ 14/24 , 5 :00 PM Precipitation Frequency Data Server I i 4ii o n Lake . Reservoir I ' G'G EL Si0 E 4LRPOR ! + 3km I t ( ses 2mi Large scale terrain -......L„. 0 14 ra t_' % { ''.�'k rte, —d Ch ellen n e J ;1- i. 0 _ _ -_ - 1, t . - F':' rtCaIlls - a ,' - 1.91 ¢ter I r_tit• Lorlg_, Peak 1 l' .1 _ti1_ Fri B. ouldet. - iiir : - _, - ± - e D erg per U I r, . . - e , , ;.L i r + r_. Wit: criii 100km .r (`I I I� �A „ ,. , 60mi iii, Large scale map ii s 1 5' - . Fort Collis s Greeley ii, ..„,../aleeraes EP Lopprinas- -- ea- c II r Boulfder - \., � TO trisisset .. lie 100km 60m i _ . _ _. _. _ IC de raid o Large scale aerial https://hdsc. nws.noaa .gov/pfds/pfds_printpage . html? Iat=40.2288&Ion=- 104.6816&data=depth&units=english&series=pds 3/4 10/ 14/24 , 5 :00 PM Precipitation Frequency Data Server z . 15 th �... they enne i Q , `.+ . k _ a r- 4 r. mr,„ 6 \p4 '''' s‘ '4 I, teg-41Wit S - if :\ I• ice_. \1• � t `' ,7- i 4 -.• ThiliIMI d O Jj .rte �« a -tr - • i Y• Isktr, v ._( ., 4./ 1".•_\. . O ± 17V1 "tir 17- -rw.' A:Ir 4. b 49);.' : .1ta - "" '. 1 100km ' 60m Colorado r Viet . Back to Top US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring , MD 20910 Questions? : HDSC.Questions@noaa. gov Disclaimer https://hdsc. nws.noaa .gov/pfds/pfds_printpage . html? lat=40.2288&Ion=- 104.6816&data=depth&units=english&series=pds 4/4 z z N z In N 0p 4p �..f� 00b99trb 001b9btr 000b9t�b 00££�.�`bb 009291* 0066Sbb C') C')MII ISLOIJVT III OCN 4- Y Nar • ,�k~ 1M88t1701 1 � 1 _ ^ ��ill • sil cc) a3 ._ � I '/ 1. Br r - _ d k F It -,40 t Aplipt A% _rte' 1, K�, fn : i 1 iiiit C l°�+y-- I S _ ifik i 41:k.„l am ,- + ' d-•a'.. I 0.) • co CC) u) 7IIII .. . _ ` In t O Y V- qt. Vil i k - - , • -1f....._.. ii . ha CO Ki 1 - . • ; ifr. / 4 1 i - 4 i s a o-_ , _ - �-� L. .` l' COCL j _s- ; -04-1_ - I if ' CD 1 , . t • , :, N I _,ila .. 4 ., .. . .... ••• t. , 91- 8 6 -' - ] ...., r9 = li -,. NZirlit Or. • LJ ._. - 'tor-. 4_1, _ _r ie + .,. 0 0 -4 it__ 00 i, i Pte. M r •., , - _ 1 y {�Il iii 61 L t< CD in sir . ..., O .ii _ N -... r G • s - r-' M-14 T r` - '. :. it yF. _' . %„ N rl I •it + ,: t' xi-, i. • , ; 0 _ e 1 L.i r .0b.--4. fI �+ - • • . Ilif a Jt . : i/- • ` f ! la T. of . �"f` 1 ddd ' if I Qa r ` 47 n • ' ' Y � R s ;J ' '� N CU „, Ye mss• "' } LU �I� to _ /��!I, r.. ., , „. ,. - i. -.! i -- • , i _ _ I , - NI g) '_ .. P _ . mai-i T 451rAlliirli° . .„._ 0, ..4H-0014L-risit r ,v a' _ a) j i� o It "I $ I a _ co „' _ o tz Gf i �i� y Q4) r _ 1� r`� 'S 1h •— __tiq r III . 2 L- N 2 sj f -2- I el le . ri. • O O (1) Lc . M / :it. -., ' g 2 o c as a L 0) N i z O - M �Sti iZti ob'OT - - M ,1SL7 Zti obOT 00t99bb 001t�9bb 000b9bb 00££9t* 009Z9W 00&9tt I mo a z t in 0' * i N ..-i o �P 32 Soil Map—Weld County, Colorado, Southern Part MAP LEGEND MAP INFORMATION Area of Interest (AOl) Spoil Area The soil surveys that comprise your AOl were mapped at Area of Interest (AOl) 1 :24,000. Stony Spot Soils Please rely on the bar scale on each map sheet for map Very Stony Spot 0 `� measurements. Soil Map Unit Polygons . °' '~ Wet Spot ;�-, Soil Map Unit Lines °�w�'" Source of Map: Natural Resources Conservation Service Other Web Soil Survey URL: 0 Soil Map Unit Points t ' Coordinate System : Web Mercator (EPSG:3857) off Special Line Features Special Point Features Maps from the Web Soil Survey are based on the Web Mercator to Blowout Water Features projection , which preserves direction and shape but distorts Streams and Canals distance and area. A projection that preserves area, such as the orl Borrow Pit Albers equal-area conic projection, should be used if more Transportation accurate calculations of distance or area are required . x. Clay Spoto a Rails Closed Depression This product is generated from the USDA-NRCS certified data as Interstate Highways of the version date(s) listed below. Gravel Pit US Routes r7gSoil Survey Area: Weld County, Colorado, Southern Part ., E Gravelly Spot Survey Area Data: Version 21 ,, Sep 1 , 2022 Major Roads ° igi Landfill Local Roads Soil map units are labeled (as space allows) for map scales Lava Flow 1 :50,000 or larger. tlerL Background Date(s) aerial images were photographed: Jun 8, 2021 —Jun 12, Marsh or swamp __ Aerial Photography 2021 :=3= Mine or Quarry �`� The orthophoto or other base map on which the soil lines were @, Miscellaneous Water compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor O Perennial Water shifting of map unit boundaries may be evident. Rock Outcrop . Saline Spot fs z ,� Sandy Spot : , Severely Eroded Spot 0 Sinkhole Slide or Slip Sodic Spot USDA Natural Resources Web Soil Survey 3/29/2023 Conservation Service National Cooperative Soil Survey Page 2 of 3 Soil Map—Weld County, Colorado, Southern Part Map Unit Legend Map Unit Symbol Map Unit Name Acres in AOI Percent of AOI 10 Ellicott-Ellicott sandy-skeletal 33.4 1 .0% complex, 0 to 3 percent slopes, rarely flooded 35 Loup-Boel loamy sands, 0 to 3 14.7 0 .4% percent slopes 44 Olney loamy sand , 1 to 3 78.8 2 .3% percent slopes 69 Valent sand, 0 to 3 percent 502.2 14 .8% slopes 70 Valent sand, 3 to 9 percent 1 , 658.3 48 .8% slopes 72 Vona loamy sand , 0 to 3 988.2 29 . 1 % percent slopes 85 Water 122.6 3 .6% Totals for Area of Interest 3, 398.3 100.0% USDA Natural Resources Web Soil Survey 3/29/2023 Conservation Service National Cooperative Soil Survey Page 3 of 3 34 Map Unit Description : Olney loamy sand , 1 to 3 percent slopes---Weld County, Colorado, Southern Part Weld County, Colorado , Southern Part 44—Olney loamy sand , 1 to 3 percent slopes Map Unit Setting National map unit symbol: 362r Elevation: 4 , 600 to 5 , 200 feet Mean annual precipitation: 11 to 15 inches Mean annual air temperature: 46 to 54 degrees F Frost-free period: 125 to 175 days Farmland classification : Farmland of statewide importance Map Unit Composition Olney and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Olney Setting Landform: Plains Down-slope shape: Linear Across-slope shape: Linear Parent material: Mixed deposit outwash Typical profile H1 - 0 to 10 inches: loamy sand H2 - 10 to 20 inches: sandy clay loam H3 - 20 to 25 inches: sandy clay loam H4 - 25 to 60 inches: fine sandy loam Properties and qualities Slope: 1 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat) : Moderately high to high (0 . 60 to 2 . 00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 15 percent Maximum salinity: Nonsaline to very slightly saline (0 . 0 to 2 . 0 mmhos/cm ) Available water supply, 0 to 60 inches: Moderate (about 6 . 5 inches) Interpretive groups Land capability classification (irrigated): 3e Land capability classification (non irrigated) : 4c Hydrologic Soil Group: B Natural Resources Web Soil Survey 8/20/2022 Iola Conservation Service National Cooperative Soil Survey Page 1 of 2 35 Map Unit Description : Olney loamy sand , 1 to 3 percent slopes---Weld County, Colorado, Southern Part Ecological site: R067BY024CO - Sandy Plains Hydric soil rating: No Minor Components Vona Percent of map unit: 8 percent Hydric soil rating: No Zigweid Percent of map unit: 7 percent Hydric soil rating: No Data Source Information Soil Survey Area : Weld County, Colorado , Southern Part Survey Area Data : Version 19 , Jun 5 , 2020 Natural Resources Web Soil Survey 8/20/2022 lora Conservation Service National Cooperative Soil Survey Page 2 of 2 36 Map Unit Description : Valent sand, 0 to 3 percent slopes---Weld County, Colorado, Southern Part Weld County, Colorado , Southern Part 69—Valent sand , 0 to 3 percent slopes Map Unit Setting National map unit symbol: 2tczd Elevation: 3 , 000 to 5 , 210 feet Mean annual precipitation: 13 to 20 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 130 to 166 days Farmland classification: Farmland of local importance Map Unit Composition Valent and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Valent Setting Landform: Interdunes nes Landform position (two-dimensional) : Footslope , toeslope Landform position (three-dimensional) : Base slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Noncalcareous eolian sands Typical profile A - 0 to 5 inches: sand AC - 5 to 12 inches: sand Cl - 12 to 30 inches: sand C2 - 30 to 80 inches: sand Properties and qualities Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Excessively drained Runoff class: Negligible Capacity of the most limiting layer to transmit water (Ksat): High to very high (6 . 00 to 39 . 96 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 1 percent Maximum salinity: Nonsaline (0 . 1 to 1 . 9 mmhos/cm ) Available water supply, 0 to 60 inches: Very low (about 2 .4 inches) Interpretive groups Land capability classification (irrigated) : 4e Land capability classification (nonirrigated) : 6e Hydrologic Soil Group: A USDA Natural Resources Web Soil Survey 3/29/2023 a Conservation Service National Cooperative Soil Survey Page 1 of 2 37 Map Unit Description : Valent sand, 0 to 3 percent slopes---Weld County, Colorado, Southern Part Ecological site: R067BY015CO - Deep Sand , R072XA021 KS - Sands (North ) ( PE 16-20 ) Hydric soil rating: No Minor Components Dailey Percent of map unit: 5 percent Landform: Interdunes Landform position (two-dimensional) : Toeslope Landform position (three-dimensional) : Base slope Down-slope shape: Linear Across-slope shape: Concave Ecological site: R067BY015CO - Deep Sand , R072XA022KS - Sandy (North ) Draft (April 2010) ( PE 16-20) Hydric soil rating: No Julesburg Percent of map unit: 5 percent Landform: Interdunes Landform position (two-dimensional) : Toeslope Landform position (three-dimensional) : Base slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY024CO - Sandy Plains, R072XA022KS - Sandy (North ) Draft (April 2010) ( PE 16-20) Hydric soil rating: No Vona Percent of map unit: 5 percent Landform: Interdunes Landform position (two-dimensional) : Toeslope Landform position (three-dimensional) : Base slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY024CO - Sandy Plains, R072XA022KS - Sandy (North ) Draft (April 2010 ) ( PE 16-20) Hydric soil rating: No Data Source Information Soil Survey Area : Weld County, Colorado , Southern Part Survey Area Data : Version 21 , Sep 1 , 2022 USDA Natural Resources Web Soil Survey 3/29/2023 a Conservation Service National Cooperative Soil Survey Page 2 of 2 38 Map Unit Description : Valent sand, 3 to 9 percent slopes---Weld County, Colorado, Southern Part Weld County, Colorado , Southern Part 7o—Valent sand , 3 to 9 percent slopes Map Unit Setting National map unit symbol: 2tczf Elevation: 3 , 050 to 5 , 150 feet Mean annual precipitation: 12 to 18 inches Mean annual air temperature: 48 to 55 degrees F Frost-free period: 130 to 180 days Farmland classification : Not prime farmland Map Unit Composition Valent and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Valent Setting Landform: Dunes, hills Landform position (two-dimensional): Summit, shoulder, backslope , footslope Landform position (three-dimensional) : Side slope , crest, head slope , nose slope Down-slope shape: Convex, linear Across-slope shape: Convex, linear Parent material: Noncalcareous eolian sands Typical profile A - 0 to 5 inches: sand AC - 5 to 12 inches: sand Cl - 12 to 30 inches: sand C2 - 30 to 80 inches: sand Properties and qualities Slope: 3 to 9 percent Depth to restrictive feature: More than 80 inches Drainage class: Excessively drained Runoff class: Very low Capacity of the most limiting layer to transmit water (Ksat) : High to very high (6 . 00 to 39 . 96 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 1 percent Maximum salinity: Nonsaline (0 . 0 to 1 . 9 mmhos/cm ) Available water supply, 0 to 60 inches: Very low (about 2 .4 inches ) Interpretive groups Land capability classification (irrigated): 4e Natural Resources Web Soil Survey 10/28/2022 lora Conservation Service National Cooperative Soil Survey Page 1 of 2 39 Map Unit Description : Valent sand, 3 to 9 percent slopes---Weld County, Colorado, Southern Part Land capability classification (non irrigated) : 6e Hydrologic Soil Group: A Ecological site: R072XY109KS - Rolling Sands , R067BY015CO - Deep Sand Hydric soil rating: No Minor Components Dailey Percent of map unit: 10 percent Landform: Interdunes Landform position (two-dimensional): Footslope , toeslope Landform position (three-dimensional) : Base slope Down-slope shape: Linear Across-slope shape: Concave Ecological site: R067BY015CO - Deep Sand , R072XA021 KS - Sands (North ) ( PE 16-20) Hydric soil rating: No Vona Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Shoulder, backslope , footslope Landform position (three-dimensional) : Head slope , nose slope , side slope , base slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY024CO - Sandy Plains , R072XA022KS - Sandy (North ) Draft (April 2010) (PE 16-20) Hydric soil rating: No Haxtun Percent of map unit: 5 percent Landform: Interdunes Landform position (two-dimensional): Footslope , toeslope Landform position (three-dimensional) : Base slope Down-slope shape: Linear Across-slope shape: Concave Ecological site: R067BY024CO - Sandy Plains , R072XY111 KS - Sandy Plains Hydric soil rating: No Data Source Information Soil Survey Area : Weld County, Colorado , Southern Part Survey Area Data : Version 20 , Aug 31 , 2021 Natural Resources Web Soil Survey 10/28/2022 Iola Conservation Service National Cooperative Soil Survey Page 2 of 2 40 Map Unit Description : Vona loamy sand, 0 to 3 percent slopes---Weld County, Colorado, Southern Part Weld County, Colorado , Southern Part 72—Vona loamy sand , 0 to 3 percent slopes Map Unit Setting National map unit symbol: 363r Elevation: 4 , 600 to 5 , 200 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 55 degrees F Frost-free period: 130 to 160 days Farmland classification : Farmland of local importance Map Unit Composition Vona and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Vona Setting Landform: Terraces , plains Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium and/or eolian deposits Typical profile H1 - 0 to 6 inches: loamy sand H2 - 6 to 28 inches: fine sandy loam H3 - 28 to 60 inches: sandy loam Properties and qualities Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Runoff class: Very low Capacity of the most limiting layer to transmit water (Ksat) : High ( 1 . 98 to 6 . 00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 15 percent Maximum salinity: Nonsaline to slightly saline (0 . 0 to 4 . 0 mmhos/cm ) Available water supply, 0 to 60 inches: Moderate (about 6 . 5 inches) Interpretive groups Land capability classification (irrigated): 3e Land capability classification (non irrigated) : 4e Hydrologic Soil Group: A Ecological site: R067BY024CO - Sandy Plains Natural Resources Web Soil Survey 10/28/2022 lora Conservation Service National Cooperative Soil Survey Page 1 of 2 41 Map Unit Description : Vona loamy sand, 0 to 3 percent slopes---Weld County, Colorado, Southern Part Hydric soil rating: No Minor Components Remmit Percent of map unit: 10 percent Hydric soil rating: No Valent Percent of map unit: 5 percent Hydric soil rating: No Data Source Information Soil Survey Area : Weld County, Colorado , Southern Part Survey Area Data : Version 20 , Aug 31 , 2021 Natural Resources Web Soil Survey 10/28/2022 Sa Conservation Service National Cooperative Soil Survey Page 2 of 2 42 Hydrologic Soil Group—Weld County, Colorado, Southern Part tn to en 524600 525300 526000 526700 527400 528100 528800 529500 530200 530900 40° 15' 7" N N 40° 1� 15 7 N �� ki ty� J all I, �QJ .. __ L ' - 1 _ _1 , - rya , t _ '{� , ,- ti if I „4uuSyy„I)) ■ .... _ r -.�.• - ' ,, _ 1 .• n itt 72 7 ° h t ti 85 'lam A .; I • ll II 1 NI 85 .- , i 14 - / ..- 4 ,� 72 M ak irt� t, -` .—'s.. Ivf.id as I NN\\cNi\K 69 II, .. i V 7r2 --.____NiN 7.... „,, , 4 i 72 i,. n 70 a 0 çNST \ _ ` III V iJ 4 0.,,, 4 1 1 ,„„frot....... . , a� 1 - \\/?2 \ -flailiall.- lifer . ..a.4 e r I let Ate. iii • Ilk __ . a ? § ', ,l 1 f i81,1 A il .. 40° 12'49" N t: �1 L I 40° 12' 49" N 524600 525300 526000 526700 527400 528100 528800 529500 530200 530900 En fz N Map Scale: 1:29,900 if printed on A landscape (11" x 8.5") sheet. M N11 Meters �, 0 400 800 1600 2400 Feet U 1000 2000 4000 6000 Map projection: Web Mercator Corner opordinates: WGS84 Edge tics: UTM Zone 13N WGS84 USDA Natural Resources Web Soil Survey 3/29/2023 a Conservation Service National Cooperative Soil Survey Page 1 of 4 M '71- N Le- 0 0 0 Uco r U CD cB C a) co ca i- CD co � � a) p 0_ L- a) a) o i o C 0 (a a O o cu03 a) o •c a) co a) a) w -6 f c O - cn s- _ a N o a L M ca '- O () (a o U a N E Z in coo cQ O O N - O a CO!) Z3 -O O C) ._E V 4144 O03 C — _ Q E U w ca o r a w o v) 0 D o a a) 12o O Q >, 2LL a) c >. W IS 0 o r U) O —�` C�a e,is c w Z co a r! na.) a(1) ?)_. t2c illE U O — L 'O Cl- .-0 t i- a) a) a o d ° CZ o o CO w a � o � - a) � o c C op o fa _O Q 0 O > fa O O N 0 a) Z v a (u (a O a) - . . n3 0 '- a3 o 'ED D S U) >12 S -c a) 4 op (75 ca CO L- Wy E o . �, a) c L a > >, a) z (T3 (a .U) p cn _ (a a - O ( t O E e co D U O v o v o CZ .0 4- _ OOOov � v ac a0 co � � o CO •O v m v O _ }, U it o > D >, c� o _� �' cn cn (no cn 2 'at p u) o a N c!) a) r o a L 03 ( o a • U w - _ L — O , a) N a N O O O ct5 0 co a U — o = 0 Lf? (1 O a) 0 (a r H r - E cn > U Q '5 a; co H o co co to r O N H o ._ w 0 6 >s v a IT D U .o o C D v D w > o — c3 }' 0 - N D a > U) CD 0 TZ >' U > C ( _C a a CO o c, o 0 L - U> u) CD o c _ cu a3 � o (tea '0 Q) �N O O C Z o co a o i ca cc o rz .7c o O �) _ °' ca t` O7 0 U ❑ Z L U) O Z _J Q O ❑ jo C Was :IV: t i 1 (I. mu I O it m W J C) C) a a co co ICC 0 > Q co co v c = L L 0 O O a cV! a7 to Q) .� ¢ a J+ Q! C C L C C _ �- d ❑ m m 0 U 0 Z J ❑ m m 0 U 0 Z ❑ co C 2 �-y�� L � � � � � Q � Q � W W Q0 _ c.) 4- ® _ - 0 o (n 'sn 0 z � o C ¢ U) o oap L ow as 0 z U 1,di 44 Hydrologic Soil Group—Weld County, Colorado, Southern Part Hydrologic Soil Group Map unit symbol Map unit name Rating Acres in AOI Percent of AOI 10 Ellicott-Ellicott sandy- A 33.4 1 .0% skeletal complex, 0 to 3 percent slopes, rarely flooded 35 Loup-Boel loamy sands, A/D 14. 7 0 .4% 0 to 3 percent slopes 44 Olney loamy sand, 1 to B 78. 8 2 .3% 3 percent slopes 69 Valent sand, 0 to 3 A 502. 2 14 .8% percent slopes 70 Valent sand, 3 to 9 A 1 ,658. 3 48 .8% percent slopes 72 Vona loamy sand, 0 to 3 A 988. 2 29 . 1 % percent slopes 85 Water 122. 6 3 .6% Totals for Area of Interest 3,398. 3 100.0% USDA Natural Resources Web Soil Survey 3/29/2023 a Conservation Service National Cooperative Soil Survey Page 3 of 4 45 Hydrologic Soil Group—Weld County, Colorado, Southern Part Description Hydrologic soil groups are based on estimates of runoff potential . Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation , are thoroughly wet, and receive precipitation from long -duration storms. The soils in the United States are assigned to four groups (A, B , C , and D ) and three dual classes (A/D , B/D , and C/D ) . The groups are defined as follows : Group A. Soils having a high infiltration rate (low runoff potential ) when thoroughly wet. These consist mainly of deep , well drained to excessively drained sands or gravelly sands . These soils have a high rate of water transmission . Group B . Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep , moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture . These soils have a moderate rate of water transmission . Group C . Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture . These soils have a slow rate of water transmission . Group D . Soils having a very slow infiltration rate (high runoff potential ) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential , soils that have a high water table , soils that have a claypan or clay layer at or near the surface , and soils that are shallow over nearly impervious material . These soils have a very slow rate of water transmission . If a soil is assigned to a dual hydrologic group (A/D , B/D , or C/D ) , the first letter is for drained areas and the second is for undrained areas . Only the soils that in their natural condition are in group D are assigned to dual classes . Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher USDA Natural Resources Web Soil Survey 3/29/2023 a Conservation Service National Cooperative Soil Survey Page 4 of 4 46 APPENDIXB - HYDROLOGIC COMPUTATIONS s .-==a" TERRA FORMA 5 OLU 1 C_NS Project: Pelican Lake Ranch Filing No. 2 Location: Weld County, CO Designer: TAJ Date: 10/14/2024 Latest Revision: 5/5/2025 DESIGN POINT SUMMARY TABLE 4 Basin Design Area Percent C10 C100 Cumulative Cumulative Notes Designation Point (ac) Impervious Oda (cfs) AI QL® (Cfs) 1 OW4 OW4 i 80.70 2.00% 0.07 0.22 6.53 39.60 To Pond W1 OW5 OW5 590.74 2.00% 0.07 0.22 - 572.20 To Pond W1 OW6 OW6 173.92 2.00% 0.07 0.22 - 192. 10 To Pond S1 W1 W1 11.26 20.00% 0.20 0.33 - 286.70 _ To Pond W1 W1a W1a 10.26 20.00% 0.20 0.33 - 290.77 To Pond W1 W1b W1b 8.61 20.00% 0.20 0.33 4.96 15.69 To Pond W1 W2 W2 32.15 7.34% 0.12 0.26 9.70 52.01 To Pond W1 W2a W2a 4.40 13.76% 0.16 0.30 10.01 52.37 To Pond W1 W3 W3 15.56 20.00% 0.20 0.33 9.68 30.61 To Pond W1 W3a W3a 26.56 20.00% 0.20 0.33 19.65 62.14 To Pond W1 W3b W3b 0,97 20.00% 0.20 0.33 0.69 2.19 _ To Pond W1 W4 W4 46.79 9.51% 0.13 0.27 17.56 69.72 To Pond W1 W8a W8a 1.11 20.00% 0.20 0.33 0.78 2,47 To Pond W3 W8 W8 23.25 20.00% 0.20 0.33 14.05 44.45 To Pond W3 W5 W5 37.23 14.46% 0,17 0.30 17.67 61.53 _ To Pond 4 W6a W6a 23.24 10.49% 0.14 0.28 9.81 37.75 To Pond 4 W6b W6b 6.46 20.00% 0.20 0.33 26.98 95.88 To Pond 4 W6 W6 9.70 20.00% 0.20 0.33 6.19 19.59 To Pond 4 W10 W10 18.22 20,00% 0.20 0.33 13.86 43.82 _ To Pond 4 W11 W11 1.44 12.10% 0.15 0.29 0.78 2.88 To Pond 4 W12 W12 8,06 19.44% 0.20 0.33 5.14 16.69 To Pond 4 W13 W13 13.69 10.35% 0. 14 0.28 32.92 113.44 _ To Pond 4 W14 W14 179.18 9.22% 0.13 0.27 - 119.80 _ To Pond 4 W15 W15 4.66 2.00% 0.07 0.22 0.93 5.63 To Pond 4 W16 W16 2.35 20.00% 0.20 0.33 1.66 5.25 To Pond S1 S1 S1 27.67 20.00% 0.20 0.33 - 101.70 To Pond S1 S2 S2 21.99 20.00% 0.20 0.33 - 107.40 To Pond S1 S3 S3 6.09 20.00% 0.20 0.33 3.96 12.53 _ To Pond S2 S4 S4 21.13 20.00% 0.20 0.33 10.75 34.00 To Pond S2 S5 55 _ 8.62 20.00% 0.20 0.33 8.43 26.67 To Pond S2 S6 $6 26.22 20.00% 0.20 0.33 28.88 91.33 To Pond S2 S14 S14 22.84 20.00% 0.20 0.33 11.80 37.32 To Pond S3 S15 S15 23.29 20.00% 0.20 0.33 12.97 41.02 To Pond S3 S16 S16 2.85 20.00% 0.20 0.33 12.85 40.65 To Pond S3 S17 S17 29.19 20.00% 0.20 0.33 23.30 73.68 _ To Pond S3 S1a S1a 3.70 20.00% 0.20 0.33 2.45 7.74 To Pond S3 S8 S8 1.93 20.00% 0.20 0.33 1.34 4.23 _ To Pond S4 S9 S9 10.40 20.00% 0.20 0.33 7.88 24.91 To Pond S4 S10 S10 12.93 20.00% 0.20 0.33 13.00 41.11 _ To Pond S4 S11 S11 11.23 20.00% 0.20 0.33 6.93 21.93 To Pond S4 S12 S12 18.24 20.00% 0.20 0.33 14.93 47.21 To Pond S4 S13 S13 72.83 20.00% 0.20 0.33 38.12 120.54 To Pond S4 S18 S18 12.17 20.00% 0.20 0.33 9.47 29.95 To Pond S4 519a S19a 2.21 20.00% 0.20 0.33 1.52 4.81 _ To Pond S5 S19 S19 67.43 20.00% 0.20 0.33 27.07 85.59 To Pond S4 S20 S20 60.16 20.00% 0.20 0.33 - 253.00 _ To Pond S4 S21 S21 7.12 20.00% 0.20 0.33 4.61 14.58 To Pond S4 S22 S22 17.11 20.00% 0.20 0.33 11.29 35.69 To Pond S4 S23 S23 7.02 20.00% 0.20 0.33 4.07 12.87 To Pond S4 U1 U1 5.44 2.00% 0.07 0.22 1.32 8.02 Flows Offsite U2 U2 2.75 20.00% 0.20 0.33 1.93 6.09 _ Flows Offsite U3 U3 2.59 2.00% 0.07 0.22 0.66 4.02 Flows Offsite EAST AREA Fl Fl 12.34 12.10% 0.15 0.29 5.46 20.07 To Pond El F2 _ F2 6.86 12.10% 0.15 0.29 3.62 13.31 To Pond El E9 E9 8.26 20.00% 0.20 0.33 5.98 18.91 To Pond 9 EN1 EN1 3.89 20.00% 0.20 0.33 2.74 8.66 To Pond E2 EN2 EN2 2.12 20.00% 0.20 0.33 1.47 4.64 To Pond E2 EN3 EN3 2.21 20.00% 0.20 0.33 1.68 5.31 To Pond E2 EN4 EN4 10.83 20.00% 0.20 _ 0.33 7.06 22.34 _ To Pond E2 EN5 ENS 3.65 20.00% 0.20 0.33 2.48 7.83 To Pond E2 EN6 EN6 12.10 20.00% 0.20 0.33 16.41 _ 51.88 To Pond E2 EN7 EN7 18.52 20.00% 0.20 0.33 22.75 71.93 To Pond E2 ES1 ES1 24.86 20.00% 0.20 0.33 18.53 61.20 To Pond El ES2 ES2 8.77 20.00% 0.20 0.33 5.79 18.31 To Pond El ES3 ES3 27.69 20.00% 0.20 0.33 29.59 96.50 To Pond El EU1 EU1 14.77 2.00% 0.07 0.22 3.19 19.36 Flows Offsite P:\Projects\PL\05 - Design\Drainage\Calculations\Pelican Lakes - Developed Rational Method Calculations.xlsx - ---, TERRA FORMA Project: Pelican Lake Ranch Filing No. 2 'From Weld County Engineering & Construction Criteria Table 5-2 Location: Weld County, CO 2From Weld County Engineering & Construction Criteria Table 5-3 Designer: TAJ Date: 10/14/2024 Latest Revision: 5/5/2025 IMPERVIOUSNESS AND RUNOFF COEFFICIENT CALCULATIONS Filing 1 I Paved Open Space Impervious %1 12.1% 20% 90% 2% NRCS Hydrologic Soil Filing 2 Paved Open Space Percent Runoff Coefficients, C2 Basin Designation Total Area (ac) at Notes Group (ac) (ac)a_ (ac) Impervious Cs C,o Cis HISTORIC OFFSITE OW4 A 80.70 0.00 0.00 0.00 80.70 2.00% 0.00 0.07 0.22 To Pond W1 OW5 A 590.74 0.00 0.00 0.00 590.74 2.00% 0.00 0.07 0.22 To Pond W1 OW6 A 173.92 0.00 0.00 0.00 173.92 2.00% 0.00 0.07 0.22 I To Pond S1 DEVELOPED W1 A 11.26 _ 0.00 11.26 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond W1 Wla A 10.26 0.00 10.26 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond W1 • W1b A 8.61 0.00 8.61 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond W1 W2 A 32.15 12.06 1.70 0.22 18.17 7.34% 0.04 0.12 0.26 To Pond W1 W2a A 4.40 1.86 1.83 0.00 0.71 13.76% 0.09 0.16 0.30 To Pond W1 W3 A 15.56 0.00 15.56 0.00 0.00 20.00% 0.13 0.20 - 0.33 To Pond W1 W3a A 26.56 0.00 26.56 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond W1 _ W3b _ A 0.97 0.00 0.97 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond W1 W4 A 46.79 28.09 3.76 0.00 14.94 9.51% 0.06 0.13 0.27 To Pond W1 Pond W1 A W8a A 1.11 0.00 1.11 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond W3 W8 A 23.25 0.00 23.25 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond W3 1.. r W5 A 37.23 0.00 25.78 0.00 11.45 14.46% 0.10 0.17 0.30 To Pond 4 W6a A 23.24 3.59 8.95 0.00 10.70 10.49% 0.07 0.14 0.28 To Pond 4 W6b A . 6.46 0.00 6.46 0.00 0.00 20.00% 0.13 0.20 0.33 - To Pond 4 W6 A 9.70 0.00 9.70 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 4 W10 A 18.22 0.00 18.22 0.00 0.00 20.00% - 0.13 0.20 - 0.33 To Pond 4 W11 A 1.44 1.44 0.00 0.00 0.00 12.10% 0.08 0.15 0.29 To Pond 4 - W12 A 8.06 0.57 7.49 0.00 0.00 19.44% 0.13 0.20 0.33 To Pond 4 W13 A 13.69 0.00 6.35 0.00 7.34 10.35% 0.07 0.14 0.28 To Pond 4 W14 A 179.18 128.01 0.00 0.00 51.17 9.22% _ 0.06 0.13 0.27 To Pond 4 • W15 A 4.66 0.00 0.00 0.00 4.66 2.00% 0.00 0.07 0.22 To Pond 4 W16 A 2.35 0.00 2.35 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond Si Si A 27.67 0.00 27.67 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond Si S2 A 21.99 0.00 21.99 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S1 S3 A 6.09 0.00 6.09 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S2 S4 A 21.13 0.00 21.13 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S2 S5 A 8.62 0.00 8.62 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S2 56 A 26.22 0.00 26.22 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S2 S14 A 22.84 0.00 22.84 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S3 • S15 A 23.29 0.00 23.29 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S3 516 A 2.85 0.00 2.85 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S3 517 A 29.19 0.00 29.19 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S3 5la A 3.70 0.00 3.70 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S3 S8 A 1.93 0.00 1.93 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 54 S9 A 10.40 0.00 10.40 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S4 510 A 12.93 0.00 12.93 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 54 Sll A 11.23 0.00 11.23 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 54 S12 A 18.24 0.00 18.24 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 54 S13 A 72.83 0.00 72.83 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 54 518 A 12.17 0.00 12.17 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S4 519a A 2.21 0.00 2.21 0.00 0.00 20.00% _ 0.13 0.20 0.33 To Pond S5 S19 A 67.43 0.00 67.43 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S4 S20 A 60.16 _ 0.00 60.16 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S4 S21 A 7.12 0.00 7.12 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 54 522 A 17.11 0.00 17.11 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S4 S23 A 7.02 0.00 7.02 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S4 1 yac•.. (ti l y V l (• 77.77l i)�' U ) ii ii ' i 1�3F rY i7�4 S. .. .� ✓ . .. I S°,N:'.rh :��, ��.1�...1'. •� ��•' . . 7' � 1 _� � , i_._) l)Y�v�:_i• Ip,14 a.}S PYk. 1`, U1 A 5.44 0.00 0.00 0.00 5.44 2.00% 0.00 0.07 _ 0.22 Flows Offsite U2 A 2.75 0.00 2.75 0.00 0.00 20.00% 0.13 0.20 0.33 Flows Offsite U3 A 2.59 0.00 0.00 0.00 2.59 2.00% 0.00 0.07 0.22 Flows Offsite .(26.,-Aral:'!,' ;< 1830.32 175.62 0.22 969.94 9.71% 0.06 0.13 0.27 HISTORIC OF BITE - EAST Fl A 12.34 12.34 0.00 0.00 0.00 12.10% 0.08 0.15 0.29 To Pond El F2 A 6.86 6.86 0.00 0.00 0.00 12.10% 0.08 0.15 0.29 To Pond El DEVELOPED - EAST E9 A 8.26 0.00 8.26 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 9 EN1 A 3.89 0.00 3.89 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond E2 EN2 A 2.12 0.00 2.12 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond E2 EN3 A 2.21 0.00 2.21 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond E2 EN4 A 10.83 0.00 10.83 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond E2 EN5 A 3.65 0.00 3.65 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond E2 EN6 A 12.10 0.00 12.10 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond E2 EN7 A 18.52 0.00 18.52 0.00 . 0.00 20.00% 0.13 0.20 0.33 To Pond E2 [ Pond E2 an 53.32 0.00aW 53.32 0.00 0.00 20.00% 0.1a I iii::: ES1 A 24.86 0.00 24.86 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond El ES2 A 8.77 0.00 8.77 0.00 I 0.00 20.00% 0.13 0.20 0.33 To Pond El ES3 A 27.69 0.00 27.69 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond El Pond i EU1 A 14.77 0.00 0.00 0.00 14.77 2.00% 0.00 0.07 0.22 Flows Offsite P:\Projects\PL\05 - Design\Drainage\Calculations\Pelican Lakes - Developed Rational Method Calculations.xlsx a TERRA FORMA - 5OI_ UTI! ONS Project: Pelican Lake Ranch Filing No. 2 NRCSConveyance Factors, le 1Max 300 ft in Urban areas and 500 ft in rural areas Location: Weld County, CO Type of Land Surface K 2From Table 6-2 in UDFCD Volume 1 Designer: TAJ Heavy Meadow 2.5 MinimumTe 10 Date: 10/14/2024 Tillage/Field 5 Latest Revision : 5/5/2025 Short Pasture/Lawns 7 Nearly Bare Ground 10 Grassed Waterway 15 Paved Areas 20 DEVELOPED TIME OF CONCENTRATION CALCULATIONS Initial/Overland s± , 111 1 l;c, Channelized Flow/Tra • Time, Tt Time of Concentration, ; (Check Imperviousness (ft)1 Velocity Computed ; Selected T� C5 • Length Slope (90,� ,1( , i is _ i , . Tt (min) arc Check Max (mirM (96} �� _ , (t#/sec) (mine .i (min) OW4 2.00% 0.00 646 2.30 38.35 Short Pasture/Lawns 2,875 2.90 1. 19 40.20 78.54 N/A 78.54 OW5 2.00% 0.00 1524 2.20 59.77 Short Pasture/Lawns 5,293 1.80 0.94 93 .93 153 .70 N/A 153.70 OW6 2.00% 0.00 718 4.60 32.16 Short Pasture/Lawns 3,909 2.60 1. 13 57.72 89.88 N/A 89.88 W1 20.00% 0. 13 300 3.20 20.58 Grassed Waterway 735 0.75 1.30 9.43 30.01 15. 75 15 .75 W1a 20.00% 0. 13 300 4.60 18.26 Grassed Waterway 1,357 2.70 2.46 9. 18 27.44 19. 21 19.21 Wlb 20.00% 0.13 215 3.60 16.76 Grassed Waterway 1,298 3 .10 2.64 8. 19 24.95 18.41 18.41 W2 7.34% 0.04 300 2.50 24.49 Grassed Waterway 1,960 1.70 1.96 16.70 41.20 22.56 22.56 W2a 13 .76% 0.09 300 3 .50 20.86 Grassed Waterway 1,335 1.70 1.96 11.38 32.24 19.08 19.08 W3 20.00% 0. 13 300 2.20 23.29 Grassed Waterway 738 3 .30 2.72 4.51 27.81 15. 77 15 .77 W3a 20.00% 0. 13 217 3 .90 16.40 Grassed Waterway 1,418 1.30 1.71 13 .82 30.22 19. 08 19.08 W3b 20.00% 0.13 220 6.40 14.02 Grassed Waterway 66 0.50 1.06 1.04 15.06 11.59 11 .59 W4 9 .51% 0.06 210 2.90 19.18 Grassed Waterway 1,363 1.50 1.84 12.37 31.54 18. 74 18.74 W8a 20.00% 0. 13 289 3 .00 20.64 Grassed Waterway 83 1.60 1.90 0.73 21.37 12.07 12 .07 W8 20.00% 0. 13 247 8.70 13.43 Grassed Waterway 529 2.98 2.59 3.40 16.83 14.31 14.31 W5 14.46% 0. 10 300 5. 10 18.33 Grassed Waterway 1,270 1.50 1.84 11.52 29.85 18. 72 18.72 W6a 10.49% 0. 07 296 4.00 20.32 Grassed Waterway 875 1.89 2.06 7. 07 27.39 16. 51 16.51 W6b 20.00% 0.13 179 7.80 11.85 Grassed Waterway 766 1.60 1.90 6.73 18.58 15. 25 15.25 W6 20.00% 0. 13 215 4.20 15.93 Grassed Waterway 671 1.16 1.61 6.93 22.86 14.92 14 .92 W10 20.00% 0. 13 300 2.00 24.04 Grassed Waterway 1,587 1.30 1.71 15.47 39.50 20.48 20.48 W11 12.10% 0.08 227 2.00 22.10 Grassed Waterway 0 0.00 0.00 0.00 22. 10 11.26 11 .26 W12 19.44% 0. 13 300 4.60 18.33 Grassed Waterway 1,280 1.50 1.84 11.61 29.94 18. 78 18.78 W13 10.35% 0.07 291 8.60 15.67 Grassed Waterway 1,540 3 .10 2.64 9. 72 25.39 20. 17 20.17 W14 9. 22% 0.06 300 6.70 17.43 Grassed Waterway 3,673 1.67 1.94 31.55 48.98 32.07 32.07 W15 2.00% 0.00 294 6.50 18 .36 Grassed Waterway 1,176 5.30 3.45 5. 68 24.04 18. 17 18.17 W16 20.00% 0. 13 137 8.00 10.28 Grassed Waterway 218 2.20 2.22 1. 63 11.91 11.97 11 .91 S1 20.00% 0. 13 279 2.80 20.74 Grassed Waterway 1,981 1.70 1.96 16.88 37.62 22. 56 22.56 S2 20.00% 0. 13 196 4.60 14.76 Grassed Waterway 1,161 2.10 2. 17 8.90 23.66 17.54 17.54 S3 20.00% 0. 13 300 3.70 19.62 Grassed Waterway 480 3 .90 2.96 2. 70 22.32 14.33 14.33 S4 20.00% 0. 13 269 3.70 18.58 Grassed Waterway 2,121 1.60 1.90 18.63 37.21 23. 28 23.28 S5 20.00% 0. 13 255 6.80 14.80 Grassed Waterway 385 4.30 3. 11 2.06 16.86 13. 56 13 .56 S6 20.00% 0. 13 300 6.50 16.29 Grassed Waterway 1,766 2.87 2.54 11.59 27.88 21.48 21.48 S14 20.00% 0. 13 246 1.70 22.96 Grassed Waterway 2,027 1.60 1.90 17.81 40.77 22. 63 22.63 S15 20.00% 0. 13 300 1.70 25.36 Grassed Waterway 1,439 2.90 2.55 9.39 34.75 19. 66 19.66 S16 20.00% 0. 13 67 3.90 9.11 Grassed Waterway 1,023 1.70 1.96 8. 72 17.83 16. 06 16.06 S17 20.00% 0. 13 300 4.70 18.13 Grassed Waterway 1,594 1.50 1.84 14.46 32.59 20.52 20.52 Sla 20.00% 0.13 300 5.90 16.82 Grassed Waterway 389 1.60 1.90 3.42 20.24 13.83 13 .83 S8 20.00% 0. 13 50 4.40 7 .56 Grassed Waterway 395 0.60 1. 16 5. 67 13.23 12.47 12 .47 S9 20.00% 0. 13 232 1.90 21.50 Grassed Waterway 651 0.40 0.95 11.44 32.93 14.91 14 .91 S10 20.00% 0. 13 139 7.90 10.40 Grassed Waterway 1,240 1.90 2.07 10.00 20.39 17. 66 17.66 S11 20.00% 0. 13 217 9.20 12.35 Grassed Waterway 865 3 .40 2.77 5.21 17.57 16.01 16.01 S12 20.00% 0. 13 300 6.30 16.46 Grassed Waterway 912 2.00 2. 12 7. 17 23.62 16. 73 16 .73 S13 20.00% 0. 13 245 55. 10 7.27 Grassed Waterway 2,684 1.10 1.57 28.43 35.71 26.27 26.27 S18 20.00% 0. 13 272 4.80 17.14 Grassed Waterway 590 3 .40 2.77 3.56 20.70 14. 79 14 .79 S19a 20.00% 0.13 281 3.60 19.16 Grassed Waterway 200 1.90 2.07 1. 61 20.77 12. 67 12.67 S19 20.00% 0. 13 300 6.70 16.13 Grassed Waterway 3,710 1.40 1.77 34.84 50.97 32. 28 32.28 S20 20.00% 0. 13 300 2.30 22.95 Grassed Waterway 3,213 1.20 1.64 32.59 55.54 29. 52 29.52 S21 20.00% 0. 13 224 6.30 14.22 Grassed Waterway 583 2.10 2. 17 4.47 18.69 14.48 14.48 S22 20.00% 0. 13 267 10. 10 13.29 Grassed Waterway 1,283 3 .00 2.60 _ 8.23 21.52 18. 61 18.61 S23 20.00% 0. 13 128 6.30 10.75 Grassed Waterway 1,344 3 .40 2.77 8. 10 18.85 18. 18 18.18 U1 2.00% 0.00 202 6.20 15.46 Grassed Waterway 128 0.50 1.06 2.01 17.47 11.83 11 .83 U2 20.00% 0. 13 300 4.80 18.00 Grassed Waterway 87 1.30 1.71 0.85 18.85 12. 15 12 . 15 U3 2.00% 0.00 83 4.20 11.27 Grassed Waterway 0 0.00 0.00 0. 00 11.27 10.46 10 .46 East Area F1 12.10% 0.08 297 5.90 17.69 Grassed Waterway 1,080 2.77 2.50 7.21 24.90 17.65 17.65 F2 12.10% 0.08 377 2.30 27.19 Grassed Waterway 0 0.00 0.00 0.00 27. 19 12.09 12 .09 E9 20.00% 0. 13 225 1. 10 25 .35 Grassed Waterway 0 0.00 0.00 _ 0.00 25.35 11.25 11 .25 EN1 20.00% 0. 13 182 3.90 15.02 Grassed Waterway 180 0.50 1.06 2.83 17.85 12.01 12 .01 EN2 20.00% 0. 13 114 5.30 10.74 Grassed Waterway 334 0.90 1.42 3.91 14.65 12.49 12 .49 EN3 20.00% 0. 13 36 8.30 5.21 Grassed Waterway 505 2.00 2. 12 3.97 9. 17 13.01 10 .00 EN4 20.00% 0. 13 257 3.70 18.16 Grassed Waterway 562 1.45 1.81 5. 18 23.34 14. 55 14 .55 ENS 20.00% 0. 13 256 4.70 16.75 Grassed Waterway 298 3 .70 2.89 1.72 18.47 13.08 13 .08 EN6 20.00% 0. 13 145 4.80 12.52 Grassed Waterway 1,192 1.71 1.96 10.14 22.65 17.43 17.43 EN7 20.00% 0. 13 300 12.00 13.31 Grassed Waterway 760 2.20 2.22 5. 69 19.00 15.89 15 .89 ES1 20.00% 0. 13 274 9. 10 13 .93 Grassed Waterway 1,641 0.40 0.95 28.83 42.76 20. 64 20.64 ES2 20.00% 0. 13 300 7.40 15.61 Grassed Waterway 400 4.40 3. 15 2. 12 17.73 13.89 13 .89 ES3 20.00% 0. 13 300 1.20 28.45 Grassed Waterway 600 0.40 0.95 10.54 38.99 15.00 15 .00 EU1 2.00% 0.00 242 2.50 22.83 Grassed Waterway 725 0.40 0.95 12.74 35.57 15.37 L 15 .37 2.4.2 Channelized lion lime 2,4,1 Initial or Overland Flow Time (c. = t, + ti Equation 6-' The channelizcd flow time I travel lime) is calculated using the hydraulic properties of the conveyance The initial or overland flow lime. t:. may be calculated using Equation 6-3: element. The channel ized flow time, r,. is estimated by dividing the length of conveyance by the velocity. hLre The !allowing equation. Equation 6-4 (Guo 20 f3). can be used to determine the flow velocity in. 0.395(1 . I — C L, conjunction with Table 6-2 for the conveyance factor. r = Equation 6-3 r 1, = computed time of concentration (minutes) �'°opt t, _ �` — �` Equation 6-4 60K % 60i; t = overland (initial) flow time (minutes) Where: tr = channelized flow time (minutes). Where: r, = overland (initial) flow time (minutes) C'5 = runoff coefficient for 5-year frequency (from Table ( ) r, = channelized flow time (travel time. nun) L, = length of overland flow (fl) Lr = waterway length ill) Sa = waterway slope (1t/it) Sa = average slope along the overland flow path (at.ftl_ P, = Gravel time velocity ttL'sec) = Kd5„ K= NRCS conveyance factor (see Table 6-21. 5.5.1.4 Urban Check 2For developed and urbanizing basins, the maximum time of concentration shall not exceed the time of • �• Minimum Time of Concentration un concentration calculated by the urban check equation as follows: Use a minimum r value of 5 minutes for urbanized areas and a minimum t, value of IC minutes for areas = Lr that are not considered urban. Use minimum values even when calculations result in a lesser time of t� 180 t 10 Eq. 5.5.1.4 concentration. Where: Lt = Waterway length, ft The minimum time of concentration for urbanizing areas is 5 minutes and the minimum time of concentration for non-urbanizing areas is 10 minutes. PA_Projects\PL\05 - Design\Drainage\Calculations\Pelican Lakes - Developed Rational Method Calculations.xlsx TERRA FORMA ` r SOLUTIONS Project: Pelican Lake Ranch Filing No. 2 Design Storm : 10-Yr Location: Weld County, CO 1-hr Design Point Rainfall (in) : 1.39 Designer: TAJ Date: 10/14/2024 Latest Revision: 5/5/2025 DEVELOPED 10-YEAR PEAK RUNOFF CALCULATIONS intensity Peak Flow, Q Basin Designation Design Point Area (ac) C X Tc (min) (in/hr) (cfs) OW4 OW4 80.70 0.07 5.60 78.54 _ 1.17 6.53 OW5 OW5 590.74 0.07 40.96 153.70 0.72 29.51 OW6 OW6 173.92 0.07 12.06 89.88 1.06 12.81 W1 W1 11.26 0.20 2.27 15.75 3.08 7.01 W1a W1a 10.26 0.20 2.07 19.21 2.79 5.78 W1b W1b 8.61 0.20 1.74 18.41 2.85 4.96 W2 W2 32.15 0.12 3.72 22.56 2.56 9.55 W2a W2a 4.40 0.16 0.72 19.08 2.80 2,01 W3 W3 15.56 0.20 3.14 15.77 3.08 9.68 W3a W3a 26.56 0.20 5.36 19.08 2.80 15.02 W3b W3b 0.97 0.20 0.20 11.59 3.54 0.69 W4 W4 46.79 0.13 6.21 18.74 2.83 17.56 W8a W8a 1.11 0.20 0.22 12.07 3.48 0.78 W8 W8 23.25 0.20 4.69 14.31 3.23 15, 14 W5 W5 37.23 0.17 6.25 18.72 2.83 17.67 W6a W6a 23.24 0.14 3.25 16.51 3.01 9.81 W6b W6b 6.46 0.20 1.30 15.25 3.13 4.08 W6 W6 9.70 0.20 1.96 14.92 3.16 6. 19 W10 W10 18.22 0.20 3.68 20.48 2.70 9.93 W11 W11 1.44 0.15 0.22 11.26 3.58 0.78 W12 W12 8.06 0.20 1.60 18.78 2.83 4.52 W13 W13 13.69 0.14 1.90 20.17 2.72 5. 18 W14 W14 179.18 0.13 23.38 32.07 2.10 49.01 W15 W15 4.66 0,07 0.32 18.17 2.87 0.93 W16 W16 2.35 0.20 0.47 11.91 3.50 1.66 S1 S1 27.67 0.20 5.59 22.56 2.56 14.32 S2 S2 21.99 0.20 4.44 17.54 2.92 12.98 S3 S3 6.09 0.20 1.23 14.33 3.22 3.96 S4 S4 21.13 0.20 4.27 23.28 2.52 10,75 S5 S5 8.62 0.20 1.74 13.56 3.31 5.75 56 S6 26.22 0.20 5.29 21.48 2.63 13.94 S14 S14 22.84 0.20 4.61 22.63 2.56 11.80 S15 S15 23.29 0,20 4.70 19.66 2.76 12.97 S16 S16 2.85 0.20 0.58 16.06 3.05 1.76 S17 S17 29.19 0.20 5.89 20.52 2.70 15.90 S1a S1a 3.70 0.20 0.75 13.83 3.28 2.45 S8 S8 1.93 0.20 0.39 12.47 3.43 1.34 S9 S9 10.40 0.20 2.10 14.91 3.16 6.65 S10 S10 12.93 0.20 2.61 17.66 2.91 7.61 S11 S11 11.23 0.20 2.27 16.01 3,06 6.93 S12 S12 18.24 0.20 3.68 16.73 2.99 11.02 S13 S13 72.83 0.20 14.70 26.27 2.36 34.63 S18 S18 12.17 0.20 2.46 14.79 3.18 7.80 S19a S19a 2.21 0.20 0.45 12.67 3.41 1.52 S19 S19 67.43 0.20 13.61 32.28 2.09 28.42 S20 S20 60.16 0.20 12. 15 29.52 2.20 26.74 S21 S21 7.12 0.20 1.44 14.48 3.21 4.61 S22 S22 17.11 0.20 3.45 18.61 2.84 9.80 S23 S23 7.02 0.20 1.42 18.18 2.87 4.07 U1 U1 5.44 0.07 0.38 11.83 3.51 1.32 U2 U2 2.75 0.20 0.56 12.15 3.47 1.93 U3 U3 2.59 0.07 0.18 10.46 3.69 0.66 East Area F1 F1 12.34 0.15 1.87 17.65 2.92 5.46 F2 F2 6.86 0.15 1.04 12.09 3.48 3.62 E9 E9 8.26 0.20 1.67 11.25 3.59 5.98 EN1 EN1 3.89 0.20 0.79 12.01 3.49 2.74 EN2 EN2 2.12 0.20 0.43 12.49 3.43 1.47 EN3 EN3 2.21 0.20 0.45 10.00 3.76 1.68 EN4 EN4 10.83 0.20 2.19 14.55 3.20 7.00 EN5 EN5 3.65 0.20 0.74 13.08 3.36 _ 2.48 EN6 EN6 12.10 0.20 2.44 17.43 2.93 7. 17 EN7 EN7 18.52 0.20 3.74 15.89 3.07 11.48 ES1 ES1 24.86 0.20 5.02 20.64 2.69 13.50 ES2 ES2 8.77 0.20 1.77 13.89 3.27 5.79 E53 ES3 27.69 0.20 5.59 15.00 3. 16 17.64 EU1 EU1 14.77 0.07 1.02 15.37 3.12 3. 19 P:\Projects\PL\05 - Design\Drainage\Calculations\Pelican Lakes - Developed Rational Method Calculations.xlsx . TERRA FORMA ` r SOLUTIONS Project: Pelican Lake Ranch Filing No. 2 Design Storm : 100-Yr Location: Weld County, CO 1-hr Design Point Rainfall (in) : 2.69 Designer: TAJ Date: 10/14/2024 Latest Revision: 5/5/2025 DEVELOPED 100-YEAR PEAK RUNOFF CALCULATIONS Intensity Peak Flow, Q Basin Designation Design Point Area (ac) _ : _ C X A Tc {min} (in/hr) (cfs) OW4 OW4 80.70 0.22 17.52 78.54 2.26 39.60 OW5 OW5 590.74 0. 22 128.27 153.70 1.39 178.84 OW6 OW6 173.92 0. 22 37.76 89.88 2.06 77.64 W1 W1 11.26 0.33 3.71 15.75 5.97 22. 16 W1a W1a 10.26 0.33 3.38 19.21 5.40 18.29 W1b W1b 8.61 0.33 2.84 18.41 5.52 15.69 W2 W2 32.15 0.26 8.29 22.56 4.96 41. 12 W2a W2a 4.40 0.30 1.31 19.08 5.42 7. 11 W3 W3 15.56 0.33 5.13 15.77 5.96 30.61 W3a W3a 26.56 0.33 8.76 19.08 5.42 47,51 W3b W3b 0.97 0.33 0.32 11.59 6.85 2. 19 W4 W4 46.79 0.27 12.74 18.74 5.47 69.72 W8a W8a 1.11 0.33 0.37 12.07 6.74 2.47 W8 W8 23.25 0.33 7.67 14.31 6.24 47.88 W5 W5 37.23 0.30 11.24 18.72 5.48 61. 53 W6a W6a 23.24 0.28 6.47 16.51 5.83 37.75 W6b W6b 6.46 0.33 2.13 15.25 6.06 12.91 W6 W6 9.70 0.33 3.20 14.92 6.12 19.59 W10 W10 18.22 0.33 6.01 20.48 5.23 31,41 W11 W11 1.44 0.29 0.42 11.26 6.94 2.88 W12 W12 8.06 0.33 2.64 18.78 5.47 14.42 W13 W13 13.69 0.28 3.80 20.17 5.27 20.02 W14 W14 179.18 0.27 48.44 32.07 4.06 196,50 W15 W15 4.66 0.22 1.01 18.17 5,56 5.63 W16 W16 2.35 0.33 0.78 11.91 6.77 5.25 S1 S1 27.67 0.33 9.13 22.56 4.96 45.29 S2 S2 21.99 0.33 7.25 17.54 5.66 41.06 S3 S3 6.09 0.33 2.01 14.33 6.24 12,53 S4 S4 21.13 0.33 6.97 23.28 4.88 34.00 S5 S5 8.62 0.33 2.84 13.56 6.40 18.20 $6 S6 26.22 0.33 8.65 21.48 5.10 44.07 514 S14 22.84 0.33 7.53 22.63 4.95 37.32 S15 S15 23.29 0.33 7.68 19.66 5.34 41.02 S16 516 2.85 0.33 0.94 16.06 5.91 5.56 S17 S17 29.19 0.33 9.63 20.52 5.22 50.27 S1a S1a 3.70 0.33 1.22 13.83 6.34 7.74 S8 S8 1.93 0.33 0.64 12.47 6.64 4.23 S9 S9 10.40 0.33 3.43 14.91 6.13 21.01 S10 S10 12.93 0.33 4.27 17.66 5.64 24.06 S11 S11 11.23 0.33 3.70 16.01 5.92 21,93 S12 S12 18.24 0.33 6.02 16.73 5.79 34.86 S13 S13 72,83 0.33 24.03 26.27 4.56 109.51 S18 S18 12.17 0.33 4.01 14.79 6.15 24.68 S19a S19a 2.21 0.33 0.73 12.67 6.59 4.81 S19 S19 67.43 0.33 22.24 32.28 4.04 89.88 S20 S20 60.16 0.33 19.85 29.52 4.26 84.57 S21 S21 7.12 0.33 2.35 14.48 6.21 14.58 S22 S22 17.11 0.33 5.64 18.61 5.49 31.00 S23 S23 7.02 0.33 2.32 18.18 5.56 12.87 U1 U1 5.44 0.22 1.18 11.83 6.79 8.02 U2 U2 2.75 0.33 0.91 12.15 6.72 6.09 U3 U3 2.59 0.22 0.56 10.46 7.15 4.02 East Area F1 F1 12.34 0.29 3.56 17.65 5.64 _ 20.07 F2 F2 6.86 0.29 1.98 12.09 6.73 13.31 E9 E9 8.26 0.33 2.72 _ 11.25 6.94 18.91 EN1 EN1 3.89 0.33 1.28 12.01 6.75 8.66 EN2 EN2 2.12 0.33 0.70 12.49 6.64 4.64 EN3 EN3 2.21 0.33 0.73 10.00 7.28 5.31 EN4 EN4 10.83 0.33 3.57 14.55 6.19 22. 13 EN5 EN5 3.65 0.33 1.20 13.08 6.50 7.83 EN6 EN6 12.10 0.33 3.99 17.43 5.68 22,66 EN7 EN7 18.52 0.33 6.11 15.89 5.94 36.30 ES1 ES1 24.86 0.33 _ 8.20 _ 20.64 5,20 42.68 ES2 ES2 8.77 0.33 2.89 13.89 6.33 18.31 ES3 ES3 27.69 0.33 9.13 15.00 6.11 55.78 EU1 EU1 14.77 0.22 3.21 15.37 6.04 19.36 P:\Projects\PL\05 - Design\Drainage\Calculations\Pelican Lakes - Developed Rational Method Calculations.xlsx Mott TERRA FORMA • SOLUTIONS rarer Project: Pelican Lake Ranch Filing No. 2 Design Storm: 10-Yr Location: Weld County, CO 1-hr Design Point Rainfall (in): 1.39 Designer: TM Design Storm: 100-Yr Date: 10/14/2024 1-hr Design Point Rainfall (in): 2.69 Latest Revision: 5/5/2025 ROUTING CALCULATIONS a Direct Runoff a Total Runoff Travel Time Design Point Total Area Rational or Design Point Contributing Basins . Design Point Channel Basin 10-Yr Intensity 100-Yr Intensity Sum Area Sum Area 10-Yr Intensity 100-Yr Intensity Length Slope Velodty Remarks Outfall Designation Area (ac) CIO Cl00 C10 X A Cl00 X A ;{min] {in/hr} (in/hr) (cfs) moo {cis] Te (min} {Cla X A} (Cum X A} [in/hr] (in/hr) �° Id's) Q7°° (cfs} [ft] {96} Tt(min) (ac) SWMM {ft/sec} OW4 OW4 N/A CR 39 OW4 80.70 0.07 0.22 5.60 1732 78.54 1.17 2.26 6.53 39.60 1,533 1.50 1.84 13.91 To basin W2 80.70 RATIONAL W2 OW4, W2 N/A Culvert 2 W2 32.15 0.12 0.26 3.72 8.29 22.56 2.56 4.96 9.55 41.12 92.45 9.32 25.81 1.04 2.02 9.70 52.01 950 3.40 2.77 5.72 To basin W2a 112.85 RATIONAL W2a OW4, W2, W2a Channel C Pond Wi W2a 4.40 0.16 0.30 0.72 1.31 19.08 2.80 5.42 2.01 7.11 98.18 10.04 27.12 1.00 1.93 10.01 52.37 To Pond W1 117.25 RATIONAL it W .. OWS OWS N/A CR39 OW5 590.74 0.07 0.22 40.96 128.27 153.70 0.72 1.39 - 572 .20 575 2.50 2.37 4.04 To basin W1 590.74 SWMM V1/1 OW5, W1 Channel A Culvert 1 W1 11. 25 0.20 0.33 1 2.27 3.71 15.75 3.08 5.97 7.01 22. 16 157. 74 43.23 131.98 1 0.71 1.37 - 286.70 1,030 1.80 2.01 8.53 To basin Wla 602.00 SWMM 1./1/1.3 OWS, W1, W1a Channel B Pond W1 VV1a 10.25 0.20 0.33 2 .07 338 19.21 2.79 5.40 5.78 18.29 166 27 45 .30 135.37 0.68 1. 3"2 - 290.77 To Pond W1 612.26 SWMM I - W1b Wib N/A Pond Wl W1b 8.61 0.20 0.33 1.74 2.84 18.41 2.85 5.52 4.95 15.69 To Pond W1 8.61 RATIONAL a I I 1 I a W3 W3 N/A Culvert 3 W3 15.56 0.20 0.33 3.14 5.13 15.77 3.08 5.96 9.68 30.61 1,005 0.80 1.34 12.48 To W3a 15.56 RATIONAL W3b W3b N/A Culvert 4 W3b 0.97 0.20 0.33 0.20 0.32 11.59 3.54 6.85 0.69 2.19 1,525 1.30 1.71 14.86 To W3a 0.97 RATIONAL 1N3a W3, W3a, W3b Channel D Pond W1 W3a 26.56 0.20 0.33 5.36 8.76 19.08 2.80 5.42 15.02 47.51 28.25 8.70 14.21 2 .25 4.37 19.65 62.14 To Pond W1 43.09 RATIONAL 1A14 W4 N/A Pond W1 W4 46.79 0. 13 0.27 6.21 12.74 18.74 2.83 5.47 17.56 69.72 46.79 RATIONAL _ T W8a W8a N/A Culvert 8 W8a 1.11 0.20 0. 33 0.22 0.37 12.07 3.48 6.74 I 0.78 2.47 670 1.40 1.77 6.29 To W8 1.11 RATIONAL WE W8a, WE N/A Pond W3 W8 23.25 0.20 0.33 I 4.69 7.67 14.31 3.23 6.24 15.14 47.88 18.36 4.92 8.04 2.86 5.53 14.05 44.45 To Pond W3 24.36 RATIONAL F 1 I I [ In i I. I WS W5 N/A Culvert 5 W5 37.23 0. 17 0.30 6.25 11.24 18.72 2.83 5.48 17.67 61.53 I 315 0.50 1.06 4.95 To W6b I 37.23 RATIONAL W6a W6a Channel E W6b W6a 23.24 0.14 0.28 3.25 6.47 16.51 3.01 5.83 9.81 37.75 0 0.00 0.00 0.00 To W6b 23.24 RATIONAL W6b W5, W6a, W6b Channel F FES-3 W6b 6.46 0.20 0.33 1.30 2.13 15.25 3.13 6.06 4.08 _ 12.91 _ 23.67 10.80 19.84 2.50 4.83 26.98 95.88 3,000 1.40 2.07 24.15 To W13 66.93 RATIONAL W6 W6 N/A Culvert 6 W6 9.70 0.20 0.33 1.96 3.20 14.92 3.16 6.12 6.19 19.59 600 0.50 1.06 9.43 To W10 9.70 RATIONAL W10 W6, W10 Channel G FES-2 W10 18.22 0.20 0.33 3.68 6.01 20.48 2.70 5.23 9.93 31.41 24.35 5.64 9.21 2.46 4.76 13.86 43.82 1,750 2.70 2.88 10.14 To W13 37.42 RATIONAL W11 W11 N/A W12 W11 1.44 0.15 0.29 0.22 0.42 11.26 3.58 6.94 0.78 2.88 295 1.90 2.07 2.38 To W12 1.44 RATIONAL W12 W11, W12 N/A STMH-5 W12 8.06 0.20 0.33 1.60 2.64 18.78 2.83 5.47 4.52 14.42 18.78 1.82 3.05 2.83 5.47 5.14 16.69 1,577 2.50 2.77 9.50 To W13 8.06 RATIONAL W13 W5, W6a, W6b, W6, W10, W11, W12, W13 Channel H Pond 4 W13 13.69 0.14 0.28 1.90 3.80 20.17 2.72 5.27 5.18 20.02 47.82 20.16 35.91 1.63 3.16 32.92 113.44 To Pond 4 118.04 RATIONAL W14 W14 N/A Pond 4 W14 179.18 0.13 0.27 23.38 48.44 32.07 2.10 4.06 - 119.80 To Pond 4 179.18 SWMM W15 W15 N/A Pond 4 W15 4.66 0.07 0.22 0.32 1.01 18.17 2.87 5.56 0.93 5.63 To Pond 4 4.66 RATIONAL .I OW6 OW6 N/A CR 39 OW6 173.92 0.07 0.22 12.06 37.76 89.88 1.06 2.06 - 192.10 380 3.70 2.89 2.20 To 51 173.92 SWMM 51 OW6, 51 Channel I Culvert 20 51 27.67 0.20 0.33 5.59 9.13 22.56 2.56 4.96 14.32 45.29 92.08 17.64 46.89 1.04 2.02 - 101.70 To Pond Si 201.59 SWMM 52 OW6, S1, W16, 52 N/A Pond 51 52 21.99 0.20 0.33 4.44 7.25 17.54 2.92 5.66 12.98 41.06 92.08 22.56 54.92 1.04 2.02 - 107.40 To Pond 51 225.93 SWMM W16 W16 N/A Culvert 11 W16 2.35 0.20 0.33 0.47 0. 78 11.91 3.50 6.77 1 .66 5.25 To Pond S1 2.35 RATIONAL 53 53 N/A Culvert 28 53 6.09 0.20 0.33 1 1.23 2.01 14.33 3.22 6.24 I 3.96 12.53 I 320 0.70 1.25 1 4.25 To 55 1 6.09 RATIONAL 54 S4 Channel J Culvert 27 S4 21.13 0.20 0. 33 4.27 6.97 23.28 2.52 4.88 10.75 34.00 360 1.00 1.50 4.00 To $6 21.13 RATIONAL 55 53, 55 N/A Culvert 29 55 8.62 0. 20 0.33 1 1.74 2 84 i 13.56 3.31 6-40 I 5.75 18.20 18.58 2.97 I 4.85 2.84 5.50 8.43 26.67 275 1.30 1.71 1 2.68 To $6 1 14. 71 RATIONAL 56 53, 54, 55, 56 Channel K Pond S2 55 26.22 0.20 0.33 5.29 8.65 21.48 2.63 5.10 ! 13.94 44.07 27.28 12.53 20.47 2.31 4.46 28.88 91.33 To Pond S2 52.06 _ RATIONAL A I a a a a I I 4 S14 514 N/A Culvert 23 514 22.84 0.20 0.33 4.61 7.53 22.63 2.56 4.95 11.80 37.32 To Pond 53 22.84 RATIONAL 515 S15 N/A Culvert 39 515 23.29 0.20 0.33 4.70 7.68 19.66 2.76 5.34 12.97 41.02 580 1.60 1.90 5.09 To 516 23.29 RATIONAL 516 515, 515 N/A Culvert 40 516 2.85 0.20 0.33 058 0.94 16.06 3.05 5.91 1.76 5.56 24.76 5.28 8.62 2.44 4.71 12.85 40.65 715 1.10 1.57 7.57 To 517 26.14 RATIONAL 517 S15, 516, 517 N/A Culvert 38 S17 29.19 0.20 0.33 5.89 9.63 20.52 2. 70 5.22 15.90 50.27 32.33 11.17 18.25 2.09 4.04 23.30 73.68 To Pond 53 55.33 RATIONAL fer l ea 1 1 f 1 l I Sla 51a N/A Culvert 25.1 Sla 3.70 0.20 0.33 0.75 1.22 13.83 3.28 6.34 2.45 7.74 I 300 1.00 1.50 3.33 To 518 3.70 RATIONAL 58 58 N/A Culvert 29.1 S8 1.93 0.20 0. 33 0.39 0.64 12.47 3.43 6.64 1.34 4.23 300 3.10 2.64 1.89 To 59 1.93 RATIONAL S9 58159 N/A Culvert 30 59 10.40 0.20 0.33 2.10 3.43 14.91 3.16 6.13 6.65 21.01 14.91 2.49 4.07 3.16 6.13 7.88 24.91 745 1.10 1.57 7.89 To S10 12.33 RATIONAL 510 } 58, 59, 510 Channel L Culvert 32 510 12.93 0.20 0.33 2.61 4.27 17.66 2.91 5.64 7.61 24.06 22.80 5.10 8.33 2.55 4.93 13.00 41.11 2,075 1.50 1.84 18.82 To 513 25.26 RATIONAL 511 Sil N/A Culvert 35 511 11.23 0.20 0.33 2.27 3.70 16.01 3.06 5.92 6.93 21.93 900 1.80 2.01 7.45 To 512 11.23 RATIONAL 512 511, 512 Channel M Culvert 31 512 18.24 0.20 0.33 3.68 6.02 16.73 2.99 5.79 11.02 34.86 23.46 5.95 9.72 2.51 4.86 14.93 47.21 2,735 0.90 1.42 32.03 To 513 29.47 RATIONAL 513 58, 59, 510, 511, 512, 513 Channel N Culvert 37 513 72.83 0.20 0.33 14.70 24.03 26.27 2.36 4.56 34.63 109.51 55.50 25.75 42.08 1.48 2.86 38.12 120.54 To S20 127.56 RATIONAL 518 Sla, 518 N/A Culvert 22 518 12.17 0.20 0.33 2.46 4.01 14.79 3.18 6.15 7.80 24.68 17.16 3.20 5.24 2.96 5.72 9.47 29.95 3,590 1.40 1.77 33.71 To 519 15.87 RATIONAL S19a S19a N/A Culvert 25 S19a 2.21 0.20 0.33 0.45 0.73 12.67 3.41 6.59 1.52 4.81 3,877 1.40 1.77 36.41 To S19 2.21 RATIONAL 519 Sla, 518, S19a, 519 Channel 0 Culvert 24 519 67.43 0.20 0.33 13.61 22.24 32.28 2.09 4.04 28.42 89.88 50.87 17.26 28.21 1.57 3.03 27.07 85.59 2,335 1.00 1.50 25.94 To 520 85.51 RATIONAL 520 Sla,58, 59, 510, 511, 512, 513, 518, 519, 519a, 520 Channel P Pond 54 520 60.16 0.20 0.33 12.15 19.85 29.52 2.20 4.26 2634 84.57 76.82 55.16 90.13 1.19 2.30 - 253.00 To Pond 54 273.23 SWMM S21 521 N/A Culvert 34 521 7.12 0.20 0.33 1.44 2.35 14.48 3.21 6.21 4.61 14.58 1,850 2.60 2.42 12.75 To 522 7.12 RATIONAL S22 521, 522 N/A Pond S4 S22 17.11 0.20 0.33 3.45 5.64 18.61 2.84 5.49 9.80 31.00 27.23 4.89 7.99 2.31 4.47 11.29 35.69 To Pond S4 24.23 RATIONAL 523 S23 N/A Pond 54 523 7.02 0.20 0.33 1.42 2.32 18.18 2.87 5.56 4.07 12.87 To Pond S4 7.02 RATIONAL Ul U1 N/A Off-site U1 5.44 0.07 0.22 0.38 1.18 11.83 3.51 6.79 1.32 8.02 Flows Offsite 5.44 RATIONAL U2 U2 N/A Off-site U2 2.75 0.20 0.33 0.56 0.91 12.15 3.47 6.72 1.93 6.09 Flows Offsite 2.75 RATIONAL U3 U3 N/A Off-site U3 2.59 0.07 0.22 0.18 0.56 10.46 3.69 7.15 0.66 4.02 Flows Offsite 2.59 RATIONAL East Area E9 EN9 N/A Pond 9 E9 8.26 0.20 0. 33 1.67 2.72 11.25 3.59 6.94 5 .98 18.91 To Pond 9 8.26 RATIONAL ii allilL an_ EN1 EN1 N/A Culvert El EN1 329 0.20 0.33 0.79 1.28 12.01 3.49 6.75 2.74 8.66 1,260 1.50 1.84 11.43 To N6 3.89 RATIONAL EN2 EN2 N/A Culvert E2 EN2 2.12 0.20 0.33 0.43 0.70 12A9 3.43 6.64 1.47 4.64 1,510 1.40 1.77 14.18 To N6 2.12 RATIONAL EN3 EN3 N/A Culvert E4 EN3 2.21 0.20 0.33 0.45 0.73 10.00 3.76 7.28 1.68 5.31 965 1.00 1.50 10.72 To N4 2.21 RATIONAL EN4 EN3, EN4 N/A Culvert E3 EN4 10.83 0.20 0.33 2.19 3.57 _ 14.55 3.20 6.19 7.00 _ 22.13 20.72 2.63 4.30 2.68 5.19 7.06 22.34 275 4.50 3.18 1.44 To N6 13.04 RATIONAL ENS EN5 N/A Culvert E5 ENS 3.65 0.20 0.33 034 1.20 13.08 3.36 6.50 2.48 7.83 1,005 2.50 2.37 7.06 To N6 3.65 RATIONAL EN6 EN1, EN2, EN3, EN4, ENS, EN6 Channel Q EN7 EN6 12.10 0.20 0.33 2.44 3.99 17.43 2.93 5.68 7.17 22.66 26.67 7.03 11.48 2.34 4.52 16.41 51.88 510 130 1.71 4.97 To N7 34.80 RATIONAL EN7 EN1, EN2, EN3, EN4, ENS, EN6, EN7 N/A Pond E2 EN7 18.52 0.20 0.33 3.74 6.11 15.89 3.07 5.94 11.48 36.30 31.64 10.76 17.59 2.11 4.09 22.75 71.93 To Pond E2 53.32 RATIONAL Fl Fl N/A ESI Fl 12.34 0.15 0. 29 1.87 3.56 17,65 2.92 5.64 5.46 20.07 340 190 2.07 2.74 To ES1 12.34 RATIONAL F2 1 F2 N/A ES3 F2 6.86 0.15 0.29 1.04 1.98 12.09 3.48 6.73 3.62 13.31 860 1.00 1.50 9.56 To ES3 6.86 RATIONAL ES1 Fl, ES1 N/A ES3 ES1 24.86 0.20 0.33 5.02 8.20 20.64 2.69 5.20 13.50 42.68 20.64 5.89 11.76 2.69 5.20 18.53 61.20 785 0.30 0.82 15.92 To E53 37.20 RATIONAL ES2 j E52 N/A Culvert E6 ES2 8.77 0.20 0.33 1.77 2.89 13.89 3.27 6.33 5.79 18.31 480 0.30 0.82 9.74 To ES3 8.77 RATIONAL ES3 El, F2, E51, ES2, ES3 Channel R Pond El E53 27.69 0.20 0. 33 5.59 9. 13 15.00 3.16 6.11 17.64 55.78 36.56 15.29 25. 76 1 .94 3. 75 29.59 96.50 To Pond El 80.52 RATIONAL allia T f EU1 EU1 N/A Off-site EU1 14. 77 0.07 0.22 1.02 3.21 15.37 3.12 6.04 3.19 19.36 Flows offsite 14. 77 RATIONAL a I I I P:LProjects\PL\05 -Design\Drainage\Calculations\Pelican Lakes - Developed Rational Method Calculations.xlsx APPENDIXC - HYDRAU L IC COMPUTATIONS RETENTION POND CALCULATIONS e• TERRA FORMA - -SOLUTIONS- Project: Pelican Lake Ranch Filing No. 2 Location: Weld County, CO Designer: TAJ Date: 11/6/2024 Latest Revision: 5/8/2025 RETENTION POND W1 CALCULATIONS 100-Yr Volume In From 1 ,784,345 cf 40.96 ac-ft ii SWMM 1 .5 Times Volume In 2,676,518 cf 61 .44 ac-ft RETENTION POND W1 STAGE STORAGE Average a Cumulative Stage Description Stage Elevation Ada Area Depth Volume Volume Volume SE sf _ff cf ac-ft _jilLakft Pond Bottom 4884.5 293,654 _ 0.00 295,905 0.5 147,953 3.40 4885 298,156 3.40 302,682 1 .0 302,682 6.95 4886 307,208 10.35 311 ,788 1 .0 311 ,788 7.16 4887 316,367 17.50 320,999 _ 1 .0 320,999 7.37 4888 _ 325,631 24.87 330,314 1 .0 330,314 7.58 4889 334,997 32.45 339,731 1 .0 339,731 7.80 4890 344,464 40.25 _349,250 1 .0 349,250 8.02 4891 354,035 48.27 358,873 _ 1 .0 358,873 8.24 4892 . 363,710 _ 56.51 369,203 1 .0 369,203 8.48 4893 374,696 64.99 _ 381 ,923 1 .0 381 ,923 8.77 Spillway 4894 389,149 73.75 Total Tributary Area 828.00 acres Tributary Area 4.29% Imperviousne : WCQV 2.16 ac-ft Elevation 4884.82 ft WQCV = a(0.91 i3 — 1 . 19i2 -I- 0.781.) Table 5-14 Drain Time Coefficients for WQCV Calculations Where: Drain Time (Firs) Coefficient, a 12 hours 0.8 WQCV = Water Quality Capture Volume (watershed inches) - — 2/1 hours 0.9 a = Coefficient corresponding to WQCV drain time (5-) 40 hours 1.0 i = Imperviousness (%/100) - 100-Year Volume In From 40.96 ac-ft Elevation 4890.09 ft SWMM 100 Year Storage Depth 5.59 ft 100-Year Drain time at 67.06 hours 1-inch/hour 1 .5 Times Volume In 61 .44 ac-ft Elevation 4892.58 ft Freeboard to Spillway 1 .42 ft Emergency Overflow Weir Additional Capacity at 0.5' Total Q Max In from SWMM ength of Weir Weir Coeff. Flow Depth Capacity from Capacity Side Slopes cfs ft cfs cfs cfs A 355.07 365 3.0 387.14 1 .90 389.05 Q = CscwL111.5 Eq. 5.10.2.3 SI Where: Q= Discharge, cfs f ocw = Broad-crested weir coefficient, dimensionless (ranges from 7.6 to 3.0) L= Length of weir, ft H= Head above weir crest, ft Trapezoidal with Sloped Sides Total flow over trapezoidal weirs with side slopes is computed using the standard weir equation as shown above, plus two times the flow given from the following equation. Q = s CwZH2.s 1 Where: Q = discharge over side-sloped portion of weir, cfs (ems) Z = side slope (Z horizontal to 1 vertical) of the weir crest H = distance between water surface and the crest, ft (m) Cw = weir coefficient. typically 3.367 (1 .83) r......._ TERRA FORMA SOLUTIONS Project: Pelican Lake Ranch Filing No. 2 Location: Weld County, CO Designer: TAJ Date: 11/6/2024 Latest Revision: 5/8/2025 RETENTION POND 4 CALCULATIONS 100-Yr Volume In From 724,454 cf 16.63 ac-ft W SMM ii1 .5 Times Volume In 1 ,086,681 cf 24.95 IL ac-ft T me RETENTION POND 4 STAGE STORAGE 1 T'- Average a Cumulative. ' Stage Description Stage Elevation Ada I Area Depth Volum Volume Volume Srf Si 4 e cf ac-ft 1lLakft Pond Bottom _ 4831 13,487 0.00 76,834 0.5 38,417 0.88 4831 .5 140,180 0.88 157,085 0.5 78,542 1 .80 4832 173,989 2.69 180,757 1 .0 180,757 4.15 4833 187,525 6.83 194,973 _ 1 .0 194,973 4A8 - 4834 202,421 11 .31 210,292 1 .0 210,292 4.83 4835 218,163 16. 14 225,764 _ 1 .0 225,764 5.18 4836 1 233,364 _ 21 .32 241 ,370 1 .0 241 ,370 5.54 4837 249,376 26.86 261 ,686 _ 1 .0 261 ,686 6.01 4838 . 273,996 32.87 294,388 1 .0 294,388 6.76 4839 314,779 39.63 Spillway ,4839.08) 341 ,491 1 .0 341 ,491 7.84 4840 368,203 47.47 Total Tributary Area 1 301 .88 acres Tributary Area 11 .42% Imperviousness WCQV 1 .88 ac-ft Elevation 4831 .78 ft WQCV = a (0.91 i 3 - 1. 1912 + 0.781) Table 5-14 Drain Time Coefficients for WQCV Calculations Where: Drain Time (hrs) Coefficient, a 12 hours 0.8 WQCV = Water Quality Capture Volume (watershed inches) 24 hours 0.9 a = Coefficient corresponding to WQCV drain time (5-) 40 hours 1.0 I = Imperviousness (%/100) - 100-Year Volume In From 16.63 ac-ft Elevation 4835.10 ft SWMM 100 Year Storage Depth 4.10 ft 100-Year Drain time at 49.14 hours 1-inch/hour 1 .5 Times Volume In 24.95 ac-ft Elevation 4836.65 ft Freeboard to Spillway 2.43 ft P Existing Emergency Overflow Weir Additional Capacity at 0.5' Total Q Max In from SWMM ength of Weir Weir Coeff. Flow Depth Capacity from Capacity Side Slopes cfs ft cfs cfs cfs _A 97.31 128 3.0 135.76 1 .90 137.67 chtw H1.5 Eq. 5.10.2.3 SI Where: Q= Discharge, cfs f ocw = Broad-crested weir coefficient, dimensionless (ranges from 7.6 to 3.0) L= Length of weir, ft H= Head above weir crest, ft Trapezoidal with Sloped Sides Total flow over trapezoidal weirs with side slopes is computed using the standard weir equation as shown above, plus two times the flow given from the following equation. Q = s CwZH2.5 1 Where: Q = discharge over side-sloped portion of weir, cfs (ems) Z = side slope (Z horizontal to 1 vertical) of the weir crest H = distance between water surface and the crest, ft (m) Cw = weir coefficient. typically 3.367 (1 .83) a TERRA FORMA SOLUTIONS Project: Pelican Lake Ranch Filing No. 2 Location : Weld County, CO Designer: TAJ Date : 11 /6/2024 Latest Revision : 5/8/2025 RETENTION POND W3 CALCULATIONS 100-Yr Volume In From 97,595 cf 2.24 ac-ft SWMM 1 .5 Times Volume In 146,393 cf 3.36 ac-ft RETENTION POND W3 STAGE STORAGE Area Average Cumulative Stage Description Stage Elevatio _ sf Area Depth Volume.as Volume Volume sf at sf cf II ac-ft ac-ft Pond Bottom _ _ 4891 25,510 0.00 27,655 1 .0 27,655 0.63 4892 29,800 0.63 31 ,997 _ 1 .0 _ 31 ,997 0.73 4893 34, 193 1 .37 36,439 1 .0 36,439 0.84 4894 38,685 2.21 40,981 4 1 .0 _ 40,981 0.94 4895 43,277 3. 15 45,624 1 .0 _ 45,624 1 .05 4896 47,971 4. 19 45,500 1 .0 _ 45,500 1 .04 4897 43,029 5.24 Total Tributary Area 24.36 acres Tributary Area 20.00% Imperviousness a, WCQV 1 0.23 ac-ft Elevation 4891 .37 ft WQCV = a (0.91 i3 — 1 . 1912 + 0 . 78i) Table 5-14 Drain Time Coefficients for 1A/QCV Calculations Where: Drain Time (hrs) Coefficient, a 12 hours 0.8 WQCV = Water Quality Capture Volume (watershed inches) 24 hours 0.9 a = Coefficient corresponding to WQCV drain time (5-) 40 hours 1.0 I i = Imperviousness (%/100) 100-Year Volume In From 2.24 ac-ft Elevation 4894.04 ft SWMM 100-Year Storage Depth 3.04 ft • 100-Year Drain time at 36.44 hours 1 -inch/hour 1 .5 Times Volume In 3.36 ac-ft Elevation 4895.20 ft Freeboard 1 .80 ft TERRA FORMA SOLUTIONS Project: Pelican Lake Ranch Filing No. 2 Location: Weld County, CO Designer: TAJ Date: 11 /6/2024 Latest Revision: 5/8/2025 RETENTION POND S1 CALCULATIONS 100-Yr Volume in From 542,839 cf la 12.46 ac-ft SWMM 1.5 Times Volume in 814,259 cf 18.6, M ac-f a RETENTION POND S1 STAGE STORAGE Average Cumulative Stage Description Stage Elevation AS a Area Depth Volume Volume Volume sf el� a_ sf sf cf ac-ft ac-ft Pond Bottom 4915 162,881 0.00 167,421 1 .0 167,421 3.84 4916 _ 171 ,960 3.84 176,668 1 .0 _ 176,668 1 4.06 _ 4917 181 ,375 7.90 186,236 1 .0 186,236 _ 4.28 4918 191 ,097 12. 17 196,069 1 .0 196,069 4.50 4919 201 ,041 16.68 206,216 1 .0 206,216 4.73 4920 211 ,390 21 .41 216,664 1 .0 216,664 4.97 Spillway 4921 221 ,938 26.38 Total Tributary Areal 225.93 acres Tributary Area 6.14% imperviousness WCQV 0,82 ac-ft !Elevation 4915.21 ft i 1 WQCV = u(0.9113 - 1 . 1912 + 0. 781) ' Table 5-14 Drain Time Coefficients for WQCV Calculations Where: Drain Time Ors) Coefficient, a 12 hours 0.8 1/1 42(.1/ = Water Quality Capture Volume (watershed inches) 24 hours 0.9 a = Coefficient corresponding to WQCV drain time (5-) 40 hours 1.0 i = Imperviousness (%/100) 100-Year Volume in From 12.46 ac-ft Elevation 4918.06 ft SWMM 100-Year Storage Depth 3.06 ft 100-Year Drain time at 36.77 hours 1-Inch/hour 1 .5 Times Volume in 18.69 ac-ft Elevation 4919.43 ft Freeboard to Spillway 1 .57 ft Emergency Overflow Weir Capacity at 0.5' Additional Total Q Max in from SWMM Length of Welr Welr Coeff Flow Depth I Side Slopes Capacity cfs ft cfs cfs Oft 107.38 105 3.0 111 .37 1 .90 113.27 Q = CBCW LH 1-5 Eq. 5.10.2.3 Where: Q- Discharge, cfs Cscit- = Broad-crested weir coefficient, dimensionless (ranges from 2.6 to 3.0) L = Length of weir, ft H= Head above weir crest, ft Trapezoidal with Sloped Sides Total flow over trapezoidal weirs with side slopes is computed using the standard weir equation as shown above, plus two times the flow given from the following equation. I r Q = s CwZH2.51 Where: Q = discharge over side-sloped portion of weir, cfs (cms) Z = side slope (Z horizontal to 1 vertical) of the weir crest H = distance between water surface and the crest, ft (rn) Cw = weir coefficient, typically 3.367 (1 .83) a gee TERRA. FORMA SOLUTIONS Project: Pelican Lake Ranch Filing No. 2 Location: Weld County, CO Designer: TAJ Date: 11/6/2024 Latest Revision: 5/8/2025 RETENTION POND S2 CALCULATIONS 100-Yr Volume In From 246,508 cf 5.66 ac-ft SWMM 1 .5 Times Volume In 369,762 cf 8.49 ac-ft __ RETENTION POND S2 STAGE STORAGE Average _ Cumulative Stage Description Stage Elevation Araid Area Depth Volume Volume Volume sf sf sf Ilil, cf j ac-ft ac-ft , Pond Bottom 4887 35,524 0.00 38,259 `l:fl 38,259 0.88 4888 40,993 0.88 43,778 1 .0 43,778 1 .00 4889 46,562 1 .88 49,398 1 .0 49,398 1 .13 4890 52,233 3.02 55,118 1 .0 55, 118 1 .27 4891 58,003 4.28 60,939 1 .0 60,939 1 .40 4892 63,874 5.68 66,860 1 .0 66,860 1 .53 4893 69,846 7.22 72,882 1 .0 72,882 1 .67 4894 75,918 8.89 79,142 1 .0 79. 142 1 .82 Spillway 4895 82,366 10.71 Total Tributary Area 1 62.06 acres Tributary Area 20.00°I° — Imperviousness WCQV 0,60 ac-ft Elevation 4887.68 ft WQCV = a (0.9 11 3 - 1. 1912 + 0.781 ) Table 5-14 Drain Time Coefficients for WQCV Calculations Where: Drain Time (hrs) Coefficient, a 12 hours 0.8 WQCV = Water Quality Capture Volume (watershed inches) 24 hours 0.9 a = Coefficient corresponding to WQCV drain time (5-I 40 hours 1.0 i = Imperviousness (%/100) �� 1F-- - - TO-Year Volume In From SWMM 5.66 ac-ft Elevation 4891 .98 ft 100-Year Storage Depth 4.99 ft 100-Year Drain time at 59.82 hours 1 -inch/hour 1.5 Times Volume In 8.49 ac-ft Elevation 4893.76 ft Freeboard to Spillway 1.24 ft Emergency Overflow Weir Capacity at 0.51' Additional Total Q Max In from SWMM ][Lenth :fWeir Weir Coeff. Capacity from Flow Depth Side Slopes Capacity II cfs ft cfs cis cfs 88.66 81 3.0 88.50 2.00 9031 = CBCwLH 1-5 Eq. 5.10.2.3 Where: Q= Discharge, cfs CRew = Broad-crested weir coefficient, dimensionless (ranges from 2.6 to 3.0) L - Length of weir, ft 11= Head above weir crest, ft Trapezoidal with Sloped Sides Total flow over trapezoidal weirs with side slopes is computed using the standard weir equation as shown above, plus two times the flow given from the following equation. [ Q = 5 CwZH2.5 J Where: Q = discharge over side-sloped portion of weir, cfs (cros) Z = side slope (Z horizontal to 1 vertical) of the weir crest H = distance between water surface and the crest, ft (m) Cw = weir coefficient, typically 3.367 (1 .83) ' TERRA FORMA SOLUTIONS- Project: Pelican Lake Ranch Filing No. 2 Location: Weld County, CO Designer: TAJ Date: 11 /6/2024 Latest Revision: 5/8/2025 RETENTION POND S3 CALCULATIONS 100-Yr Volume In From 301,746 cf 6.93 ac-ft SWMM 1 .5 Times Volume In 452,619 cf 10.39 ac-ft RETENTION POND S3 STAGE STORAGE AveMe _ umulative Stage Description. Stage Elevation Asr fa Area Depth Volume Volume j Volume f sf sf _Al cf ac-ft ac-ft Pond Bottom 4889 69,666 0.00 38,722 1 .0 38,722 0.89 4890 77,444 0.89 41 ,794 1 .0 _ 41 ,794 0.96 4891 83,588 1 .85 80,281 1 .0 _ 80,281 1 .84 4892 90,896 3.69 94,601 1 .0 94,601 2. 17 4893 98,306 5.86 102,062 1 .0 _ 102,062 2.34 4894 105,817 8.21 _109,622 1 .0 _ 109,622 2.52 4895 113,427 10.72 120,413 1 .0 120,413 2.76 Spillway 4896 127,399 13.49 Total Tributary Area 78.17 acres Tributary Area 20.00% Imperviousness WCQV 0.75 ac-ft Elevation 4$$9.$5 ft WQCV = a(0.91 i3 3 — 1 . 1912 + 0.781) Table 5-14 Drain Time Coefficients for WQCV Calculations Where: Drain Time (hrs) Coefficient, a 12 hours 0.8 it%QC V = Water Quality Capture Volume (watershed inches) 24 hours I 0.9 u = Coefficient corresponding to WQCV drain time (5-) 40 hours I 1.0 = Imperviousness (%/100) 100-Year Volume In From 6.93 ac-ft Elevation 4893.45 ft SWMM 100-Year Storage Depth 4.45 ft 100-Year Drain time at 53.45 hours 1-inch/hour 1 .5 Times Volume In 10.39 ac-ft Elevation 4894.88 ft Freeboard to Spillway 1.12 ft Emergency Overflow Weir Capacity at 0.65' Additional Total Q Max In from SWMM Length of Weir Weir Coeff. Capacity from Flow Depth Capacity Side Slopes cfs ft cfs cfs cfs 87.22 55 3.0 86.47 3.67 90.14 __ l Q = Csc11LH1.5 Eq. 5.10.2.3 Where: Q= Discharge, cfs Cscw = Broad-crested weir coefficient, dimensionless (ranges from 2.6 to 3.0) L = Length of weir, ft /1= Head above weir crest, ft T � Trapezoidal with Sloped Sides Total flow over trapezoidal weirs with side slopes Is computed using the standard weir equation as shown above, plus two times the flow given from the following equation. [ Q = S Cw7.Hz.s J Where: Q = discharge over side-sloped portion of weir, cfs (cms) Z = side slope (Z horizontal to 1 vertical) of the weir crest H = distance between water surface and the crest, ft (m) Cw = weir coefficient, typically 3.367 (1 .83) TERRA FORMA --tea' SOL1J- IONS Project: Pelican Lake Ranch Filing No. 2 Location: Weld County, CO Designer: TAJ Date: 11 /6/2024 Latest Revision: 5/8/2025 RETENTION POND S4 CALCULATIONS 100-Yr Volume In From 1 ,175,790 cf 26.99 ac-ft SWMM 1 .5 Times Volume In 1 ,763,685 cf 40.49 ac-ft ir RETENTION POND S4 STAGE STORAGE AveMe , Cumulative Stage Description. Stage Elevation Asr fa Area Depth Volume Volume Volume f sf sf �� cf ac-ft ac-ft Pond Bottom 4854 280,687 0.00 286,048 1 .0 286,048 6.57 4855 291 ,408 6.57 296,821 1 .0 296,821 6.81 4856 302,233 13.38 307,698 1 .0 307,698 7.06 4857 313,163 20.44 319,059 1 .0 319,059 7.32 4858 324,954 27.77 331 ,653 1 .0 _ 331 ,653 7.61 4859 338,352 35.38 345,764 1 .0 345,764 7.94 4860 353, 176 43.32 362,266 1 .0 362,266 8.32 Spillway 4861 371 ,355 51 .64 Total Tributary Area 304.48 acres Tributary Area 20.00% Imperviousness WCQV 2.94 ac-ft Elevation 4854.45 ft b17QCV = a(0.91 i3 3 — 1 . 1912 + 0.78i) Table Drain Time Coefficients for WQCV Calculations ' Where: Drain Time (hrs) Coefficient, a 12 hours 0.8 i4l%QCV = Water Quality Capture Volume (watershed inches) 24 hours I 0.9 u = Coefficient corresponding to WQCV drain time (5-) 40 hours I 1.0 = Imperviousness (%/100) 100-Year Volume In From 26.99 ac-ft Elevation 4857.89 ft SWMM 100-Year Storage Depth 3.89 ft 100-Year Drain time at 46.73 hours 1-inch/hour 1 .5 Times Volume In 40.49 ac-ft Elevation 4859.64 ft Freeboard to Spillway 1.36 ft Emergency Overflow Weir Additional Q Max In from SWMM Length of Weir Weir Coeff. Capacity at 0.5' Capacity from Total Flow Depth Capacity Side Slopes cfs ft cfs cfs S cfs 286.84 275 3.0 291 .68 1 .90 293.59 = CBcwL/11-5 Eq. 5.10.2.3 Where: Q= Discharge, cfs Cscw = Broad-crested weir coefficient, dimensionless (ranges from 2.6 to 3.01 L = Length of weir, ft /I= Head above weir crest, ft Trapezoidal with Sloped Sides Total flow over trapezoidal weirs with side slopes Is computed using the standard weir equation as shown above, plus two times the flow given from the following equation. [ Q = S C"'ZHZ.s ] Where: Q = discharge over side-sloped portion of weir, cfs (cms) Z = side slope (Z horizontal to 1 vertical) of the weir crest H = distance between water surface and the crest, ft (m) Cw = weir coefficient, typically 3.367 (1 .83) TERRA FORMA SOLUTIONS .ter Project: Pelican Lake Ranch Filing No. 2 Location: Weld County, CO Designer: TAJ Date: 11/6/2024 Latest Revision: 5/8/2025 RETENTION POND 9 CALCULATIONS 100-Yr Volume In From 1 ,232,065 cf 28.28 ac-ft ii SWMM 1 .5 Times Volume In 1 ,848,098 cf 42.43 IL ac-ft me RETENTION POND 9 STAGE STORAGE 1 T'- Average a Cumulative. ' Stage Description Stage Elevation Ada Area Depth Volum Volume Volume _,I_ Si Si 4 e cf ac-ft _j& ac-ft Pond Bottom 4829 181 ,302 0.00 186,531 1 .0 186,531 4.28 _ _ _ 4830 191 ,759 — 4.28 197,053 1 .0 197,053 4.52 4831 202,347 8.81 209,007 1 .0 209,007 4.80 _ 4832 _ 215,667 13.60 222,607 _ 1 .0 222,607 5.11 4833 229,547 18.71 235,703 1 .0 235,703 5.41 4834 241 ,859 24. 13 248,027 _ 1 .0 248,027 5.69 4835 1 254,194 _ 29.82 260,492 1 .0 260,492 5.98 _ 4836 266,790 35.80 273,186 _ 1 .0 273, 186 6.27 4837 . 279,582 _ 42.07 286,160 1 .0 286, 160 6.57 4838 292,738 48.64 Spillway ,4838.66) 299,069 1 .0 299,069 6.87 4839 305,399 55.51 Total Tributary Area l 366.60 acres Tributary Area 2.00% Imperviousness WCQV 0.46 ac-ft Elevation 4829.11 ft WQCV = a (0.91i3 — 1.1912 + 0.781) Tables-14 Drain Time Coefficients for WQCV Calculations Where: Drain Time (hrs) Coefficient, a 12 hours 0.8 WQCV = Water Quality Capture Volume (watershed inches) 24 hours 0.9 a = Coefficient corresponding to WQCV drain time (5-) 40 hours 1.0 I. = Imperviousness (%/100) - 100-Year Volume In From 28.28 ac-ft Elevation 4834.73 ft SWMM 100 Year Storage Depth 5.73 ft 100-Year Drain time at 68.77 hours 1-inch/hour 1 .5 Times Volume In 42.43 ac-ft Elevation 4837.05 ft Freeboard to Spillway 1 .95 ft lir Existing Emergency Overflow Weir Capacity at Additional Total Q Max In from SWMM 'ength of Weir Weir Coeff. 0.55' Flow Capacity from Capacity Depth Side Slopes cfs 1 ft 1 cfs cfs chisel 210.52 194.4 3.0 237.88 2.42 240.30 chtw H1.5 Eq. 5.10.2.3 SI Where: Q= Discharge, cfs f ocw = Broad-crested weir coefficient, dimensionless (ranges from 7.6 to 3.0) L= Length of weir, ft H= Head above weir crest, ft Trapezoidal with Sloped Sides Total flow over trapezoidal weirs with side slopes is computed using the standard weir equation as shown above, plus two times the flow given from the following equation. Q = s CwZH2.5 1 Where: Q = discharge over side-sloped portion of weir, cfs (ems) Z = side slope (Z horizontal to 1 vertical) of the weir crest H = distance between water surface and the crest, ft (m) Cw = weir coefficient. typically 3.367 (1 .83) TERRA FORMA sirs , - SOLUTIONS - i Project: Pelican Lake Ranch Filing No. 2 Location: Weld County, CO Designer: TAJ Date: 11 /6/2024 Latest Revision: 5/8/2025 TEMPORARY RETENTION POND El CALCULATIONS 100-Yr Volume In From 306,837 cf 7.04 ac-ft SWMM 1 .5 Times Volume In 460,256 cf 10.57 ac-ft a TEMPORARY RETENTION POND El STAGE STORAGE Average umulative Stage Description Stage Elevationsfa Area Depth Volume Volume Volume sf sf cf ji ac-ft ac-ft Pond Bottom 4815 52,911 0.00 54,901 1 .0 54,901 1 .26 4816 56,890 1 .26 58,933 1 .0 58,933 1 .35 4817 60,976 2.61 63,069 1 .0 63,069 1 .45 4818 65, 162 4.06 67,312 1 .0 67,312 1 .55 4819 69,462 5.61 i. 72, 180 1 .0 72,180 1 .66 4820 74,897 7.26 i. 81 ,393 1 .0 81 ,393 1 .87 4821 87,889 9. 13 96,613 1 .0 96,613 2.22 4822 105,336 11 .35 115,333 1 .0 115,333 2.65 4823 125,329 14.00 135,591 1 .0 135,591 3. 11 4824 145,853 17. 11 Total Tr • utary Area 80.52 acres Tributary Area 18.12% Imperviousness WCQV 0.72 ac-ft Elevation 4815.57 ft VQCV = a (0.9113 - 1 . 1912 + 0 .781 ) Table 5-14 Drain Time Coefficients for WQCV Calculations Where: Drain Time (hrs) Coefficient, a 12 hours 0.8 WQCV = Water Quality Capture Volume (watershed inches) 24 hours 0.9 a = Coefficient corresponding to WQCV drain time (5-) 40 hours 1.n i i = Imperviousness (%/100) -- 100-Year Volume In From 7.04 ac-ft Elevation 4819.87 ft SWMM 100-Year Storage Depth I 4.87 ft 100-Year Drain time at 58.41 hours 1 -inch/hour 1 .5 Times Volume In 1 10.57 ac-ft Elevation 4821 .65 ft Freeboard 2.35 ft TERRA FORMA SOLUTIONS Project: Pelican Lake Ranch Filing No. 2 Location: Weld County, CO Designer: TAJ Date: 11 /6/2024 Latest Revision: 5/8/2025 TEMPORARY RETENTION POND E2 CALCULATIONS 100-Yr Volume In From 220,536 cf 5.06 ac-ft SWMM 1 .5 Times Volume In 330,804 cf 7.59 ac-ft li TEMPORARY RETENTION POND E2 STAGE STORAGE i Area Average I Cumulative is Stage Description tags Elevation Area Depth Volume Volume Volume asf sf A sf cf ac-ft ac-ft ii Pond Bottom 4803.5 46,095 0.00 47,042 0.5 _ _ 23,521 0.54 4804 47,989 0.54 48,984 1 .5 _ 73,475 1 .69 4805 51 ,872 2.23 53$79 1 .0 53$79 1 .24 4806 55,886 3.46 57,957 1 .0 57,957 1 .33 4807 60,028 4.79 _ 62,164 1 .0 _ 62,164 1 .43 4808 64,300 6.22 66,501 1 .0 66,501 1 .53 4809 68,702 7.75 70,967 1 .0 70,967 1 .63 4810 73,232 9.38 75;562 1 .0 75;562 1 .73 4811 77,892 11 .11 Total Tributary Area 53.32 acres Tributary Area 20.00% Imperviousness al WCQV -7 0.51 ac-ft Elevation mil 4803.98 ft WQCV = a (0.9113 — 1 . 1912 + 0. 781) Table 5-14 Drain Time Coefficients for WQCV Calculations Where: Drain Time (hrs) Coefficient, a 12 hours 0.8 WQCV = Water Quality Capture Volume (watershed inches) 21 hours 0.9 a = Coefficient corresponding to WQCV drain time (5-) 40 hours 1.0 i = Imperviousness (%/100) 100-Year Volume In From 5.06 ac-ft Elevation 4807.19 ft SWM M 100-Year Storage Depth 3.69 ft 100-Year Drain time at 44.26 hours 1-inch/hour 1 .5 Times Volume In 7.59 ac-ft Elevation 4808.90 ft Freeboard 2.10 ft CHANNEL /SWALE CALCULATIONS Channel Feport Project filename : Pelican Lakes - Channel Calculations (Roadside Ditch and A through G) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 11 - 19-2024 Road Side Ditch Max Capacity Channel 1 TRIANGULAR DISCHARGE Bottom Width = 0 . 00 ft Method = Known Depth Side Slope Left , z : 1 = 4 . 00 known Depth = 2 . 25 ft Side Slope Right , z : 1 = 4 . 00 Total Depth = 2 . 25 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 500 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( lb/sqft) ( ft) 50 . 12 2 . 25 20 . 25 2 . 48 18 . 55 0 . 045 1 . 58 102. 25 102 . 35 0 . 70 18 . 00 Elev{0) Road Side Ditch Max Capacity - Section Depth (fl' 102 50 2 50 102.00 - — LOU 101.50 L50 101.00 - 1_00 100.50 — 0.50 100.00 - ; 0.00 -2 0 2 4 6 8 10 12 14 16 18 20 X(R) Channel Feport Project filename : Pelican Lakes - Channel Calculations (Roadside Ditch and A through G) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 -28-2025 Channel A Channel 2 TRAPEZOIDAL DISCHARGE Bottom Width = 8 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 286 . 70 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 4 . 50 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 600 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( lb/sqft) ( ft) 286 . 70 3 . 33 71 . 00 4 . 04 35 . 46 0 . 045 2 . 36 103. 33 103 . 58 1 . 25 34 . 64 Elev my Channel A - Section Depts .:rt;+ 105.00 - iti ) f 104.00 _ — i 00 103 00 I :3 &0 1112 00 — 2 00 101 00 — 1 O0 100.OD 0 coo 99.00 • 1 -100 -5 0 5 10 15 20 25 30 35 40, 45 X (ft) Channel Feport Project filename : Pelican Lakes - Channel Calculations (Roadside Ditch and A through G) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 -28-2025 Channel B Channel 3 TRAPEZOIDAL DISCHARGE Bottom Width = 8 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 288 . 70 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 5 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 1 . 700 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( lb/sqft) ( ft) 288 . 70 2 . 62 48 . 42 5 . 96 29 . 61 0 . 045 2 . 36 102. 62 103 . 17 2 . 78 28 . 96 Elev (8) Channel B - Section D@pth {f1. 106.00 — a 6 00 105.00 I - • • 5.00 104.00 — 1 - — - • — - 4.00 103.00 3 00 102 on 2 OD 101 00 _ 1 00 0000 l - 000 99.00 - - r -1 .00 -5 0 5 10 15 20 25 30 35 40 45 50 X (ft} Channel Feport Project filename : Pelican Lakes - Channel Calculations (Roadside Ditch and A through G) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel C Channel 5 TRAPEZOIDAL DISCHARGE Bottom Width = 8 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 52 . 37 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 2 . 50 ft Invert Elevation = 100 . 00 ft Channel Slope = 1 . 200 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( lb/sqft) ( ft) 52 . 37 1 . 23 15 . 89 3 . 30 18 . 14 0 . 045 0 . 94 101 . 23 101 . 40 0 . 92 17 . 84 Elev (II) Channel C - Section cefc:i1, : ,l; 103.00 - - .0 102.50 r .,, z& E 2 5.D 102.01 _ -. L - 2.04 101 50 1 50 101.(x! - - - - i 1.00 1050 050 100.00 - t + i r 0.00 -7 0 2 4 6 8 10 12.. 14 16 18 20 22 24 26 28 30 X (II) Channel Feport Project filename : Pelican Lakes - Channel Calculations (Roadside Ditch and A through G) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel D Channel 7 TRAPEZOIDAL DISCHARGE Bottom Width = 8 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 62 . 14 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 3 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 500 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( lb/sqft) ( ft) 62 . 14 1 . 68 24 . 73 2 . 51 21 . 85 0 . 045 1 . 04 101 . 68 101 . 78 0 . 52 21 . 44 Fie;' III Channel C - Section Pepin nl 1iIi3 5I) .- 3.50 103.00 100 102.50 2 50 102:00 2.00 101.50 - k- 1.50 101 DD - - 1 00 100 50 a i0 50 1610.00 -1 . 0.00 -5 0 5 10 15 20 25 30 35 x (fl) Channel Feport Project filename : Pelican Lakes - Channel Calculations (Roadside Ditch and A through G) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel E Channel 8 TRAPEZOIDAL DISCHARGE Bottom Width = 8 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 37 . 75 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 3 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 500 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( lb/sqft) ( ft) 37 . 75 1 . 30 17 . 16 2 . 20 18 . 72 0 . 045 0 . 78 101 . 30 101 . 38 0 . 41 18 . 40 B (ft) Channel E a Section Depth fl1 103.50 - J_50 103.00 - r 3.00 1O2 50 2 50 102.00 1 -- 2.00 101.50 - 1.50 a 101 DO - - -"It I _ - 100 100 50 0 50 100.00 '• - 0.00 -5 0 5 10 15 20 25 30 35 x (11) Channel Report Project filename: Pelican Lakes - Channel Calculations (Roadside Ditch and A through G).stx Studio Express by Hydrology Studio v 1 .0.0.18 05-07-2025 Channel F Channel 9 - - TRAPEZOIDAL DISCHARGE Bottom Width = 6 . 00 ft Method = Known Q Side Slope Left, z : 1 = 4 . 00 Known Q = 95 . 88 cfs Side Slope Right, z : 1 = 4 . 00 Total Depth = 5 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 500 % Manning's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width (cfs ) (ft) (sqft) (ft/s) (ft) (ft) (ft) (ft) (lb/sqft) (ft) 95 .88 2 .24 33 .51 2 .86 24 .47 0 .045 1 .46 102 .24 102. 37 0 .70 23 . 92 Elev(ft) Channel F • Section DepTh al) 106.00 1 6 00 105.00 — 5 00 104.00 — - - - 4 00 103.00 - aim, 102.00 -- i ZOO 101.00 1.00 100.00 0:00 99.00 — - - - -1-S -5 0 5 10 15 20 25 30 35 40 45 50 X(ft) Channel Feport Project filename : Pelican Lakes - Channel Calculations (Roadside Ditch and A through G) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 -07-2025 Channel G Channel 10 TRAPEZOIDAL DISCHARGE Bottom Width = 6 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 43 . 82 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 3 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 400 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( lb/sqft) ( ft) 43 . 82 1 . 63 20 . 41 2 . 15 19 . 44 0 . 045 0 . 96 101 . 63 101 . 70 0 . 41 19 . 04 Elev (ft) Channel G - Section r pLif, 1l 10-3 50 -- . _ -, - 3.50 103.00 - - x_00 102.50 2 50 102.00 4 2.00 Pa a 101.50 • - - .. .- 1.50 I I I L., ,,,, Y10100 — c: - - - - 100 ,. �!1 50i. e n e e a 0 50 J' 100.40 ; a — 0.00 -2 0 2 d 6 8 10 12 14 16 18 20 22 24 26 28 la 32 X (ft) Channel Report Project filename: Pelican Lakes - Channel Calculations (H through P).stx Studio Express by Hydrology Studio v 1 .0.0.18 05-07-2025 Channel H Channel 'I — - TRAPEZOIDAL DISCHARGE Bottom Width = 12 . 00 ft Method = Known Q Side Slope Left, z : 1 = 4 . 00 Known Q = 113 .44 cfs Side Slope Right, z : 1 = 4 . 00 Total Depth = 4 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 500 % Manning's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width (cfs ) (ft) (sqft) (ft/s) (ft) (ft) (ft) (ft) (lb/sqft) (ft) 113 .44 1 .97 39 . 16 2 .90 28 .25 0 .045 1 .22 101 .97 102. 10 0 .61 27 . 76 Elev(ft) Channel H • Section Depth(ft) 105,00 5.00 104.00 — I i 4.00 103.00 3.00 102.00 - - 2.00 101.00 - 1.00 100.00 0.00 99:00 -- -1.00 -5 0 5 10 15 20 25 30 35 40 45 X(ft) Channel Feport Project filename: Pelican Lakes - Channel Calculations (H through P) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 11 - 19-2024 Channel I Channel 3 TRAPEZOIDAL DISCHARGE Bottom Width = 10 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 101 . 60 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 3 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 1 . 000 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( lb/sqft) ( ft) 101 . 70 1 . 67 27 . 86 3 . 65 23 . 77 0 . 045 1 . 25 101 . 67 101 . 88 1 . 04 23 . 36 Elev O) Channel I - Section Depth(rl7 103 50 -- 3.50 I — — 3.00\ I — 102.00 -- 200 101.50 1=50 101.00 — - - 1.00 10050 • - 0C5O 100.00 i 1 0.00 -5 0 5 10 15. 20 25 34 35 X(1I) Channel Feport Project filename: Pelican Lakes - Channel Calculations (H through P) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel J Channel 4 TRAPEZOIDAL DISCHARGE Bottom Width = 10 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 34 . 00 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 3 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 3 . 400 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( lb/sqft) ( ft) 34 . 00 0 . 67 8 . 50 4 . 00 15 . 52 0 . 045 0 . 65 100. 67 100 . 92 1 . 42 15 . 36 Elev (ft) Channel 1 - Section r:eo, i 1, 103.50 — s 3.50 103.00 - 3.00 102.50 2 50 102.00 1 i. • -- 2.00 101.50 - 1.50 10100 - 100 100.50 0 50 100.00 ,. 0.00 -5 0 5 10 15 20 25 30 35 X (ft) Channel Feport Project filename: Pelican Lakes - Channel Calculations (H through P) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel K Channel 5 TRAPEZOIDAL DISCHARGE Bottom Width = 10 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 92 . 45 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 3 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 600 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( lb/sqft) ( ft) 92 . 45 1 . 81 31 . 20 2 . 96 24 . 93 0 . 045 1 . 18 101 . 81 101 . 95 0 . 68 24 . 48 Eie1 (fl Channel K - Section r:er: h 2, 103.50 - 3.50 103.00 , • 3_00 102.50 _ 2 50 1 ?2.©0 a 2.00 101.50 - 1.50 101 DO - I- -- 1 00 100 50 - , i 0 50 100.00 - 0.00 -5 0 5 10 15 20 25 30 35 X (R) Channel Feport Project filename: Pelican Lakes - Channel Calculations (H through P) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel L Channel 6 TRAPEZOIDAL DISCHARGE Bottom Width = 8 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 41 . 11 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 3 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 1 . 200 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( lb/sqft) ( ft) 41 . 11 1 . 09 13 . 47 3 . 05 16 . 99 0 . 045 0 . 82 101 . 09 101 . 23 0 . 82 16 . 72 Fiev I;�,I Channel I. - Section Depth i'111 103 5U • — 3.50 103.00 100 102.50 2.50 102.00 ... 2.00 101.50 1.50 111100 - 100 100 50 0 54 lir 100.00 ,. . 0.00 -5 0 5 10 15 20 25 30 35 X (fi) Channel Feport Project filename: Pelican Lakes - Channel Calculations (H through P) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel M Channel 7 TRAPEZOIDAL DISCHARGE Bottom Width = 16 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 47 . 19 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 3 . 50 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 500 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( lb/sqft) ( ft) 47 . 19 1 . 09 22 . 19 2 . 13 24 . 99 0 . 045 0 . 62 101 . 09 101 . 16 0 . 34 24 . 72 Rev i� Channel M - Section neon i:2) 104.00 -_ -, —_ V lI y 103.00 . - I , - Li.opy..- 3.00 102.00 - r 2.00 101.00 - dit 1.00 140.00 — 0.00 99.00 + i r a - 1.00 -5 0 5 10 15 20 25 30 35 40 45 X (R) Channel Feport Project filename: Pelican Lakes - Channel Calculations (H through P) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel N Channel 8 TRAPEZOIDAL DISCHARGE Bottom Width = 16 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 120 . 53 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 4 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 500 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( lb/sqft) ( ft) 120 . 53 1 . 81 42 . 06 2 . 87 30 . 93 0 . 045 1 . 10 101 . 81 101 . 94 0 . 56 30 . 48 Be' ) Channel N - Section Depth lift,' 105.00 5.00 104.00 k 4 00 103.00 - 3.00 102000 200 101.00 - 1.00 100 00 - 0 00 _ (_ICI . _ -1.00 -5 0 5 10 15 20 25 30 35 40 45 50 X (fl) Channel Report Project filename: Pelican Lakes - Channel Calculations (H through P).stx Studio Express by Hydrology Studio v 1 .0.0.18 05-07-2025 Channel O Channel 9 TRAPEZOIDAL DISCHARGE Bottom Width = 8 . 00 ft Method = Known Q Side Slope Left, z : 1 = 4 . 00 Known Q = 85 . 59 cfs Side Slope Right, z : 1 = 4 . 00 Total Depth = 3 . 50 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 500 % Manning's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width (cfs ) (ft) (sqft) (ft/s) (ft) (ft) (ft) (ft) (lb/sqft) (ft) 85 .59 1 .96 31 .05 2 .76 24 . 16 0 .045 1 .24 101 .96 102. 08 0 .61 23 . 68 Elev (11) Channel 0 - Section Depth(ft) 104.00 4.00 103.00 — 3.00 102.00 — 2.00 101.00 — - — 1.00 'l . 100 00 - 0.00 99.00 -- - - , -- -1.00 -5 0 5 10 15 20 25 30 35 40 X(fl) Channel Feport Project filename: Pelican Lakes - Channel Calculations (H through P) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 -28-2025 Channel P Channel 10 TRAPEZOIDAL DISCHARGE Bottom Width = 16 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 253 . 00 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 4 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 500 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( lb/sqft) ( ft) 253 . 00 2 . 68 71 . 61 3 . 53 38 . 10 0 . 045 1 . 71 102. 68 102 . 87 0 . 84 37 . 44 EOev (It) Channel P a Section Depti :Ili: 105.00 5 0 104.00 — 4 C►0 103 00 y b - 3> 00 10100, I 2_o.0 101 00 . .. 1 X10 I 100.00 : ' .- 0 0 99.00 - - - -1 .00 -5 0 5 10 15 20 25 30 35 40 45 50 X (ft) Channel Report Project filename: Pelican Lakes - Channel Calculations (Q through S).stx Studio Express by Hydrology Studio v 1 .0.0.18 05-07-2025 Channel Q Channel 'I TRAPEZOIDAL DISCHARGE Bottom Width = 8 . 00 ft Method = Known Q Side Slope Left, z : 1 = 4 . 00 Known Q = 51 . 88 cfs Side Slope Right, z : 1 = 4 . 00 Total Depth = 4 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 2 . 100 % Manning's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width (cfs ) (ft) (sqft) (ft/s) (ft) (ft) (ft) (ft) (lb/sqft) (ft) 51 .88 1 .06 12 .97 4 .00 16 .74 0 .045 0 .93 101 .06 101 . 31 1 .39 16 .48 Elev(ft) Channel Q . Section Depth at 105,00 5.00 104.00 — 4.00 103.00 3.00 102.00 — 2.00 101.00 - 1.00 100.00 — - .. 0.00 99-00 — I -- -1 00 -5 0 5 10 15 20 25 30 35 40 45 X(fl) Ch a n n e I Feport Project filename : Pelican Lakes - Channel Calculations (Q through S) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel R Channel 2 TRAPEZOIDAL DISCHARGE Bottom Width = 12 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 96 . 50 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 3 . 50 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 300 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( lb/sqft) ( ft) 96 . 50 2 . 07 41 . 98 2 . 30 29 . 07 0 . 045 1 . 11 102. 07 102 . 15 0 . 39 28 . 56 Rev (f1) Channel R - Section Depth (R) 10400 -_ - - - 4.00 10100 - , 100 1 illiipip.izz102.00 - 2.00 101.00 - 1.00 100.00 - 0.00 34.00 + i - -1.O0 -5 0 5 10 15 20 25 30 ,35 40 45 X (ft)) CULVERT CALCULATIONS DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 1 CIRCLE 1 II Cat u I -- I - Lp r It, . ii _ _ ____ ___ "L I t __ _ = Soil Type: Choose One: J ~`` 1) Sandy \` ,ice;, O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 286.70 cfs Circular Culvert: Barrel Diameter in Inches D = 48 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 2 Inlet Elevation Elev IN = 4915.00 ft Outlet Elevation OR Slope Elev OUT = 4914.00 ft Culvert Length L = 85.47 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kX = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 12.57 ft2 Culvert Normal Depth Yn = 3.02 ft Culvert Critical Depth Yc = 3.54 ft Froude Number Fr = 1.44 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.42 Sum of All Loss Coefficients ks = 1.62 ft Headwater: Inlet Control Headwater HWI = 6.53 ft Outlet Control Headwater HWo = 6.04 ft Design Headwater Elevation HW = 4921.53 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.63 M,/ D > 1.5! Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 4.48 fta5/s Tailwater Surface Height Yt = 1.60 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 2.98 Flow Area at Max Channel Velocity At = 57.34 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = 8.00 ft Length of Riprap Protection Lp = 40 ft Width of Riprap Protection at Downstream End T = 22 ft Adjusted Diameter for Supercritical Flow Da = 3.51 ft Minimum Theoretical Riprap Size d50 min= 15 in Nominal Riprap Size d50 nominal= 18 in MHFD Riprap Type Type = H DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 2 CIRCLE 1 Cat u II I -- I - Lµ a.- r ii Vii __.,__ ____ :. ____ , L i Soil Type: ���"4 _ Choose One: c ~,mac ,- �=�`_�� `= - 1) Sandy RI ;, O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 52.01 cfs Circular Culvert: Barrel Diameter in Inches D = 36 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4914.00 ft Outlet Elevation OR Slope Elev OUT = 4913.50 ft Culvert Length L = 62.01 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient Is, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 7.07 ft2 Culvert Normal Depth Yn = 2. 16 ft Culvert Critical Depth Yc = 2.34 ft Froude Number Fr = 1. 19 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.45 Sum of All Loss Coefficients ks = 1.65 ft Headwater: Inlet Control Headwater HWI = 3.72 ft Outlet Control Headwater HWo = 3.56 ft Design Headwater Elevation HW = 4917.72 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.24 Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 3.34 fta5/s Tailwater Surface Height Yt = 1.20 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 4.09 Flow Area at Max Channel Velocity At = 10.40 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 24 ft Width of Riprap Protection at Downstream End T = 9 ft Adjusted Diameter for Supercritical Flow Da = 2.58 ft Minimum Theoretical Riprap Size d50 min= 9 in Nominal Riprap Size d50 nominal= 9 in MHFD Riprap Type Type = L DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 3 CIRCLE 1 Cat u II I -- I - Lµ a.- r ii Vii __.,__ ____ :. ____ , L i Soil Type: ���"4 _ Choose One: c ~,mac ,- �=�`_�� `= - 1) Sandy RI ;, O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 30.61 cfs Circular Culvert: Barrel Diameter in Inches D = 30 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4906.21 ft Outlet Elevation OR Slope Elev OUT = 4905.25 ft Culvert Length L = 83. 17 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient Is, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 4.91 ft2 Culvert Normal Depth Yn = 1.53 ft Culvert Critical Depth Yc = 1.89 ft Froude Number Fr = 1.51 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.76 Sum of All Loss Coefficients ks = 1.96 ft Headwater: Inlet Control Headwater HWI = 2.92 ft Outlet Control Headwater HWo = 2.42 ft Design Headwater Elevation HW = 4909. 13 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.17 Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 3. 10 fta5/s Tailwater Surface Height Yt = 1.00 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 4.30 Flow Area at Max Channel Velocity At = 6. 12 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 16 ft Width of Riprap Protection at Downstream End T = 7 ft Adjusted Diameter for Supercritical Flow Da = 2.02 ft Minimum Theoretical Riprap Size d50 min= 7 in Nominal Riprap Size d50 nominal= 9 in MHFD Riprap Type Type = L DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 4 CIRCLE 1 II Ca u I -- I i - Lp r Iiiv il _ - __ _ = Soil Type: Choose One: J ~`` 1!' Sandy \` ,ice;, O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 2.19 cfs Circular Culvert: Barrel Diameter in Inches D = 15 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4914.54 ft Outlet Elevation OR Slope Elev OUT = 4914.14 ft Culvert Length L = 51.86 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kX = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 1.23 ft2 Culvert Normal Depth Yn = 0.54 ft Culvert Critical Depth Yc = 0.59 ft Froude Number Fr = 1.20 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 1.20 Sum of All Loss Coefficients ks = 2.40 ft Headwater: Inlet Control Headwater HWI = 0.83 ft Outlet Control Headwater HWo = N/A ft Design Headwater Elevation HW = N/A ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = N/A Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 1.26 fta5/s Tailwater Surface Height Yt = 0.50 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 6.46 Flow Area at Max Channel Velocity At = 0.44 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 4 ft Width of Riprap Protection at Downstream End T = 2 ft Adjusted Diameter for Supercritical Flow Da = 0.89 ft Minimum Theoretical Riprap Size d50 min= 1 in Nominal Riprap Size d50 nominal= 6 in MHFD Riprap Type Type = VL DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 5 CIRCLE 1 Cat u II I -- I - Lp r ii Vii __.,__ ____ :. ____ , L i Soil Type: - Choose One: ii_Ca c :t_ � 1) Sandy 91 O Non-Sandy PriA Design Information : Design Discharge Q = 61.53 cfs Circular Culvert: Barrel Diameter in Inches D = 36 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4887.47 ft Outlet Elevation OR Slope Elev OUT = 4887.00 ft Culvert Length L = 61.75 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kX = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 7.07 ft2 Culvert Normal Depth Yn = 2.62 ft Culvert Critical Depth Yc = 2.53 ft Froude Number Fr = 0.91 Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.44 Sum of All Loss Coefficients ks = 1.64 ft Headwater: Inlet Control Headwater HWI = 4.32 ft Outlet Control Headwater HWo = 4.22 ft Design Headwater Elevation HW = 4891.79 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.44 Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 3.95 fta5/s Tailwater Surface Height Yt = 1.20 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 3.55 Flow Area at Max Channel Velocity At = 12.31 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 26 ft Width of Riprap Protection at Downstream End T = 11 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d50 min= 10 in Nominal Riprap Size d50 nominal= 12 in MHFD Riprap Type Type = M DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 6 CIRCLE 1 Cat u II I -- I - Lµ a.- r ii Vii __.,__ ____ :. ____ , L i Soil Type: ���"4 _ Choose One: c ~,mac ,- �=�`_�� `= - 1) Sandy RI ;, O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 19.59 cfs Circular Culvert: Barrel Diameter in Inches D = 24 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4892.25 ft Outlet Elevation OR Slope Elev OUT = 4891 .75 ft Culvert Length L = 54.05 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient Is, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 3. 14 ft2 Culvert Normal Depth Yn = 1.48 ft Culvert Critical Depth Yc = 1.59 ft Froude Number Fr = 1. 16 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.67 Sum of All Loss Coefficients ks = 1.87 ft Headwater: Inlet Control Headwater HWI = 2.56 ft Outlet Control Headwater HWo = 2.42 ft Design Headwater Elevation HW = 4894.81 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.28 Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 3.46 fta5/s Tailwater Surface Height Yt = 0.80 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 3.98 Flow Area at Max Channel Velocity At = 3.92 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 12 ft Width of Riprap Protection at Downstream End T = 6 ft Adjusted Diameter for Supercritical Flow Da = 1.74 ft Minimum Theoretical Riprap Size d50 min= 6 in Nominal Riprap Size d50 nominal= 6 in MHFD Riprap Type Type = VL DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 8 CIRCLE 1 Cat u II I -- I - Lµ a.- r ii - Vii __.,__ ____ :. ____ , L i Soil Type: "1 Choose One: ii c �'` Sandy 91 O Non-Sandy PriA Design Information : Design Discharge Q = 2.47 cfs Circular Culvert: Barrel Diameter in Inches D = 15 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4905.66 ft Outlet Elevation OR Slope Elev OUT = 4905.34 ft Culvert Length L = 61.26 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kX = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 1.23 ft2 Culvert Normal Depth Yn = 0.65 ft Culvert Critical Depth Yc = 0.63 ft Froude Number Fr = 0.95 Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 1.42 Sum of All Loss Coefficients ks = 2.62 ft Headwater: Inlet Control Headwater HWI = 0.89 ft Outlet Control Headwater HWo = N/A ft Design Headwater Elevation HW = N/A ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = N/A Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 1.41 fta5/s Tailwater Surface Height Yt = 0.50 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 6.31 Flow Area at Max Channel Velocity At = 0.49 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 4 ft Width of Riprap Protection at Downstream End T = 2 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d50 min= 1 in Nominal Riprap Size d50 nominal= 6 in MHFD Riprap Type Type = VL DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 11 CIRCLE 1 Cat u II I -- I - Lµ a.- r ii Vii __.,__ ____ :. ____ , L i Soil Type: ���"4 _ Choose One: c ~,mac ,- �=�`_�� `= - 1) Sandy RI ;, O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 5.25 cfs Circular Culvert: Barrel Diameter in Inches D = 15 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4923.50 ft Outlet Elevation OR Slope Elev OUT = 4922.92 ft Culvert Length L = 51.86 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient Is, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 1.23 ft2 Culvert Normal Depth Yn = 0.82 ft Culvert Critical Depth Yc = 0.93 ft Froude Number Fr = 1.28 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 1.20 Sum of All Loss Coefficients ks = 2.40 ft Headwater: Inlet Control Headwater HWI = 1.43 ft Outlet Control Headwater HWo = 1. 19 ft Design Headwater Elevation HW = 4924.93 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.14 Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 3.01 fta5/s Tailwater Surface Height Yt = 0.50 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 4.38 Flow Area at Max Channel Velocity At = 1.05 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 4 ft Width of Riprap Protection at Downstream End T = 3 ft Adjusted Diameter for Supercritical Flow Da = 1.04 ft Minimum Theoretical Riprap Size d50 min= 3 in Nominal Riprap Size d50 nominal= 6 in MHFD Riprap Type Type = VL DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 20 CIRCLE 1 II Ca u I -- I i - Lp r Iiiv il _ - __ _ = Soil Type: Choose One: J ~`` 1!' Sandy \` ,ice;, O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 101 .70 cfs Circular Culvert: Barrel Diameter in Inches D = 36 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 2 Inlet Elevation Elev IN = 4917.00 ft Outlet Elevation OR Slope Elev OUT = 4915.00 ft Culvert Length L = 72.72 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kX = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 7.07 ft2 Culvert Normal Depth Yn = 1.43 ft Culvert Critical Depth Yc = 2.32 ft Froude Number Fr = 2.57 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.52 Sum of All Loss Coefficients ks = 1.72 ft Headwater: Inlet Control Headwater HWI = 3.62 ft Outlet Control Headwater HWo = N/A ft Design Headwater Elevation HW = 4920.62 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.21 Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 3.26 fta5/s Tailwater Surface Height Yt = 1.20 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 4.15 Flow Area at Max Channel Velocity At = 20.34 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = 6.00 ft Length of Riprap Protection Lp = 30 ft Width of Riprap Protection at Downstream End T = 14 ft Adjusted Diameter for Supercritical Flow Da = 2.21 ft Minimum Theoretical Riprap Size d50 min= 9 in Nominal Riprap Size d50 nominal= 9 in MHFD Riprap Type Type = L DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 22 CIRCLE 1 Cat u II I -- I - Lµ a.- r ii Vii __.,__ ____ :. ____ , L i Soil Type: ���"4 _ Choose One: c ~,mac ,- �=�`_�� `= - 1) Sandy RI ;, O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 29.95 cfs Circular Culvert: Barrel Diameter in Inches D = 30 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4924.78 ft Outlet Elevation OR Slope Elev OUT = 4924.00 ft Culvert Length L = 63.66 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient Is, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 4.91 ft2 Culvert Normal Depth Yn = 1.48 ft Culvert Critical Depth Yc = 1.87 ft Froude Number Fr = 1.57 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.58 Sum of All Loss Coefficients ks = 1.78 ft Headwater: Inlet Control Headwater HWI = 2.87 ft Outlet Control Headwater HWo = 2.44 ft Design Headwater Elevation HW = 4927.65 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.15 Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 3.03 fta5/s Tailwater Surface Height Yt = 1.00 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 4.35 Flow Area at Max Channel Velocity At = 5.99 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 16 ft Width of Riprap Protection at Downstream End T = 7 ft Adjusted Diameter for Supercritical Flow Da = 1.99 ft Minimum Theoretical Riprap Size d50 min= 7 in Nominal Riprap Size d50 nominal= 9 in MHFD Riprap Type Type = L DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 23 CIRCLE 1 II Ca u I -- I i - Lp r Iiiv il _ - __ _ = Soil Type: Choose One: J ~`` 1!' Sandy \` ,ice;, O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 37.32 cfs Circular Culvert: Barrel Diameter in Inches D = 30 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4897.25 ft Outlet Elevation OR Slope Elev OUT = 4891 .00 ft Culvert Length L = 115.23 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kX = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 4.91 ft2 Culvert Normal Depth Yn = 1.08 ft Culvert Critical Depth Yc = 2.07 ft Froude Number Fr = 3.55 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 1.06 Sum of All Loss Coefficients ks = 2.26 ft Headwater: Inlet Control Headwater HWI = 3.39 ft Outlet Control Headwater HWo = N/A ft Design Headwater Elevation HW = 4900.64 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.36 Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 3.78 fta5/s Tailwater Surface Height Yt = 1.00 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 3.70 Flow Area at Max Channel Velocity At = 7.46 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 19 ft Width of Riprap Protection at Downstream End T = 8 ft Adjusted Diameter for Supercritical Flow Da = 1.79 ft Minimum Theoretical Riprap Size d50 min= 9 in Nominal Riprap Size d50 nominal= 9 in MHFD Riprap Type Type = L DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 24 CIRCLE 1 Cat u II I -- I - Lµ a.- r ii Vii __.,__ ____ :. ____ , L i Soil Type: "1 Choose One: ii c �'` Sandy 91 O Non-Sandy PriA Design Information : Design Discharge Q = 85.59 cfs Circular Culvert: Barrel Diameter in Inches D = 30 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 2 Inlet Elevation Elev IN = 4875.25 ft Outlet Elevation OR Slope Elev OUT = 4875.01 ft Culvert Length L = 62.77 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kX = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 4.91 ft2 Culvert Normal Depth Yn = 2.50 ft Culvert Critical Depth Yc = 2. 19 ft Froude Number Fr = - Pressure flow! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.58 Sum of All Loss Coefficients ks = 1.78 ft Headwater: Inlet Control Headwater HWI = 3.95 ft Outlet Control Headwater HWo = 4.20 ft Design Headwater Elevation HW = 4879.45 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.68 MID > 1.5! Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 4.33 fta5/s Tailwater Surface Height Yt = 1.00 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 3.14 Flow Area at Max Channel Velocity At = 17. 12 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = 5.00 ft Length of Riprap Protection Lp = 25 ft Width of Riprap Protection at Downstream End T = 13 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d50 min= 9 in Nominal Riprap Size d50 nominal= 9 in MHFD Riprap Type Type = L DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 25.1 CIRCLE 1 Cat u II I -- I - Lµ a.- r ii Vii ,_ _____ ,_ .., , _, i v Soil Type: "1 Choose One: ii c �'` Sandy 91 O Non-Sandy PriA Design Information : Design Discharge Q = 7.74 cfs Circular Culvert: Barrel Diameter in Inches D = 15 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4928.50 ft Outlet Elevation OR Slope Elev OUT = 4927.93 ft Culvert Length L = 51.86 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kX = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 1.23 ft2 Culvert Normal Depth Yn = 1.25 ft Culvert Critical Depth Yc = 1. 10 ft Froude Number Fr = - Pressure flow! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 1.20 Sum of All Loss Coefficients ks = 2.40 ft Headwater: Inlet Control Headwater HWI = 2.02 ft Outlet Control Headwater HWo = 2.09 ft Design Headwater Elevation HW = 4930.59 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.67 MID > 1.5! Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 4.43 fta5/s Tailwater Surface Height Yt = 0.50 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 3.03 Flow Area at Max Channel Velocity At = 1.55 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 6 ft Width of Riprap Protection at Downstream End T = 4 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d50 min= 5 in Nominal Riprap Size d50 nominal= 6 in MHFD Riprap Type Type = VL DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 25 CIRCLE 1 Cat u II I -- I - Lµ a.- r ii Vii __.,__ ____ :. ____ , L i Soil Type: ���"4 _ Choose One: c ~,mac ,- �=�`_�� `= - 1) Sandy RI ;, O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 4.81 cfs Circular Culvert: Barrel Diameter in Inches D = 15 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4928.50 ft Outlet Elevation OR Slope Elev OUT = 4927.80 ft Culvert Length L = 57.08 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient Is, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 1.23 ft2 Culvert Normal Depth Yn = 0.75 ft Culvert Critical Depth Yc = 0.89 ft Froude Number Fr = 1.40 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 1.32 Sum of All Loss Coefficients ks = 2.52 ft Headwater: Inlet Control Headwater HWI = 1.34 ft Outlet Control Headwater HWo = 0.97 ft Design Headwater Elevation HW = 4929.84 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.07 Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 2.75 fta5/s Tailwater Surface Height Yt = 0.50 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 4.72 Flow Area at Max Channel Velocity At = 0.96 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 4 ft Width of Riprap Protection at Downstream End T = 3 ft Adjusted Diameter for Supercritical Flow Da = 1.00 ft Minimum Theoretical Riprap Size d50 min= 3 in Nominal Riprap Size d50 nominal= 6 in MHFD Riprap Type Type = VL DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 27 CIRCLE 1 Cat u II I -- I - Lµ a.- r ii Vii __.,__ ____ :. ____ , L i Soil Type: "1 Choose One: ii c �'` Sandy 91 O Non-Sandy PriA Design Information : Design Discharge Q = 34.00 cfs Circular Culvert: Barrel Diameter in Inches D = 30 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4897.76 ft Outlet Elevation OR Slope Elev OUT = 4897.51 ft Culvert Length L = 64.50 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kX = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 4.91 ft2 Culvert Normal Depth Yn = 2.50 ft Culvert Critical Depth Yc = 1.98 ft Froude Number Fr = - Pressure flow! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.59 Sum of All Loss Coefficients ks = 1.79 ft Headwater: Inlet Control Headwater HWI = 3. 18 ft Outlet Control Headwater HWo = 3.33 ft Design Headwater Elevation HW = 4901.09 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.33 Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 3.44 fta5/s Tailwater Surface Height Yt = 1.00 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 4.00 Flow Area at Max Channel Velocity At = 6.80 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 18 ft Width of Riprap Protection at Downstream End T = 8 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d50 min= 7 in Nominal Riprap Size d50 nominal= 9 in MHFD Riprap Type Type = L DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 28 CIRCLE 1 Cat u II I -- I - Lµ a.- r ii Vii __.,__ ____ :. ____ , L i Soil Type: "1 Choose One: ii c �'` Sandy 91 O Non-Sandy FliA Design Information : Design Discharge Q = 12.53 cfs Circular Culvert: Barrel Diameter in Inches D = 18 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4901 .37 ft Outlet Elevation OR Slope Elev OUT = 4901 .00 ft Culvert Length L = 51.86 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kX = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 1.77 ft2 Culvert Normal Depth Yn = 1.50 ft Culvert Critical Depth Yc = 1.33 ft Froude Number Fr = - Pressure flow! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.94 Sum of All Loss Coefficients ks = 2. 14 ft Headwater: Inlet Control Headwater HWI = 2.49 ft Outlet Control Headwater HWo = 2.72 ft Design Headwater Elevation HW = 4904.09 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.81 MID > 1.5! Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 4.55 fta5/s Tailwater Surface Height Yt = 0.60 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 2.90 Flow Area at Max Channel Velocity At = 2.51 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 8 ft Width of Riprap Protection at Downstream End T = 5 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d50 min= 6 in Nominal Riprap Size d50 nominal= 6 in MHFD Riprap Type Type = VL DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 291 CIRCLE 1 II Cat u I -- I - Lp r It, . ii _ _ ____ ___ . .._ I t __ _ = Soil Type: Choose One: J ~`` �' Sandy \` ,ice;, O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 4.23 cfs Circular Culvert: Barrel Diameter in Inches D = 18 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4914.00 ft Outlet Elevation OR Slope Elev OUT = 4912.97 ft Culvert Length L = 51.86 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kX = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 1.77 ft2 Culvert Normal Depth Yn = 0.55 ft Culvert Critical Depth Yc = 0.79 ft Froude Number Fr = 2.01 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.94 Sum of All Loss Coefficients ks = 2. 14 ft Headwater: Inlet Control Headwater HWI = 1. 12 ft Outlet Control Headwater HWo = N/A ft Design Headwater Elevation HW = N/A ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = N/A Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 1.53 fta5/s Tailwater Surface Height Yt = 0.60 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 6.19 Flow Area at Max Channel Velocity At = 0.85 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 5 ft Width of Riprap Protection at Downstream End T = 3 ft Adjusted Diameter for Supercritical Flow Da = 1.02 ft Minimum Theoretical Riprap Size d50 min= 2 in Nominal Riprap Size d50 nominal= 6 in MHFD Riprap Type Type = VL DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 29 CIRCLE 1 Cat u II I -- I - Lµ a.- r ii - Vii __.,__ ____ :. ____ , L i Soil Type: "1 Choose One: ii c �'` Sandy 91 O Non-Sandy PriA Design Information : Design Discharge Q = 26.67 cfs Circular Culvert: Barrel Diameter in Inches D = 30 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4897.00 ft Outlet Elevation OR Slope Elev OUT = 4896.75 ft Culvert Length L = 69.33 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kX = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 4.91 ft2 Culvert Normal Depth Yn = 2.50 ft Culvert Critical Depth Yc = 1.76 ft Froude Number Fr = - Pressure flow! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.64 Sum of All Loss Coefficients ks = 1.84 ft Headwater: Inlet Control Headwater HWI = 2.65 ft Outlet Control Headwater HWo = 2.72 ft Design Headwater Elevation HW = 4899.72 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.09 Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 2.70 fta5/s Tailwater Surface Height Yt = 1.00 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 4.79 Flow Area at Max Channel Velocity At = 5.33 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 14 ft Width of Riprap Protection at Downstream End T = 6 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d50 min= 6 in Nominal Riprap Size d50 nominal= 6 in MHFD Riprap Type Type = VL DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 30 CIRCLE 1 Cat u II I -- I - Lp r ii - Vii __.,__ ____ :. ____ , L i Soil Type: - Choose One: ii_Ca c :t_ � 1) Sandy 91 O Non-Sandy FliA Design Information : Design Discharge Q = 24.91 cfs Circular Culvert: Barrel Diameter in Inches D = 24 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4902.76 ft Outlet Elevation OR Slope Elev OUT = 4902.27 ft Culvert Length L = 85.68 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kX = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 3. 14 ft2 Culvert Normal Depth Yn = 2.00 ft Culvert Critical Depth Yc = 1.76 ft Froude Number Fr = - Pressure flow! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 1.06 Sum of All Loss Coefficients ks = 2.26 ft Headwater: Inlet Control Headwater HWI = 3.21 ft Outlet Control Headwater HWo = 3.59 ft Design Headwater Elevation HW = 4906.35 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.80 MID > 1.5! Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 4.40 fta5/s Tailwater Surface Height Yt = 0.80 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 3.06 Flow Area at Max Channel Velocity At = 4.98 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 13 ft Width of Riprap Protection at Downstream End T = 7 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d50 min= 7 in Nominal Riprap Size d50 nominal= 9 in MHFD Riprap Type Type = L DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 31 CIRCLE 1 Cat u II I -- I - Lµ a.- r ii Vii __.,__ ____ :. ____ , L i Soil Type: "1 Choose One: ii c �'` Sandy 91 O Non-Sandy FliA Design Information : Design Discharge Q = 47.21 cfs Circular Culvert: Barrel Diameter in Inches D = 36 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4886.16 ft Outlet Elevation OR Slope Elev OUT = 4886.00 ft Culvert Length L = 56.46 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kX = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 7.07 ft2 Culvert Normal Depth Yn = 3.00 ft Culvert Critical Depth Yc = 2.24 ft Froude Number Fr = - Pressure flow! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.41 Sum of All Loss Coefficients ks = 1.61 ft Headwater: Inlet Control Headwater HWI = 3.45 ft Outlet Control Headwater HWo = 3.57 ft Design Headwater Elevation HW = 4889.73 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.19 Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 3.03 fta5/s Tailwater Surface Height Yt = 1.20 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 4.36 Flow Area at Max Channel Velocity At = 9.44 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 22 ft Width of Riprap Protection at Downstream End T = 9 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d50 min= 8 in Nominal Riprap Size d50 nominal= 9 in MHFD Riprap Type Type = L DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 32 CIRCLE 1 Cat u II I -- I - Lµ a.- r ii - Vii __.,__ ____ :. ____ , L i Soil Type: "1 Choose One: ii c �'` Sandy 91 O Non-Sandy FliA Design Information : Design Discharge Q = 41. 11 cfs Circular Culvert: Barrel Diameter in Inches D = 30 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4893.79 ft Outlet Elevation OR Slope Elev OUT = 4893.23 ft Culvert Length L = 65.73 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kX = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 4.91 ft2 Culvert Normal Depth Yn = 2.50 ft Culvert Critical Depth Yc = 2. 15 ft Froude Number Fr = - Pressure flow! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.60 Sum of All Loss Coefficients ks = 1.80 ft Headwater: Inlet Control Headwater HWI = 3.79 ft Outlet Control Headwater HWo = 3.73 ft Design Headwater Elevation HW = 4897.58 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.51 MID > 1.5! Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 4. 16 fta5/s Tailwater Surface Height Yt = 1.00 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 3.33 Flow Area at Max Channel Velocity At = 8.22 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 20 ft Width of Riprap Protection at Downstream End T = 9 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d50 min= 9 in Nominal Riprap Size d50 nominal= 9 in MHFD Riprap Type Type = L DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 34 L il II I 1 -- 1 i . _.i -I' r iii Vii ,_ ____ _____ "L --,, -t-- -1--;° f Yi V Soil Type: Choose One: __` -5t___,:-.;t_ 1) Sandy ,IM;, O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 14.58 cfs Circular Culvert: Barrel Diameter in Inches D = 24 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4903.25 ft Outlet Elevation OR Slope Elev OUT = 4902.77 ft Culvert Length L = 57.92 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient Is, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 3. 14 ft2 Culvert Normal Depth Yn = 1.24 ft Culvert Critical Depth Yc = 1.38 ft Froude Number Fr = 1.22 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.72 Sum of All Loss Coefficients ks = 1.92 ft Headwater: Inlet Control Headwater HWI = 2.05 ft Outlet Control Headwater HWo = 1.85 ft Design Headwater Elevation HW = 4905.30 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.03 Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 2.58 fto.5/s Tailwater Surface Height Yt = 0.80 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 4.96 Flow Area at Max Channel Velocity At = 2.92 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 9 ft Width of Riprap Protection at Downstream End T = 4 ft Adjusted Diameter for Supercritical Flow Da = 1.62 ft Minimum Theoretical Riprap Size d50 min= 5 in Nominal Riprap Size d50 nominal= 6 in MHFD Riprap Type Type = VL DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 35 _ PCI E 1 r , ri u �� I -` f 1_, - r ii Vii ,_ ____ _____ "L --,, -t-- -1--;° i Yi V Soil Type: Choose One: IC :it_1;t- -- 1) Sandy ,u i- O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 21.93 cfs Circular Culvert: Barrel Diameter in Inches D = 24 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4905.90 ft Outlet Elevation OR Slope Elev OUT = 4905.20 ft Culvert Length L = 62.73 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient Is, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 3. 14 ft2 Culvert Normal Depth Yn = 1.50 ft Culvert Critical Depth Yc = 1.67 ft Froude Number Fr = 1.26 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.77 Sum of All Loss Coefficients ks = 1.97 ft Headwater: Inlet Control Headwater HWI = 2.82 ft Outlet Control Headwater HWo = 2.63 ft Design Headwater Elevation HW = 4908.72 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.41 Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 3.88 fto.5/s Tailwater Surface Height Yt = 0.80 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 3.61 Flow Area at Max Channel Velocity At = 4.39 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 13 ft Width of Riprap Protection at Downstream End T = 6 ft Adjusted Diameter for Supercritical Flow Da = 1.75 ft Minimum Theoretical Riprap Size d50 min= 7 in Nominal Riprap Size d50 nominal= 9 in MHFD Riprap Type Type = L DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 37 Ji DIICLE I II ( ju I — f s- i . s LI _ H+ i -----_i i yi v Soil Type: Choose One: �.t_,,— 1) Sandy 91PRAP O Non-Sandy Design Information : Design Discharge Q = 120.54 cfs Circular Culvert: Barrel Diameter in Inches D = 30 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 3 Inlet Elevation Elev IN = 4865.55 ft Outlet Elevation OR Slope Elev OUT = 4865.10 ft Culvert Length L = 67.50 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kX = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 4.91 ft2 Culvert Normal Depth Yn = 2.50 ft Culvert Critical Depth Yc = 2. 13 ft Froude Number Fr = - Pressure flow! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.62 Sum of All Loss Coefficients ks = 1.82 ft Headwater: Inlet Control Headwater HWI = 3.70 ft Outlet Control Headwater HWo = 3.76 ft Design Headwater Elevation HW = 4869.31 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.50 M,/ D > 1.5! Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 4.07 fto.5/s Tailwater Surface Height Yt = 1.00 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 3.43 Flow Area at Max Channel Velocity At = 24. 11 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = 7.50 ft Length of Riprap Protection Lp = 25 ft Width of Riprap Protection at Downstream End T = 15 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d50 min= 8 in Nominal Riprap Size d50 nominal= 9 in MHFD Riprap Type Type = L DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 38 Ji _IRTlf 1 r 1 1 j t, I -- f -- L. a - - Lr1 /' Ii;, V ----L-__; r ,, Soil Type: Choose One: V ` - -I`- 1) Sandy �__ 91 PRAT" O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 73.68 cfs Circular Culvert: Barrel Diameter in Inches D = 36 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 2 Inlet Elevation Elev IN = 4893.64 ft Outlet Elevation OR Slope Elev OUT = 4889.00 ft Culvert Length L = 163 .85 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kX = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 7.07 ft2 Culvert Normal Depth Yn = 1. 18 ft Culvert Critical Depth Yc = 1.97 ft Froude Number Fr = 2.67 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 1. 18 Sum of All Loss Coefficients ks = 2.38 ft Headwater: Inlet Control Headwater HWI = 2.88 ft Outlet Control Headwater HWo = N/A ft Design Headwater Elevation HW = 4896.52 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 0.96 Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 2.36 fto.5/s Tailwater Surface Height Yt = 1.20 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 5.25 Flow Area at Max Channel Velocity At = 14.74 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = 6.00 ft Length of Riprap Protection Lp = 30 ft Width of Riprap Protection at Downstream End T = 12 ft Adjusted Diameter for Supercritical Flow Da = 2.09 ft Minimum Theoretical Riprap Size d50 min= 7 in Nominal Riprap Size d50 nominal= 9 in MHFD Riprap Type Type = L DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 39 i I 1 -- 1 - 1.1.1 r Ill" S - ----- ------.. :.1: -----,_____ Yi i V Soil Type: ,r--- . Choose One: 1) Sandy ,I T" O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 41.02 cfs Circular Culvert: Barrel Diameter in Inches D = 24 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 2 Inlet Elevation Elev IN = 4911 . 10 ft Outlet Elevation OR Slope Elev OUT = 4910.40 ft Culvert Length L = 64.73 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient Is, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 3. 14 ft2 Culvert Normal Depth Yn = 1.44 ft Culvert Critical Depth Yc = 1.62 ft Froude Number Fr = 1.28 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.80 Sum of All Loss Coefficients ks = 2.00 ft Headwater: Inlet Control Headwater HWI = 2.66 ft Outlet Control Headwater HWo = 2.44 ft Design Headwater Elevation HW = 4913.76 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.33 Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 3.63 fto.5/s Tailwater Surface Height Yt = 0.80 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 3.83 Flow Area at Max Channel Velocity At = 8.20 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = 4.00 ft Length of Riprap Protection Lp = 20 ft Width of Riprap Protection at Downstream End T = 10 ft Adjusted Diameter for Supercritical Flow Da = 1.72 ft Minimum Theoretical Riprap Size d50 min= 6 in Nominal Riprap Size d50 nominal= 9 in MHFD Riprap Type Type = L DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 40 r� r ; t,il 1 -- 1 - L ►- - LE' : Iiil _,_ . ---....... ...,....._,.._..... ir V It- Soil Type: Lia JChoose One: c— — —_-n-±_-_:-_ — `'1 �'i `'-- ' Sandy \- PlIFFIA;, O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 40.65 cfs Circular Culvert: Barrel Diameter in Inches D = 24 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 2 Inlet Elevation Elev IN = 4902.93 ft Outlet Elevation OR Slope Elev OUT = 4901 .78 ft Culvert Length L = 67.62 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient Is, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 3. 14 ft2 Culvert Normal Depth Yn = 1.22 ft Culvert Critical Depth Yc = 1.62 ft Froude Number Fr = 1.77 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.84 Sum of All Loss Coefficients ks = 2.04 ft Headwater: Inlet Control Headwater HWI = 2.63 ft Outlet Control Headwater HWo = 1.98 ft Design Headwater Elevation HW = 4905.56 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.32 Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 3.59 fta5/s Tailwater Surface Height Yt = 0.80 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 3.86 Flow Area at Max Channel Velocity At = 8. 13 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = 4.00 ft Length of Riprap Protection Lp = 20 ft Width of Riprap Protection at Downstream End T = 10 ft Adjusted Diameter for Supercritical Flow Da = 1.61 ft Minimum Theoretical Riprap Size d50 min= 6 in Nominal Riprap Size d50 nominal= 9 in MHFD Riprap Type Type = L DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert El iCIRCLE 1 Ier �i u I , 4 1 -- 1 - L _ LS, s r ti,.V . _ __________ ______L__________________ i I V Soil Type: c! ,�--, �- ; Choose One: � 1-7:4____;.j-:._z_ .(__ . ` 1) Sandy '�---- RI ;, O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 8.66 cfs Circular Culvert: Barrel Diameter in Inches D = 18 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4838.10 ft Outlet Elevation OR Slope Elev OUT = 4837.67 ft Culvert Length L = 50.25 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient Is, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 1.77 ft2 Culvert Normal Depth Yn = 1. 10 ft Culvert Critical Depth Yc = 1. 14 ft Froude Number Fr = 1.07 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.91 Sum of All Loss Coefficients ks = 2. 11 ft Headwater: Inlet Control Headwater HWI = 1.77 ft Outlet Control Headwater HWo = 1.68 ft Design Headwater Elevation HW = 4839.87 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.18 Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 3. 14 fto.5/s Tailwater Surface Height Yt = 0.60 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 4.26 Flow Area at Max Channel Velocity At = 1.73 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 6 ft Width of Riprap Protection at Downstream End T = 3 ft Adjusted Diameter for Supercritical Flow Da = 1.30 ft Minimum Theoretical Riprap Size d50 min= 4 in Nominal Riprap Size d50 nominal= 6 in MHFD Riprap Type Type = VL DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert E2 iL-iHLLE 1 _ r 1 -- 1 V R il _ t --a.m._ Soil Type: { Y� -j- Choose One: ` - 1) Sandy _____ ___41:.::_ .� O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 4.64 cfs Circular Culvert: Barrel Diameter in Inches D = 15 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4840.75 ft Outlet Elevation OR Slope Elev OUT = 4840.32 ft Culvert Length L = 51.86 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kX = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 1.23 ft2 Culvert Normal Depth Yn = 0.84 ft Culvert Critical Depth Yc = 0.87 ft Froude Number Fr = 1.09 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 1.20 Sum of All Loss Coefficients ks = 2.40 ft Headwater: Inlet Control Headwater HWI = 1.31 ft Outlet Control Headwater HWo = 1. 16 ft Design Headwater Elevation HW = 4842.06 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.05 Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 2.66 fto.5/s Tailwater Surface Height Yt = 0.50 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 4.85 Flow Area at Max Channel Velocity At = 0.93 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 4 ft Width of Riprap Protection at Downstream End T = 3 ft Adjusted Diameter for Supercritical Flow Da = 1.04 ft Minimum Theoretical Riprap Size d50 min= 3 in Nominal Riprap Size d50 nominal= 6 in MHFD Riprap Type Type = VL DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert E3 i - LE1 -I I I 1 -- 1 I_ ur- : LLB V r H4' f ---______2.L . --.---------___ ___ Soil Type: r—_-,..- { , .�Jr— ? - � ,�� _. __ Choose One: _ - = �'•i- -- Ci Sandy J. �__ ,1 I- O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 22.34 cfs Circular Culvert: Barrel Diameter in Inches D = 24 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4831 .35 ft Outlet Elevation OR Slope Elev OUT = 4830.74 ft Culvert Length L = 63. 17 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient Is, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 3. 14 ft2 Culvert Normal Depth Yn = 1.64 ft Culvert Critical Depth Yc = 1.69 ft Froude Number Fr = 1.06 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.78 Sum of All Loss Coefficients ks = 1.98 ft Headwater: Inlet Control Headwater HWI = 2.88 ft Outlet Control Headwater HWo = 2.79 ft Design Headwater Elevation HW = 4834.23 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.44 Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 3.95 fto.5/s Tailwater Surface Height Yt = 0.80 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 3.55 Flow Area at Max Channel Velocity At = 4.47 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 13 ft Width of Riprap Protection at Downstream End T = 6 ft Adjusted Diameter for Supercritical Flow Da = 1.82 ft Minimum Theoretical Riprap Size d50 min= 7 in Nominal Riprap Size d50 nominal= 9 in MHFD Riprap Type Type = L DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert E4 i I L'- 1 r, i. 1 -- 1 L Lp _ rI� „___ ____ ______, ________ ___ if c:' ; = Soil Type: , �_ Choose One: `__ --_1« ; . L7='7 1' Sandy RIB;; O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 5.31 cfs Circular Culvert: Barrel Diameter in Inches D = 15 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4841 .45 ft Outlet Elevation OR Slope Elev OUT = 4841 .04 ft Culvert Length L = 48.02 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient Is, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 1.23 ft2 Culvert Normal Depth Yn = 0.92 ft Culvert Critical Depth Yc = 0.93 ft Froude Number Fr = 1.04 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 1. 11 Sum of All Loss Coefficients ks = 2.31 ft Headwater: Inlet Control Headwater HWI = 1.44 ft Outlet Control Headwater HWo = 1.35 ft Design Headwater Elevation HW = 4842.89 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.15 Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 3.04 fta5/s Tailwater Surface Height Yt = 0.50 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 4.35 Flow Area at Max Channel Velocity At = 1.06 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 4 ft Width of Riprap Protection at Downstream End T = 3 ft Adjusted Diameter for Supercritical Flow Da = 1.08 ft Minimum Theoretical Riprap Size d50 min= 3 in Nominal Riprap Size d50 nominal= 6 in MHFD Riprap Type Type = VL DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert E5 i rl i. 1 -- 1 L ► S L, Fr r H' _ _ V if ---.-,_ V V Soil Type: —.a J--ki; r--.4i,-=i -- - Choose One: _-�- -. -----__ ' Sandy RIPRwn O Non-Sandy Design Information : Design Discharge Q = 7.83 cfs Circular Culvert: Barrel Diameter in Inches D = 15 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4844.49 ft Outlet Elevation OR Slope Elev OUT = 4843.98 ft Culvert Length L = 51.83 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kX = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 1.23 ft2 Culvert Normal Depth Yn = 1.25 ft Culvert Critical Depth Yc = 1. 11 ft Froude Number Fr = - Pressure flow! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 1.20 Sum of All Loss Coefficients ks = 2.40 ft Headwater: Inlet Control Headwater HWI = 2.04 ft Outlet Control Headwater HWo = 2. 18 ft Design Headwater Elevation HW = 4846.67 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.75 M,/ D > 1.5! Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 4.48 fta5/s Tailwater Surface Height Yt = 0.50 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 2.98 Flow Area at Max Channel Velocity At = 1.57 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 6 ft Width of Riprap Protection at Downstream End T = 4 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d50 min= 5 in Nominal Riprap Size d50 nominal= 6 in MHFD Riprap Type Type = VL DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert E6 BOA CIRCLE i r h Ill CF 4 L i - s Lp r rII' _ . _ it -------________ _ = Soil Type: L? Choose One: 1 . • ,i )- ,_ __ ' Sandy 91PRATI O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 18.31 cfs Circular Culvert: Barrel Diameter in Inches D = 24 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1 .5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4823.85 ft Outlet Elevation OR Slope Elev OUT = 4823.25 ft Culvert Length L = 64. 18 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient kX = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 3. 14 ft2 Culvert Normal Depth Yn = 1.40 ft Culvert Critical Depth Yc = 1.54 ft Froude Number Fr = 1.22 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kr = 0.79 Sum of All Loss Coefficients ks = 1.99 ft Headwater: Inlet Control Headwater HWI = 2.42 ft Outlet Control Headwater HWo = 2.22 ft Design Headwater Elevation HW = 4826.27 ft Headwater/ Diameter OR Headwater/Rise Ratio HW/ D = 1.21 Outlet Protection : Flow/(Diameter^2.5) Q/D^2.5 = 3.24 fto.5/s Tailwater Surface Height Yt = 0.80 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 4.17 Flow Area at Max Channel Velocity At = 3.66 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection Lp = 11 ft Width of Riprap Protection at Downstream End T = 5 ft Adjusted Diameter for Supercritical Flow Da = 1.70 ft Minimum Theoretical Riprap Size d50 min= 6 in Nominal Riprap Size d50 nominal= 6 in MHFD Riprap Type Type = VL -r' TERRA FORMA sr L rlTIC NC Project: Pelican Lake Ranch Filing No.2 Location: Weld County, CO Designer: TAJ Date: 10/16/2024 Latest Revision: 5/7/2025 STORM SEWER CALCULATIONS Caluculated Using "Analyze Gravity Network"function within Autodesk Civil 3D Pipe From To Length Known Q illir Total Q Pipe ma. Full Q Velocity Full Velocity Design invert Elevation Invert TotalSlope I (ft) (cu. ft/sec) f (cu. ft/sec) (ft) (cu. ft/sec) Au (ft/s) (ft/s) (ft) (ft) P-1 STMH-1 FES-1 339.386 0 156.39 4.5 180.032 11.32 12.738 4881.37 4878.531 0.84% P-2 STMH-2 STMH-1 519.847 0 95.88 4.5 103.363 6.499 7.374 4882.803 4881.37 0.28% P-3 STMH-3 STMH-2 458.905 0 95.88 4.5 103.363 6.499 7.374 4884.069 4882.803 0.28% P-4 STMH-4 STMH-3 424.083 0 95.88 4.5 103.363 6.499 7.374 4885.238 4884.069 0.28% P-5 FES-3 STMH-4 40.852 95.88 95.88 4.5 103.363 6.499 7.374 4885.351 4885.238 0.28% P-6 STMH-5 STMH-1 26.078 16.69 60.51 2.5 76.133 15.51 17.197 4884.266 4883.37 3.44% P-7 FES-2 STMH-5 84.891 43.82 43.82 2 51.1.65 16.286 18.288 4889.095 4884.766 5.1.1% Stmt. ID D IIna d dc v'2/2g:' EGLo HGLo 'a,{{ Total Pipe Loss EGLI HGU1I Ea EGLa I U/S TOC Surface Elev. Step4` 4 Step?` Stepi4` (ft)? , i , a v, ' '! k; ' -ham 1: + (ft) (ft) ' (ft) T (ft) _ (ft) _.: (ft) (ft) _,,._ (ftr= (ft) (ft) 11 (ft) (ft) _ FES-1 0 ' 0 4883.031 4883.656 STMH-1 4.5 156.39 339.386 12.738 3.245 3.663 2.523 4884.298 4881.776 0 0 4887.137 4884.615 7.026 4888.396 4885.87 4896 N/A Case A N/A STMH-2 4.5 95.88 519.847 6.029 4.5 n/a 0.565 4888.622 4888.057 0.002 1.236 4889.858 4889.293 7.168 4889.971 4887.303 4898.463 Case B N/A Case A STMH-3 4.5 95.88 458.905 6.029 4.5 n/a 0.565 4890.197 4889.632 0.002 1.091 4891.288 4890.723 7.332 4891.401 4888.569 4900.945 Case B N/A Case A STMH-4 4.5 95.88 424.083 6.029 4.5 n/a 0.565 4891.627 4891.062 0.002 1.008 4892.635 4892.07 7.674 4892.913 4889.738 4895.807 Case B N/A CaseA FES-3 4.5 95.88 40.852 6.029 4.5 n/a 0.565 4893.139 4892.574 0.002 0.097 4893.236 4892.671 7.998 4893.349 -- 4890.476 Case B N/A Case A STMH-5 2.5 60.51 26.078 12.327 2.5 n/a 2.362 4889.341 4886.979 0.022 0.568 4889.909 4887.546 6.597 4890.864 4886.766 4888.6 Case B N/A CaseA FES-2 2 43.82 84.891 13.948 2 n/a 3.025 4892.074 4889.049 0.038 3.185 4895.259 4892.234 6.769 4895.864 - 4891.511 Case B N/A Case A *URBAN DRAINAGE DESIGN MANUAL - Hydraulic Engineering Circular No.22 Third Edition APPENDIXD - SWMM CALCULATIONS HISTORIC CONDITIONS oPU2022 oltoo %iii/// """' ' /// 4/ Gq�a'G Historic Conditions 1e `� JXB ._ JX• 10-Yr Runoff ////, r�. /%iiiii: u iii or // / ///// E: /////// // ///// Jr / / Cc ///////// t //////////// /////////// `B /" /iiii // /// JeAHy J / \\\\ i. // : '///// v ////////////i • w! C* JX ////////////// /////////////// M1 /////////////// /////////////// �� CXB ' � / i ///// /// ///// //// / / //// /, //////// A ! JB //////// 4 JM/: ///////// - ///////// JM I .JII4 3 / N/////// / /// /////// �, JT CDUN, ////// //// ✓/////// / _ //// '3 4g ////// JM_q J9 sit ////// a .65 CEO JR //////// .� C•BJB CC ///// ////////// J3tl4 / ////////////// Oftc1Y P RS /////// L . ////// JX'B •L J! +fee N 3 // //// CMk Q11II .. /a1/ //// JMB %%/ CM Xt3 '"' '/////// � J3! /// `/ / `-u///. /�/�///'>- // J≥(*te// T -/� OUfl uuI• ///%/ / /// / / /// C30 if.,//,/ ��4 /// ,// ////// // //// !/// //////// / . ///////// 73 / ///////// /� ��//// ////////// / //////// /// ///////// - '/// /////////'////4y r I ////// //////////////// '///////!r /// ✓/////////////////// //////// ////////////////////// /3A [X•a Uu16 m ///////////////////////// ///////////// Hi ///////////////////////// /////////// Ca ///////////////////////// /////////////////////// ////////////. ///////////////////////. //////////.// JEl ////////./iiiii Ca//////// //./ i ii/,./I Wit 3 JS3 '• CB! 200 Pelican Lakes PUD - Historic Conditions - 10 Yr - 24 Hour Type 2 Storm Node Inflow Summary Maximum Maximum Lateral Total Flow Lateral Total Day of Hour of Inflow Inflow Balance Inflow Inflow Maximum Maximum Volume Volume Error Node Type CFS CFS Inflow Inflow 10^6 gal 10^6 gal Percent J1 JUNCTION 0. 00 24.21 0 12 : 30 0 0. 87 0. 000 J 11 JUNCTION 0. 00 1 . 08 0 12 : 11 0 0. 0679 0. 000 J12 JUNCTION 0. 00 7 . 54 0 13 : 21 0 1 . 14 0. 000 J14 JUNCTION 0. 00 1 . 96 0 12 : 11 0 0. 0436 0. 000 J16 JUNCTION 0. 00 1 . 31 0 12 : 11 0 0. 0692 0. 000 J17 JUNCTION 0. 00 6. 33 0 16 : 05 0 1 . 17 0. 000 J19 JUNCTION 0. 00 0.23 0 12 : 11 0 0.00716 0. 000 J2 JUNCTION 0. 00 2 . 88 0 12 : 11 0 0 . 0699 0. 000 J20 JUNCTION 0. 00 6. 17 0 17 : 14 0 1 .08 0.000 J21 JUNCTION 0. 00 5 . 87 0 12 : 11 0 0. 355 0. 000 J22 JUNCTION 0. 00 2 . 27 0 12 : 11 0 0. 117 0. 000 J23 JUNCTION 0. 00 2 . 07 0 12 : 11 0 0. 0674 0. 000 J24 JUNCTION 0. 00 5 .43 0 13 : 24 0 0 . 606 0. 000 J25 JUNCTION 0. 00 2 . 55 0 12 : 11 0 0. 166 0. 000 J26 JUNCTION 0. 00 18 . 97 0 12 : 11 0 1 .2 0. 000 J27 JUNCTION 0. 00 15 . 78 0 13 : 00 0 1 .42 0. 000 J28 JUNCTION 0. 00 15 . 16 0 14 : 03 0 1 . 83 0. 000 J29 JUNCTION 0. 00 14. 04 0 15 : 02 0 1 . 85 0. 000 J3 JUNCTION 0. 00 2 . 16 0 12 : 11 0 0. 115 0. 000 J30 JUNCTION 0. 00 12 . 76 0 16 : 18 0 1 . 92 0. 000 J31 JUNCTION 0. 00 1 . 05 0 12 : 11 0 0. 0359 0. 000 SWMM 5. 1 201 Page 1 Pelican Lakes PUD - Historic Conditions - 10 Yr - 24 Hour Type 2 Storm Maximum Maximum Lateral Total Flow Lateral Total Day of Hour of Inflow Inflow Balance Inflow Inflow Maximum Maximum Volume Volume Error Node Type CFS CFS Inflow Inflow 10^6 gal 10^6 gal Percent J32 JUNCTION 0.00 5 .39 0 12 : 11 0 0. 359 0.000 J33 JUNCTION 0.00 6.62 0 12 : 15 0 0. 52 0.000 J34 JUNCTION 0.00 51 . 76 0 12 :41 0 9 .21 0.000 J37 JUNCTION 0.00 24.65 0 13 :45 0 4.21 0.000 J38 JUNCTION 0.00 7 .94 0 12 : 35 0 1 . 78 0.000 J4 JUNCTION 0.00 2 .27 0 13 : 26 0 0.279 0.000 J7 JUNCTION 0.00 4.07 0 12 : 15 0 0.365 0.000 J9 JUNCTION 0.00 7 .92 0 12 : 15 0 1 .01 0.000 JE1 JUNCTION 3 . 60 3 .60 0 12 : 00 0.0709 0.0709 -0.000 JE2 JUNCTION 13 .64 13 .64 0 12 : 00 0.269 0.269 0.000 JE3 JUNCTION 4.95 4.95 0 12 : 00 0.098 0.098 0.000 JE4 JUNCTION 6.07 6.07 0 12 : 00 0. 119 0. 119 0.000 JES JUNCTION 44.28 44.28 0 12 : 00 0. 87 0. 87 0.000 JE6 JUNCTION 13 .04 13 .04 0 12 : 00 0.256 0.256 0.000 JH1 JUNCTION 49 .90 49 .90 0 11 : 59 0.98 0.98 0.000 JH10 JUNCTION 6. 74 6. 74 0 11 : 59 0. 132 0. 132 0.000 JH11 JUNCTION 2 .92 2.92 0 12 : 00 0.0574 0.0574 0.000 JH12 JUNCTION 6.07 6.07 0 12 :00 0. 119 0. 119 0.000 JH13 JUNCTION 1 . 87 1 . 87 0 12 :00 0.0368 0.0368 0.000 JH14 JUNCTION 3 . 82 3 . 82 0 11 : 59 0.0751 0.0751 0.000 JH15 JUNCTION 110. 52 110. 52 0 12 :00 2 . 17 2 . 17 0.000 JH16 JUNCTION 2 . 10 2 . 10 0 12 :00 0.0412 0.0412 0.000 SWMM 5. 1 202 Page 2 Pelican Lakes PUD - Historic Conditions - 10 Yr - 24 Hour Type 2 Storm Maximum Maximum Lateral Total Flow Lateral Total Day of Hour of Inflow Inflow Balance Inflow Inflow Maximum Maximum Volume Volume Error Node Type CFS CFS Inflow Inflow 10^6 gal 10^6 gal Percent JH17 JUNCTION 1 .65 1 .65 0 12 : 00 0.0324 0.0324 0.000 JH18 JUNCTION 3 .37 3 .37 0 12 : 00 0.0662 0.0662 0.000 JH19 JUNCTION 10.04 10.04 0 12 : 00 0. 197 0. 197 0.000 JH2 JUNCTION 4. 72 4. 72 0 11 : 59 0.0927 0.0927 0.000 JH3 JUNCTION 2 .62 2 .62 0 12 : 00 0.0515 0.0515 0.000 JH4 JUNCTION 19.33 19 .33 0 11 : 59 0. 38 0.38 0.000 JHS JUNCTION 2 .25 2 .25 0 11 : 59 0.0442 0.0441 0.000 JH6 JUNCTION 2 .92 2 .92 0 12 : 00 0.0574 0.0574 0.000 JH7 JUNCTION 0.37 0.37 0 12 : 00 0.00736 0.00736 0.000 JH8 JUNCTION 20.38 20.38 0 12 : 00 0.4 0.4 0.000 JH9 JUNCTION 7 .42 7 .42 0 12 :00 0. 146 0. 146 0.000 JN1 JUNCTION 52 . 13 52 . 13 0 12 :06 0.687 0.687 0.000 JS1 JUNCTION 14.01 14.01 0 11 : 59 0.275 0.275 0.000 JS2 JUNCTION 1 . 72 1 . 72 0 12 :00 0.0338 0.0338 0.000 OUT1 OUTFALL 0.00 24.65 0 13 :46 0 4.21 0.000 OUT2 OUTFALL 0.00 7 .93 0 12 : 36 0 1 .78 0.000 OUT3 OUTFALL 0.00 51 .57 0 12 : 48 0 9. 14 0.000 OUT4 OUTFALL 0.00 1 .02 0 12 : 11 0 0.0343 0.000 OUTS OUTFALL 0.00 1 .50 0 12 : 15 0 0. 111 0.000 OUT6 OUTFALL 0.00 1 . 11 0 12 : 11 0 0.045 0.000 OUT7 OUTFALL 0.00 1 .03 0 12 : 11 0 0.0316 0.000 SWMM 5. 1 203 Page 3 Pelican Lakes PUD - Historic Conditions - 10 Yr - 24 Hour Type 2 Storm Link Flow Summary Maximum Day of Hour of Maximum Max / Max / Into* Maximum Maximum IVelocityl Full Full Link Type CFS Flow Flow ft/sec Flow Depth Cl CONDUIT 9 . 53 0 14 : 24 0. 51 0.00 0.04 C10 CONDUIT 0. 61 0 13 :49 0. 13 0.00 0.01 C11 CONDUIT 6. 67 0 13 :24 0. 30 0.00 0.04 C12 CONDUIT 1 .01 0 12 :26 0.25 0.00 0.02 C14 CONDUIT 0. 74 0 13 : 27 0. 12 0.00 0.02 C15 CONDUIT 6.03 0 16 : 15 0.20 0.00 0.06 C17 CONDUIT 0.09 0 13 : 30 0. 10 0.00 0.00 C18 CONDUIT 6. 14 0 17 : 15 0.23 0.00 0.04 C19 CONDUIT 5 .92 0 18 : 29 0.32 0.00 0.04 C20 CONDUIT 3 .63 0 13 : 30 0.40 0.00 0.05 C21 CONDUIT 1 .33 0 13 : 21 0.34 0.00 0.03 C22 CONDUIT 1 .43 0 12 : 27 0.24 0.00 0.02 C23 CONDUIT 14.28 0 13 : 03 0.68 0.00 0.09 C24 CONDUIT 12 .49 0 14 : 05 0.31 0.01 0.09 C25 CONDUIT 1 .36 0 14 : 12 0.31 0.00 0.02 C26 CONDUIT 13 .65 0 15 : 03 0.31 0.01 0. 10 C27 CONDUIT 12 .25 0 16 : 22 0.33 0.02 0. 14 C3 CONDUIT 1 .06 0 13 : 20 0.40 0.00 0.02 C30 CONDUIT 2 . 59 0 18 : 15 0.37 0.00 0.03 C31 CONDUIT 8 .44 0 20 : 00 0.49 0.00 0.06 C32 CONDUIT 0.37 0 15 : 12 0. 13 0.00 0.00 SWMM 5. 1 204 Page 1 Pelican Lakes PUD - Historic Conditions - 10 Yr - 24 Hour Type 2 Storm Maximum Day of Hour of Maximum Max / Max / IFlowl Maximum Maximum VelocityI Full Full Link Type CFS Flow Flow ft/sec Flow Depth C33 CONDUIT 2 .27 0 15 :48 0.40 0.00 0.03 C34 CONDUIT 4. 54 0 13 :48 0.29 0.00 0.03 C35 CONDUIT 51 . 57 0 12 :48 0.65 0.01 0. 13 C39 CONDUIT 24.65 0 13 :46 0. 86 0.01 0.06 C4 CONDUIT 1 .22 0 13 : 30 0. 34 0.00 0.02 C40 CONDUIT 7 .93 0 12 : 36 0. 57 0.00 0.03 C6 CONDUIT 2 . 15 0 15 : 36 0. 36 0.00 0.02 C7 CONDUIT 1 .92 0 14 :45 0. 38 0.00 0.03 CE1 CONDUIT 2 . 88 0 12 : 11 1 . 13 0.00 0.07 CE2 CONDUIT 5 . 87 0 12 : 11 0. 60 0.00 0.02 CE3 CONDUIT 2 .27 0 12 : 11 0.46 0.00 0.01 CE4 CONDUIT 2 . 55 0 12 : 11 0.46 0.00 0.02 CES CONDUIT 18 .97 0 12 : 11 0. 88 0.00 0.05 CE6 CONDUIT 5 . 39 0 12 : 11 0. 61 0.00 0.03 CH1 CONDUIT 19 . 17 0 12 : 35 0. 72 0.01 0.06 CH10 CONDUIT 3 .21 0 12 : 11 0.41 0.00 0.02 CH 11 CONDUIT 1 . 14 0 12 : 15 0. 15 0.00 0.02 CH 12 CONDUIT 2 .42 0 12 : 15 0.41 0.00 0.04 CH13 CONDUIT 1 .05 0 12 : 11 0.32 0.00 0.01 CH 14 CONDUIT 1 . 50 0 12 : 15 0.23 0.00 0.02 CH15 CONDUIT 49 .67 0 12 : 35 1 . 17 0.01 0. 12 CH 16 CONDUIT 1 . 11 0 12 : 11 0.23 0.00 0.03 SWMM 5. 1 205 Page 2 Pelican Lakes PUD - Historic Conditions - 10 Yr - 24 Hour Type 2 Storm Maximum Day of Hour of Maximum Max / Max / IFlowl Maximum Maximum IVelocityl Full Full Link Type CFS Flow Flow ft/sec Flow Depth CH17 CONDUIT 1 .03 0 12 : 11 0.40 0.00 0.03 CH18 CONDUIT 2.07 0 12 : 11 0. 76 0.00 0.05 CH19 CONDUIT 4.07 0 12 : 15 0. 55 0.00 0.05 CH2 CONDUIT 2. 16 0 12 : 11 0.43 0.00 0.02 CH3 CONDUIT 1 .08 0 12 : 11 0. 35 0.00 0.01 CH4 CONDUIT 7 .92 0 12 : 15 0. 88 0.00 0.05 CHS CONDUIT 1 .96 0 12 : 11 1 .37 0.00 0.04 CH6 CONDUIT 1 .31 0 12 : 11 0A2 0.00 0.02 CH7 CONDUIT 0.23 0 12 : 11 0.24 0.00 0.01 CH8 CONDUIT 7 .94 0 12 : 35 0.50 0.00 0.04 CH9 CONDUIT 3 .04 0 12 : 15 0.50 0.00 0.04 CN1 CONDUIT 24.21 0 12 : 30 1 . 18 0.00 0.05 CS1 CONDUIT 6.62 0 12 : 15 0.95 0.00 0.08 CS2 CONDUIT 1 .02 0 12 : 11 0.67 0.01 0.07 SWMM 5. 1 206 Page 3 Pelican Lakes PUD - Historic Conditions - 10 Yr - 24 Hour Type 2 Storm Outfall Loading Summary Flow Avg. Max. Total Freq. Flow Flow Volume Outfall Node Pcnt. CFS CFS 10^6 gal OUT1 83 . 85 7. 76 24.65 4.205 OUT2 79 .97 3 .45 7 .93 1 . 781 OUT3 85 .49 16. 54 51 . 57 9 . 136 OUT4 95 .00 0.06 1 .02 0.034 OUTS 88 . 82 0. 19 1 . 50 0. 111 OUT6 94.24 0.07 1 . 11 0.045 OUT7 96. 11 0.05 1 .03 0.032 SWMM 5. 1 207 Page 1 061241202200:16A0 ///// / ,,,,, ///x // Historic Conditions ; ///// `" JMD ; j1st. '" 100-Yr Runoff CM X /////" co 'r%%%( J2-____,.„/ �J J] la 1. // / //// � '� r CyC • CM< i Jr //// ♦y� CM ///// C' /; i r ////// .P2 ., // JfF /// /// it AO ////////////� JHS 4 JM //////// r 3 C//// / ♦ T'0 '/////// //////// / ���J 21e2 / // ////// /////////// /// /// ♦ / / Jv //// CM JS+ CHI Our, //////////// CEA //// / c"a / ////////////// �4'/ //// //O]J.// M /////////////// t1 a]] ////// M.N., J:0 CHp //////////////// F5 CES LC I//`, //////// cy`N Cud Out] CO ///////4(//////// ', , ///// 9H /////// /// I m /////// CH, ////// /////// \, 'Cif /////// CC9 J� ////// ////////////. y\ � t _ /////// ///////////////////. a ////// /////////////////// c%tea / ///,;// f //////////////// Jt1 I JHV 4 � r; 7 ~ JMo CMa Ouru ////////// / CI llita Jr .E////T 'iii/// // C5 / CI l ///// JS' /// ! / I / .-:CAW///' J //////' � Dun /// �' /%/ / // C]t H., CWT Out+ /� �'' //// ,// ///////// > //////// :, V////////, '///////// //////// /// //////// //// -K/ ,a /////////////// '////// / '/// //////////////////// /////// ousJ/ /////////////////////// ///////J]] //////////////////////// /////////// CM G%,/////////////// / //// ///////////. //////////// /// //////////// JEu ///////////// // '////////// ///////////// /// ////////// CUR z//////////////// /// /////// 1 cs] Pelican Lakes PUD - Historic Conditions - 100 Yr - 24 Hour Type 2 Storm Node Inflow Summary Maximum Maximum Lateral Total Flow Lateral Total Day of Hour of Inflow Inflow Balance Inflow Inflow Maximum Maximum Volume Volume Error Node Type CFS CFS Inflow Inflow 10^6 gal 10^6 gal Percent J1 JUNCTION 0. 00 233 . 62 0 12 : 30 0 6. 85 0. 000 J11 JUNCTION 0. 00 42 . 80 0 12 : 18 0 0. 749 0. 000 J12 JUNCTION 0. 00 232 . 00 0 12 : 43 0 11 . 6 0. 000 J14 JUNCTION 0. 00 33 . 03 0 12 : 10 0 0. 34 0. 000 J16 JUNCTION 0. 00 46. 69 0 12 : 17 0 0. 758 -0. 000 J17 JUNCTION 0. 00 169 . 22 0 13 : 43 0 13 . 9 0. 000 J19 JUNCTION 0. 00 5 . 35 0 12 : 13 0 0. 065 0. 000 J2 JUNCTION 0. 00 41 .43 0 12 : 15 0 0. 656 0. 000 J20 JUNCTION 0. 00 166. 69 0 14 : 04 0 14 0. 000 J21 JUNCTION 0. 00 92 . 79 0 12 : 34 0 2 . 84 0. 000 J22 JUNCTION 0. 00 44. 75 0 12 : 26 0 1 . 1 0. 000 J23 JUNCTION 0. 00 24.41 0 12 : 20 0 0 .466 0. 000 J24 JUNCTION 0. 00 113 .46 0 13 : 03 0 4. 87 0. 000 J25 JUNCTION 0. 00 41 . 97 0 12 : 33 0 1 .27 0. 000 J26 JUNCTION 0. 00 283 .63 0 12 : 35 0 8 . 68 0. 000 J27 JUNCTION 0. 00 276.70 0 12 : 51 0 10. 6 0. 000 J28 JUNCTION 0. 00 290. 14 0 13 : 13 0 14 0. 000 J29 JUNCTION 0. 00 269 .45 0 13 : 36 0 14. 9 0. 000 J3 JUNCTION 0.00 47 . 24 0 12 : 23 0 1 . 01 0. 000 J30 JUNCTION 0. 00 238 .22 0 14 : 10 0 16 0. 000 J31 JUNCTION 0.00 36. 88 0 12 : 11 0 0. 381 0. 000 SWMM 5. 1 209 Page 1 Pelican Lakes PUD - Historic Conditions - 100 Yr - 24 Hour Type 2 Storm Maximum Maximum Lateral Total Flow Lateral Total Day of Hour of Inflow Inflow Balance Inflow Inflow Maximum Maximum Volume Volume Error Node Type CFS CFS Inflow Inflow 10^6 gal 10^6 gal Percent J32 JUNCTION 0.00 92 . 76 0 12 :29 0 2.6 0.000 J33 JUNCTION 0.00 139 .66 0 12 : 35 0 5 .32 0.000 J34 JUNCTION 0.00 769 .29 0 12 : 54 0 80.6 0.000 J37 JUNCTION 0.00 541 . 59 0 12 : 36 0 38 .2 0.000 J38 JUNCTION 0.00 188 . 82 0 14 : 24 0 19 .7 0.000 J4 JUNCTION 0.00 55 . 85 0 12 : 51 0 2 .46 0.000 J7 JUNCTION 0.00 121 . 55 0 12 : 29 0 3 .94 0.000 J9 JUNCTION 0.00 210.44 0 12 : 30 0 10. 1 0.000 JE1 JUNCTION 56.78 56. 78 0 12 : 06 0. 639 0. 639 0.000 JE2 JUNCTION 179 . 15 179. 15 0 12 : 06 2 .24 2 .24 0.000 JE3 JUNCTION 81 .33 81 .33 0 12 : 06 0.924 0.924 0.000 JE4 JUNCTION 85 .24 85 .24 0 12 : 06 0.915 0.915 0.000 JES JUNCTION 572 .29 572 .29 0 12 : 06 6.23 6.23 -0.000 JE6 JUNCTION 192 .02 192 .02 0 12 : 06 1 . 82 1 . 82 0.000 JH1 JUNCTION 1034. 55 1034. 55 0 12 : 06 8 .31 8 . 31 0.000 JH10 JUNCTION 169 . 74 169 .74 0 12 : 06 1 .24 1 .24 0.000 JH11 JUNCTION 69.51 69. 51 0 12 : 06 0. 523 0. 523 0.000 JH12 JUNCTION 46.06 46.06 0 12 :06 0. 584 0. 584 0.000 JH13 JUNCTION 50.33 50.33 0 12 :06 0.358 0. 358 0.000 JH14 JUNCTION 60.67 60. 67 0 12 :06 0. 554 0. 554 0.000 JH15 JUNCTION 1160.22 1160.22 0 12 :06 13 .9 13 .9 0.000 JH16 JUNCTION 29 .33 29 .33 0 12 :06 0.284 0.284 0.000 SWMM 5. 1 210 Page 2 Pelican Lakes PUD - Historic Conditions - 100 Yr - 24 Hour Type 2 Storm Maximum Maximum Lateral Total Flow Lateral Total Day of Hour of Inflow Inflow Balance Inflow Inflow Maximum Maximum Volume Volume Error Node Type CFS CFS Inflow Inflow 10^6 gal 10A6 gal Percent JH17 JUNCTION 39 .65 39 . 65 0 12 : 06 0.297 0.297 0. 000 JH18 JUNCTION 41 . 10 41 . 10 0 12 : 06 0.424 0.424 0. 000 JH19 JUNCTION 245 . 53 245 . 53 0 12 : 06 1 . 82 1 . 82 0. 000 JH2 JUNCTION 92 .76 92 . 76 0 12 : 06 0. 765 0. 765 0. 000 JH3 JUNCTION 78 .63 78 . 63 0 12 : 06 0. 532 0. 532 0. 000 JH4 JUNCTION 422 . 09 422 . 09 0 12 : 06 3 . 31 3 .31 0.000 JETS JUNCTION 38 . 88 38 . 88 0 12 : 06 0. 341 0. 341 0.000 JH6 JUNCTION 83 . 01 83 . 01 0 12 : 06 0. 575 0. 575 0.000 JH7 JUNCTION 7 . 70 7 . 70 0 12 : 06 0. 0621 0.0621 0.000 JH8 JUNCTION 250. 08 250. 08 0 12 : 06 2 .57 2 .57 0.000 JH9 JUNCTION 84. 54 84 . 54 0 12 : 06 0. 899 0. 899 0.000 JN1 JUNCTION 384. 72 384 . 72 0 12 : 06 5 .97 5 . 97 0.000 JS1 JUNCTION 276. 68 276 . 68 0 12 : 06 2 .54 2 .54 0.000 JS2 JUNCTION 13 . 54 13 . 54 0 12 : 06 0. 169 0. 169 0.000 OUT1 OUTFALL 0. 00 540. 80 0 12 : 36 0 38 .2 0.000 OUT2 OUTFALL 0. 00 188 . 82 0 14 :24 0 19 .7 0.000 OUT3 OUTFALL 0. 00 765 . 03 0 12 : 57 0 80.5 0.000 OUT4 OUTFALL 0. 00 7 . 96 0 12 :23 0 0 . 182 0.000 OUTS OUTFALL 0. 00 28 .64 0 12 :29 0 0. 823 0.000 OUT6 OUTFALL 0. 00 16. 16 0 12 :23 0 0 .331 0.000 OUT7 OUTFALL 0. 00 27 .71 0 12 : 12 0 0 .316 0.000 SWMM 5. 1 211 Page 3 Pelican Lakes PUD - Historic Conditions - 100 Yr - 24 Hour Type 2 Storm Link Flow Summary Maximum Day of Hour of Maximum Max / Max / Into* Maximum Maximum IVelocityl Full Full Link Type CFS Flow Flow ft/sec Flow Depth Cl CONDUIT 135 .92 0 13 :42 1 .44 0.06 0.20 C10 CONDUIT 29 . 55 0 12 :40 0. 56 0.02 0. 13 C11 CONDUIT 193 .49 0 12 :44 0.91 0.07 0.27 C12 CONDUIT 23 . 72 0 12 :21 0. 65 0.01 0. 10 C14 CONDUIT 33 .49 0 12 : 38 0. 50 0.01 0. 13 C15 CONDUIT 163 .06 0 13 :46 0. 53 0.07 0. 32 C17 CONDUIT 2 . 89 0 12 :44 0.45 0.00 0.02 C18 CONDUIT 166.05 0 14 : 04 0. 75 0.07 0.24 C19 CONDUIT 161 .29 0 14 : 30 0.95 0.06 0.26 C20 CONDUIT 75 . 32 0 13 : 07 1 . 12 0.05 0.25 C21 CONDUIT 34. 61 0 12 : 56 1 .04 0.02 0. 17 C22 CONDUIT 24.06 0 12 : 25 0.68 0.02 0. 11 C23 CONDUIT 258. 87 0 12 : 52 1 . 53 0.07 0.32 C24 CONDUIT 242.98 0 13 : 14 0. 79 0. 19 0.45 C25 CONDUIT 28 . 81 0 13 : 12 0.98 0.02 0. 13 C26 CONDUIT 263 . 59 0 13 : 37 0. 79 0.20 0.46 C27 CONDUIT 233 . 15 0 14 : 11 0. 77 0. 31 0. 59 C3 CONDUIT 22 .96 0 13 : 02 1 .43 0.01 0. 10 C30 CONDUIT 59 . 37 0 14 :42 1 . 17 0.02 0. 16 C31 CONDUIT 157.22 0 15 :43 1 .24 0.05 0.26 C32 CONDUIT 16.31 0 13 : 00 0.65 0.00 0.03 SWMM 5. 1 212 Page 1 Pelican Lakes PUD - Historic Conditions - 100 Yr - 24 Hour Type 2 Storm Maximum Day of Hour of Maximum Max / Max / IFlowl Maximum Maximum IVelocityl Full Full Link Type CFS Flow Flow ft/sec Flow Depth C33 CONDUIT 44. 85 0 13 :43 1 .28 0.03 0. 14 C34 CONDUIT 112. 56 0 13 : 03 0. 83 0.03 0. 19 C35 CONDUIT 765 .03 0 12 : 57 1 .40 0.21 0. 50 C39 CONDUIT 540. 80 0 12 : 36 2 .28 0. 11 0. 35 C4 CONDUIT 34. 80 0 12 :48 1 . 14 0.02 0. 14 C40 CONDUIT 188. 82 0 14 : 24 1 .67 0.04 0.20 C6 CONDUIT 65 .79 0 13 : 29 1 .21 0.02 0. 17 C7 CONDUIT 48 . 36 0 13 : 19 1 . 14 0.03 0. 18 CE1 CONDUIT 41 .43 0 12 : 15 1 . 69 0.04 0.26 CE2 CONDUIT 92 . 79 0 12 : 34 1 .93 0.01 0. 11 CE3 CONDUIT 44. 75 0 12 : 26 1 .45 0.01 0.09 CE4 CONDUIT 41 .97 0 12 : 33 1 . 57 0.01 0.08 CES CONDUIT 283 .63 0 12 : 35 2 . 89 0.07 0.24 CE6 CONDUIT 92 . 76 0 12 : 29 2 .23 0.02 0. 14 CH1 CONDUIT 521 .42 0 12 : 35 3 .02 0.21 0.36 CH10 CONDUIT 98.04 0 12 : 16 1 . 60 0.03 0. 17 CH11 CONDUIT 32.93 0 12 : 29 0.66 0.03 0. 16 CH12 CONDUIT 22. 86 0 12 :45 1 . 16 0.03 0. 16 CH13 CONDUIT 36. 88 0 12 : 11 1 .05 0.02 0. 11 CH14 CONDUIT 28.64 0 12 : 29 0. 89 0.01 0.09 CH15 CONDUIT 624.51 0 12 : 53 3 .26 0. 16 0.39 CH16 CONDUIT 16. 16 0 12 : 23 0. 65 0.02 0. 15 SWMM 5. 1 213 Page 2 Pelican Lakes PUD - Historic Conditions - 100 Yr - 24 Hour Type 2 Storm Maximum Day of Hour of Maximum Max / Max / IFlowl Maximum Maximum IVelocityl Full Full Link Type CFS Flow Flow ft/sec Flow Depth CH17 CONDUIT 27 . 71 0 12 : 12 1 .06 0.04 0.21 CH18 CONDUIT 24.41 0 12 : 20 1 . 74 0.02 0.20 CH19 CONDUIT 121 .55 0 12 : 29 2 . 37 0. 13 0. 33 CH2 CONDUIT 47 .24 0 12 : 23 1 .64 0.01 0. 12 CH3 CONDUIT 42 . 80 0 12 : 18 1 . 81 0.02 0. 12 CH4 CONDUIT 210.44 0 12 : 30 3 . 59 0. 10 0.30 CHS CONDUIT 33 .03 0 12 : 10 2 .35 0.04 0.22 CH6 CONDUIT 46. 69 0 12 : 17 1 .93 0.02 0. 13 CH7 CONDUIT 5 . 35 0 12 : 13 0. 61 0.01 0.08 CH8 CONDUIT 127 .55 0 12 :42 1 . 72 0.05 0.20 CH9 CONDUIT 41 . 75 0 12 : 35 1 .63 0.03 0. 16 CN1 CONDUIT 233 .62 0 12 : 30 1 .97 0.03 0. 19 CS1 CONDUIT 139 .66 0 12 : 35 3 .29 0.07 0. 32 CS2 CONDUIT 7 .96 0 12 : 23 1 .29 0.05 0.24 SWMM 5. 1 214 Page 3 Pelican Lakes PUD - Historic Conditions - 100 Yr - 24 Hour Type 2 Storm Outfall Loading Summary Flow Avg. Max. Total Freq. Flow Flow Volume Outfall Node Pcnt. CFS CFS 10^6 gal OUT1 90.94 64.99 540. 80 38 . 196 OUT2 87 . 12 35 .04 188 . 82 19 . 730 OUT3 91 .08 136. 81 765 .03 80. 523 OUT4 96.49 0.29 7 .96 0. 182 OUTS 91 . 84 1 .39 28 .64 0. 823 OUT6 96. 11 0. 53 16. 16 0. 331 OUT7 97 .26 0. 50 27 .71 0. 316 SWMM 5. 1 215 Page 1 DEVELOPED CONDITIONS Pelican Lakes PUD - East Area - South Basins - Developed 100yr 3 F1 ES1 ES2 JS2 JH3 JS1 CS2 OW1 JE1 H4 J2 CE1 CH3 J46 J11 C5 C1 C7/ J3 J4 C6 J47 C2 J6C68 CH21 JH4 WEIR 9 C8 JH2 - J48 POND_9 H2 JF2 C3 CH4 F2 C4 C9 C10 POND E1 J9 ES3 - JS3 C74 CS3 J49 WEIR E1 J38 SWMM 5. 2 Page 1 Pelican Lakes PUD - East Area - South Basins - Developed 100yr OUTFALL_E2 CN2 . 1 WEIR E2 T J N2 .2 POND DE2 JN6 CN8 .2 CN1 NJ8. 1 CN6 JN1 CN2 CN5.2 EN6 EN1 JN2 EN2 JN5 .2 CN4 JN4 EN4 CN5. 1 CN7 CN3. 1 JN3.2 EN7 JN5. 1 CN3 \JN3 JN7' EN3 CN5 JN5 EN5 SWMM 5. 2 Page 1 sa marip.,as TERRA FORMA SOLUTIONS ' F Input [ TITLE ] ; ; Project Title/Notes Pelican Lakes PUD - East Area - South Basins - Developed 100yr Updated 2025 - 05- 07 [OPTIONS ] ; ; Option Value FLOW UNITS CFS INFILTRATION HORTON FLOW_ROUTING KINWAVE LINK OFFSETS DEPTH MIN SLOPE 0 ALLOW PONDING NO SKIP STEADY STATE NO START_DATE 06 / 24 /2023 START_TIME 00 : 00 : 00 REPORT_START_DATE 06 / 24 /2023 REPORT START_TIME 00 : 00 : 00 END_DATE 06/ 25 /2023 END TIME 00 : 00 : 00 SWEEP_START 01 / 01 SWEEP END 12 / 31 DRY DAYS 0 REPORT STEP 00 : 05 : 00 WET_STEP 00 : 05 : 00 DRY STEP 01 : 00 : 00 ROUTING_STEP 0 : 00 : 30 INERTIAL DAMPING PARTIAL NORMAL FLOW_LIMITED BOTH FORCE MAIN_EQUATION H-W VARIABLE STEP 0 . 75 LENGTHENING_STEP 0 MIN_SURFAREA 12 . 566 MAX_TRIALS 12 HEAD_TOLERANCE 0 . 005 SYS_FLOW_TOL 5 LAT FLOW_TOL 5 MINIMUM_STEP 0 . 5 THREADS 1 [EVAPORATION ] ; ; Data Source Parameters ; ; CONSTANT 0 . 0 DRY_ONLY NO [RAINGAGES ] ; ; Name Format Interval SCF Source ; ; Gage100 CUMULATIVE 0 : 06 1 . 0 TIMESERIES Type2 -100Yr Gage10 CUMULATIVE 0 : 06 1 . 0 TIMESERIES Type2 -10Yr [ SUBCATCHMENTS ] ; ; Name Rain Gage Outlet Area % Impery Width %Slope CurbLen SnowPack EN1 Gage100 JN1 3 . 89 20 200 3 . 9 0 EN2 Gage100 JN2 2 . 12 20 150 5 . 3 0 EN3 Gage100 JN3 2 . 21 20 50 8 . 3 0 EN4 Gage100 JN4 10 . 83 20 470 3 . 7 0 EN5 Gage100 JN5 3 . 65 20 240 4 . 7 0 EN6 Gage100 JN6 12 . 10 20 440 4 . 8 0 EN7 Gage100 JN7 18 . 52 20 700 5 0 ES1 Gage100 JS1 24 . 86 20 910 9 . 1 0 ES2 Gage100 JS2 8 . 77 20 560 7 . 1 0 ES3 Gage100 JS3 27 . 69 20 790 1 . 1 0 F1 Gage100 JH3 12 . 34 12 . 1 690 5 . 7 0 F2 Gage100 JF2 6 . 86 12 . 1 832 2 . 2 0 H2 Gage100 JH2 63 . 18 2 5729 4 . 8 0 H4 Gage100 JH4 255 . 4 2 27335 4 . 9 0 OW1 Gage100 JE1 48 . 01 2 2475 3 . 9 0 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_EastArea_Input.docx 5/7/2025 -a----arA TERRA FORMA --imagism SOLUTIOINS Input [ SUBAREAS ] ; ; Subcatchment N-Impery N- Pery S -Impery S- Pery PctZero RouteTo PctRouted ; ; EN1 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET EN2 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET EN3 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET EN4 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET EN5 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET EN6 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET EN7 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET ES1 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET ES2 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET ES3 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET Fl . 011 0 . 13 0 . 05 0 . 2 90 OUTLET F2 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET H2 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET H4 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET OW1 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET [ INFILTRATION ] ; ; Subcatchment MaxRate MinRate Decay DryTime MaxInfil ; ; EN1 5 1 2 . 52 1 0 EN2 5 1 2 . 52 1 0 EN3 5 1 2 . 52 1 0 EN4 5 1 2 . 52 1 0 EN5 5 1 2 . 52 1 0 EN6 5 1 2 . 52 1 0 EN7 5 1 2 . 52 1 0 ES1 5 1 2 . 52 1 0 ES2 5 1 2 . 52 1 0 ES3 5 1 2 . 52 1 0 Fl 5 1 2 . 52 1 0 F2 5 1 2 . 52 1 0 H2 5 1 2 . 52 1 0 H4 5 1 2 . 52 1 0 OW1 4 . 94 . 95 3 . 01 1 0 [ JUNCTIONS ] ; ; Name Elevation MaxDepth InitDepth SurDepth Aponded ; ; J11 4829 0 0 0 0 J2 4939 0 0 0 0 J3 4890 0 0 0 0 J38 4821 0 0 0 0 J4 4858 0 0 0 0 J46 4826 0 0 0 0 J47 4822 . 65 0 0 0 0 J48 4820 . 73 0 0 0 0 J49 4825 0 0 0 0 J61 4838 . 6 0 0 0 0 J9 4856 0 0 0 0 JE1 4960 0 0 0 0 JF2 4823 . 7 0 0 0 0 JH2 4 918 0 0 0 0 JH3 4858 0 0 0 0 JH4 4934 0 0 0 0 JN1 4838 . 9 0 0 0 0 JN2 4844 . 5 0 0 0 0 JN2 . 2 4838 0 0 0 0 JN3 4 851 0 0 0 0 JN3 . 2 4841 0 0 0 0 JN4 4838 . 2 0 0 0 0 JN5 4855 0 0 0 0 JN5 . 1 4844 0 0 0 0 JN5 . 2 4830 0 0 0 0 JN6 4818 0 0 0 0 JN7 4831 . 9 0 0 0 0 JS1 4829 . 5 0 0 0 0 JS2 4847 0 0 0 0 JS3 4827 . 0 0 0 0 0 NJ8 . 1 4815 . 2 0 0 0 0 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_EastArea_Input.docx 5/7/2025 TERRA FORMA 'vtarimi � QLUTIOhi allarInput [OUTFALLS ] ; ; Name Elevation Type Stage Data Gated Route To ; ; OUTFALL_E2 4814 FREE NO [ STORAGE ] ; ; Name Elev . MaxDepth InitDepth Shape Curve Name/ Params N/A Fevap Psi Ksat IMD ; POND_9 4829 10 0 TABULAR Pond9 Storage 0 0 POND_E1 4815 9 0 TABULAR PondE1_Storage 0 0 POND_E2 4803 . 5 7 . 5 0 TABULAR PondE2 Storage 0 0 [CONDUITS ] ; ; Name From Node To Node Length Roughness InOffset OutOffset InitFlow MaxFlow C1 J2 J4 6363 0 . 13 0 0 0 0 C10 JF2 POND_E1 377 0 . 035 0 0 0 0 C2 J3 J4 2299 0 . 13 0 0 0 0 C3 J4 J9 573 0 . 13 0 0 0 0 C4 J9 POND_9 1782 0 . 045 0 0 0 0 C5 JS1 J47 1641 0 . 035 0 0 0 0 C6 J11 J47 343 0 . 035 0 0 0 0 C68 J61 J47 1113 0 . 035 0 0 0 0 C7 J46 J47 581 0 . 035 0 0 0 0 C74 J49 POND_E1 1 0 . 035 0 0 0 0 C8 J47 J48 300 . 035 0 0 0 0 C9 J48 POND_E1 512 . 035 0 0 0 0 CE1 JE1 J2 1052 0 . 13 0 0 0 0 CH2 JH2 J3 2072 0 . 13 0 0 0 0 CH3 JH3 J11 1040 0 . 45 0 0 0 0 CH4 JH4 J9 7020 0 . 13 0 0 0 0 CN1 JN1 JN2 . 2 180 . 035 0 0 0 0 CN2 JN2 JN2 . 2 334 0 . 035 0 0 0 0 CN2 . 1 JN2 . 2 JN6 1200 . 030 0 0 0 0 CN3 JN3 JN3 . 2 505 0 . 035 0 0 0 0 CN3 . 1 JN3 . 2 JN4 400 0 . 01 0 0 0 0 CN4 JN4 JN5 . 2 560 0 . 035 0 0 0 0 CN5 JN5 JN5 . 1 298 0 . 035 0 0 0 0 CN5 . 1 JN5 . 1 JN5 . 2 400 0 . 01 0 0 0 0 CN5 . 2 JN5 . 2 JN6 400 0 . 01 0 0 0 0 CN6 JN6 NJ8 . 1 400 0 . 01 0 0 0 0 CN7 JN7 NJ8 . 1 760 0 . 035 0 0 0 0 CN8 . 2 NJ8 . 1 POND_E2 400 0 . 01 0 0 0 0 CS2 JS2 J46 400 0 . 035 0 0 0 0 CS3 JS3 J49 600 . 035 0 0 0 0 [WEIRS ] ; ; Name From Node To Node Type CrestHt Qcoeff Gated EndCon EndCoeff Surcharge RoadWidth RoadSurf WEIR_9 POND_9 J61 TRANSVERSE 9 . 66 3 . 33 NO 0 0 YES WEIR_E1 POND_E1 J38 TRANSVERSE 7 . 5 3 . 00 NO 0 0 YES WEIR_E2 POND_E2 OUTFALL_E2 TRANSVERSE 10 3 . 33 NO 0 0 YES [XSECTIONS ] ; ; Link Shape Geoml Geom2 Geom3 Geom4 Barrels Culvert ; ; C1 TRAPEZOIDAL 5 35 19 18 1 C10 TRAPEZOIDAL 2 60 35 50 1 C2 TRAPEZOIDAL 5 35 26 22 1 C3 TRAPEZOIDAL 5 35 19 18 1 C4 TRAPEZOIDAL 4 8 4 4 1 C5 TRAPEZOIDAL 4 8 4 4 1 C6 TRAPEZOIDAL 4 10 4 4 1 C68 TRAPEZOIDAL 4 8 4 4 1 C7 TRAPEZOIDAL 4 10 4 4 1 C74 TRAPEZOIDAL 3 16 4 4 1 C8 TRAPEZOIDAL 4 10 4 4 1 C9 TRAPEZOIDAL 4 10 4 4 1 CE1 TRAPEZOIDAL 5 4 25 4 1 CH2 TRAPEZOIDAL 5 50 50 30 1 CH3 TRAPEZOIDAL 5 2 4 4 1 CH4 TRAPEZOIDAL 5 35 19 18 1 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_EastArea_Input.docx 5/7/2025 TERRA FORMA -vgjascr "'` SOLUTIONS Input CN1 TRIANGULAR 2 16 0 0 1 CN2 TRIANGULAR 2 16 0 0 1 CN2 . 1 TRIANGULAR 2 16 0 0 1 CN3 TRIANGULAR 2 16 0 0 1 CN3 . 1 DUMMY 0 0 0 0 1 CN4 TRIANGULAR 2 16 0 0 1 CN5 TRIANGULAR 2 16 0 0 1 CN5 . 1 DUMMY 0 0 0 0 1 CN5 . 2 DUMMY 0 0 0 0 1 CN6 DUMMY 0 0 0 0 1 CN7 TRAPEZOIDAL 3 150 4 4 1 CN8 . 2 DUMMY 0 0 0 0 1 CS2 TRIANGULAR 2 . 5 20 0 0 1 CS3 TRAPEZOIDAL 4 12 50 50 1 WEIR_9 RECT_OPEN . 2 100 4 4 WEIR_E1 RECT_OPEN 1 70 100 100 WEIR_E2 RECT_OPEN 1 50 0 0 [CURVES ] ; ; Name Type X-Value Y-Value / ; ; Pond El PondE1_Storage Storage 0 52911 PondE1_Storage 1 56890 PondE1_Storage 2 60976 PondE1_Storage 3 65162 PondE1_Storage 4 69462 PondE1_Storage 5 74897 PondE1_Storage 6 87889 PondE1_Storage 7 105336 PondE1_Storage 8 125329 PondE1 Storage 9 145853 ; Pond E2 PondE2_Storage Storage 0 46095 PondE2_Storage 0 . 5 47989 PondE2_Storage 1 . 5 51872 PondE2_Storage 2 . 5 55886 PondE2_Storage 3 . 5 60028 PondE2_Storage 4 . 5 64300 PondE2_Storage 5 . 5 68702 PondE2_Storage 6 . 5 73232 PondE2 Storage 7 . 5 77892 ; Pond F9 Pond9_Storage Storage 0 181302 Pond9_Storage 1 191759 Pond9_Storage 2 202347 Pond9_Storage 3 215667 Pond9_Storage 4 229547 Pond9_Storage 5 241859 Pond9_Storage 6 254194 Pond9_Storage 7 266790 Pond9_Storage 8 279582 Pond9_Storage 9 292738 Pond9_Storage 10 305399 [REPORT ] ; ; Reporting Options INPUT NO CONTROLS NO SUBCATCHMENTS ALL NODES ALL LINKS ALL [ TAGS ] [MAP ] DIMENSIONS - 4689 . 394 0 . 000 14689 . 394 10000 . 000 Units None [ SYMBOLS ] ; ; Gage X-Coord Y-Coord ; ; Gage100 8711 . 712 7927 . 928 GagelO 9629 . 377 8056 . 346 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_EastArea_Input.docx 5/7/2025 AtaXiirass TERRA FORMA =air SOLUTIONS 100-Year Results EPA STORM WATER MANAGEMENT MODEL - VERSION 5 . 1 ( Build 5 . 1 . 012 ) Pelican Lakes PUD - East Area - South Basins - Developed 100yr Updated 2025 -05- 07 WARNING 08 : elevation drop exceeds length for Conduit C74 WARNING 10 : crest elevation raised to downstream invert for regulator Link WEIR E2 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * NOTE : The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Analysis Options * * * * * * * * * * * * * * * * Flow Units CFS Process Models : Rainfall /Runoff YES RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method HORTON Flow Routing Method KINWAVE Starting Date 06 / 24 /2023 00 : 00 : 00 Ending Date 06 / 25 /2023 00 : 00 : 00 Antecedent Dry Days 0 . 0 Report Time Step 00 : 05 : 00 Wet Time Step 00 : 05 : 00 Dry Time Step 01 : 00 : 00 Routing Time Step 30 . 00 sec * * * * * * * * * * * * * * * * * * * * * * * * * * Volume Depth Runoff Quantity Continuity acre- feet inches * * * * * * * * * * * * * * * * * * * * * * * * * * Total Precipitation 193 . 287 4 . 635 Evaporation Loss 0 . 000 0 . 000 Infiltration Loss 167 . 153 4 . 008 Surface Runoff 26 . 368 0 . 632 Final Storage 0 . 040 0 . 001 Continuity Error ( % ) -0 . 142 * * * * * * * * * * * * * * * * * * * * * * * * * * Volume Volume Flow Routing Continuity acre- feet 10 ^ 6 gal * * * * * * * * * * * * * * * * * * * * * * * * * * Dry Weather Inflow 0 . 000 0 . 000 Wet Weather Inflow 26 . 529 8 . 645 Groundwater Inflow 0 . 000 0 . 000 RDII Inflow 0 . 000 0 . 000 External Inflow 0 . 000 0 . 000 External Outflow 0 . 000 0 . 000 Flooding Loss 0 . 000 0 . 000 Evaporation Loss 0 . 000 0 . 000 Exfiltration Loss 0 . 000 0 . 000 Initial Stored Volume 0 . 000 0 . 000 Final Stored Volume 41 . 183 13 . 420 Continuity Error ( % ) - 55 . 237 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Highest Flow Instability Indexes * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Link CH4 ( 3 ) Link C4 ( 1 ) * * * * * * * * * * * * * * * * * * * * * * * * * Routing Time Step Summary * * * * * * * * * * * * * * * * * * * * * * * * * Minimum Time Step • 30 . 00 sec Average Time Step : 30 . 00 sec Maximum Time Step • 30 . 00 sec Percent in Steady State • 0 . 00 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_EastArea_Results_100 .rpt.docx 5/7/2025 TERRA FORMA � SOLUTIONS `�` 100-Year Results Average Iterations per Step : 1 . 00 Percent Not Converging : 0 . 00 * * * * * * * * * * * * * * * * * * * * * * * * * * * Subcatchment Runoff Summary * * * * * * * * * * * * * * * * * * * * * * * * * * * Total Total Total Total Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Coeff Subcatchment in in in in in 10 ^ 6 gal CFS EN1 4 . 63 0 . 00 0 . 00 3 . 48 1 . 16 0 . 12 6 . 58 0 . 250 EN2 4 . 63 0 . 00 0 . 00 3 . 43 1 . 21 0 . 07 4 . 29 0 . 262 EN3 4 . 63 0 . 00 0 . 00 3 . 53 1 . 11 0 . 07 3 . 40 0 . 239 EN4 4 . 63 0 . 00 0 . 00 3 . 50 1 . 13 0 . 33 17 . 44 0 . 245 EN5 4 . 63 0 . 00 0 . 00 3 . 44 1 . 20 0 . 12 7 . 01 0 . 258 EN6 4 . 63 0 . 00 0 . 00 3 . 51 1 . 13 0 . 37 19 . 30 0 . 244 EN7 4 . 63 0 . 00 0 . 00 3 . 50 1 . 14 0 . 57 29 . 89 0 . 245 ES1 4 . 63 0 . 00 0 . 00 3 . 47 1 . 17 0 . 79 43 . 39 0 . 252 ES2 4 . 63 0 . 00 0 . 00 3 . 42 1 . 22 0 . 29 18 . 02 0 . 263 ES3 4 . 63 0 . 00 0 . 00 3 . 60 1 . 03 0 . 78 37 . 64 0 . 223 F1 4 . 63 0 . 00 0 . 00 3 . 80 0 . 84 0 . 28 19 . 09 0 . 181 F2 4 . 63 0 . 00 0 . 00 3 . 76 0 . 88 0 . 16 12 . 25 0 . 189 H2 4 . 63 0 . 00 0 . 00 4 . 20 0 . 44 0 . 76 92 . 90 0 . 096 H4 4 . 63 0 . 00 0 . 00 4 . 17 0 . 47 3 . 25 418 . 67 0 . 101 OW1 4 . 63 0 . 00 0 . 00 4 . 15 0 . 49 0 . 64 56 . 78 0 . 105 * * * * * * * * * * * * * * * * * * Node Depth Summary * * * * * * * * * * * * * * * * * * Average Maximum Maximum Time of Max Reported Depth Depth HGL Occurrence Max Depth Node Type Feet Feet Feet days hr : min Feet J11 JUNCTION 0 . 31 1 . 98 4830 . 98 0 12 : 17 1 . 96 J2 JUNCTION 0 . 11 1 . 34 4940 . 34 0 12 : 15 1 . 34 J3 JUNCTION 0 . 06 0 . 86 4890 . 86 0 12 : 23 0 . 86 J38 JUNCTION 0 . 00 0 . 00 4821 . 00 0 00 : 00 0 . 00 J4 JUNCTION 0 . 18 1 . 39 4859 . 39 0 12 : 51 1 . 39 J46 JUNCTION 0 . 17 0 . 89 4826 . 89 0 12 : 07 0 . 88 J47 JUNCTION 0 . 14 1 . 29 4823 . 94 0 12 : 11 1 . 29 J48 JUNCTION 0 . 14 1 . 29 4822 . 02 0 12 : 12 1 . 26 J49 JUNCTION 0 . 10 0 . 63 4825 . 63 0 12 : 08 0 . 63 J61 JUNCTION 0 . 00 0 . 00 4838 . 60 0 00 : 00 0 . 00 J9 JUNCTION 0 . 30 2 . 32 4858 . 32 0 12 : 35 2 . 32 JE1 JUNCTION 0 . 11 1 . 53 4961 . 53 0 12 : 06 1 . 46 JF2 JUNCTION 0 . 01 0 . 12 4823 . 82 0 12 : 06 0 . 12 JH2 JUNCTION 0 . 04 1 . 00 4919 . 00 0 12 : 06 0 . 94 JH3 JUNCTION 0 . 31 2 . 45 4860 . 45 0 12 : 06 2 . 39 JH4 JUNCTION 0 . 12 2 . 78 4936 . 78 0 12 : 06 2 . 65 JN1 JUNCTION 0 . 20 0 . 96 4839 . 86 0 12 : 06 0 . 94 JN2 JUNCTION 0 . 12 0 . 63 4845 . 13 0 12 : 06 0 . 62 JN2 . 2 JUNCTION 0 . 20 0 . 95 4838 . 95 0 12 : 07 0 . 95 JN3 JUNCTION 0 . 12 0 . 58 4851 . 58 0 12 : 00 0 . 57 JN3 . 2 JUNCTION 0 . 12 0 . 57 4841 . 57 0 12 : 04 0 . 57 JN4 JUNCTION 0 . 25 1 . 19 4839 . 39 0 12 : 01 1 . 18 JN5 JUNCTION 0 . 13 0 . 67 4855 . 67 0 12 : 06 0 . 66 JN5 . 1 JUNCTION 0 . 13 0 . 67 4844 . 67 0 12 : 07 0 . 66 JN5 . 2 JUNCTION 0 . 25 1 . 19 4831 . 19 0 12 : 07 1 . 19 JN6 JUNCTION 0 . 17 0 . 86 4818 . 86 0 12 : 09 0 . 86 JN7 JUNCTION 0 . 01 0 . 13 4832 . 03 0 12 : 00 0 . 12 JS1 JUNCTION 0 . 13 1 . 28 4830 . 78 0 12 : 06 1 . 26 JS2 JUNCTION 0 . 17 0 . 90 4847 . 90 0 12 : 06 0 . 88 JS3 JUNCTION 0 . 10 0 . 66 4827 . 66 0 12 : 00 0 . 65 NJ8 . 1 JUNCTION 0 . 01 0 . 12 4815 . 32 0 12 : 08 0 . 12 OUTFALL_E2 OUTFALL 0 . 00 0 . 00 4814 . 00 0 00 : 00 0 . 00 POND_9 STORAGE 2 . 47 5 . 74 4834 . 74 1 00 : 00 5 . 74 POND_El STORAGE 2 . 39 4 . 87 4819 . 87 1 00 : 00 4 . 87 POND_E2 STORAGE 2 . 03 4 . 08 4807 . 58 1 00 : 00 4 . 08 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_EastArea_Results_100 .rpt.docx 5/7/2025 =__. TERRA FORMA .'�� oLuTIaINs 100-Year Results * * * * * * * * * * * * * * * * * * * Node Inflow Summary * * * * * * * * * * * * * * * * * * * Maximum Maximum Lateral Total Flow Lateral Total Time of Max Inflow Inflow Balance Inflow Inflow Occurrence Volume Volume Error Node Type CFS CFS days hr : min 10 ^ 6 gal 10 ^ 6 gal Percent J11 JUNCTION 0 . 00 11 . 37 0 12 : 17 0 0 . 29 0 . 000 J2 JUNCTION 0 . 00 41 . 31 0 12 : 15 0 0 . 656 0 . 000 J3 JUNCTION 0 . 00 47 . 48 0 12 : 23 0 1 . 02 0 . 000 J38 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J4 JUNCTION 0 . 00 55 . 93 0 12 : 51 0 2 . 46 0 . 000 J46 JUNCTION 0 . 00 17 . 86 0 12 : 07 0 0 . 291 0 . 000 J47 JUNCTION 0 . 00 64 . 38 0 12 : 11 0 1 . 36 0 . 000 J48 JUNCTION 0 . 00 64 . 29 0 12 : 12 0 1 . 36 0 . 000 J49 JUNCTION 0 . 00 34 . 65 0 12 : 08 0 0 . 773 0 . 000 J61 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J9 JUNCTION 0 . 00 211 . 73 0 12 : 35 0 9 . 19 0 . 000 JE1 JUNCTION 56 . 78 56 . 78 0 12 : 06 0 . 639 0 . 639 0 . 000 JF2 JUNCTION 12 . 25 12 . 25 0 12 : 06 0 . 164 0 . 164 0 . 000 JH2 JUNCTION 92 . 90 92 . 90 0 12 : 06 0 . 767 0 . 767 0 . 000 JH3 JUNCTION 19 . 09 19 . 09 0 12 : 06 0 . 281 0 . 281 0 . 000 JH4 JUNCTION 418 . 67 418 . 67 0 12 : 06 3 . 28 3 . 28 0 . 000 JN1 JUNCTION 6 . 58 6 . 58 0 12 : 06 0 . 122 0 . 122 0 . 000 JN2 JUNCTION 4 . 29 4 . 29 0 12 : 06 0 . 07 0 . 07 0 . 000 JN2 . 2 JUNCTION 0 . 00 10 . 77 0 12 : 07 0 0 . 192 0 . 000 JN3 JUNCTION 3 . 40 3 . 40 0 12 : 00 0 . 0665 0 . 0665 0 . 000 JN3 . 2 JUNCTION 0 . 00 3 . 25 0 12 : 04 0 0 . 0664 0 . 000 JN4 JUNCTION 17 . 44 20 . 28 0 12 : 01 0 . 334 0 . 4 0 . 000 JN5 JUNCTION 7 . 01 7 . 01 0 12 : 06 0 . 119 0 . 119 0 . 000 JN5 . 1 JUNCTION 0 . 00 6 . 95 0 12 : 07 0 0 . 119 0 . 000 JN5 . 2 JUNCTION 0 . 00 27 . 15 0 12 : 07 0 0 . 519 0 . 000 JN6 JUNCTION 19 . 30 54 . 94 0 12 : 06 0 . 371 1 . 08 0 . 000 JN7 JUNCTION 29 . 89 29 . 89 0 12 : 00 0 . 572 0 . 572 0 . 000 JS1 JUNCTION 43 . 39 43 . 39 0 12 : 06 0 . 789 0 . 789 0 . 000 JS2 JUNCTION 18 . 02 18 . 02 0 12 : 06 0 . 291 0 . 291 0 . 000 JS3 JUNCTION 37 . 64 37 . 64 0 12 : 00 0 . 776 0 . 776 0 . 000 NJ8 . 1 JUNCTION 0 . 00 82 . 26 0 12 : 07 0 1 . 65 0 . 000 OUTFALL_E2 OUTFALL 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal POND_9 STORAGE 0 . 00 210 . 52 0 12 : 38 0 9 . 22 0 . 000 POND_El STORAGE 0 . 00 101 . 80 0 12 : 11 0 2 . 3 0 . 000 POND_E2 STORAGE 0 . 00 82 . 26 0 12 : 07 0 1 . 65 0 . 000 * * * * * * * * * * * * * * * * * * * * * Node Flooding Summary * * * * * * * * * * * * * * * * * * * * * No nodes were flooded . * * * * * * * * * * * * * * * * * * * * * * Storage Volume Summary * * * * * * * * * * * * * * * * * * * * * * Average Avg Evap Exfil Maximum Max Time of Max Maximum Volume Pcnt Pcnt Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 ft3 Full Loss Loss 1000 ft3 Full days hr : min CFS POND_9 524 . 729 22 0 0 1232 . 065 51 1 00 : 00 0 . 00 POND_E1 147 . 082 20 0 0 306 . 837 41 1 00 : 00 0 . 00 POND_E2 107 . 825 23 0 0 220 . 536 48 1 00 : 00 0 . 00 * * * * * * * * * * * * * * * * * * * * * * * Outfall Loading Summary * * * * * * * * * * * * * * * * * * * * * * * Flow Avg Max Total Freq Flow Flow Volume Outfall Node Pcnt CFS CFS 10 ^ 6 gal OUTFALL_E2 0 . 00 0 . 00 0 . 00 0 . 000 System 0 . 00 0 . 00 0 . 00 0 . 000 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_EastArea_Results_100 .rpt.docx 5/7/2025 Am-=_. TERRA FORMAader __ SOLUTIONS100-Year Results * * * * * * * * * * * * * * * * * * * * Link Flow Summary * * * * * * * * * * * * * * * * * * * * Maximum Time of Max Maximum Max / Max / IFlowl Occurrence IVeloci Full Full Link Type CFS days hr : min ft/ sec Flow Depth C1 CONDUIT 22 . 97 0 13 : 02 1 . 43 0 . 01 0 . 10 C10 CONDUIT 11 . 83 0 12 : 08 1 . 59 0 . 01 0 . 06 C2 CONDUIT 34 . 87 0 12 : 48 1 . 14 0 . 02 0 . 14 C3 CONDUIT 54 . 16 0 13 : 04 0 . 68 0 . 06 0 . 27 C4 CONDUIT 210 . 52 0 12 : 38 5 . 33 0 . 31 0 . 58 C5 CONDUIT 41 . 24 0 12 : 10 3 . 20 0 . 09 0 . 30 C6 CONDUIT 11 . 33 0 12 : 18 2 . 72 0 . 01 0 . 09 C68 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C7 CONDUIT 17 . 67 0 12 : 08 2 . 35 0 . 03 0 . 16 C74 CONDUIT 34 . 65 0 12 : 08 25 . 33 0 . 00 0 . 03 C8 CONDUIT 64 . 29 0 12 : 12 3 . 33 0 . 10 0 . 32 C9 CONDUIT 63 . 64 0 12 : 13 4 . 06 0 . 08 0 . 28 CE1 CONDUIT 41 . 31 0 12 : 15 1 . 69 0 . 04 0 . 26 CH2 CONDUIT 47 . 48 0 12 : 23 1 . 64 0 . 01 0 . 13 CH3 CONDUIT 11 . 37 0 12 : 17 0 . 95 0 . 10 0 . 38 CH4 CONDUIT 207 . 78 0 12 : 29 3 . 42 0 . 13 0 . 34 CN1 CONDUIT 6 . 54 0 12 : 07 1 . 86 0 . 14 0 . 48 CN2 CONDUIT 4 . 24 0 12 : 07 2 . 82 0 . 05 0 . 31 CN2 . 1 CONDUIT 10 . 64 0 12 : 09 4 . 20 0 . 11 0 . 43 CN3 CONDUIT 3 . 25 0 12 : 04 2 . 77 0 . 03 0 . 28 CN3 . 1 DUMMY 3 . 25 0 12 : 04 CN4 CONDUIT 20 . 23 0 12 : 07 3 . 77 0 . 25 0 . 59 CN5 CONDUIT 6 . 95 0 12 : 07 3 . 97 0 . 05 0 . 33 CN5 . 1 DUMMY 6 . 95 0 12 : 07 CN5 . 2 DUMMY 27 . 15 0 12 : 07 CN6 DUMMY 54 . 94 0 12 : 06 CN7 CONDUIT 29 . 27 0 12 : 08 1 . 81 0 . 00 0 . 04 CN8 . 2 DUMMY 82 . 26 0 12 : 07 CS2 CONDUIT 17 . 86 0 12 : 07 5 . 73 0 . 06 0 . 36 CS3 CONDUIT 34 . 65 0 12 : 08 1 . 58 0 . 01 0 . 15 WEIR_9 WEIR 0 . 00 0 00 : 00 0 . 00 WEIR_E1 WEIR 0 . 00 0 00 : 00 0 . 00 WEIR_E2 WEIR 0 . 00 0 00 : 00 0 . 00 * * * * * * * * * * * * * * * * * * * * * * * * * Conduit Surcharge Summary * * * * * * * * * * * * * * * * * * * * * * * * * No conduits were surcharged . Analysis begun on : Wed May 07 13 : 52 : 52 2025 Analysis ended on : Wed May 07 13 : 52 : 52 2025 Total elapsed time : < 1 sec J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_EastArea_Results_100 .rpt.docx 5/7/2025 Pelican Lakes PUD - West Area - Developed 100 Yr FIPONDII EIR_11 J75 F1 -11 F1 -3 J76 FIPOND2 C83 J74 C84 C30 J77 WEIR_2 FIPOND3 W14 C20 F1 -2 C102 C82 r C86 J24 J E2 7 E2 J21 WEIR_3 J 91 FIPONDI OW2 C22 JW14 79 K J23 Gage100 C21 WEIR_1 Gage10 C87 C46 CH18 \.....407885 W11 JH18 Fi 1 J80 J22 OW3 H18 J67 CE3 C88 J14 WEIR_4 JE3 F1POND8 W13 POND_4 F1 -8 JW13 C100 C89 JW11 J81 J82 C80 J25 J83 JW4 W4 WEIR_8 J62 C73 JE4CE4 C66 C94 JPOND2 C25 C91 J47 JW6a J84 792 C93 OW4 JW6b .1 C67 JW15 J39 Er C48 CW6aC1JW6b C90 C57 W6a W15 CH9 E' CW6b.1 J41 41 JW2 C49 W2 JW2a J4 W6b C68 ir C27 JW12 W2a J2 CW2a JW6 W6 J29 C79 C98 POND_W1 C54 C64 JE5 J89 C97 J44 C56 JW10 JH15 C65 J4647 C96 WEIR_W1 J42 J52 J53 W10 H15 CE5 J26 C23 CW1b C41 C42 CW1a J88 •C5546 OW5 CH10 / JW1b CW C53 r JW1 JW1a 3a J123 J50 C51 JW3a W3a W1b 7133 W8a C78 E 'W1 9 C99 JW8a J5 OUT9 W1a C50 JWg52 J70 C76 JW3 J136 POND W3 CW3b JW3b JW8 C60 C147 C75 W3b C146 OUT10 J68 .....-----\ WEIR_W3 J69 C74 W16 W3 W5 S21 ' S1 WS S12 i i S OSt i 1 OW6 JE6 JW16 JS1 JS11 JS12 JS21 J32 CE6 JS112 JS8 CS11 CS21 C69 C7CCW16 J71 POND_S1 WEIR Si J87 S4 83 CS12 CS112 �S122 C58 I S9 JS21 .1 S22 C95 S14 C1 LS10 I JS8.1 1 JS2 JS4 JS3 S15 JS14 S2 C77 C103 Cl 4 513 JS10 S81 J39 JS22 JS15 J92' $6 S5 CS122 CS CS21 .121 S19a 105 JS5 JS9.1 CS22 S23 �S1a JS6 C115CS° 1 JS222 We10 . C138 JS1a JS19a J130 C109 106 JS13 J114 J127 C107 POND_S2 J133 C123 C134 JS23 JS18' C4LaS1 • C125 J113 S16 CS22.2 J516 C139 J131 POND S3 J97 C140 C137 *---618WEIR_S2 C120 J125 C145 C141 r C143 C111 J126 POND_S4 J S19 .1 �.r S19 JS199 C135 C108 JS192 CS20 .1 C136 C 127 J 119 J S20 .1 WEIR S4 JS17 C112 - S17 W EIR_S3 C113 C S20 JS20 J100 _ I S20 I SWMM 5. 2 Page 1 r TERRA FORMA SOLUTIONS 'r Input [ TITLE ] ; ; Project Title/Notes Pelican Lakes PUD - West Area - Developed 100 Yr Updated 2025 - 05- 07 [OPTIONS ] ; ; Option Value FLOW UNITS CFS INFILTRATION HORTON FLOW_ROUTING KINWAVE LINK OFFSETS DEPTH MIN SLOPE 0 ALLOW PONDING NO SKIP STEADY STATE NO START_DATE 06 / 24 /2023 START_TIME 00 : 00 : 00 REPORT START DATE 06 / 24 /2023 REPORT START TIME 00 : 00 : 00 END_DATE 06/ 25 /2023 END TIME 00 : 00 : 00 SWEEP_START 01 / 01 SWEEP END 12 / 31 DRY DAYS 0 REPORT STEP 00 : 05 : 00 WET_STEP 00 : 05 : 00 DRY STEP 01 : 00 : 00 ROUTING_STEP 0 : 00 : 30 INERTIAL DAMPING PARTIAL NORMAL FLOW_LIMITED BOTH FORCE MAIN_EQUATION H-W VARIABLE STEP 0 . 75 LENGTHENING_STEP 0 MIN_SURFAREA 12 . 566 MAX_TRIALS 12 HEAD_TOLERANCE 0 . 005 SYS_FLOW_TOL 5 LAT FLOW_TOL 5 MINIMUM_STEP 0 . 5 THREADS 1 [EVAPORATION ] ; ; Data Source Parameters ; ; CONSTANT 0 . 0 DRY_ONLY NO [RAINGAGES ] ; ; Name Format Interval SCF Source ; ; Gage100 CUMULATIVE 0 : 06 1 . 0 TIMESERIES TYPE2 Gage10 CUMULATIVE 0 : 06 1 . 0 TIMESERIES Type2 -10yr [ SUBCATCHMENTS ] ; ; Name Rain Gage Outlet Area % Impery Width %Slope CurbLen SnowPack F1 -1 Gage100 J78 103 . 3 12 . 1 4630 3 . 3 0 F1 -11 Gage100 J74 56 . 1 12 . 1 2855 1 . 6 0 F1 -2 Gage100 J76 76 . 4 12 . 1 4835 2 . 5 0 F1 -3 Gage100 F1POND3 9 . 6 12 . 1 975 7 0 F1 -8 Gage100 J81 41 . 6 12 . 1 3354 2 . 7 0 H15 Gage100 JH15 524 . 47 2 45060 6 . 9 0 H18 Gage100 JH18 45 12 . 1 3814 1 . 4 0 OS1 Gage100 J68 187 2 18683 2 . 7 0 OW2 Gage100 JE2 182 2 9294 2 . 3 0 OW3 Gage100 JE3 66 2 3917 3 0 OW4 Gage100 JE4 80 . 7 2 5462 2 . 3 0 OW5 Gage100 JE5 590 . 74 2 38083 2 . 2 0 OW6 Gage100 JE6 173 . 92 2 10556 4 . 6 0 S1 Gage100 JS1 27 . 67 20 380 2 . 8 0 S10 Gage100 JS10 12 . 93 20 250 7 . 9 0 S11 Gage100 JS11 11 . 23 20 428 9 . 2 0 S12 Gage100 JS12 18 . 24 20 348 8 . 7 0 S13 Gage100 JS13 72 . 83 20 715 5 . 5 0 S14 Gage100 JS14 22 . 84 20 960 0 . 9 0 S15 Gage100 JS15 23 . 29 20 720 1 . 7 0 S16 Gage100 JS16 2 . 85 20 200 3 . 9 0 S17 Gage100 JS17 29 . 19 20 580 4 . 7 0 S18 Gage100 JS18 12 . 17 20 534 4 . 8 0 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_WestArea_Input.docx 5/7/2025 TERRA FORMA � cLuTic� r� s rismallsw Input S19 Gage100 JS19 67 . 43 20 980 6 . 7 0 S19a Gage100 JS19a 2 . 21 20 195 0 . 5 0 S1a Gage100 JS1a 3 . 70 20 244 0 . 5 0 S2 Gage100 JS2 21 . 99 20 235 4 . 6 0 S20 Gage100 JS20 60 . 16 20 730 2 . 3 0 S21 Gage100 JS21 7 . 12 20 388 6 . 3 0 S22 Gage100 JS22 17 . 11 20 404 10 . 1 0 S23 Gage100 JS23 7 . 02 20 283 6 . 3 0 S3 Gage100 JS3 6 . 09 20 450 3 . 7 0 S4 Gage100 JS4 21 . 13 20 460 3 . 7 0 S5 Gage100 JS5 8 . 62 20 300 6 . 8 0 $ 6 Gage100 JS6 26 . 22 20 560 6 . 5 0 S8 Gage100 JS8 1 . 93 20 20 4 . 4 0 S9 Gage100 JS9 10 . 40 20 377 4 . 4 0 W1 Gage100 JW1 11 . 26 20 365 3 . 5 0 W10 Gage100 JW10 18 . 22 20 720 3 . 3 0 W11 Gage100 JW11 1 . 44 12 . 1 176 2 0 W12 Gage100 JW12 8 . 06 19 . 44 256 3 . 2 0 W13 Gage100 JW13 13 . 69 10 . 35 490 6 . 2 0 W14 Gage100 JW14 179 . 18 9 . 22 1477 6 . 4 0 W15 Gage100 JW15 4 . 66 2 173 7 . 3 0 W16 Gage100 JW16 2 . 35 20 677 0 . 5 0 W1a Gage100 JW1a 10 . 26 20 160 0 . 5 0 W1b Gage100 JW1b 8 . 61 20 359 0 . 5 0 W2 Gage100 JW2 32 . 15 7 . 34 990 2 . 5 0 W2a Gage100 JW2a 4 . 4 13 . 76 217 0 . 5 0 W3 Gage100 JW3 15 . 56 20 758 2 . 0 0 W3a Gage100 JW3a 26 . 56 20 850 0 . 5 0 W3b Gage100 JW3b 0 . 9 20 125 0 . 5 0 W4 Gage100 JW4 46 . 79 9 . 51 811 2 . 9 0 W5 Gage100 JW5 37 . 23 14 . 46 635 4 . 9 0 W6 Gage100 JW6 9 . 70 20 465 2 . 4 0 W6a Gage100 JW6a 23 . 24 10 . 49 376 0 . 5 0 W6b Gage100 JW6b 6 . 46 20 382 0 . 5 0 W8 Gage100 JW8 23 . 25 20 500 8 . 7 0 W8a Gage100 JW8a 1 . 11 20 85 4 . 6 0 [ SUBAREAS ] ; ; Subcatchment N-Impery N- Peru S -Impery S- Pery PctZero RouteTo PctRouted ; ; F1 -1 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET F1 -11 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET F1 -2 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET F1 -3 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET F1 - 8 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET H15 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET H18 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET OS1 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET OW2 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET OW3 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET OW4 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET OW5 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET OW6 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S1 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S10 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S11 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S12 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S13 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S14 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S15 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S16 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S17 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S18 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S19 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S19a . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S1a . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S2 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S20 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S21 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S22 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S23 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S3 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S4 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S5 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S6 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S8 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S9 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W1 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W10 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W11 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W12 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_WestArea_Input.docx 5/7/2025 TERRA FORMA --ale SOLUTIOINS 'Or Input W13 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W14 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W15 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W16 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET Wla . 011 0 . 13 0 . 05 0 . 2 90 OUTLET Nib . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W2 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W2a . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W3 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W3a . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W3b . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W4 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W5 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W6 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W6a . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W6b . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W8 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W8a . 011 0 . 13 0 . 05 0 . 2 90 OUTLET [ INFILTRATION ] ; ; Subcatchment MaxRate MinRate Decay DryTime MaxInfil ; ; F1 -1 5 1 2 . 52 1 0 F1 -11 5 1 2 . 52 1 0 F1 -2 5 1 2 . 52 1 0 F1 -3 5 1 2 . 52 1 0 F1 -8 5 1 2 . 52 1 0 H15 5 1 2 . 52 1 0 H18 5 1 2 . 52 1 0 OS1 4 . 97 0 . 97 2 . 77 1 0 OW2 4 . 93 . 95 3 . 06 1 0 OW3 4 . 93 0 . 94 3 . 09 1 0 OW4 4 . 94 0 . 98 2 . 74 1 0 OW5 4 . 98 0 . 98 2 . 69 1 0 OW6 5 1 2 . 52 1 0 S1 5 1 2 . 52 1 0 S10 5 1 2 . 52 1 0 S11 5 1 2 . 52 1 0 S12 5 1 2 . 52 1 0 S13 5 1 2 . 52 1 0 S14 5 1 2 . 52 1 0 S15 5 1 2 . 52 1 0 S16 5 1 2 . 52 1 0 517 5 1 2 . 52 1 0 S18 5 1 2 . 52 1 0 S19 5 1 2 . 52 1 0 S19a 5 1 2 . 52 1 0 Sla 5 1 2 . 52 1 0 S2 5 1 2 . 52 1 0 S20 5 1 2 . 52 1 0 S21 5 1 2 . 52 1 0 S22 5 1 2 . 52 1 0 S23 5 1 2 . 52 1 0 S3 5 1 2 . 52 1 0 S4 5 1 2 . 52 1 0 S5 5 1 2 . 52 1 0 $ 6 5 1 2 . 52 1 0 S8 5 1 2 . 52 1 0 S9 5 1 2 . 52 1 0 W1 5 1 2 . 52 1 0 W10 5 1 2 . 52 1 0 W11 5 1 2 . 52 1 0 W12 5 1 2 . 52 1 0 W13 5 1 2 . 52 1 0 W14 5 1 2 . 52 1 0 W15 5 1 2 . 52 1 0 W16 5 1 2 . 52 1 0 Wla 5 1 2 . 52 1 0 Nib 5 1 2 . 52 1 0 W2 5 1 2 . 52 1 0 W2a 5 1 2 . 52 1 0 W3 5 1 2 . 52 1 0 W3a 5 1 2 . 52 1 0 W3b 5 1 2 . 52 1 0 W4 5 1 2 . 52 1 0 W5 5 1 2 . 52 1 0 W6 5 1 2 . 52 1 0 W6a 5 1 2 . 52 1 0 W6b 5 1 2 . 52 1 0 W8 5 1 2 . 52 1 0 W8a 5 1 2 . 52 1 0 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_WestArea_Input.docx 5/7/2025 ,,alas TERRA FORMA rale " oLu -riaras Input [ JUNCTIONS ] ; ; Name Elevation MaxDepth InitDepth SurDepth Aponded : ; J126 4862 . 0 0 0 0 0 J100 4896 0 0 0 0 JS19 . 2 4874 . 5 0 0 0 0 J113 4873 . 5 0 0 0 0 J114 4878 0 0 0 0 JS19 . 1 4874 . 7 0 0 0 0 J119 4858 0 0 0 0 J123 4 903 0 0 0 0 J125 4862 . 8 0 0 0 0 J127 4898 0 0 0 0 J130 4912 0 0 0 0 J131 4906 0 0 0 0 J133 4927 0 0 0 0 J136 4894 0 0 0 0 J14 4 837 0 0 0 0 J2 4900 . 4 0 0 0 0 J21 4936 0 0 0 0 J22 4938 0 0 0 0 J23 4917 0 0 0 0 J24 4913 0 0 0 0 J25 4936 0 0 0 0 J26 4924 0 0 0 0 J29 4880 . 1 0 0 0 0 J32 4 931 0 0 0 0 J39 4835 0 0 0 0 J4 4901 0 0 0 0 J41 4879 . 4 0 0 0 0 J42 4883 . 7 0 0 0 0 J44 4886 . 5 0 0 0 0 J46 4912 . 5 0 0 0 0 J47 4914 . 6 0 0 0 0 J49 4898 . 75 0 0 0 0 J5 4890 0 0 0 0 J50 4887 . 6 0 0 0 0 J52 4881 . 7 0 0 0 0 J53 4881 . 0 0 0 0 0 J62 4894 0 0 0 0 J67 4839 . 0 0 0 0 0 J68 4900 0 0 0 0 J69 4824 0 0 0 0 J70 4807 0 0 0 0 J71 4915 . 6 0 0 0 0 J74 4923 . 5 0 0 0 0 J75 4904 . 50 0 0 0 0 J76 4894 . 5 0 0 0 0 J77 4887 . 2 0 0 0 0 J78 4925 0 0 0 0 J79 4899 . 8 0 0 0 0 J80 4856 0 0 0 0 J81 4910 0 0 0 0 J82 4892 . 5 0 0 0 0 J83 4 921 0 0 0 0 J84 4877 . 84 0 0 0 0 J87 4 921 0 0 0 0 J88 4890 . 3 0 0 0 0 J89 4890 . 7 0 0 0 0 J91 4887 . 5 0 0 0 0 J92 4889 . 1 0 0 0 0 J97 4894 . 5 0 0 0 0 JE2 5015 0 0 0 0 JE3 5010 0 0 0 0 JE4 5020 0 0 0 0 JE5 5020 0 0 0 0 JE6 5030 0 0 0 0 JH15 4877 0 0 0 0 JH18 4942 0 0 0 0 JPOND2 4836 . 37 0 0 0 0 JS1 4949 . 3 0 0 0 0 JS10 4917 . 6 0 0 0 0 JS10 . 1 4894 0 0 0 0 JS11 4902 . 5 0 0 0 0 JS11 . 2 4902 . 1 0 0 0 0 JS12 4915 . 9 0 0 0 0 JS12 . 2 4886 . 5 0 0 0 0 JS13 4907 . 5 0 0 0 0 JS14 4930 . 5 0 0 0 0 JS15 4954 0 0 0 0 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_WestArea_Input.docx 5/7/2025 TERRA FORMA _--ale SOLUTIONS '7, Input JS16 4923 . 4 0 0 0 0 JS17 4912 . 9 0 0 0 0 JS18 4946 0 0 0 0 JS19 4927 0 0 0 0 JS19a 4930 . 8 0 0 0 0 JS1a 4933 . 2 0 0 0 0 JS2 4939 0 0 0 0 JS20 4904 . 6 0 0 0 0 JS21 4903 . 3 0 0 0 0 JS21 . 1 4902 . 9 0 0 0 0 JS22 4898 . 5 0 0 0 0 JS22 . 2 4860 0 0 0 0 JS23 4899 . 7 0 0 0 0 JS3 4907 . 8 0 0 0 0 JS4 4923 0 0 0 0 JS5 4905 . 7 0 0 0 0 JS6 4937 . 6 0 0 0 0 JS8 4913 . 5 0 0 0 0 JS8 . 1 4912 0 0 0 0 JS9 4902 . 7 0 0 0 0 JS9 . 1 4902 . 3 0 0 0 0 JW1 4918 0 0 0 0 JW10 4900 . 7 0 0 0 0 JW11 4894 . 5 0 0 0 0 JW12 4898 . 6 0 0 0 0 JW13 4884 . 1 0 0 0 0 JW14 4891 . 2 0 0 0 0 JW15 4898 . 7 0 0 0 0 JW16 4920 . 4 0 0 0 0 JW1a 4927 . 3 0 0 0 0 JW1b 4930 . 9 0 0 0 0 JW2 4937 0 0 0 0 JW2a 4923 . 1 0 0 0 0 JW3 4923 0 0 0 0 JW3a 4908 . 7 0 0 0 0 JW3b 4923 . 3 0 0 0 0 JW4 4921 . 4 0 0 0 0 JW5 4910 0 0 0 0 JW6 4887 . 9 0 0 0 0 JW6a 4911 . 6 0 0 0 0 JW6b 4907 . 3 0 0 0 0 JW6b . 1 4895 0 0 0 0 JW8 4909 . 8 0 0 0 0 JW8a 4895 . 3 0 0 0 0 JS20 . 1 4866 0 0 0 0 [OUTFALLS ] ; ; Name Elevation Type Stage Data Gated Route To : : OUT9 4803 FREE NO OUT10 4897 FREE NO [ STORAGE ] ; ; Name Elev . MaxDepth InitDepth Shape Curve Name/ Params N/A Fevap Psi Ksat IMD FIPOND1 4892 . 5 7 . 5 0 TABULAR FIPOND1 0 0 FIPOND11 4894 11 0 TABULAR FIPOND11 0 0 FIPOND2 4881 6 . 4 0 TABULAR FIPOND2 0 0 FIPOND3 4884 4 0 TABULAR FIPOND3 0 0 FIPOND8 4886 7 0 TABULAR FIPOND8 0 0 POND_4 4831 . 0 9 0 TABULAR Pond4_Storage 0 0 POND_S1 4915 6 0 TABULAR PondS1_Storage 0 0 POND_S2 4887 8 0 TABULAR PondS2_Storage 0 0 POND_S3 4889 7 0 TABULAR PondS3_Storage 0 0 POND_S4 4854 7 0 TABULAR PondS4_Storage 0 0 POND_W1 4884 . 5 9 . 5 0 TABULAR PondW1_Storage 0 0 POND W3 4891 6 0 TABULAR PondW3 Storage 0 0 [CONDUITS ] ; ; Name From Node To Node Length Roughness InOffset OutOffset InitFlow MaxFlow : ; C136 J126 POND_S4 5 0 . 01 0 0 0 0 C100 J14 POND_4 96 . 3 0 . 035 0 0 0 0 C102 J77 FIPOND3 306 0 . 13 0 0 0 0 C103 JS4 J92 2121 0 . 035 0 0 0 0 C104 JS3 J92 480 0 . 035 0 0 0 0 C105 JS5 J92 385 0 . 035 0 0 0 0 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_WestArea_Input.docx 5/7/2025 TERRA FORMA SOLUTIONS 'Or Input C106 J92 POND_S2 15 . 035 0 0 0 0 C107 JS6 POND_S2 1766 0 . 035 0 0 0 0 C108 JS17 P0ND_S3 1594 0 . 13 0 0 0 0 C109 JS14 J127 2027 0 . 035 0 0 0 0 C110 JS2 P0ND_S1 1161 0 . 035 0 0 0 0 C111 J97 J125 4563 0 . 035 0 0 0 0 C112 JS19 . 2 JS20 . 1 1524 0 . 035 0 0 0 0 C113 J100 JS19 . 2 3580 0 . 035 0 0 0 0 C119 JS10 JS10 . 1 1240 0 . 035 0 0 0 0 C120 J113 J125 1483 0 . 035 0 0 0 0 C123 JS13 J114 2684 0 . 13 0 0 0 0 C125 J114 J113 686 0 . 035 0 0 0 0 C127 JS19 . 1 JS19 . 2 56 . 013 0 0 0 0 C133 J123 J50 1100 0 . 035 0 0 0 0 C134 JS10 . 1 J113 871 0 . 035 0 0 0 0 C135 J125 J126 71 . 013 0 0 0 0 C137 J127 P0ND_S3 131 0 . 013 0 0 0 0 C138 JS15 J130 1439 0 . 035 0 0 0 0 C139 J130 J131 648 0 . 035 0 0 0 0 C140 JS16 J131 1023 0 . 035 0 0 0 0 C141 J131 P0ND_S3 868 0 . 035 0 0 0 0 C142 JS18 J133 590 0 . 035 0 0 0 0 C143 J133 JS19 . 1 3595 0 . 035 0 0 0 0 C145 JS23 P0ND_S4 1344 0 . 13 0 0 0 0 C146 J136 P0ND_W3 288 0 . 035 0 0 0 0 C147 JW8a J136 83 0 . 035 0 0 0 0 C20 J21 J74 1103 0 . 13 0 0 0 0 C21 J22 J24 1904 0 . 13 0 0 0 0 C22 J23 J24 250 0 . 13 0 0 0 0 C23 J26 J46 435 . 035 0 0 0 0 C25 J25 J83 947 0 . 13 0 0 0 0 C27 J29 J41 163 . 9 . 013 0 0 0 0 C30 J24 FIPOND11 617 0 . 13 0 0 0 0 C41 J44 J42 1283 . 035 0 0 0 0 C42 J42 J52 987 0 . 035 0 0 0 0 C46 JW14 J80 2103 0 . 13 0 0 0 0 C47 J46 J89 972 . 035 0 0 0 0 C48 JW2 J83 1960 0 . 13 0 0 0 0 C49 J47 J2 760 . 035 0 0 0 0 C50 JW3 J49 738 0 . 035 0 0 0 0 C51 J49 J88 1073 . 035 0 0 0 0 C52 JW5 J5 930 0 . 13 0 0 0 0 C53 J50 J42 421 . 035 0 0 0 0 C54 JW6 J29 671 . 035 0 0 0 0 C55 J52 J53 142 . 013 0 0 0 0 C56 J53 J29 586 . 4 0 . 035 0 0 0 0 C57 J41 J84 467 . 035 0 0 0 0 C60 JW8 J136 529 0 . 13 0 0 0 0 C64 JW10 J29 1587 . 035 0 0 0 0 C65 J39 J70 6221 0 . 13 0 0 0 0 C66 JW11 J62 20 0 . 035 0 0 0 0 C67 J62 J41 371 0 . 035 0 0 0 0 C68 JW12 J41 1280 0 . 035 0 0 0 0 069 J32 J71 670 0 . 035 0 0 0 0 C70 JS1 J71 1981 0 . 035 0 0 0 0 C73 J67 J39 35 0 . 13 0 0 0 0 C74 J68 J69 6617 0 . 13 0 0 0 0 C75 J69 J70 1870 0 . 13 0 0 0 0 C76 J70 OUT9 367 0 . 13 0 0 0 0 C77 J87 J92 1482 0 . 035 0 0 0 0 C78 JH15 J70 6234 0 . 13 0 0 0 0 C79 J2 POND_W1 175 . 035 0 0 0 0 C80 JPOND2 P0ND_4 63 . 035 0 0 0 0 C82 J74 J24 1313 0 . 13 0 0 0 0 C83 J75 J76 135 0 . 13 0 0 0 0 C84 J76 F1POND2 400 0 . 13 0 0 0 0 C85 J78 F1P0ND1 2483 0 . 13 0 0 0 0 C86 J79 F1POND2 965 0 . 13 0 0 0 0 C87 J91 J80 1901 0 . 13 0 0 0 0 C88 J80 J14 1905 0 . 13 0 0 0 0 C89 J81 F1POND8 1546 0 . 13 0 0 0 0 C90 J82 J41 1598 0 . 035 0 0 0 0 C91 J83 J47 634 . 5 . 035 0 0 0 0 C92 J84 JPOND2 1283 . 035 0 0 0 0 C93 JW15 JPOND2 1176 0 . 13 0 0 0 0 C94 JW13 JPOND2 1540 . 035 0 0 0 0 C95 J71 POND_S1 2 0 . 035 0 0 0 0 C96 J88 P0ND_W1 74 . 035 0 0 0 0 C97 J89 P0ND_W1 98 . 2 . 035 0 0 0 0 C98 J4 P0ND_W1 71 . 4 0 . 13 0 0 0 0 C99 J5 J50 550 . 035 0 0 0 0 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_WestArea_Input.docx 5/7/2025 TERRA FORMA ra� oLu -riar� s adar Input CE2 JE2 J21 3409 0 . 13 0 0 0 0 CE3 JE3 J22 2101 0 . 13 0 0 0 0 CE4 JE4 J25 2875 0 . 13 0 0 0 0 CE5 JE5 J26 5293 0 . 13 0 0 0 0 CE6 JE6 J32 3909 0 . 13 0 0 0 0 CH10 JW1 J46 735 . 035 0 0 0 0 CH18 JH18 J23 1402 0 . 13 0 0 0 0 CH9 JW4 J4 1363 0 . 13 0 0 0 0 CS11 JS11 JS11 . 2 68 . 013 0 0 0 0 CS11 . 2 JS11 . 2 JS12 . 2 903 0 . 035 0 0 0 0 CS12 JS12 JS12 . 2 912 0 . 035 0 0 0 0 CS12 . 2 JS12 . 2 J114 737 0 . 035 0 0 0 0 CS19 JS19 JS19 . 1 3710 0 . 035 0 0 0 0 CS19a JS19a J133 200 0 . 01 0 0 0 0 CSla JSla J133 389 0 . 035 0 0 0 0 CS20 JS20 JS20 . 1 3213 0 . 035 0 0 0 0 CS20 . 1 JS20 . 1 J126 5 0 . 01 0 0 0 0 CS21 JS21 JS21 . 1 57 . 013 0 0 0 0 CS21 . 1 JS21 . 1 JS22 . 2 1620 0 . 035 0 0 0 0 CS22 JS22 JS22 . 2 1283 0 . 035 0 0 0 0 CS22 . 2 JS22 . 2 POND S4 5 0 . 01 0 0 0 0 CS8 JS8 JS8 . 1 250 0 . 035 0 0 0 0 CS8 . 1 JS8 . 1 JS9 353 0 . 035 0 0 0 0 CS9 JS9 JS9 . 1 78 . 013 0 0 0 0 CS9 . 1 JS9 . 1 JS10 . 1 726 0 . 035 0 0 0 0 CW16 JW16 J71 218 0 . 035 0 0 0 0 CW1a JW1a J89 1357 0 . 035 0 0 0 0 CW1b JW1b J89 1298 0 . 035 0 0 0 0 CW2a JW2a J2 1335 . 035 0 0 0 0 CW3a JW3a J88 1418 0 . 035 0 0 0 0 CW3b JW3b JW3 66 0 . 035 0 0 0 0 CW6a JW6a JW6b . 1 875 . 13 0 0 0 0 CW6b JW6b JW6b . 1 776 0 . 035 0 0 0 0 CW6b . 1 JW6b . 1 J41 1590 . 013 0 0 0 0 [WEIRS ] ; ; Name From Node To Node Type CrestHt Qcoeff Gated EndCon EndCoeff Surcharge RoadWidth RoadSurf ; ; WEIR_1 F1POND1 J79 TRANSVERSE 7 . 3 3 . 33 NO 0 0 YES WEIR_11 F1POND11 J75 TRANSVERSE 10 . 8 3 . 33 NO 0 0 YES WEIR_2 F1POND2 J77 TRANSVERSE 6 . 2 3 . 33 NO 0 0 YES WEIR_3 F1POND3 J91 TRANSVERSE 3 . 5 3 . 33 NO 0 0 YES WEIR_4 POND 4 J67 TRANSVERSE 9 . 0 3 . 33 NO 0 0 YES WEIR_8 FlPORD8 J82 TRANSVERSE 6 . 5 3 . 33 NO 0 0 YES WEIR_S1 POND_S1 J87 TRANSVERSE 6 3 . 33 NO 0 0 YES WEIR_S2 POND_S2 J97 TRANSVERSE 8 . 0 3 . 33 NO 0 0 YES WEIR_S3 POND_S3 J100 TRANSVERSE 7 3 . 33 NO 0 0 YES WEIR_S4 POND_S4 J119 TRANSVERSE 7 3 . 33 NO 0 0 YES WEIR_W3 POND_W3 OUT10 TRANSVERSE 6 3 . 33 NO 0 0 YES WEIR_Wl POND_W1 J44 TRANSVERSE 9 . 5 3 . 33 NO 0 0 YES [XSECTIONS ] ; ; Link Shape Geom1 Geom2 Geom3 Geom4 Barrels Culvert ; ; C136 DUMMY 0 0 0 0 1 C100 TRAPEZOIDAL 2 . 5 97 4 4 1 C102 TRAPEZOIDAL 1 33 50 50 1 C103 TRAPEZOIDAL 4 10 4 4 1 C104 TRIANGULAR 2 . 25 20 0 0 1 C105 TRIANGULAR 2 . 25 20 0 0 1 C106 TRAPEZOIDAL 5 20 4 4 1 C107 TRIANGULAR 2 . 25 20 0 0 1 C108 TRAPEZOIDAL 2 40 75 45 1 C109 TRIANGULAR 2 . 5 20 0 0 1 C110 TRAPEZOIDAL 3 2 4 4 1 C111 TRIANGULAR 2 . 25 20 0 0 1 C112 TRAPEZOIDAL 5 16 4 4 1 C113 TRIANGULAR 2 . 25 20 0 0 1 C119 TRAPEZOIDAL 3 8 4 4 1 C120 TRAPEZOIDAL 3 . 5 16 4 4 1 C123 TRAPEZOIDAL 2 . 5 45 50 50 1 C125 TRAPEZOIDAL 4 16 4 4 1 C127 CIRCULAR 3 0 0 0 3 C133 TRIANGULAR 3 24 0 0 1 C134 TRAPEZOIDAL 2 8 4 4 1 C135 CIRCULAR 3 0 0 0 3 C137 CIRCULAR 3 0 0 0 1 C138 TRIANGULAR 2 . 5 20 0 0 1 C139 TRIANGULAR 2 . 5 20 0 0 1 C140 TRIANGULAR 2 . 5 20 0 0 1 C141 TRIANGULAR 2 . 5 20 0 0 1 C142 TRIANGULAR 2 . 5 20 0 0 1 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_WestArea_Input.docx 5/7/2025 ast_ TERRA FORMA lawilisc l` o � u � iaras Input C143 TRAPEZOIDAL 4 8 4 4 1 C145 TRAPEZOIDAL 1 30 25 35 1 C146 TRAPEZOIDAL 2 8 4 4 1 C147 TRAPEZOIDAL 3 8 4 4 1 C20 TRAPEZOIDAL 4 100 25 35 1 C21 TRAPEZOIDAL 4 30 40 50 1 C22 TRAPEZOIDAL 3 100 22 25 1 C23 TRAPEZOIDAL 5 8 4 4 1 C25 TRAPEZOIDAL 1 60 50 50 1 C27 CIRCULAR 5 0 0 0 1 C30 TRAPEZOIDAL 3 35 35 30 1 C41 TRAPEZOIDAL 4 12 4 4 1 C42 TRAPEZOIDAL 4 12 4 4 1 C46 TRAPEZOIDAL 3 50 50 50 1 C47 TRAPEZOIDAL 4 . 5 8 4 4 1 C48 TRAPEZOIDAL 1 60 50 50 1 C49 TRAPEZOIDAL 4 8 4 4 1 C50 TRAPEZOIDAL 2 35 24 130 1 C51 TRAPEZOIDAL 3 8 4 4 1 C52 TRAPEZOIDAL 2 18 8 26 1 C53 TRAPEZOIDAL 3 6 4 4 1 C54 TRAPEZOIDAL 4 12 4 4 1 C55 CIRCULAR 4 0 0 0 1 C56 TRAPEZOIDAL 4 12 4 4 1 C57 TRAPEZOIDAL 4 12 4 4 1 C60 TRAPEZOIDAL 1 10 100 100 1 C64 TRAPEZOIDAL 3 6 4 4 1 C65 TRAPEZOIDAL 2 45 30 65 1 C66 TRIANGULAR 2 . 5 20 0 0 1 C67 TRIANGULAR 2 . 5 20 0 0 1 C68 TRIANGULAR 2 . 5 20 0 0 1 C69 TRAPEZOIDAL 4 10 4 4 1 C70 TRAPEZOIDAL 4 10 4 4 1 C73 TRAPEZOIDAL 1 300 4 4 1 C74 TRAPEZOIDAL 2 . 5 10 11 50 1 C75 TRAPEZOIDAL 1 110 170 50 1 C76 TRAPEZOIDAL 2 115 130 32 1 C77 TRAPEZOIDAL 4 100 4 4 1 C78 TRAPEZOIDAL 4 50 30 70 1 C79 TRAPEZOIDAL 3 8 4 4 1 C80 TRAPEZOIDAL 1 12 4 4 1 C82 TRAPEZOIDAL 3 32 75 56 1 C83 TRAPEZOIDAL 1 100 100 100 1 C84 TRAPEZOIDAL 1 100 50 50 1 C85 TRAPEZOIDAL 4 2 4 4 1 C86 TRIANGULAR 3 24 0 0 1 C87 TRAPEZOIDAL 2 30 30 30 1 C88 TRAPEZOIDAL 2 . 2 12 100 80 1 C89 TRAPEZOIDAL 2 35 20 20 1 C90 TRIANGULAR 3 24 0 0 1 C91 TRIANGULAR 2 . 5 20 0 0 1 C92 TRAPEZOIDAL 4 12 4 4 1 C93 TRAPEZOIDAL 2 20 50 50 1 C94 TRAPEZOIDAL 2 . 5 12 4 4 1 C95 TRAPEZOIDAL 2 10 4 4 1 C96 TRAPEZOIDAL 2 8 4 4 1 C97 TRAPEZOIDAL 2 8 4 4 1 C98 TRAPEZOIDAL 1 20 50 50 1 C99 TRAPEZOIDAL 3 2 4 4 1 CE2 TRAPEZOIDAL 1 100 60 30 1 CE3 TRAPEZOIDAL 4 100 60 60 1 CE4 TRAPEZOIDAL 4 100 100 100 1 CE5 TRAPEZOIDAL 4 100 19 47 1 CE6 TRAPEZOIDAL 3 100 50 50 1 CH10 TRAPEZOIDAL 4 8 4 4 1 CH18 TRAPEZOIDAL 3 10 25 25 1 CH9 TRAPEZOIDAL 2 35 26 48 1 CS11 CIRCULAR 2 . 5 0 0 0 1 CS11 . 2 TRIANGULAR 2 . 5 20 0 0 1 CS12 TRAPEZOIDAL 4 16 4 4 1 CS12 . 2 TRAPEZOIDAL 4 16 4 4 1 CS19 TRAPEZOIDAL 4 10 4 4 1 CS19a TRIANGULAR 2 16 0 0 1 CS1a TRIANGULAR 2 16 0 0 1 CS20 TRAPEZOIDAL 4 16 4 4 1 CS20 . 1 DUMMY 0 0 0 0 1 CS21 CIRCULAR 3 0 0 0 1 CS21 . 1 TRIANGULAR 2 . 25 20 0 0 1 CS22 TRAPEZOIDAL 1 100 50 50 1 CS22 . 2 DUMMY 0 0 0 0 1 CS8 TRIANGULAR 2 16 0 0 1 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_WestArea_Input.docx 5/7/2025 TERRA FORMA _ecr SOLUTIONS -� Input CS8 . 1 TRIANGULAR 2 . 5 20 0 0 1 CS9 CIRCULAR 2 . 5 0 0 0 1 CS9 . 1 TRAPEZOIDAL 3 8 4 4 1 CW16 TRIANGULAR 2 16 0 0 1 CW1a TRIANGULAR 2 16 0 0 1 CW1b TRIANGULAR 2 16 0 0 1 CW2a TRAPEZOIDAL 2 8 4 4 1 CW3a TRAPEZOIDAL 2 8 4 4 1 CW3b TRIANGULAR 2 16 0 0 1 CW6a TRAPEZOIDAL 2 35 10 10 1 CW6b TRIANGULAR 2 16 0 0 1 CW6b . 1 CIRCULAR 6 0 0 0 1 WEIR_1 RECT_OPEN . 2 70 4 4 WEIR_11 RECT_OPEN . 5 125 4 4 WEIR_2 RECT_OPEN . 2 29 4 4 WEIR_3 RECT_OPEN . 5 70 4 4 WEIR_4 RECT_OPEN . 5 265 4 4 WEIR_8 RECT OPEN 1 15 4 4 WEIR_S1 RECT OPEN . 5 100 4 4 WEIR_S2 RECT OPEN 1 20 4 4 WEIR_S3 RECT OPEN 1 50 4 4 WEIR S4 RECT OPEN 1 100 4 4 WEIR_W3 RECT_OPEN . 5 40 4 4 WEIR_W1 RECT_OPEN 2 50 0 0 [CURVES ] ; ; Name Type X-Value Y-Value ; ; PondWl Rating . 5 . 40 PondWl 1 . 5 . 89 PondWl 2 . 5 1 . 19 PondW1 3 . 5 1 . 43 PondW1 4 . 2 1 . 58 PondWl 4 . 5 389 EPOND2 Storage 0 8744 EPOND2 1 10535 EPOND2 2 12438 EPOND2 3 14451 EPOND2 4 16570 EPOND2 5 18796 EPOND2 6 21130 EPOND2 7 23571 EPOND2 8 26118 EPOND2 9 27000 F1POND1 Storage 0 0 F1POND1 . 5 85489 F1POND1 1 . 5 108209 F1POND1 2 . 5 142827 F1POND1 3 . 5 158945 F1POND1 4 . 5 172098 FIPOND1 5 . 5 186871 F1POND1 6 . 5 199551 F1POND1 7 . 5 212512 ; F1POND11 Storage 0 0 F1POND11 1 23434 F1POND11 2 26894 F1POND11 3 30662 FIPOND11 4 34557 F1POND11 5 38675 F1POND11 6 42973 F1POND11 7 47448 F1POND11 8 52093 F1POND11 9 56902 F1POND11 10 61874 FIPOND11 11 67008 F1POND2 Storage 0 0 F1POND2 1 36544 F1POND2 2 132 62 3 F1POND2 3 187416 F1POND2 4 227154 F1POND2 5 253353 FIPOND2 6 279482 F1POND2 6 . 4 291703 F1POND3 Storage 0 9050 F1POND3 1 36997 F1POND3 2 49234 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_WestArea_Input.docx 5/7/2025 apptet TERRA FORMA SOLUTIONS ale Input F1P0ND3 3 60152 F1P0ND3 4 86537 F1POND8 Storage 0 33742 F1POND8 1 50213 F1POND8 2 55518 FlPOND8 3 59955 F1POND8 4 64077 F1POND8 5 68253 F1POND8 6 72557 F1POND8 7 77191 ; Pond 4 Pond4_Storage Storage 0 13487 Pond4_Storage 0 . 5 140180 Pond4_Storage 1 173989 Pond4_Storage 2 187525 Pond4_Storage 3 202421 Pond4_Storage 4 218163 Pond4_Storage 5 233364 Pond4_Storage 6 249376 Pond4_Storage 7 273996 Pond4_Storage 8 314779 Pond4_Storage 9 368203 ; Pond S1 PondS1_Storage Storage 0 162881 PondS1_Storage 1 171960 PondS1_Storage 2 181375 PondS1_Storage 3 191097 PondS1_Storage 4 201041 PondS1_Storage 5 211390 PondS1_Storage 6 221938 ; Pond S2 PondS2_Storage Storage 0 35524 PondS2_Storage 1 40993 PondS2_Storage 2 46562 PondS2_Storage 3 52233 PondS2_Storage 4 58003 PondS2_Storage 5 63874 PondS2_Storage 6 69846 PondS2_Storage 7 75918 PondS2_Storage 8 82366 ; Pond S3 PondS3_Storage Storage 0 69666 PondS3_Storage 1 77444 PondS3_Storage 2 83588 PondS3_Storage 3 90896 PondS3_Storage 4 98306 PondS3_Storage 5 105817 PondS3_Storage 6 113427 PondS3_Storage 7 127399 ; Pond S4 PondS4_Storage Storage 0 280687 PondS4_Storage 1 291408 PondS4_Storage 2 302233 PondS4_Storage 3 313163 PondS4_Storage 4 324954 PondS4_Storage 5 338352 PondS4_Storage 6 353176 PondS4_Storage 7 371355 ; Pond W1 Stage-Storage PondW1_Storage Storage 0 293654 PondW1_Storage 0 . 5 298156 PondW1_Storage 1 . 5 307208 PondW1_Storage 2 . 5 316367 PondW1_Storage 3 . 5 325631 PondW1_Storage 4 . 5 334997 PondW1_Storage 5 . 5 344464 PondW1_Storage 6 . 5 354035 PondW1_Storage 7 . 5 363710 PondW1_Storage 8 . 5 374696 PondW1_Storage 9 . 5 389149 ; Pond W3 Stage-Storage PondW3_Storage Storage 0 25510 PondW3 Storage 1 29800 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_WestArea_Input.docx 5/7/2025 -XXTERRA FORMA =saw SOLUTIONS Input PondW3_Storage 2 34193 PondW3_Storage 3 38685 PondW3_Storage 4 43277 PondW3_Storage 5 47971 PondW3_Storage 6 43029 [REPORT ] ; ; Reporting Options INPUT NO CONTROLS NO SUBCATCHMENTS ALL NODES ALL LINKS ALL [ SYMBOLS ] ; ; Gage X-Coord Y-Coord : ; Gage100 4570 . 845 6689 . 373 Gage10 5415 . 531 6634 . 877 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_WestArea_Input.docx 5/7/2025 AtaXiirass TERRA FORMA =air SOLUTIONS 100-Year Results EPA STORM WATER MANAGEMENT MODEL - VERSION 5 . 1 ( Build 5 . 1 . 012 ) Pelican Lakes PUD - West Area - Developed 100 Yr Updated 2025 -05- 07 WARNING 08 : elevation drop exceeds length for Conduit C136 WARNING 08 : elevation drop exceeds length for Conduit CS22 . 2 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * NOTE : The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Analysis Options * * * * * * * * * * * * * * * * Flow Units CFS Process Models : Rainfall /Runoff YES RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method HORTON Flow Routing Method KINWAVE Starting Date 06 / 24 /2023 00 : 00 : 00 Ending Date 06 / 25 /2023 00 : 00 : 00 Antecedent Dry Days 0 . 0 Report Time Step 00 : 05 : 00 Wet Time Step 00 : 05 : 00 Dry Time Step 01 : 00 : 00 Routing Time Step 30 . 00 sec * * * * * * * * * * * * * * * * * * * * * * * * * * Volume Depth Runoff Quantity Continuity acre- feet inches * * * * * * * * * * * * * * * * * * * * * * * * * * Total Precipitation 1203 . 636 4 . 635 Evaporation Loss 0 . 000 0 . 000 Infiltration Loss 1045 . 375 4 . 025 Surface Runoff 159 . 026 0 . 612 Final Storage 0 . 376 0 . 001 Continuity Error ( % ) -0 . 095 * * * * * * * * * * * * * * * * * * * * * * * * * * Volume Volume Flow Routing Continuity acre- feet 10 ^ 6 gal * * * * * * * * * * * * * * * * * * * * * * * * * * Dry Weather Inflow 0 . 000 0 . 000 Wet Weather Inflow 159 . 637 52 . 020 Groundwater Inflow 0 . 000 0 . 000 RDII Inflow 0 . 000 0 . 000 External Inflow 0 . 000 0 . 000 External Outflow 57 . 676 18 . 795 Flooding Loss 1 . 904 0 . 620 Evaporation Loss 0 . 000 0 . 000 Exfiltration Loss 0 . 000 0 . 000 Initial Stored Volume 0 . 000 0 . 000 Final Stored Volume 148 . 535 48 . 402 Continuity Error ( % ) - 30 . 368 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Highest Flow Instability Indexes * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Link C78 ( 4 ) Link CE5 ( 4 ) Link C85 ( 3 ) Link C23 ( 2 ) Link C74 ( 2 ) * * * * * * * * * * * * * * * * * * * * * * * * * Routing Time Step Summary * * * * * * * * * * * * * * * * * * * * * * * * * Minimum Time Step • 30 . 00 sec J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_WestArea_Results_100. rpt.docx 5/7/2025 TERRA FORMA SOLUTIONS 100-Year Results Average Time Step : 30 . 00 sec Maximum Time Step : 30 . 00 sec Percent in Steady State : 0 . 00 Average Iterations per Step : 1 . 03 Percent Not Converging : 0 . 00 * * * * * * * * * * * * * * * * * * * * * * * * * * * Subcatchment Runoff Summary * * * * * * * * * * * * * * * * * * * * * * * * * * * Total Total Total Total Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Coeff Subcatchment in in in in in 10 ^ 6 gal CFS F1 - 1 4 . 63 0 . 00 0 . 00 3 . 86 0 . 77 2 . 17 126 . 06 0 . 167 F1 - 11 4 . 63 0 . 00 0 . 00 3 . 89 0 . 75 1 . 14 61 . 56 0 . 161 F1 -2 4 . 63 0 . 00 0 . 00 3 . 84 0 . 80 1 . 66 102 . 78 0 . 173 F1 -3 4 . 63 0 . 00 0 . 00 3 . 72 0 . 93 0 . 24 20 . 52 0 . 200 F1 -8 4 . 63 0 . 00 0 . 00 3 . 80 0 . 84 0 . 94 64 . 12 0 . 180 H15 4 . 63 0 . 00 0 . 00 4 . 18 0 . 46 6 . 57 834 . 95 0 . 100 H18 4 . 63 0 . 00 0 . 00 3 . 84 0 . 80 0 . 98 60 . 60 0 . 173 OS1 4 . 63 0 . 00 0 . 00 4 . 14 0 . 50 2 . 52 276 . 68 0 . 107 OW2 4 . 63 0 . 00 0 . 00 4 . 19 0 . 45 2 . 23 179 . 15 0 . 097 OW3 4 . 63 0 . 00 0 . 00 4 . 12 0 . 51 0 . 92 81 . 33 0 . 111 OW4 4 . 63 0 . 00 0 . 00 4 . 22 0 . 41 0 . 91 85 . 15 0 . 089 OW5 4 . 63 0 . 00 0 . 00 4 . 25 0 . 39 6 . 19 572 . 23 0 . 083 OW6 4 . 63 0 . 00 0 . 00 4 . 26 0 . 38 1 . 80 192 . 11 0 . 082 S1 4 . 63 0 . 00 0 . 00 3 . 62 1 . 01 0 . 76 36 . 12 0 . 218 S10 4 . 63 0 . 00 0 . 00 3 . 55 1 . 09 0 . 38 19 . 26 0 . 235 S11 4 . 63 0 . 00 0 . 00 3 . 47 1 . 17 0 . 36 19 . 94 0 . 253 S12 4 . 63 0 . 00 0 . 00 3 . 54 1 . 09 0 . 54 27 . 33 0 . 235 S13 4 . 63 0 . 00 0 . 00 3 . 62 1 . 01 2 . 00 95 . 10 0 . 218 S14 4 . 63 0 . 00 0 . 00 3 . 58 1 . 06 0 . 66 32 . 41 0 . 228 S15 4 . 63 0 . 00 0 . 00 3 . 58 1 . 06 0 . 67 33 . 10 0 . 228 S16 4 . 63 0 . 00 0 . 00 3 . 45 1 . 19 0 . 09 5 . 42 0 . 257 S17 4 . 63 0 . 00 0 . 00 3 . 57 1 . 06 0 . 84 41 . 91 0 . 230 S18 4 . 63 0 . 00 0 . 00 3 . 49 1 . 15 0 . 38 20 . 19 0 . 248 S19 4 . 63 0 . 00 0 . 00 3 . 58 1 . 05 1 . 93 94 . 86 0 . 227 S19a 4 . 63 0 . 00 0 . 00 3 . 53 1 . 10 0 . 07 3 . 37 0 . 238 Sla 4 . 63 0 . 00 0 . 00 3 . 56 1 . 07 0 . 11 5 . 38 0 . 231 S2 4 . 63 0 . 00 0 . 00 3 . 62 1 . 01 0 . 60 28 . 69 0 . 218 S20 4 . 63 0 . 00 0 . 00 3 . 64 1 . 00 1 . 63 75 . 69 0 . 215 S21 4 . 63 0 . 00 0 . 00 3 . 45 1 . 19 0 . 23 13 . 47 0 . 257 S22 4 . 63 0 . 00 0 . 00 3 . 51 1 . 12 0 . 52 26 . 98 0 . 242 S23 4 . 63 0 . 00 0 . 00 3 . 48 1 . 16 0 . 22 11 . 87 0 . 250 S3 4 . 63 0 . 00 0 . 00 3 . 44 1 . 20 0 . 20 11 . 69 0 . 258 S4 4 . 63 0 . 00 0 . 00 3 . 57 1 . 06 0 . 61 30 . 21 0 . 229 S5 4 . 63 0 . 00 0 . 00 3 . 49 1 . 14 0 . 27 14 . 12 0 . 247 $ 6 4 . 63 0 . 00 0 . 00 3 . 55 1 . 09 0 . 77 39 . 07 0 . 235 S8 4 . 63 0 . 00 0 . 00 3 . 63 1 . 01 0 . 05 2 . 50 0 . 217 S 9 4 . 63 0 . 00 0 . 00 3 . 51 1 . 12 0 . 32 16 . 44 0 . 242 W1 4 . 63 0 . 00 0 . 00 3 . 54 1 . 10 0 . 34 17 . 08 0 . 237 W10 4 . 63 0 . 00 0 . 00 3 . 52 1 . 12 0 . 55 28 . 49 0 . 241 W11 4 . 63 0 . 00 0 . 00 3 . 77 0 . 87 0 . 03 2 . 52 0 . 188 W12 4 . 63 0 . 00 0 . 00 3 . 57 1 . 07 0 . 23 11 . 81 0 . 230 W13 4 . 63 0 . 00 0 . 00 3 . 93 0 . 71 0 . 26 16 . 39 0 . 152 W14 4 . 63 0 . 00 0 . 00 4 . 13 0 . 51 2 . 48 119 . 78 0 . 110 W15 4 . 63 0 . 00 0 . 00 4 . 29 0 . 34 0 . 04 4 . 26 0 . 074 W16 4 . 63 0 . 00 0 . 00 3 . 40 1 . 24 0 . 08 5 . 16 0 . 267 Wla 4 . 63 0 . 00 0 . 00 3 . 66 0 . 97 0 . 27 11 . 66 0 . 209 Wlb 4 . 63 0 . 00 0 . 00 3 . 60 1 . 03 0 . 24 11 . 68 0 . 222 W2 4 . 63 0 . 00 0 . 00 4 . 14 0 . 50 0 . 43 24 . 60 0 . 107 W2a 4 . 63 0 . 00 0 . 00 3 . 88 0 . 76 0 . 09 4 . 47 0 . 164 W3 4 . 63 0 . 00 0 . 00 3 . 52 1 . 11 0 . 47 24 . 15 0 . 240 W3a 4 . 63 0 . 00 0 . 00 3 . 62 1 . 01 0 . 73 34 . 59 0 . 218 W3b 4 . 63 0 . 00 0 . 00 3 . 48 1 . 15 0 . 03 1 . 50 0 . 249 W4 4 . 63 0 . 00 0 . 00 4 . 09 0 . 55 0 . 70 34 . 03 0 . 119 W5 4 . 63 0 . 00 0 . 00 3 . 84 0 . 80 0 . 81 39 . 90 0 . 172 W6 4 . 63 0 . 00 0 . 00 3 . 52 1 . 12 0 . 30 15 . 26 0 . 242 W6a 4 . 63 0 . 00 0 . 00 4 . 10 0 . 53 0 . 34 15 . 79 0 . 115 W6b 4 . 63 0 . 00 0 . 00 3 . 57 1 . 06 0 . 19 9 . 23 0 . 229 W8 4 . 63 0 . 00 0 . 00 3 . 53 1 . 10 0 . 70 35 . 55 0 . 238 W8a 4 . 63 0 . 00 0 . 00 3 . 43 1 . 21 0 . 04 2 . 25 0 . 262 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_WestArea_Results_100. rpt.docx 5/7/2025 =__. TERRA FORMA .'�� oLuTiaras 100-Year Results * * * * * * * * * * * * * * * * * * Node Depth Summary * * * * * * * * * * * * * * * * * * Average Maximum Maximum Time of Max Reported Depth Depth HGL Occurrence Max Depth Node Type Feet Feet Feet days hr : min Feet J126 JUNCTION 0 . 26 1 . 50 4863 . 50 0 12 : 17 1 . 47 J100 JUNCTION 0 . 00 0 . 00 4896 . 00 0 00 : 00 0 . 00 JS19 . 2 JUNCTION 0 . 29 2 . 21 4876 . 71 0 12 : 11 2 . 16 J113 JUNCTION 0 . 19 1 . 38 4874 . 88 0 12 : 13 1 . 35 J114 JUNCTION 0 . 17 1 . 22 4879 . 22 0 12 : 12 1 . 16 JS19 . 1 JUNCTION 0 . 29 2 . 22 4876 . 92 0 12 : 11 2 . 17 J119 JUNCTION 0 . 00 0 . 00 4858 . 00 0 00 : 00 0 . 00 J123 JUNCTION 0 . 00 0 . 00 4903 . 00 0 00 : 00 0 . 00 J125 JUNCTION 0 . 26 1 . 50 4864 . 30 0 12 : 17 1 . 47 J127 JUNCTION 0 . 30 1 . 36 4899 . 36 0 12 : 09 1 . 35 J130 JUNCTION 0 . 34 1 . 52 4913 . 52 0 12 : 07 1 . 52 J131 JUNCTION 0 . 34 1 . 52 4907 . 52 0 12 : 09 1 . 51 J133 JUNCTION 0 . 21 1 . 02 4928 . 02 0 12 : 07 1 . 02 J136 JUNCTION 0 . 10 0 . 90 4894 . 90 0 12 : 09 0 . 90 J14 JUNCTION 0 . 21 0 . 84 4837 . 84 0 12 : 50 0 . 84 J2 JUNCTION 0 . 11 0 . 93 4901 . 33 0 12 : 52 0 . 93 J21 JUNCTION 0 . 07 0 . 80 4936 . 80 0 12 : 34 0 . 80 J22 JUNCTION 0 . 07 0 . 80 4938 . 80 0 12 : 26 0 . 80 J23 JUNCTION 0 . 15 1 . 06 4918 . 06 0 12 : 12 1 . 05 J24 JUNCTION 0 . 20 1 . 07 4914 . 07 0 13 : 05 1 . 07 J25 JUNCTION 0 . 05 0 . 57 4936 . 57 0 12 : 33 0 . 57 J26 JUNCTION 0 . 21 2 . 07 4926 . 07 0 12 : 35 2 . 07 J29 JUNCTION 0 . 33 1 . 72 4881 . 82 0 12 : 08 1 . 69 J32 JUNCTION 0 . 10 1 . 12 4932 . 12 0 12 : 29 1 . 12 J39 JUNCTION 0 . 00 0 . 00 4835 . 00 0 00 : 00 0 . 00 J4 JUNCTION 0 . 07 0 . 53 4901 . 53 0 12 : 12 0 . 53 J41 JUNCTION 0 . 33 1 . 71 4881 . 11 0 12 : 08 1 . 69 J42 JUNCTION 0 . 13 1 . 17 4884 . 87 0 12 : 14 1 . 17 J44 JUNCTION 0 . 00 0 . 00 4886 . 50 0 00 : 00 0 . 00 J46 JUNCTION 0 . 24 2 . 17 4914 . 67 0 12 : 34 2 . 17 J47 JUNCTION 0 . 37 1 . 79 4916 . 39 0 12 : 48 1 . 79 J49 JUNCTION 0 . 08 0 . 81 4899 . 56 0 12 : 08 0 . 79 J5 JUNCTION 0 . 25 1 . 63 4891 . 63 0 12 : 11 1 . 62 J50 JUNCTION 0 . 25 1 . 62 4889 . 22 0 12 : 13 1 . 57 J52 JUNCTION 0 . 23 1 . 51 4883 . 21 0 12 : 20 1 . 51 J53 JUNCTION 0 . 23 1 . 51 4882 . 51 0 12 : 21 1 . 51 J62 JUNCTION 0 . 08 0 . 49 4894 . 49 0 12 : 06 0 . 48 J67 JUNCTION 0 . 00 0 . 00 4839 . 00 0 00 : 00 0 . 00 J68 JUNCTION 0 . 16 2 . 36 4902 . 36 0 12 : 06 2 . 26 J69 JUNCTION 0 . 27 1 . 80 4825 . 80 0 12 : 35 1 . 79 J70 JUNCTION 0 . 23 2 . 02 4809 . 02 0 12 : 29 2 . 01 J71 JUNCTION 0 . 17 1 . 12 4916 . 72 0 12 : 31 1 . 12 J74 JUNCTION 0 . 20 1 . 11 4924 . 61 0 12 : 49 1 . 11 J75 JUNCTION 0 . 04 0 . 26 4904 . 76 0 13 : 42 0 . 26 J76 JUNCTION 0 . 09 0 . 60 4895 . 10 0 12 : 06 0 . 58 J77 JUNCTION 0 . 00 0 . 00 4887 . 20 0 00 : 00 0 . 00 J78 JUNCTION 0 . 58 3 . 71 4928 . 71 0 12 : 06 3 . 63 J79 JUNCTION 0 . 00 0 . 00 4899 . 80 0 00 : 00 0 . 00 J80 JUNCTION 0 . 21 0 . 97 4856 . 97 0 12 : 14 0 . 97 J81 JUNCTION 0 . 08 1 . 00 4911 . 00 0 12 : 06 0 . 97 J82 JUNCTION 0 . 00 0 . 00 4892 . 50 0 00 : 00 0 . 00 J83 JUNCTION 0 . 37 1 . 79 4922 . 79 0 12 : 46 1 . 79 J84 JUNCTION 0 . 22 1 . 53 4879 . 37 0 12 : 11 1 . 52 J87 JUNCTION 0 . 00 0 . 00 4921 . 00 0 00 : 00 0 . 00 J88 JUNCTION 0 . 09 0 . 81 4891 . 11 0 12 : 08 0 . 80 J89 JUNCTION 0 . 31 2 . 17 4892 . 87 0 12 : 36 2 . 17 J91 JUNCTION 0 . 00 0 . 00 4887 . 50 0 00 : 00 0 . 00 J92 JUNCTION 0 . 17 0 . 81 4889 . 91 0 12 : 02 0 . 81 J97 JUNCTION 0 . 00 0 . 00 4894 . 50 0 00 : 00 0 . 00 JE2 JUNCTION 0 . 05 0 . 92 5015 . 92 0 12 : 06 0 . 86 JE3 JUNCTION 0 . 02 0 . 52 5010 . 52 0 12 : 06 0 . 49 JE4 JUNCTION 0 . 03 0 . 53 5020 . 53 0 12 : 06 0 . 50 JE5 JUNCTION 0 . 09 1 . 87 5021 . 87 0 12 : 06 1 . 76 JE6 JUNCTION 0 . 04 0 . 92 5030 . 92 0 12 : 06 0 . 86 JH15 JUNCTION 0 . 13 2 . 73 4879 . 73 0 12 : 06 2 . 61 JH18 JUNCTION 0 . 15 1 . 23 4943 . 23 0 12 : 06 1 . 20 JPOND2 JUNCTION 0 . 11 0 . 82 4837 . 19 0 12 : 13 0 . 80 JS1 JUNCTION 0 . 08 0 . 72 4950 . 02 0 12 : 00 0 . 71 JS10 JUNCTION 0 . 06 0 . 55 4918 . 15 0 12 : 00 0 . 54 JS10 . 1 JUNCTION 0 . 08 0 . 74 4894 . 74 0 12 : 08 0 . 73 JS11 JUNCTION 0 . 18 1 . 45 4903 . 95 0 12 : 06 1 . 41 JS11 . 2 JUNCTION 0 . 24 1 . 44 4903 . 54 0 12 : 06 1 . 41 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_WestArea_Results_100. rpt.docx 5/7/2025 --r, TERRA FORMA ratallow tame QLuTiaras 100-Year Results JS12 JUNCTION 0 . 04 0 . 40 4916 . 30 0 12 : 00 0 . 39 JS12 . 2 JUNCTION 0 . 23 1 . 15 4887 . 65 0 12 : 08 1 . 12 JS13 JUNCTION 0 . 13 1 . 05 4908 . 55 0 12 : 00 1 . 04 JS14 JUNCTION 0 . 31 1 . 40 4931 . 90 0 12 : 00 1 . 39 JS15 JUNCTION 0 . 28 1 . 26 4955 . 26 0 12 : 00 1 . 25 JS16 JUNCTION 0 . 14 0 . 71 4924 . 11 0 12 : 06 0 . 70 JS17 JUNCTION 0 . 08 0 . 65 4913 . 55 0 12 : 00 0 . 65 JS18 JUNCTION 0 . 21 1 . 03 4947 . 03 0 12 : 06 1 . 01 JS19 JUNCTION 0 . 14 1 . 29 4928 . 29 0 12 : 00 1 . 27 JS19a JUNCTION 0 . 08 0 . 36 4931 . 16 0 12 : 00 0 . 36 JSla JUNCTION 0 . 15 0 . 71 4933 . 91 0 12 : 00 0 . 71 JS2 JUNCTION 0 . 15 1 . 05 4940 . 05 0 12 : 00 1 . 04 JS20 JUNCTION 0 . 10 0 . 96 4905 . 56 0 12 : 00 0 . 94 JS21 JUNCTION 0 . 13 1 . 00 4904 . 30 0 12 : 06 0 . 98 JS21 . 1 JUNCTION 0 . 18 1 . 00 4903 . 90 0 12 : 06 0 . 98 JS22 JUNCTION 0 . 01 0 . 14 4898 . 64 0 12 : 00 0 . 13 JS22 . 2 JUNCTION 0 . 17 0 . 87 4860 . 87 0 12 : 09 0 . 87 JS23 JUNCTION 0 . 03 0 . 34 4900 . 04 0 12 : 06 0 . 33 JS3 JUNCTION 0 . 15 0 . 77 4908 . 57 0 12 : 06 0 . 76 JS4 JUNCTION 0 . 07 0 . 67 4923 . 67 0 12 : 00 0 . 66 JS5 JUNCTION 0 . 17 0 . 82 4906 . 52 0 12 : 00 0 . 81 JS6 JUNCTION 0 . 28 1 . 29 4938 . 89 0 12 : 00 1 . 28 JS8 JUNCTION 0 . 14 0 . 64 4914 . 14 0 12 : 00 0 . 64 JS8 . 1 JUNCTION 0 . 14 0 . 63 4912 . 63 0 12 : 03 0 . 63 JS9 JUNCTION 0 . 19 1 . 43 4904 . 13 0 12 : 06 1 . 41 JS9 . 1 JUNCTION 0 . 19 1 . 42 4903 . 72 0 12 : 02 1 . 41 JW1 JUNCTION 0 . 07 0 . 67 4918 . 67 0 12 : 00 0 . 66 JW10 JUNCTION 0 . 09 0 . 86 4901 . 56 0 12 : 00 0 . 85 JW11 JUNCTION 0 . 08 0 . 49 4894 . 99 0 12 : 06 0 . 48 JW12 JUNCTION 0 . 21 0 . 97 4899 . 57 0 12 : 00 0 . 96 JW13 JUNCTION 0 . 03 0 . 35 4884 . 45 0 12 : 06 0 . 34 JW14 JUNCTION 0 . 12 1 . 03 4892 . 23 0 12 : 00 1 . 02 JW15 JUNCTION 0 . 01 0 . 20 4898 . 90 0 12 : 06 0 . 18 JW16 JUNCTION 0 . 12 0 . 66 4921 . 06 0 12 : 06 0 . 65 JWla JUNCTION 0 . 20 0 . 86 4928 . 16 0 12 : 00 0 . 85 JW1b JUNCTION 0 . 19 0 . 84 4931 . 74 0 12 : 00 0 . 83 JW2 JUNCTION 0 . 05 0 . 52 4937 . 52 0 12 : 06 0 . 50 JW2a JUNCTION 0 . 02 0 . 25 4923 . 35 0 12 : 00 0 . 24 JW3 JUNCTION 0 . 12 0 . 56 4923 . 56 0 12 : 07 0 . 55 JW3a JUNCTION 0 . 09 0 . 84 4909 . 54 0 12 : 00 0 . 83 JW3b JUNCTION 0 . 12 0 . 56 4923 . 86 0 12 : 06 0 . 55 JW4 JUNCTION 0 . 07 0 . 67 4922 . 07 0 12 : 00 0 . 66 JW5 JUNCTION 0 . 11 0 . 94 4910 . 94 0 12 : 00 0 . 93 JW6 JUNCTION 0 . 04 0 . 45 4888 . 35 0 12 : 00 0 . 44 JW6a JUNCTION 0 . 05 0 . 46 4912 . 06 0 12 : 00 0 . 45 JW6b JUNCTION 0 . 19 0 . 87 4908 . 17 0 12 : 00 0 . 87 JW6b . 1 JUNCTION 0 . 19 0 . 90 4895 . 90 0 12 : 10 0 . 90 JW8 JUNCTION 0 . 10 0 . 58 4910 . 38 0 12 : 00 0 . 57 JW8a JUNCTION 0 . 01 0 . 17 4895 . 47 0 12 : 06 0 . 16 JS20 . 1 JUNCTION 0 . 16 1 . 37 4867 . 37 0 12 : 15 1 . 36 OUT9 OUTFALL 0 . 20 1 . 54 4804 . 54 0 12 : 38 1 . 53 OUT10 OUTFALL 0 . 00 0 . 00 4897 . 00 0 00 : 00 0 . 00 F1POND1 STORAGE 1 . 48 2 . 81 4895 . 31 1 00 : 00 2 . 81 F1POND11 STORAGE 5 . 57 11 . 00 4905 . 00 0 13 : 46 11 . 00 F1POND2 STORAGE 2 . 24 4 . 30 4885 . 30 1 00 : 00 4 . 30 F1POND3 STORAGE 0 . 67 1 . 25 4885 . 25 1 00 : 00 1 . 25 F1POND8 STORAGE 1 . 22 2 . 54 4888 . 54 1 00 : 00 2 . 54 POND_4 STORAGE 1 . 97 4 . 10 4835 . 10 1 00 : 00 4 . 10 POND_S1 STORAGE 1 . 42 3 . 07 4918 . 07 1 00 : 00 3 . 07 POND_S2 STORAGE 2 . 53 4 . 98 4891 . 98 1 00 : 00 4 . 98 POND_S3 STORAGE 1 . 77 3 . 65 4892 . 65 1 00 : 00 3 . 65 POND_S4 STORAGE 1 . 82 3 . 90 4857 . 90 1 00 : 00 3 . 90 PONDW1 STORAGE 2 . 53 5 . 59 4890 . 09 1 00 : 00 5 . 59 POND_W3 STORAGE 1 . 51 3 . 04 4894 . 04 1 00 : 00 3 . 04 * * * * * * * * * * * * * * * * * * * Node Inflow Summary * * * * * * * * * * * * * * * * * * * Maximum Maximum Lateral Total Flow Lateral Total Time of Max Inflow Inflow Balance Inflow Inflow Occurrence Volume Volume Error Node Type CFS CFS days hr : min 10 ^ 6 gal 10 ^ 6 gal Percent J126 JUNCTION 0 . 00 252 . 99 0 12 : 16 0 7 . 83 0 . 000 J100 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal JS19 . 2 JUNCTION 0 . 00 106 . 92 0 12 : 11 0 2 . 46 0 . 000 J113 JUNCTION 0 . 00 113 . 69 0 12 : 13 0 3 . 8 0 . 000 J114 JUNCTION 0 . 00 85 . 64 0 12 : 12 0 3 . 06 0 . 000 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_WestArea_Results_100. rpt.docx 5/7/2025 ast_ TERRA FORMA almar eQLuTiaras 100-Year Results JS19 . 1 JUNCTION 0 . 00 107 . 02 0 12 : 11 0 2 . 46 0 . 000 J119 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J123 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J125 JUNCTION 0 . 00 106 . 57 0 12 : 17 0 3 . 78 0 . 000 J127 JUNCTION 0 . 00 29 . 98 0 12 : 09 0 0 . 653 0 . 000 J130 JUNCTION 0 . 00 30 . 82 0 12 : 07 0 0 . 668 0 . 000 J131 JUNCTION 0 . 00 36 . 00 0 12 : 09 0 0 . 759 0 . 000 J133 JUNCTION 0 . 00 28 . 26 0 12 : 03 0 0 . 554 0 . 000 J136 JUNCTION 0 . 00 34 . 92 0 12 : 09 0 0 . 731 - 0 . 000 J14 JUNCTION 0 . 00 49 . 52 0 12 : 50 0 2 . 71 0 . 000 J2 JUNCTION 0 . 00 50 . 23 0 12 : 51 0 1 . 92 0 . 000 J21 JUNCTION 0 . 00 92 . 85 0 12 : 34 0 2 . 84 0 . 000 J22 JUNCTION 0 . 00 44 . 81 0 12 : 26 0 1 . 1 0 . 000 J23 JUNCTION 0 . 00 42 . 19 0 12 : 12 0 0 . 972 0 . 000 J24 JUNCTION 0 . 00 119 . 15 0 13 : 05 0 6 . 29 0 . 000 J25 JUNCTION 0 . 00 41 . 96 0 12 : 33 0 1 . 27 0 . 000 J26 JUNCTION 0 . 00 283 . 83 0 12 : 35 0 8 . 68 0 . 000 J29 JUNCTION 0 . 00 43 . 14 0 12 : 08 0 1 . 63 0 . 000 J32 JUNCTION 0 . 00 92 . 93 0 12 : 29 0 2 . 62 0 . 000 J39 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J4 JUNCTION 0 . 00 21 . 82 0 12 : 12 0 0 . 688 0 . 000 J41 JUNCTION 0 . 00 73 . 96 0 12 : 08 0 2 . 41 0 . 000 J42 JUNCTION 0 . 00 35 . 07 0 12 : 14 0 0 . 799 0 . 000 J44 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J46 JUNCTION 0 . 00 286 . 67 0 12 : 34 0 9 . 02 0 . 000 J47 JUNCTION 0 . 00 49 . 70 0 12 : 48 0 1 . 83 0 . 000 J49 JUNCTION 0 . 00 24 . 88 0 12 : 08 0 0 . 497 0 . 000 J5 JUNCTION 0 . 00 36 . 15 0 12 : 11 0 0 . 802 0 . 000 J50 JUNCTION 0 . 00 35 . 51 0 12 : 13 0 0 . 8 0 . 000 J52 JUNCTION 0 . 00 30 . 57 0 12 : 20 0 0 . 793 0 . 000 J53 JUNCTION 0 . 00 30 . 57 0 12 : 21 0 0 . 792 0 . 000 J62 JUNCTION 0 . 00 2 . 51 0 12 : 06 0 0 . 0342 0 . 000 J67 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J68 JUNCTION 276 . 68 276 . 68 0 12 : 06 2 . 54 2 . 54 0 . 000 J69 JUNCTION 0 . 00 139 . 80 0 12 : 35 0 5 . 32 0 . 000 J70 JUNCTION 0 . 00 446 . 68 0 12 : 35 0 18 . 8 0 . 000 J71 JUNCTION 0 . 00 101 . 70 0 12 : 30 0 3 . 46 0 . 000 J74 JUNCTION 61 . 56 88 . 98 0 12 : 49 1 . 14 4 . 08 0 . 000 J75 JUNCTION 0 . 00 37 . 23 0 13 : 42 0 2 . 38 0 . 000 J76 JUNCTION 102 . 78 102 . 78 0 12 : 06 1 . 66 4 . 05 0 . 000 J77 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J78 JUNCTION 126 . 06 126 . 06 0 12 : 06 2 . 18 2 . 18 - 0 . 000 J79 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J80 JUNCTION 0 . 00 70 . 51 0 12 : 14 0 2 . 46 - 0 . 000 J81 JUNCTION 64 . 12 64 . 12 0 12 : 06 0 . 947 0 . 947 0 . 000 J82 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J83 JUNCTION 0 . 00 49 . 80 0 12 : 46 0 1 . 83 0 . 000 J84 JUNCTION 0 . 00 73 . 20 0 12 : 11 0 2 . 41 0 . 000 J87 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J88 JUNCTION 0 . 00 53 . 84 0 12 : 09 0 1 . 22 0 . 000 J89 JUNCTION 0 . 00 290 . 77 0 12 : 35 0 9 . 52 0 . 000 J91 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J92 JUNCTION 0 . 00 51 . 66 0 12 : 07 0 1 . 07 0 . 000 J97 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal JE2 JUNCTION 179 . 15 179 . 15 0 12 : 06 2 . 24 2 . 24 0 . 000 JE3 JUNCTION 81 . 33 81 . 33 0 12 : 06 0 . 924 0 . 924 0 . 000 JE4 JUNCTION 85 . 15 85 . 15 0 12 : 06 0 . 913 0 . 913 0 . 000 JE5 JUNCTION 572 . 23 572 . 23 0 12 : 06 6 . 23 6 . 23 0 . 000 JE6 JUNCTION 192 . 11 192 . 11 0 12 : 06 1 . 82 1 . 82 0 . 000 JH15 JUNCTION 834 . 95 834 . 95 0 12 : 06 6 . 64 6 . 64 0 . 000 JH18 JUNCTION 60 . 60 60 . 60 0 12 : 06 0 . 98 0 . 98 0 . 000 JPOND2 JUNCTION 0 . 00 86 . 32 0 12 : 13 0 2 . 71 - 0 . 000 JS1 JUNCTION 36 . 12 36 . 12 0 12 : 00 0 . 76 0 . 76 0 . 000 JS10 JUNCTION 19 . 26 19 . 26 0 12 : 00 0 . 382 0 . 382 0 . 000 JS10 . 1 JUNCTION 0 . 00 36 . 59 0 12 : 08 0 0 . 749 0 . 000 JS11 JUNCTION 19 . 94 19 . 94 0 12 : 06 0 . 358 0 . 358 0 . 000 JS11 . 2 JUNCTION 0 . 00 19 . 85 0 12 : 06 0 0 . 358 0 . 000 JS12 JUNCTION 27 . 33 27 . 33 0 12 : 00 0 . 541 0 . 541 0 . 000 JS12 . 2 JUNCTION 0 . 00 45 . 59 0 12 : 07 0 0 . 896 0 . 000 JS13 JUNCTION 95 . 10 95 . 10 0 12 : 00 2 2 0 . 000 JS14 JUNCTION 32 . 41 32 . 41 0 12 : 00 0 . 656 0 . 656 0 . 000 JS15 JUNCTION 33 . 10 33 . 10 0 12 : 00 0 . 67 0 . 67 0 . 000 JS16 JUNCTION 5 . 42 5 . 42 0 12 : 06 0 . 0926 0 . 0926 0 . 000 JS17 JUNCTION 41 . 91 41 . 91 0 12 : 00 0 . 844 0 . 844 0 . 000 JS18 JUNCTION 20 . 19 20 . 19 0 12 : 06 0 . 381 0 . 381 0 . 000 JS19 JUNCTION 94 . 86 94 . 86 0 12 : 00 1 . 93 1 . 93 0 . 000 JS19a JUNCTION 3 . 37 3 . 37 0 12 : 00 0 . 0662 0 . 0662 0 . 000 JSla JUNCTION 5 . 38 5 . 38 0 12 : 00 0 . 108 0 . 108 0 . 000 JS2 JUNCTION 28 . 69 28 . 69 0 12 : 00 0 . 604 0 . 604 0 . 000 JS20 JUNCTION 75 . 69 75 . 69 0 12 : 00 1 . 63 1 . 63 0 . 000 JS21 JUNCTION 13 . 47 13 . 47 0 12 : 06 0 . 231 0 . 231 0 . 000 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_WestArea_Results_100. rpt.docx 5/7/2025 = TERRA FORMA SOLUTIONS 100-Year Results JS21 . 1 JUNCTION 0 . 00 13 . 40 0 12 : 06 0 0 . 231 0 . 000 JS22 JUNCTION 26 . 98 26 . 98 0 12 : 00 0 . 522 0 . 522 0 . 000 JS22 . 2 JUNCTION 0 . 00 38 . 23 0 12 : 09 0 0 . 747 0 . 000 JS23 JUNCTION 11 . 87 11 . 87 0 12 : 06 0 . 221 0 . 221 0 . 000 JS3 JUNCTION 11 . 69 11 . 69 0 12 : 06 0 . 198 0 . 198 0 . 000 JS4 JUNCTION 30 . 21 30 . 21 0 12 : 00 0 . 61 0 . 61 0 . 000 JS5 JUNCTION 14 . 12 14 . 12 0 12 : 00 0 . 268 0 . 268 0 . 000 JS6 JUNCTION 39 . 07 39 . 07 0 12 : 00 0 . 775 0 . 775 0 . 000 JS8 JUNCTION 2 . 50 2 . 50 0 12 : 00 0 . 0528 0 . 0528 0 . 000 JS8 . 1 JUNCTION 0 . 00 2 . 40 0 12 : 03 0 0 . 0527 0 . 000 JS9 JUNCTION 16 . 44 18 . 22 0 12 : 06 0 . 318 0 . 37 0 . 000 JS9 . 1 JUNCTION 0 . 00 18 . 19 0 12 : 02 0 0 . 37 0 . 000 JW1 JUNCTION 17 . 08 17 . 08 0 12 : 00 0 . 336 0 . 336 - 0 . 000 JW10 JUNCTION 28 . 49 28 . 49 0 12 : 00 0 . 553 0 . 553 0 . 000 JW11 JUNCTION 2 . 52 2 . 52 0 12 : 06 0 . 0342 0 . 0342 0 . 000 JW12 JUNCTION 11 . 81 11 . 81 0 12 : 00 0 . 234 0 . 234 0 . 000 JW13 JUNCTION 16 . 39 16 . 39 0 12 : 06 0 . 263 0 . 263 0 . 000 JW14 JUNCTION 119 . 78 119 . 78 0 12 : 00 2 . 48 2 . 48 0 . 000 JW15 JUNCTION 4 . 26 4 . 26 0 12 : 06 0 . 044 0 . 044 0 . 000 JW16 JUNCTION 5 . 16 5 . 16 0 12 : 06 0 . 0793 0 . 0793 0 . 000 JW1a JUNCTION 11 . 66 11 . 66 0 12 : 00 0 . 27 0 . 27 - 0 . 000 JW1b JUNCTION 11 . 68 11 . 68 0 12 : 00 0 . 241 0 . 241 0 . 000 JW2 JUNCTION 24 . 60 24 . 60 0 12 : 06 0 . 436 0 . 436 0 . 000 JW2a JUNCTION 4 . 47 4 . 47 0 12 : 00 0 . 0908 0 . 0908 0 . 000 JW3 JUNCTION 24 . 15 25 . 57 0 12 : 00 0 . 471 0 . 499 0 . 000 JW3a JUNCTION 34 . 59 34 . 59 0 12 : 00 0 . 729 0 . 729 0 . 000 JW3b JUNCTION 1 . 50 1 . 50 0 12 : 06 0 . 0282 0 . 0282 0 . 000 JW4 JUNCTION 34 . 03 34 . 03 0 12 : 00 0 . 699 0 . 699 0 . 000 JW5 JUNCTION 39 . 90 39 . 90 0 12 : 00 0 . 808 0 . 808 0 . 000 JW6 JUNCTION 15 . 26 15 . 26 0 12 : 00 0 . 296 0 . 296 0 . 000 JW6a JUNCTION 15 . 79 15 . 79 0 12 : 00 0 . 337 0 . 337 0 . 000 JW6b JUNCTION 9 . 23 9 . 23 0 12 : 00 0 . 186 0 . 186 - 0 . 000 JW6b . 1 JUNCTION 0 . 00 20 . 37 0 12 : 10 0 0 . 518 0 . 000 JW8 JUNCTION 35 . 55 35 . 55 0 12 : 00 0 . 698 0 . 698 0 . 000 JW8a JUNCTION 2 . 25 2 . 25 0 12 : 06 0 . 0367 0 . 0367 0 . 000 JS20 . 1 JUNCTION 0 . 00 151 . 90 0 12 : 14 0 4 . 05 0 . 000 OUT9 OUTFALL 0 . 00 444 . 78 0 12 : 38 0 18 . 8 0 . 000 OUT10 OUTFALL 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal FIPOND1 STORAGE 0 . 00 87 . 44 0 12 : 12 0 2 . 16 - 0 . 000 FIPOND11 STORAGE 0 . 00 118 . 84 0 13 : 10 0 6 . 28 0 . 056 FIPOND2 STORAGE 0 . 00 99 . 07 0 12 : 08 0 4 . 04 - 0 . 000 FIPOND3 STORAGE 20 . 52 20 . 52 0 12 : 06 0 . 243 0 . 243 0 . 000 FlPOND8 STORAGE 0 . 00 39 . 63 0 12 : 15 0 0 . 938 0 . 000 POND_4 STORAGE 0 . 00 97 . 31 0 12 : 31 0 5 . 42 - 0 . 000 POND_S1 STORAGE 0 . 00 107 . 38 0 12 : 30 0 4 . 06 0 . 000 POND_S2 STORAGE 0 . 00 88 . 66 0 12 : 07 0 1 . 84 - 0 . 000 POND_S3 STORAGE 0 . 00 87 . 22 0 12 : 11 0 2 . 26 - 0 . 000 POND_S4 STORAGE 0 . 00 286 . 84 0 12 : 15 0 8 . 79 0 . 000 POND_W1 STORAGE 0 . 00 355 . 07 0 12 : 37 0 13 . 3 0 . 000 POND_W3 STORAGE 0 . 00 34 . 79 0 12 : 10 0 0 . 73 - 0 . 000 * * * * * * * * * * * * * * * * * * * * * Node Flooding Summary * * * * * * * * * * * * * * * * * * * * * Flooding refers to all water that overflows a node , whether it ponds or not . Total Maximum Maximum Time of Max Flood Ponded Hours Rate Occurrence Volume Volume Node Flooded CFS days hr : min 10 ^ 6 gal 1000 ft3 FIPOND11 0 . 84 63 . 97 0 13 : 29 0 . 620 0 . 000 * * * * * * * * * * * * * * * * * * * * * * Storage Volume Summary * * * * * * * * * * * * * * * * * * * * * * Average Avg Evap Exfil Maximum Max Time of Max Maximum Volume Pcnt Pcnt Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 ft3 Full Loss Loss 1000 ft3 Full days hr : min CFS FIPONDI 136 . 663 12 0 0 288 . 513 25 1 00 : 00 0 . 00 FIPONDII 210 . 846 47 0 0 449 . 016 100 0 13 : 28 37 . 23 FIPOND2 218 . 193 20 0 0 539 . 808 49 1 00 : 00 0 . 00 FIPOND3 16 . 112 8 0 0 32 . 483 17 1 00 : 00 0 . 00 FIPOND8 58 . 615 14 0 0 125 . 338 29 1 00 : 00 0 . 00 POND_4 323 . 486 16 0 0 724 . 454 35 1 00 : 00 0 . 00 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_WestArea_Results_100. rpt.docx 5/7/2025 a—g= TERRA FORMA =ale s O LUT 10IN S almar 100-Year Results POND_S1 249 . 502 22 0 0 542 . 839 47 1 00 : 00 0 . 00 POND_S2 120 . 025 26 0 0 246 . 508 53 1 00 : 00 0 . 00 POND_S3 142 . 913 21 0 0 301 . 746 45 1 00 : 00 0 . 00 POND_S4 543 . 308 24 0 0 1175 . 790 52 1 00 : 00 0 . 00 PONDW1 801 . 836 25 0 0 1784 . 345 56 1 00 : 00 0 . 00 POND__W3 47 . 117 21 0 0 97 . 595 43 1 00 : 00 0 . 00 * * * * * * * * * * * * * * * * * * * * * * * Outfall Loading Summary * * * * * * * * * * * * * * * * * * * * * * * Flow Avg Max Total Freq Flow Flow Volume Outfall Node Pcnt CFS CFS 10 ^ 6 gal OUT9 90 . 69 32 . 06 444 . 78 18 . 793 OUT10 0 . 00 0 . 00 0 . 00 0 . 000 System 45 . 35 32 . 06 444 . 78 18 . 793 * * * * * * * * * * * * * * * * * * * * Link Flow Summary * * * * * * * * * * * * * * * * * * * * Maximum Time of Max Maximum Max/ Max / ( Flow ' Occurrence IVeloci Full Full Link Type CFS days hr : min ft/ sec Flow Depth C136 DUMMY 252 . 99 0 12 : 16 C100 CONDUIT 49 . 52 0 12 : 50 3 . 13 0 . 01 0 . 06 C102 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C103 CONDUIT 27 . 72 0 12 : 09 4 . 32 0 . 03 0 . 15 C104 CONDUIT 11 . 57 0 12 : 07 4 . 55 0 . 06 0 . 34 C105 CONDUIT 13 . 95 0 12 : 02 4 . 89 0 . 07 0 . 36 C106 CONDUIT 51 . 69 0 12 : 07 7 . 32 0 . 01 0 . 07 C107 CONDUIT 37 . 15 0 12 : 08 6 . 27 0 . 22 0 . 55 C108 CONDUIT 24 . 13 0 12 : 15 0 . 92 0 . 05 0 . 24 C109 CONDUIT 29 . 98 0 12 : 09 5 . 18 0 . 20 0 . 53 C110 CONDUIT 26 . 78 0 12 : 04 4 . 90 0 . 08 0 . 34 C111 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C112 CONDUIT 97 . 54 0 12 : 15 3 . 53 0 . 08 0 . 27 C113 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C119 CONDUIT 18 . 30 0 12 : 08 3 . 89 0 . 03 0 . 17 C120 CONDUIT 106 . 57 0 12 : 17 3 . 86 0 . 16 0 . 38 C123 CONDUIT 49 . 38 0 12 : 17 1 . 10 0 . 08 0 . 29 C125 CONDUIT 83 . 31 0 12 : 14 3 . 41 0 . 10 0 . 30 C127 CONDUIT 106 . 92 0 12 : 11 6 . 38 0 . 89 0 . 74 C133 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C134 CONDUIT 36 . 24 0 12 : 09 4 . 72 0 . 15 0 . 37 C135 CONDUIT 106 . 56 0 12 : 17 10 . 02 0 . 50 0 . 50 C137 CONDUIT 29 . 97 0 12 : 09 18 . 50 0 . 17 0 . 28 C138 CONDUIT 30 . 82 0 12 : 07 5 . 97 0 . 15 0 . 49 C139 CONDUIT 30 . 71 0 12 : 09 3 . 58 0 . 26 0 . 61 C140 CONDUIT 5 . 31 0 12 : 08 3 . 32 0 . 03 0 . 28 C141 CONDUIT 35 . 69 0 12 : 11 4 . 84 0 . 21 0 . 56 C142 CONDUIT 20 . 06 0 12 : 07 5 . 00 0 . 09 0 . 41 C143 CONDUIT 24 . 15 0 12 : 13 4 . 07 0 . 03 0 . 16 C145 CONDUIT 7 . 91 0 12 : 12 0 . 97 0 . 08 0 . 25 C146 CONDUIT 34 . 79 0 12 : 10 3 . 40 0 . 21 0 . 45 C147 CONDUIT 2 . 23 0 12 : 07 1 . 55 0 . 00 0 . 06 C20 CONDUIT 86 . 35 0 12 : 49 0 . 98 0 . 04 0 . 19 C21 CONDUIT 34 . 61 0 12 : 56 1 . 04 0 . 02 0 . 17 C22 CONDUIT 40 . 60 0 12 : 18 0 . 82 0 . 03 0 . 15 C23 CONDUIT 283 . 82 0 12 : 35 8 . 42 0 . 15 0 . 41 C25 CONDUIT 39 . 27 0 12 : 50 0 . 89 0 . 32 0 . 55 C27 CONDUIT 43 . 06 0 12 : 08 7 . 24 0 . 25 0 . 34 C30 CONDUIT 118 . 84 0 13 : 10 1 . 61 0 . 10 0 . 36 C41 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C42 CONDUIT 30 . 57 0 12 : 20 1 . 84 0 . 08 0 . 27 C46 CONDUIT 70 . 51 0 12 : 14 1 . 25 0 . 06 0 . 25 C47 CONDUIT 286 . 75 0 12 : 36 7 . 96 0 . 20 0 . 48 C48 CONDUIT 11 . 86 0 12 : 35 0 . 73 0 . 13 0 . 31 C49 CONDUIT 49 . 67 0 12 : 52 4 . 57 0 . 05 0 . 23 C50 CONDUIT 24 . 88 0 12 : 08 2 . 62 0 . 01 0 . 10 C51 CONDUIT 24 . 29 0 12 : 12 3 . 04 0 . 07 0 . 26 C52 CONDUIT 36 . 15 0 12 : 11 1 . 54 0 . 18 0 . 43 C53 CONDUIT 35 . 07 0 12 : 14 3 . 36 0 . 11 0 . 35 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_WestArea_Results_100. rpt.docx 5/7/2025 a-g= TERRA FORMA almar oLuTiaNs 100-Year Results C54 CONDUIT 14 . 87 0 12 : 07 2 . 64 0 . 02 0 . 11 C55 CONDUIT 30 . 57 0 12 : 21 7 . 03 0 . 30 0 . 38 C56 CONDUIT 28 . 97 0 12 : 26 1 . 59 0 . 08 0 . 28 C57 CONDUIT 73 . 20 0 12 : 11 2 . 74 0 . 14 0 . 38 C60 CONDUIT 33 . 29 0 12 : 10 1 . 15 0 . 24 0 . 55 C64 CONDUIT 27 . 48 0 12 : 08 4 . 25 0 . 07 0 . 27 C65 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C66 CONDUIT 2 . 51 0 12 : 06 2 . 58 0 . 01 0 . 20 C67 CONDUIT 2 . 47 0 12 : 07 3 . 18 0 . 01 0 . 18 C68 CONDUIT 11 . 26 0 12 : 08 3 . 85 0 . 08 0 . 37 C69 CONDUIT 92 . 73 0 12 : 31 5 . 74 0 . 08 0 . 28 C70 CONDUIT 33 . 14 0 12 : 08 4 . 56 0 . 03 0 . 17 C73 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C74 CONDUIT 139 . 80 0 12 : 35 3 . 25 0 . 44 0 . 64 C75 CONDUIT 112 . 57 0 13 : 03 0 . 83 0 . 62 0 . 77 C76 CONDUIT 444 . 78 0 12 : 38 1 . 22 0 . 58 0 . 77 C77 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C78 CONDUIT 417 . 65 0 12 : 29 3 . 43 0 . 20 0 . 44 C79 CONDUIT 50 . 23 0 12 : 51 7 . 93 0 . 04 0 . 20 C80 CONDUIT 86 . 30 0 12 : 13 8 . 55 0 . 51 0 . 68 C82 CONDUIT 82 . 04 0 13 : 11 0 . 86 0 . 09 0 . 35 C83 CONDUIT 37 . 24 0 14 : 19 1 . 13 0 . 08 0 . 26 C84 CONDUIT 99 . 07 0 12 : 08 1 . 43 0 . 38 0 . 58 C85 CONDUIT 87 . 44 0 12 : 12 2 . 50 0 . 57 0 . 77 C86 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C87 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C88 CONDUIT 49 . 52 0 12 : 50 1 . 12 0 . 09 0 . 37 C89 CONDUIT 39 . 63 0 12 : 15 1 . 35 0 . 16 0 . 37 C90 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C91 CONDUIT 49 . 70 0 12 : 48 3 . 90 0 . 41 0 . 72 C92 CONDUIT 72 . 45 0 12 : 13 6 . 01 0 . 05 0 . 20 C93 CONDUIT 2 . 34 0 12 : 23 0 . 98 0 . 00 0 . 07 C94 CONDUIT 15 . 31 0 12 : 09 3 . 85 0 . 03 0 . 13 C95 CONDUIT 101 . 70 0 12 : 30 14 . 52 0 . 10 0 . 29 C96 CONDUIT 53 . 85 0 12 : 09 7 . 71 0 . 12 0 . 33 C97 CONDUIT 290 . 77 0 12 : 35 11 . 64 0 . 71 0 . 85 C98 CONDUIT 21 . 81 0 12 : 13 2 . 00 0 . 08 0 . 31 C99 CONDUIT 35 . 51 0 12 : 13 2 . 71 0 . 22 0 . 54 CE2 CONDUIT 92 . 85 0 12 : 34 1 . 93 0 . 44 0 . 59 CE3 CONDUIT 44 . 81 0 12 : 26 1 . 46 0 . 01 0 . 09 CE4 CONDUIT 41 . 96 0 12 : 33 1 . 57 0 . 01 0 . 08 CE5 CONDUIT 283 . 83 0 12 : 35 2 . 90 0 . 11 0 . 29 CE6 CONDUIT 92 . 93 0 12 : 29 2 . 22 0 . 04 0 . 18 CH10 CONDUIT 16 . 34 0 12 : 08 2 . 67 0 . 03 0 . 16 CH18 CONDUIT 42 . 19 0 12 : 12 1 . 48 0 . 08 0 . 34 CH9 CONDUIT 21 . 82 0 12 : 12 0 . 91 0 . 06 0 . 25 CS11 CONDUIT 19 . 85 0 12 : 06 6 . 78 0 . 63 0 . 58 CS11 . 2 CONDUIT 19 . 84 0 12 : 08 4 . 28 0 . 13 0 . 45 CS12 CONDUIT 26 . 04 0 12 : 04 4 . 04 0 . 01 0 . 10 CS12 . 2 CONDUIT 45 . 24 0 12 : 09 3 . 50 0 . 04 0 . 18 CS19 CONDUIT 84 . 29 0 12 : 11 6 . 01 0 . 09 0 . 29 CS19a CONDUIT 3 . 36 0 12 : 01 6 . 43 0 . 01 0 . 18 CS1a CONDUIT 5 . 19 0 12 : 02 2 . 74 0 . 06 0 . 35 CS20 CONDUIT 66 . 41 0 12 : 11 4 . 74 0 . 06 0 . 21 CS20 . 1 DUMMY 151 . 90 0 12 : 14 CS21 CONDUIT 13 . 40 0 12 : 06 6 . 48 0 . 24 0 . 33 CS21 . 1 CONDUIT 13 . 10 0 12 : 09 4 . 82 0 . 08 0 . 38 CS22 CONDUIT 25 . 28 0 12 : 10 2 . 22 0 . 03 0 . 12 CS22 . 2 DUMMY 38 . 23 0 12 : 09 CS8 CONDUIT 2 . 40 0 12 : 03 1 . 57 0 . 05 0 . 32 CS8 . 1 CONDUIT 2 . 37 0 12 : 05 2 . 66 0 . 01 0 . 19 CS9 CONDUIT 18 . 19 0 12 : 02 6 . 31 0 . 62 0 . 57 CS9 . 1 CONDUIT 18 . 32 0 12 : 07 3 . 05 0 . 04 0 . 20 CW16 CONDUIT 5 . 12 0 12 : 07 3 . 03 0 . 05 0 . 33 CW1a CONDUIT 11 . 15 0 12 : 08 4 . 48 0 . 10 0 . 42 CW1b CONDUIT 10 . 80 0 12 : 07 4 . 79 0 . 09 0 . 41 CW2a CONDUIT 4 . 11 0 12 : 10 2 . 40 0 . 02 0 . 11 CW3a CONDUIT 32 . 01 0 12 : 08 4 . 14 0 . 17 0 . 40 CW3b CONDUIT 1 . 49 0 12 : 07 1 . 22 0 . 03 0 . 28 CW6a CONDUIT 13 . 26 0 12 : 11 1 . 00 0 . 06 0 . 19 CW6b CONDUIT 8 . 64 0 12 : 04 3 . 41 0 . 10 0 . 43 CW6b . 1 CONDUIT 20 . 03 0 12 : 12 7 . 94 0 . 05 0 . 15 WEIR_1 WEIR 0 . 00 0 00 : 00 0 . 00 WEIR_11 WEIR 37 . 23 0 13 : 42 0 . 00 WEIR_2 WEIR 0 . 00 0 00 : 00 0 . 00 WEIR_3 WEIR 0 . 00 0 00 : 00 0 . 00 WEIR_4 WEIR 0 . 00 0 00 : 00 0 . 00 WEIR_8 WEIR 0 . 00 0 00 : 00 0 . 00 WEIR_S1 WEIR 0 . 00 0 00 : 00 0 . 00 WEIR_S2 WEIR 0 . 00 0 00 : 00 0 . 00 WEIR_S3 WEIR 0 . 00 0 00 : 00 0 . 00 J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_WestArea_Results_100. rpt.docx 5/7/2025 a-= TERRA FORMA =air SOLUTIONS 100-Year Results WEIR-S4 WEIR 0 . 00 0 00 : 00 0 . 00 WEIRW3 WEIR 0 . 00 0 00 : 00 0 . 00 WEIR_W1 WEIR 0 . 00 0 00 : 00 0 . 00 * * * * * * * * * * * * * * * * * * * * * * * * * Conduit Surcharge Summary * * * * * * * * * * * * * * * * * * * * * * * * * No conduits were surcharged . Analysis begun on : Wed May 07 16 : 00 : 56 2025 Analysis ended on : Wed May 07 16 : 00 : 56 2025 Total elapsed time : < 1 sec J:12024124040441Design\Calc\Drainage\SWMMIPelicanLakes_WestArea_Results_100. rpt.docx 5/7/2025 APPENDIXE - DRAINAGE PLANS , • r wA1EFT • 8 ‘ j E • TYPE ' rr • SOIL i • • TYPE �► L � II i * V) Z " bN1 - TYPE B • o O ♦ SOIL s #• TYPE A SOIL ♦en �,• 307 0'15 CO RD 38 Q O # rt In crp . i ttismsameam __ ..F ___ CO RD 38 > +4 ' g : u N - 13" *0 < SOIL I lill $ I P-ON1 \ Illi • TYPE " TYPE 'A' SOIL a \ Bit �, SOIL 1. ii. . .1e :lb" -+ - - - �in . . r - - - - rir . . - - • - . . . - i■ ES 011111 eli , q1/4 \ \ ♦ C jr% --- --------- e N s Ill 46 -1-• t \ sit , I- . k 4 , < • O\li, 6 es ,5 T3N R65WNSt 4 -4?ao I3 0 • i b / + \ %.„,..„..\.. .. \ 4 H4 s, w EXISTING CONDITIONS .. o N il/ �'• OP - IWI258 S BASIN 10yr BASIN 100yr TOTAL TOTAL . ♦ �► ♦• � � DESIGN SUBBASIN +♦ •0 4. - �.� � SUBBASIN RUNOFF RUNOFF TRIBUTARY RUN t 4► \ POINT AREA AC ♦ H19 � � � ) TYPE "A" SOIL 4, N. �,. ( cFs ) AREA ( AC ) ( CF • � 134 * \ \•♦ �O'V11 ' t� TYPE 'A►' SOIL % O N 1 D P O N 1 0 7 2 4, 3 4 ♦ TYPE A SOIL .•• 182, • 1 OW1 DP 0W1 48 2 . 9 41 ♦♦ / ......... '# tcr-FT) 0W2 DP 0W2 182 5 , 9 93 " Tht (> DP- OW �"� '� ~ OW3 DP OW3 2 . 3 4 ► TYPE -� ♦4 a./ �� I 666 SOIL _ � _ _ _ ._a 7 OW4 DP OW4 81 2 . 6 42 z _ _ _ _ _____ ____. .;_wit , \ wr 4 ir 7 OW5 DP OW5 591 19 . 0 284 O_ ______ enure A=a. ____.__. _. __ _ _____1 s ... S. i i c OW6 DP OW6 174 5 . 4 93 � TYPE 'A' `� ■ -H2 �� ��, v • '� I �B P - � 1 9 � . *�' ', - . . -- 081 DP 0S1 187 6 . 6 140 eL s �► 6/Ati. SOIL � A �NO � � � � —` �. DP- H2 1hots - 0S2 DP OS2 23 1 . 0 8 w ♦ - IP 4 i 1 { , .4 - Hi DP Hi 1942 521 1107 24 / at esAP-0 / 0iiiiiiiiisk � - R ��,r 1.1.i i i•"1"IF wi � , H2 DP H2 2 . 2 47 i 0 I a in %ii ""�' � f =-1 ----- _-• H3 DP H3 35 1 . 1 43 p �' O'U" ' �� H4 DP H4 258 7 , 9 210 _ VP _ > 44444444 ■ E B i - H5 DP H5 30 2 . 0 33 , II -� L H I DPH 18 _ w ;Zs r \, \ - H6 DP H6 39 1 . 3 47 cc • `' nom . _ _ , I Ilir H7 DP H7 5 0 . 2 5 a# 'e.- - e TYPE A SOIL — . • . ' . t _ r - is ' ,_ H 8 D P H 8 272 7 . 9 128 750 7 . •• • . r r `,� s H9 DP H9 99 3 . 0 42 861 15 •• ft . , °'' 4, 1,/,,, • o ..` A. . -_ ' H10 DP H10 90 3 . 2 98 681 15 •+ �` " . �� � � , �. , �_ � ' H 11 D P H 11 3 9 1 . 1 3 3 900 14 ♦ TYPE A SOIL • ♦# 1% �'`IC ,,, ♦. �► �, F 12 D P H 12 81 2 . 4 2 3 9 81 1 iss -. 1116 cl DP- F-1 ) DP- H1 ( H13 DP H13 26' 1 . 1 37 ,� ' _.L.L. '� _ t.. H14 DP H14 51 1 . 5 29 ♦ �+ � -_- H15 DP H15 1475 49 , 7 625 2127 51 ■ ei 7 , 8� . _ - S I r p , --� ' '! , . ° It H16 DP H16 28 1 . 1 16 i P- 0 * li 3 0 � _-- - 1 ‘ H17 DP H17 22 1 . 0 28 4s �__� - t• \s „, \ IL .% / H18 DP H18 45 2 . 1 24 • ..• Abl, . k I th. H19 DP H19 134 4 . 1 122• s s %* f gwes. cp.., IL ** 1 iteses. k% 00 li 591 s s 4 t \ I) 4 c) so * t BURGH \ , * i \ ‘• ' PeYwer N `.4.4\ . I i , /4 \ '' �� -1 , ...•Th � ` H9 V N IT, , % N #0110. -- DP- H6 DP - H16 Z N 99N2,_____,%-- - N HS LEGEND 4 1 -�vca DP -OW5 J Ast'ikto, ‘ % 4) . .. aim ak3 , + BP- H7 272 . . . . . . � . . . . . . . . . . . . . . . . . . . �. . � ASII � OUrTYPE 'A' SOIL H 1 �' �► .` 0■ s a I. 90 , ' ♦� ✓ � ♦ DP- 1 � .-� � L � . W- 1SUBBASIN �JAME i , Si D • 0� 1 ��. �.`, rBASIN LABE 0 • I 4� N �► 'I"YPE 'A' SOIL uB� REAI UMW N.- is ,„.. , ir t H1 - D 4 i % ,t 1 1 D P H 8CI- ■• Er\ �� I ♦ - 2 DESIGN POI I-L. W Z * 4. Z W 0 0 * D P 1, / \ , �2 FM ` A SOIL w p * 0 # 0° 4Iik ., ; . / f DP -OW6 ,. ,, • 81 a% LO D EC zg < 1". # O111 � �. r ceDP - H -1 �► �. —I 11 �i'' r r r O o , im / �' to ♦ `'� *, : _ ,_ .�I a — To PATH — `40 ,► 0 .1 ILL o a ? s, ow Z Oa H 14*... / i IL \-- i IV a I • li DP - F11 -4 - e. i 1 i .1 1 Y l= **s r — a- - — — — — int ' .TIN _L/._ O z 0 ›.--- eTh i► l TYPE 'A' SOIL • . I CSM 4O 1 m.: ' " 1 5 u_113_,,,, is , ,, c) . 0 0 ° D '� < Z gt I- 6 ii: . , 1,-, (.4 cc • - z '�► we' � w 4\1% fl. _ - IL - S 0 CL W X , es . . . . sioniik ,* _ ail_ , i,_ .., 0 , a di Oa at. ..." * "1 \,..see..----r---- $ a .1. U.. ..Aii. , ihh. 1 i ..._,.... TYPE 'A' SOIL v.- ,.. a - 'B' 4&D. It , ..,..i... TYPE 'A' SOILSO H15 ,► _ �. _ DIPHi5 _ . . 1 \ , 1475 'C .. 00m ' 0 Liws tah ......u.,.... _Ass.. It _____. c ♦ DF'- OSl ,., - • PROD NO : PL ≥ORD32 _ I CO a _� : .� �.� _ a saa 1000 1500 ♦ DP-OS2 ._ . O TM e. • , . . . • TYPE A 901E0 • ..4 /N � � �, * � *�� � 3/4 cif CHKD : • ) a * •• ♦ r • +�► O S2 /os \O c) I ., 1 • � _ _. � DATE : 10/18/2024 pl .,, i .• • tom- \ 187/ • 1 *• • T3N R65W -' u- SHEET NUMBER ‘ : . 4. 4 , _ . . ...4.. _ •# .„ ,,„ . . ..,.., . .....su . . , • (Si rre4,44,) r � rarr .�► I _ , +� Lid_l-'1 \J.' HDR1 1 OF 1 I J. \ ,T1 ' ti. 1 0 LEGEND __ 1 I 24JL � � / A11AAA • I \ �' 1 \ --`- / -_ _ _ / `� ' \ /-• • -.. , ' f ' ` �\ . t ti li 111 � r / / / - - I r \ DESIGNATION Cp7 D.a7 w \\ o In 1 , - " , \ 1 I ` � . ' "I " — 05� lt 2 > L %L4 \ ' 1 1 / � _ � \ 1< , \ `" �� y II `\ `� \ \ ` `\ \ , '- 10.22 ` ' \ •- •- _ ` ` \ / � / \ \ \ \ / 71 \ 'k ' ` \ \ 1` �- / I� J,/+� � �' 1 BASIN AREA / t ' \ I I (ACRES ) - 100 C_ 1► \ / \ \ JI t \ \/ r / _ y - \ �► \ \ \ „ \ \ \ \ \ \ \\ \ / / I 1 ` \ _ - - / 1 \` \ - I �• ! ■ I + \ ` 1 r ` \ \ \ � \ I , , \\ 1 I 1 111 \ . / I 1 . 1 1 J . , t A 1 �\ 1 • I ' 1 ( , I 2011 \ / , \ � \ ♦ \_ -1 1 \ _ \ \ \ \ 1 \ \ \ \\ \ \ \ \ \ ` \ 1 I I +11 \ y / II\ \ , "''� 1 \ \ \ \ \\ ` y r \ \ , \ \ i. \` \ \ \ ( \ \ / / / - ` �. \ \ ♦ \` I tl 111 1 I 1 \ _ ^ _• 0. 12 \ / \ l \\ / \,,,, •„ II \ \ \ \ \ , f \ 111 \ \ \ \ \\ \ \ \ � - _ � / / / /:+1 \ ♦ ♦ \ \ \ \ 1 r - \ - ) , � \ ` /_ \ \\\ / I \\\ , \ 1 � ✓ - \ / \ \ I \ ` ,\ 1 \ \ / \\ \ \\ t \ \\ \\\ \ 1 _ �k , ♦ \ \ \ \ \� \ \ • I X DESIGN POINT 1■` �.' �, 0.26 r ' J , : -. / ` � ^ \ \ ` \ \ \ \ \ 1 \ ` 1 1 \` \ \ `\` _ \ \ _ - / - \ 1 \\ \\ \\\ \ I \ ��' - CULVERT2 �\ "• / _.lT� •^ ` \ \ � \ � \\` \ \ \ 1 • \ _ , , �� / \ \ 1 I f � ( L \ \ \ •'- ,. II \ 1 1111 -- ` \ '` 1 \ t. \` \ 1 \ \\\ - � / / \( \ \ ` 1 `\ \ \ \ ` \ \ V r / \\ / / \ ` I' \ .' \ \ \ t / V � - \ \ - � � \ \ \\\ 1 ; \ \\ \ + ' 1 I Ir/ `` \ ` \ \ \ �, \ \ �'' ; SC r/ . , �� \\ \ ` t r 4 \\ / -\ \ \ 1 � \ \ / ' - \ 1 \ \ \\ `\ \ MI�11a', 1 , DRAINAGE BASIN BOUNDARY f �J \ \ \ 1 \ - 111 1 X11 t ` - \ � \` \� 1 \ \ \ \ \ \ ♦ \ 1 t , ' t. \ , , \ \tip\ 1 \I \ I\\ / \ \ \ \ - ' \ _ - ` / I I / \ ` 1 \\\` \ ` \ \ ' 1 N , / / \J \\ ` t 1 ` � ` \ \\ ` ` \ 1 111 Wz / :. _ _ ' ' \� ` \ \ \ \ \\ \ ` \ \ \ \ \ \+ 1 p '. 1 r� �, 0.16 \ \ ..\\ \ \ \ /f ♦ 11 \ I _ _ ` \ /' .` 217 4.40 - - - \ \ r \` \ \ ` �\ �' �' 11 \� -i �\ \ \� _ . . - I , , ,• _\ \. , a FILING 1 � � ' , ' \ 11 \ \ \ \ \ ` ` - - \ / i 1 / PROPOSED STORM SEWER/CULVERT o \ � ' ( " ' , 1 \` / , 218 , \ \ `\ \ \ \ \ ♦ �� JO W / OW5 zo �, v I , v / , r 1� 1 , , I 1 1 v _ _ v 0 PROPOSED MINOR CONTOUR ❑ 90.7 0.07 w 1 1 / POND W1\• �u ' i iJl I 1 \\\�_`\ / y/�� ,r i `\ \ \ \\ \ It \ '\\, ' `, `\ ► \ -; \ �: ` � _ 11 \I \� _ / III 1 1 I \ \ \\ ` 0.22 >- - _ \ W4 vl ) 1 / I i� / / \ '_ _ ,\ \ � 1 \ 11 \ \ \ , I - - \ \ \ . . _ I 1 II / I / l 1�- ` , ' \ X11 �� / i , _ , \ t �q \ \ - / \ I 1 t \ \ ` \ \ \ 1 `t - - I \ \ \ �= A � ": .r _ _ _ / i .. , \ \ \ , \ \ I ///�// / / \ \ \ 1 .�bll�i \ / \\\ 1t / / - = � \ 1 1 1 \ f \ \ \\ \ .� \ \ \ \ / �` � 1II / _ - ( 1 \ - / , w,a ` 46.79 ` - \ \ \ / ' ' \ \ \ � .` \\ , , - , 1 ' \ ` \ \ \ I 1 / J EXISTING MAJOR CONTOUR CULVERT 1A zzo , B / ° '7 > r� - .7 `�\� \� — ' \ \ � / 1 ` \ \ \ \ — I \, M I ' �, ; J ' 1 r \� ( ` " \\\` _ �,\\\\ \ EXISTING MINOR CONTOUR Z W1a :/ W4 ,1 \ \ I�^ / ; / \ -�/� / / , \ / W11 t1 \ t \ I \ \ r , � \ t I \ \` \ `\ \ \ \ / _ A t \ l I / e I 1 /�■ CULVERT 1B 0.20 / zz7 wm n. \ \ \I \ / / J \ \ I f \ \ 1 \ I JJri 1 .44 0.16 p \\� u \ _ \ \ ` I W14 ' !\ \ \ \ r \1 1 , ow L " J J 1o.zs •, — . � '/ — ' `\\ , , � , D.2s r ' J — I —� \,� \\\\ \\ , \ ` ` � ' : \ \ , % .' / - - - - - — N FLOW DIRECTION 0.33 ' \ — _ \ \ _ A \ X t� `�\ + \ \ \ 179. 1 . ` \ \ �� \ , \ \ / ) \ _ � � / 11 II\ 1 1 I ♦ \ 0.27 \ \ \ 1 �. \ \ r \ • \ // / / -, / ` � \ `\\ \ \ ` ) J _/ri \ \\ T \\\ 1 ' l 1 - 1' \ \ \ \ / : .\ 228 1 \ ... _ �.. •h`r .? ,...1 ' / _ '.�- \ _./ ' 'Z 1 \ - _ / / I� ,1 /r / S + 1 I t\ I ./- .r \, 1\ 11 \ \\\ I1 \ \ \ \ \ \ \ I \ \ ` / / \ - r \ \ \ \ . - ._-� \•.rte ,. I , . / 1 \ - / I 1 \ \ ,, \ \ \ \ \ )!__ /, I - \ __ - - �x \ \ _ \ // t \ 9 J �\ _ _ I \ 1/ 1 1 \ /i CHANNELIZED FLOW PATH ( t , I < 226 " j I 1 ,; '� l ) f I 1 \ 1I 1 c t \ \\ \ \ \ r � \ \ \ \ _ \ I // l 1 ' J 205 - / ^ � L. j ' 237 \ \, \ 1 \ \ /" ` / Il ` E' / � — � ` / . \ ' \\ t \ ' ` \\ ` \i Ii 1 \ � \ ' �\ // 1 1 1 � : 221 _ 1 \� \ \ \ _ ` \` 1l ` ` � ` 1 / \ - } I I ` / W,1 \,\ 1 \ ` \ ( \ \\\`\ ` \ \ \\ t\ \ \\ ¼ \. I \ \ Il ` \ J ' 1 �� z - _ / , \ 1 �,,: lilt % \ 229 , 4 r 242 4 '".- •l• / POND 4 - � / ' \' \ I'' o 1 / / W1b — 1 \ / c \ / t\ \ , , I I 1, \ , Ilo ,..I . ₹+ 239 ` + I 4 ` . '.. 1� . , -- - , I V 1 1 , 206 _ 0.20 Ti � — ` � \ , 2� \ \ � `� l 243 \ � : 236 \� ` � ' 1 I i +• \ �\ `\ °\ \ I \ 241 • 8! / i/ YI .�11 ' _ • _ _ - _ _ - _ z I \; \ I ..�• � W6a `. ••\ � >• L_ 1/I T /�• /� - 1�a ` - o LLI r GL's H 0.20 \t\ a14 —�' t / r - \ 26.56 �� 23.24 — — + �\— 3 — I 1 \ \ \ \ / �, , \ , - _ / ' / _ 1 i� `\ ` 0.33 : \ \�. \ \ \�1t 0.2g r \ \ 6b - - \ I / ° \ '----"���rC`i', / , \ .ly' t�r \ \ / r• \ f' \ ! a ❑ \ 1 , / \ \ \ , \\ ,i \ •\ . . . \ CULVERT 3 \ 249 6 6.46 x\,. . y G / �, /'% �— 1 > f 1 \ ■, , \ \ \ / \ \ V ` , 'l , \ \ \ \ \ 1 •� \ III , /��/ ! \ \ °.33 I � �� / - �..., 136 . _ �`\ ./ / \ 1I" t \ t \\ \ \ _ ' . \ \ \ : :; 1 \\ a `\\\ \ LIB LLI n 1 � � iJ I I \ � , \\ J� I \\ \ \\ , � ' � CULVERT4� I , ,//, / ' \\ ,A z4s / �/ ?� F , / , az \� \ i ,! ^�; '\� I t � \ 1 \ \ \` \ \ ` > . \\ 11 \\ - ` \ �+ \ \ ❑ v ` — �� _ ! I L �� : , - - - — — , . ♦ � /' v ! / v vvwv W 15 t ` v t I ` ., v v CULVERT 11 1 v v t v + 1 I 3n. A.1\ I 1 A A \1 V 18.22 /� `.^^-...,.__a..tiAv� v 1V A r A A `. _ _ ' •v \ r I 1 t \ W5 ,� _ 1 1 I - .� \y \t \ ` 111 1 l ) 1 f _ - - - \ W16 \ 214 2 5 \ \ / ♦ \\ _ 0.33 � - y' 1 I , 1 r... \ \ r CULVERT20A 0.20 , �. , I 1 D. n \ Y , I 1 . `:`y(� �\ li � l' l / , � ` w \, \ \ I \ \ . � 0.97 3b r _ L ° 3o 1, 211 1 ,s2 � J 0.20 _ 37.23 \ ` , ! " \\ a 1 I / 2.35 \ - \ _ _ -/ - � / /, 1 ,` 15, ✓, . �r / W3a ♦ CULVERT 20B " \ 0.33 S3 _ - - J�/ 1 1 III t , 1 ` ) , .111, / o, \ \ ` ` I I1 \ 150 \ 1146 I ,\` W12 4•� \\\\`\\ t I II / t , 3 °.33 ` ` � . W3 0.20 17 / t G I \ •� �`�\\ t� ltl+ l �t ' Ilf ' 'r /1 / \ 6.09 11 0.20 11 It� \\ \ " ' ' I� T�.•�.. v A I A V 1 // // 1111 11 / I . ' " \ \ � wsa i \' , r X J + \ \ 11II111111/ f l "r� \ \ J 0.20 \ \` 166 /� \ 4 \ 1 ' = r=/� ` �t \` / — �/ / t \gl`III � OW4 OW4 80-7a 2.00% 0.070.22 6.53 39.60 TO Pond W1 /\\\ I 1 \ �I \ li♦ '� \ \ - _ �+ `,^ 11 S2 1�1 _� � I>� ;\` 0.33 s3 167 • ' 1\ \ III i \ y, \ 148 /� `\ \_ \ / ' , / \ \ \\\\ 11,1 ,1\ / ; OWS OWS 590.74 2.00% 0.07 0.22 572.20 To Pond W1 « \ t \ 7s CULVERT 28 t �\ v ' — ' CULVERT 8 , _ 1 r I ' �1t 0W6 0W6 173-9Z 2.00% 0.07 0.22 192. 1 To Pond 51 1 f I ; \ _ \ . < � II I ... . \ \1 (I J�, .. 1so 1 \ . , \ � I I q� �\1 ,• _ _ • _ ........ - � D.2D � � \� �_ \ 1 / 165 .. ! \ f � , I k � � , 59 1 , ' ' � \\ � ` � ( / / 1tt\l� �. 21 .99 S5 1 166 , / \ ' / \ \ \ \ \ \ • / ` Wl Wi 11.26 20.00% 0.20 0.33 - 286.70 To Pond Wl NO � ` \ \ .33 _ rte .. . y J � i / 11 J"' \ \J•\` - �/ \i /. -�. \ 0.20 �- I / \ \ . _ _ � � � 135 � � \ — \ ���1\ \ Wla Wla 1Q-26 20.00% 0.20 0.33 290-77 To Pond Wl . - 8.62 �^^. — 154 \ 1 — \ , \ \ S4 / \ 0.33 - _ / — y / \Il, , 134 r ` � \` 1, d / \ � ` \\1 \ \ 111 , '. Wlb Wlb 8-61 20.00% 0.20 D.33 4.96 15.69 TO PondWl � _,. , /, , 7s ' , — _ , zj � \ ' �t " • �, \ X41, \ ` —C>`' "� � CULVERT 27 \• rs i ss /1 160 \ S8 , s1 ' use : \ `, \ \ y\ \ . —= J r ��\` ` , ,nr W2 WZ 32 15 7.34% 012_0.26 _9.70 _52.01 TO Pond W1 J M / 1 1 V 186 / , — ' ` \ . 1.t-•\ \ 27 , k _ — • / \ . \ \ \ / / \ \ \ \ .r ` _ \ W2a W2a 4.40 13.76% a. 1fi 0.30 10.01 52.37 To Pond W1 \ ♦ , dJ � `\ _ '� q ` ' . _ \ 1177 CULVERT 29 ;. ' I ` 1 .93 0.20 r it S9 155 \ \ WS - - - �, , W3 W3 15-55 20.00% 0.20 0.33 9.68 30.61 To Pond W1 ` : - S /-', ,, 0.33 0.20 133 ®` � � _ .. 1 \ � 1 I ,Ii \ o 1 � I \ 163 \ s / i85 ', \ 1/` ' ! / q ( 1 ` r/ 10.40 ��`" t 10.20 � / fig"r U1 W3a W3a 26-56 20.000 0.20 0.33 19.65 62. 14 To Pond W1 ',. \ 26 _ / / \ \ a 1 / ! / _ 1 I r 0.33 \. 23.25 / / � ' l i r \ 157 156 \ ,yy 0.33 .. \ r ( f/ r 0.07 W3b W3b 0-97 20.00% 0-20 0.33 0.69 2. 19 TO Pond W1 \ 1 \� ` � IIII 51 \\ � T — * / , � . • � , //` \ _ / � \• ` \ \ ��. -_ � - / � \ \ `� ss CULVERT 30 \I ��` �\�1 \ \ . POND wg � / \' � 46..79 9.51% D- 13 0.27 17.56 69..72 TOPOndWl 0.20 / \ l32 O - c- ',-- / =JI \ — � WSa _W8a Lll 0.2Q 0,33 0.78 247 ToPondW3 1( 27.67 033 - � �_ � ,/ , �. A — � ` ` 56 �f "\ 188 . _ / \ W$ 1 , ` \ 1\ 1 11 / S19a \ � 184 . \\ \ — _ \ —, » t \ \ 1 � ` / / W8 W8 23.25 _2(100% 20.00% 0.20 0.33 14.05 44.45 ToPondW3 - 020 \ 189 ,90 I \ ` I I \ 1 , / it `11 ( :/ 3 % 1\ \ 26.22 \ ,1j- - t 2.21 020 179 ` ` ' POND — — \ ; �• ` ` 1 \' ' / / I1 . \\ � \` ! "C M 1 ,p � t r 1 1 1 I , 24 1 ! yN _ ^ \ I \ �\ \ \ J \ / I " Wa Wa 2 37-75ToPond4 I - «!/// \ S2 ` \ . \ \ \ \` \ . 192 H, 193 1 1 ` 127 \ 1 � \ ' i �\ , , 1 h / \ 191 JI / r \ 1 \ � / W6b W6la 6-4520-00°! 0,20 0.33 26 98 95-88 ToPond4 . • ` / � ` \\ \ \ / J�/ \ \ \ A\ ♦ / 111 810 I I' ) I/ • \` • — , X231 .. �, i � 1I IjI/ ' 183 \ . ,;,• � !i / U \ � CULVERT 29, 1 q _ r. 1 J I _ — � : \ � , ` , \ \ W6 W6 9-7020.00% 0.20 0.33 6.19 19.59 ToPond4 1 1 `\ S1a 34 180 / 11 / , \ \ 76 86 ,\ \\ I� II / JI � \ , - �� W10 W10 18-2220.00% 0.20 0,33 13.86 43.82 ToPond4 Z / \ 1293 \\ f ` J // Wll W11 1-4412- 10/ Q- 15 D-29 0.78 z-88 TOPond4 13.70 D2o X � / i \ / x_ 74 l\ 1 I 1 033 Ii \ \ / \\ \ \ C• o/1 I 1 1 D.33 1. 1 1 /y� l 1 \ f I 1 — 1 \\`\ �//' o�— - - I 1 / i \ \ W12 Wl2 . L9-44% 0-z0 D.33 5.14 16-69 ToPond4 1 1200 \ / 1 11 / 1 , - . \ \ 73 . \ ♦ 1 812 I I /'� ( \ — / `I \ , \ — \ � \ ' \ 0.20 \ / �0 3 TOPOnd4\ \ \ � \ 511 ` / I r 0.20I 195\ 129 033 \ \ 1Wl5 W15 4562.00!0 0.07 D.22 0.93 5-5 L � 7. 12 , 25 �.\ , j CULVERT25 . 1 \ — 18.24199 sz, — . JW1fi W16 27 67Q00% 0.20_020 0.330.33 1.66 101.'5 ToPond51 Z 1 ' , - \ / 0.33 yy \CULVERT25 ` - _ III 11 .230.33 LJ' � s12 I. . s,0 , \ \ 70 ToPond51 1 \ 818 20 C — . , ■ ,y , I\ \ 1 / , - - x \1 11 1 \ �\ j - 5z 5z 21.99200% 0.20 0.33 - 107.40 ToPond51 to 020 it- / _ / — M — � . / t 53 53 fi.0920.00% 0.20 0.33 3.9fi 12.53 ToPond52I\I 12. 17s18 + r =r 70 ', 1 I C ` ,l.• S23 \ / Z\ \ \ 0.33 _ _ t / - 4\ I72I r CULVERT31 CULVERT32 , \ CULVERT34 �, i \ / ` / , s4 s4 21. 13zaoD% Q-zQ D-33 10.75 ._ ToPond52 Z o - CULVERT22 7, r l , t , 01 , oza \ \ . - - I ul' ^ 59 . —� 1 r , Is11 _ \ 95 \ 123 17 .02 / a LLI\ \ \ / 1g I I l , h _ 96 \ \ / / 0.33 , J , /� f / 55 SS 8.6220.00/ 0-2Q D.33 8.43 26.67 TOPond52 37 � 1 1 CULVERT35 - - - J - /f / / \\ _, _ I _ v v \� I _ � / / / \\ 56 56 26.22ZQ-DO% Q.zO 0-33 ZS 88 91-33 ToPorc1d52 a. l I / , _ -_ • , b _, J \ f- _ 514 514 22.8420.00% 0-z0 D-33 11.80 37.32 ToPond53 O2 1 T 1 T2 Z T/ _ / / / / i /, %—_= Sla Sla 3-7020.00/ Q-20 D-33 2.45 7.74 To Pond 53' - -! / / '/ / / / 99 \� � %_' - , � I % / /i ' / _ - " 58 58 1- 320.0000%a Q 20 0.33 1.34 4.23 oPo d54 YOU D I G J f`^ ' fr 9 T n Z, / �6 , , / - J� - _ 1 '� \/// f ' i / ' 59 59 1407.0.00% 0.20 0.33 7.88 24.91 ToPond54 Z 40 � , _ X60 / / 93 _ -+ 1 / /� -- / ` _ /� � �% 98 — A _ / ! / N 510 510 12.53200% 0.20 D-33 13.00 41.11ToPbnd54 8 110 x�� * // � �� `'` ``" '' / - � ' 114 822 / _ 't - — t I\ , \ 511 511 11.23200% 0.20 D.33 6.93 21.93 ToPond54 O - c / 0.20 1 1 r t J 512 512 18-2420.Oa% 0.20 0.33 14.93 47-21ToPond54 (� R U L /' ,/ r v� / 17.11 118V 1i / I I 1 '41 \ �' '' X52 e _ ~ 62 ` _ 81 \ J115 J \ I 513 513 72.8320.00% 0.20 0.33 38. 12 120.54 ToPondS4 (.1) a O 1 T52 T6 2 T\ 154 ' \ i ` 1113 / / 1 I o 1 \ \ `, 51 �1 \. f \` 67 82 , 520 52D 60. 1620.00% 2Q D.33 253.QQ TOPond54 TT2 1T Flo\ // Flo/ / '� / ; _ J 514 519 \ �' �j ` - ' / N. 513 I \ 9 \ / - - U3 U3 2.592.00% 0.07 0.22 0.66 4.02 FIOwsoffsite - � / 66O 1 , \\ \`i� ✓ 44 ,- 0.20 ' ' J ' I \\ t t I \ // /\\ 0.20 ' 1 \\ �- - - :I r ' - EAST AREA � t• •: 22.84 ( " a6 / j l I 67.43 \ 59 `\ , - jj \ 72.83 0.33 CULVERT 37A i I F1 F1 12-3a 12. 10% o. 1s o.z9 s.a6 zQ-o7 To Pond E1 5 f 16 /2025 45 0.33 ! I ' °.33 � , . fl n \ 23.29 \ / / \ / CULVERT 37B / 111 ' `� \ o \ 1 r T .. F2 FZ 6-86 ]2. 10'b 015 D.29 3.62 13.31 To Pond El % 0.33 �' / a y _ / \ - ` 1 / •........ ...... / ` \ �,,,. . - \ . — — I 1 I E9 E9 8.26 20.00% 0.20 0.33 5.98 18-91 To Pond 9 // S/ � \\ \ / CULVERT 39A � I J° 20.00% 0-z0 0.33 2.74 \ s1s , CULVERT 39B , 46 �- - ` I \ p I I \ — / 9 ^a, > / / ' • � . _ _ _ 47 I �.r \. ' . I \� r \ \ \ 58 I s1s CULVERT 24B V' . / ' f'-- 1 � :\ I / \\ EN2 EN2 2. 12 20.00% 0.20 0.33 1.47 4.64 To Po / \ \ — — / r CULVERT 23 t \ 1 1 / /1111 I VIII\\\ 7 N.E.� ` \� \ = s,a �� _;p tt \T` , — — — ` \ J / \\ r\ ICI LVER 937\C I P 11 —J P $4 D '' a \ `\ ` EN4 EN4 _10.83 0.00% 0.20 7.05 22334 ToPondE2I I + I \ ndEz / J / . v �� / i \ / 1 r - - - - y_ ndE2 PRODNO : PL / / _ _ 8 ` v � � - V 1 — , _ v1 ENS ENS 3.55 20,00% 0,20 _0.33 0.33 2.48 7.83 ToPondEZ - / - vv - - Avr - , 5 • . - $16 I v V A X87 \ \ — -- � J , 09 v v EN6 FN6 12. 10 20.00% D-200.33 16.41 51.88 TOPOndE2 � �,CULVERT40A ' POND v � v V 1� �1 - (t . � TAJ 816 oy„�'' ` vAv ' 86 �\ \\ 88 v ` � 7 EN7 18-52 2Q-Q0% 0.200.33 22.75 7L93 TOPondE2\ CULVERT40B S3 \ / I\ , 520 \ E51 E51 24.86 20.00/ 0.20D.33 18 53 61-20 ToPondEl 1 T2 2 1 0,22 3.19 19.36 Flows Offsite �r n 104 I off \ 106 \ \ \• 1 t 0.33 , / . , I \ 1 1 1 107 \ �� vv v 1 / va >� ' / / f ; `,► 1 ; I / ; \ \\ i � t ar= ET NUMBER 1 i TRACTM 1 -i 'Y l I / " •t -� � 1 - I \111 f� 1 1 II I 1 \ L —LI � L _ '_ L L — — — ���- — — 1 I , \ L - / \.. If .i' / 111 , ' . \ \ \ � -• 1 ` 1 \ ` J _ 0 4001 8001 nCOUNTY °- � _T 1 " 400 ' ( HORIZONTAL) - \ - - , \ - - - - - - - - . , 1 / _1 , , I . \ `. \ \ \ \ $ ? , t 1. \ `. I / 113 OF 141 ti %__ DESIGN POINTSUMMARY TABLE Basin Area Percent Cumulative Cumulative i c1a C100 Notes i _ , I 11 LEGEND aesignatr o (ac) Impervious 010 (cfs) Cliax, cfs `_- • ---- .___________ QW4 0W4 80. 70 2.00% 0. 07 0.22 6.53 39.60 To Pond W1 •—� / /�/ / \ N- ,__-_- - � � �,� � j l j - - - #- -; t S �1 ( �I ••`\\ 9 0 1 '�i OW5 OW5 590.74 2.00% 0. 07 0. 22 - 572.20 To Pond W1 \ \ .� / ♦ — �a 1 _ " � \ t 1 1 / / 71:k / / l I' �� 1 ' I , l \< .\ Y 1, 1 BASIN Et in \ \ / 1 / • \ 1 1 / I \I / , 1 OW6 OW6 173.92 2.00% 0. 07 0.22 - 192. 10 To Pond S1 � `t \ \ / / / --� , �• - - - , _ �� 1 �` t 1 1 ,' J >• L - r ,' i ` `�`�� ` '' ' ' DESIGNATION D1 1 1 � •. \ \\ 11 / V1f1 W1 1 l . 26 2a.aa�fi3 - `\ \ \ `, / / ' / -� .r r ,� \ 1 \ ` \ \ \ \ 1 ' t I / 1 I 1 �l 1 r_ — — _ / ' / M0. 20 0.33 286. 70 To Pond W 1 \ \ / JJ ! \ \• • \ ` t ltiI� / / I / / ' / /I� '� \ \tt ► / 0 z 20 010°' To Pond W1 \\ " ' ' '• • \ — \ \ _ 1I / 1 1 1 l l I ' 1 ` ♦ ,• < /� < '. Ls — a — , ! CS W 1a W 1a 10. 26 r0 0. 20 0.33 29077 ! I 1 / \ \ ♦ \ — — ♦ \ `• \ ► t t I I t / _ I 10 / _ IL is Ul 1b W1b 8. 61 20.00 /0 0. 20 0.33 4.96 15.69 To Pend W1 \ / f 1 ` \ t , 1 t t\ jflHi1i ao � 1 ` 4LQ . �2\ ♦ ♦ t , i I t \ , , ' • � \ , , 1 l - / tj , , , 1 . 00 (11110 W2 W2 32. 15 7.34°'0 0. 12 0.26 9. 70 52.01 To Pond W 1 , \ .... ..• / lI 1 1 ' \ 1 1 \ --� ♦ \ I ` t -- I 1 \ \ t I , 1 \ / .� / J J I 1 I / \_ _�,1/4 \ \ .•0\ / 1 i 1 I / 1 t \ \ \ \ \ \ t 1 1 .% \ ` X‘. \ 1 \ / / \ \ ` . , / / II III 1 \� \ ` _ 11 ,, BASIN AREA 0 . 78 jW2a W2a 4.40 13. 76% 0. 16 0. 30 10.01 52.37 To Pond W1 •\•\\• \ •.� / , I J l t \ \ \ 1 \ t I I �. 1 I + ` t • • I < \ ` a / / / / I I 40 % _ . ` < •1 t \ / C1 00 r I f I i I I tl `� ` 1 t • \. \ \ ` . I I \ `\ `\ ` � _ _/ r /r / i t r' < _ _ _ `� � ,1 / illln (ACRES ) D W3 W3 15. 56 20.00 0. 20 0.33 9.68 30.61 To Pond W1 \ ♦ • ,,.., 1 1 1 , \ \ ` \ \ S. -� \ ` /1 _ •` \ \ 1 \ ♦ \1 ,./.1. 4-- -i ii € -- < \ ‘ \ \ / / ! r , — ` — .� / 1 i / I l �) W3a W3a 26. 56 20.00% 0. 20 0.33 19.65 62. 14 To Pond W 1 — 1 1 \ ` ` • • - - - !,, , ,., - - - - _ 1 I, � � \ t CULVERT E1 `, \ \ ` � ; 1 \ ` \ ` ` I t ♦ \ \ `� / �' \ / ` ., - ` � - / / W3b W3b 0.97 2a00% 0. 20 0.33 0.69 2. 19 To Pond W1 • / ' t 1 L �,..�• ` - ` \ 1 t •\ , / / • \ __ _ __ __ • /rte /, / W4 W4 46. 79 9. 51% 0. 13 0.�7 17. 56 69. 72 • 0.20 �. / 1 1 - . \ 1 I • \ t t / \ �` . / / u To Pond W1 \ • ., 3 .89 ! - ♦ / / t I ( t ��. \ \ ` ,� 1 1 � l ♦ J 1 - , .... " -- -- ,. ...NN. ,; ,.." ... „. -- -:, 0i t 0.3 3 r 1 . •'� �;s ... ... . __ �� imam f 1 \ , ♦ \ \ 1 1 \ ‘ ' / / 1 \ / - .. ... ` .... // W8a W8a 1. 11 20.00,° 0. 20 0.33 0.78 2.47 To Pond W3 \ \, 1 . ' I I . , "" - — - .--_ / r j \ ` ` \ \ t ` / / / ` 1 \ ` • W8 W8 23. 25 20.00% 0. 20 0. 33 14.05 44,45 To Pond W3 ` \ t ♦ �"� _ _ - - S. \III , \ `� ` ` ` ` _ / . .. ' r ' / _ \ Ce \ / I e_` _ f1/4 _ — _ � _ _ / _ / . - •:\>\ #"111-15--' '' . X DESIGN POINT W5 W5 37. 23 14.46% 0. 17 0.30 17.67 61.53 To Pond 4 \ • K / 1 . 1 - —�° ` , 255 0.20 _ ' \ , / S --- c :17 la W6a W6a 23. 24 10,49/° 0. 14 0.28 9.81 37.75 To Pond 4 1 1 r " -. - \ �'�' _ �� `��-' �_ ` r~ / ^ . � '`'- ` .. 'ter-.� ( - ` ` � \ �� � > ,J!/�` . ,� /!' / _�► 12 . 10 256 '' —~~ EN6 :_ �_` F��y� 1 \ ` � -\ • �� / / 1 , ` � �`W6b '�''J5k� 6.46 20.00% 0. 20 0.33 26.98 95.88 To Pond 4 . \ , \ \ 0.33 . N/ r -�—� - ... -� - ,r _ ` � ) ` � . _ / ' ' / . �`/� -�• DRAINAGE BASIN BOUNDARY 1 ,� it 1 ---�� .;� - ' - ... / •� ,+ \ 1 ' ` �' _ 1 ` Z„ - / 'it \, �t : ""C \� ` e •ti \ �r _ _ 257 ,�. % �=_ _t - - - ♦ ' ` \` ' - �. / / '/ '�. f.� - / / W6 W6 9. 70 2o.oa,° O. Zo 0. 33 6. 19 19. 9 To Pond 4 \ ,. _ _ _ _ 1 r Q :. � _ _ . _ / /_— /rte t 4' `� i \\ ` A . / / "� »'�" _- "- •\ L ...•-. `,, - . C•�ts�1.1 ` S. ` �.. I ^/ T ant es .�1. / ,nom ___-, ":1 ' I te / ' VIA 10 W 10 18. 22 20.00/0 0. 20 0.33 13.86 4 3.82 To Pond 4 \ t �..> 1 I ��- � • �..� ` I�'; \ , ...� . �alt. .�` r..� r _.�—'�_ < / ' / / EXISTING TRIPLE CULVERT -- - EN1 \ 254 ! _ - \ \ 1 1 I POND . - ..�- _ y -- _...�.� _ ".°6""••••••••• .:,_ . ...::\ -. terCOT _ 24 t t / W'11 W11 1.44 12. 10% 0. 15 0.29 078 2.88 T o' Pond 4 • 1 - • ` ,' € . �,�,/ f '-� - - _ _ .�--ice — ' 258 l -� -•--.- -�- _� r -� •�'r'� ' 1 \ \ ` ` , \ t ( '1) \ ` \ •\ �: , _ , .- _ i : , if � --�... :.- ...... �' - - , \� , \� \ \� \ \ _ PROPOSED STORM SEWER/CULVERT in W12 W12 8.06 19.44% 0. 20 0.33 5. 14 16,69 To Pond 4 \ , ` 253 CULVERT E2 �� : / ' �` 1 ` N�: r I I - �� -/ ... / \ \ \ , `` \ \.... . .e. N ,� \ �, I ti , ,! \ t 1 CULVERT E3 \ l: _, 11\%.,., — • - - - -■'� �, t 1 S. \ \ \ U W 13 W 13 13. 69 10.35:f0 0. 14 0.28 3 2.92 113.41 To Pond 4 1 �/ 1 /, �;/ ♦� 'C , 1_,__ , ,. . / .1��. le \ \ , \ \ . \ ,1` • ` . '� ♦ � �, , \ ; 1283 ' E N 2 \ \ \ \ \ \ ` l I "--: �,�_,.. / ! ` . •� � - _ • .7 ` •.� , t . . ` . \.` , � � III N W14 UV14 179. 18 9.22°/4 0. 13 0.27 - 119.80 To Pond 4 \ ` \ •\ ♦ s ,/' ...' r .. /\ . i EN4 ' _� — " ''�� ! 1" — — ` \ •\ ` 0 \ \ . - ♦ /f, �� ,� • I i r 1►,. - . S. r \ ` k , ••, d PROPOSED MAJOR CONTOUR H co \ \ / ♦ \ �\ J J 1 0. 20 �--\ 0 .�_-J,r / _ / / \ \ 1 W 15 W 15 4.66 2.00% 0. 07 0.22 0.93 5.63 To Pond 4 `,\ • `, \ , . rI _ E N 2 1 I 2 . 12 \-- \ ` ` \ ` 1 -� .1` — — _ . \ �C "� / , . / .��— s. . 278 ! 282 ' \ \ \ ♦ `'f ' N "\ ` .� ♦ •-r ♦ \ s.\ \ ♦ \ Ni r W16 W16 2.35 20.00% 0. 20 0.33 1.166 5.25 To Pond Si •\` \�\ `� / // � .' f, =:may ,, \ \ �I 0.33 c, \ 11 \` 259 \ • • ` • / ` ` PROPOSED MINOR CONTOUR\ 1 ` I .� < \ . , \ � / ` \ \;\ ‘\. .\\ N` . 51 Si 27. 67 20.00% 0, 20 0.33 101. 70 To Pond 51 , / /// , :' . � 277 t �► , + '- '------c.,' i 11? �\ \ \ i _ � \ ` ` \ ` \ / l 4`' T,/ / , \� 1 Cr" •,....., , 4 ` N. \ i f • y - ✓- \ ` / 5 ` \ \ ` \ _' 52 52 21. 99 20.00% 0. 20 0. 33 - 107.40 To Pond 51 t 1 \It X „ / / .! +�� ♦ �,� 1 ` \ , , \ , 0.20 , � , . \ \ / ` . ` • ` �, /off EXISTING MAJOR CONTOUR � . 4 ,� /-� \ \ 18 .52 A \ \ . 1 �_ r /// y 1 , � \ \ \ / I, �� /\\ 0.33 / \ \ \ . . . .53 S3 6.09 20.00% 0. 20 0. 33 3.96 12. 53 To Pond 52 r t \ , . , ♦ ♦ r 5` �, \ 1 / + / 7/, 1 l ����`�� i ,���\ .�, \ \ 279 , 1 , \ � /� / \ t 1 \ / •` ` `, \ \ \ �� 54 54 21. 13 20.00/0 0. 20 a.33 10. 75 34.00 To Pond 52 c 1 1 ,/� \ \ , � ;� ' �� �` / I �j f -�- _ �` ` ` \ i ,OQ., _ / EXISTING MINOR CONTOUR Z O1 I \\ \ \ \ E N 4 r r �.. .,. �• / ...� \ \ t \ I / / \ \ \ \ ` , 5 5 S 5 8.62 20.00% 0. 20 0. 33 8.43 26.67 To Pond 5 Z r 1 1 \ , / / / / II 1 t 11 ',, � ���I� ♦ ,\ 1 I ,r� \ \ \ s j I \ 260 ` I ` �`a- ti -�._ / \ l f 1 1 ♦ , \ \ \ LLI ! 11 //r / / / I �� I I� 'O `� r. 1 1 / ` • \ ♦ = --t -.-I,,,- t ,�/ //�/ / �i \ 1 At . , h+`o; ,. \� I'S \ • 'R' 1 0.20ilc%et _ �: , I . -• . • J • . f / / 56 56 26. 22 20.00% 0. 20 0.33 2&88 91.33 To Pond S2 // / / \ 1 II 1 ;, . i� � . ,, \,.\\ ` . , \ � �I 10 . 83 ti / � �� `- `...k ` ;� \ I 1 / \ \ FLOW DIRECTION / • / / �� t 1 1 1 1 1 , 276 \ ,\ I `� \ 2 514 514 22. 84 20.00% 0. 20 0. 33 11.80 37.32 To Pond 53 �� ��/�/ , L <C� ` 1 \ \ , ��•;: ♦ \ ''• < 1 280 t l �,, - 7, 0. 33 I r �\ :-\Itilit'li1111:\%-\-\ \\‘‘:(1:::::141 - - - �- \ \ ,\•`,// /, ` \ • ,, POND 9 ,� \ , / , \ \ 1 `- • ` • U 515 515 23. 29 20.00°0 0. 20 0.33 12,97 41.02 To Pand 53 \� �/� • \\\ \\ � 1 � � > \ ```�� \ t / til j \1 \ • i \ , ! '�, \ - ••_•• _• • _ • •_ ••_••E INITIAL OVERLAND FLOW PATH� . I \ \ \ \ \\\ 1 i Y . •. \ \ \ 1 \\ .516 516 2. 5 20.ao° 0. 20 0. 3 12.85 40.65 To Pond 53 % ` .• ' ' ♦ r \ \ < • \�� • `� ` ` \' t :; � �` _ ' ` a� J ` \/ / //, \ ` ,. .-�\ I \ 1 t ,\\ \\\ \ 1+� `.ie� . \' ` r / 281 / f ` / / \ ` , ` .�, ! 1 .- 1 \ I '517 517 29. 19 20,00% 0. 20 0.33 23.30 73.68 To Pond 53 • / , -�•` , t \ , � � E9 \ y . / \.. :. \ , / , \ / , , . •� / \. \ . t - - CHANNELIZED FLOW PATH_ _ � \ \ t 1 \\\ , y t � � . � �� �; v / ♦ �, I { 261 / t \ 1 t ! � � \ 1 r t \ '' ..�, ' � / ` It 1 11 \ \\ \\\ \\ \ � �S1a 51a 3. 70 20.00,° 0. 20 0. 33 2.45 7. 74 To Pond 5 1 , \� 0.20 I `����Il ` . CULVERT E4 % \ 1 I ? ` / 1 tt ` \\ 1 Z i / / \ < 1 \ \ \ \ .� `� \ CULVERT E ,1 \ , t t . / \ /\ t t/� ► t \ \` \��\\,\ \ ♦ 8 .26 /, '` . \ ,� 5 , `�,. , ` \ �� , ,, \58 S8 1.93 20.00% 0. 20 0.33 1.34 4. 23 To Pond 54 1 275 , t \ \\ \ / /. \ c l t/ ` , •`,\\�\�\ \ 0. 3 3 ,, // • � . . ` �,,�: . �, - - � \ \ \ � \ ` ` ` ` ! `�N• / \ t {/'�)•: t I 1. ♦ / r 1 /� \ \\\ \ /• .w• ! - _ ' \ t \ t1 \ ` ,` , `, 'Vt1fir./59 59 10. 40 20.00 '0 0. 20 0. 33 7.88 24.91 To Pond S4 • \\ • \ \\ _ 1510 510 12. 93 20.00°/4 D, 20 0.33 13.00 41. 11 To P4nd 54 / ` - .- • `� `\ \ ` ` \'�' It / ' . '''' .` -= �� - \ ` ` v `� \� ` \ l � `� t ` ' I\, ._ 1( / \\ \ ��� \\ \ / . / FEN3 _ 4 ♦ \\ \ \ \ ♦ \ 1 �`., 1 1511 511 11. 23 20.0010 0. 20 0.33 6.93 21.93 Io Pond 54 1 / / ` \ , \\ 1` 1\\\\\ �� / ' � ` � / V ' , �,� ;EN3 1EN5 / J r J ? \ �1 ♦ \ \\ `'� ` — — r �S 1Z / Ein W0r J / / / \ \ 1 \\\\ 1\\, \ t� �1 / / /ice '' = 0.20 ;''R • <, I / l / ',� �t ` ! \ , ,\ \ J , ` ~'` ` \512 512 18. 24 20.00,° 0. 20 0.33 14.93 47.21 To Pond S4 / / \ \ \\\t\ ,\\ < �i ≤- � ` f ` / t \ \ J \ .2 .21 \ 262 / / / , t \ \ \ \ \ \ \513 S13 72. 83 20.00% 0. 20 0. 33 38. 12 120. 54 To Pond 54 7/ / ♦ , / , \ \\` \ \ � . 0.33 , \ 274II \ i ,, ♦ / / / / /�/ / \ t\ \\ ` \ \ \ • \`'� ` \ 1 1 / \ ❑ / \ \ �\�� ♦ l 273 • , t / I 1 \ \518 518 12. 17 20.00, ° ` r ' ! • 1 1 \ `/ > > t 1 10. 20 0.33 9.47 29.95 Ta Pond S4 / I \� \ \ , � / , t \ 1 1 ` \ I �—� ! 1 + 1 ,\\ 1 \ ♦ \ \ 1 1 \ tW° all ` \` I I `, \ \ ` I � t i 1 r r �I ,\ \ 1 t \ ` \ \ \ `\ li ♦ � ' J 1 1 1 1 J \ (�519a S19a 2. 21 0.00% 0. 20 0. 33 1. �� 4.81 To Pand 55 * + \ \\, \ ` \ ` k1 G �\ ` ` , \ \ 11/4 ` \ � , —� V , J , 1i r � , , ; \ \ \ ` \ \ -. ,� \;` t 1 t , , 1 \ U 519 519 67. 43 20.Oa%0 0. 20 a.33 27.07 85.59 To Pond S4 �� ` 1 tll\`hl \ ` 1 \ ` ` 1 .• ' • r I I I 1 \ 1 ♦ \ • \\\ \ \ \ -� `\ \ t \ 1 1 I \ t;�S1 \` \ ` � / I t \ \ \ %• t 520 520 60. 16 20.00% 0, 20 0. 33 253.00 To Pond 54 \ \• • ' \ '111 " ` ` 1 1 1 \ \ \` \ ' ` ` ` ! - :41,41i,:‘, , / J I : ' 1 \ \ ` \ ` \ ` \ l I `• t •\, \ t \ W W\ ,tl 111 1 � , \ \\ -� „se , . ! \ t i 1 • , I. 521 521 7. 12 20.00% 0, 20 0.33 4.61 14.58 To Pond 54 •` \ ` \ 1 �' 0.20 � � � � `, \ / , 263r , \ \ , \ \ / N,� a , \ I 1 -r \ p . !, , r \ \ ; ' �`. ` I hr1 1 EN5 \ \ \ I 1 \\ 1 24 .86 \ -- T�` ci‘‘`‘ ‘‘\,\‘'\‘‘‘ 0.33 .\\ \ X .\ \ \ \ / _ 1 \ , _ ,522 522 17. 11 20.00% 0. 20 0. 33 11. 29 35.69 To Pond S4 / + ♦ \ 1 t i \ ° , , \ •4, t \ \\ t ► �� �. � 272 \ t i ` 1 0.20 \ •`� ` \ \ / :i. I t \ O 523 523 7.02 20.00% 0. 20 0..�3 4.07 12.87 To Pond 54 �� It \ , lt �\\� \ t \ � ' `` . \ �♦ � t I � ,� I t 3 .65 \ ` `\ i ;. } 1 t t U1 U1 5.44 2.00'3'0 0. 07 0.22 1.32 8.02 Flows Offsite �.,• t1 I I 1 // }1 I t : t` 271 <� ♦ \ \ I1t 0.331 \ I \ / /�, IttZ w .`\\ ,1 �t + I1 I I 1 1 � ' .. � •i , `` \4 '� \ \ \ .�Ir I ! I 1 , t I �. I,� \ \\ \ 1 , \ , , 1Il tU2 U2 2. 75 20.00% 0. 20 0.33 1.93 5.09 FlowsOflsito \ /,t 1111 \\\\ c \ I -� \ e \,� ` • \ 264 � � ` _ I t t ` _ ,� \ , \ r ::,, ( I I 1 1 � 4 � 4 � 4 � ��� \ \t\ \ I 1 , \ /! - ( � J I � 1 1t t '' \ I / I 1 1 1 `U3 U3 2.59 2.00/ 0. 07 0. 22 0. 66 4.02 Flows Offsito < • • \ t \ 1 � ♦ �'` / \ 1 t t , ` `555 \ I , t l Wl 1EAST AREA ! •`r ♦, F11\\\ kl \ \ , / %/ Ci-÷-1 - r 1 , `� \1 It t + y'I \\`,� \ \ • r/ + r / 11 \ \F � F1 12. 34 12. 1a% 0. 15 0. 29 5.46 20.07 Ta Pond E1 `'� ♦ / X" / ' ti �� 1 ~� t t1 /" \ ` - � �I �, / 1� �'• \ ,11 \ , / • � \ 1 % < ` 11 ► 1 1X11 1 r �\\ t \ \ \ l1t � ♦ , r / '' ; , $ 1 `�� 0. 15 ,k� , t1 , . \ \ % \ : ` - I , 1 l, l 1 \\ \ \ \ \ / ♦ t \ F2 F2 6.86 12. 1al0 0. 15 a.29 3.62 13.31 To Pond E1 '� _ ';� 12 . 341t` 1 c - 1 , fi .� ' 265 i t Il11 t -~�i �` / ` \ ` 1/4 ' r / \ \ 1 1 t F1 \ \ / 267 � . ` ` � ..! ' ES2 I t , 1 � , \ �,, \ I ^\'\ ``\ \ `. \ ,\ ``• t, / ' / - \ E9 E9 8. 25 20.00% 0, 20 0. 33 5.98 18.91 To Pond 9 ♦ 0.29 1 ,•1 270 ` ` � ` •• I ' !j I t /'' r \ \ \ • / / „• t - 4 ' + 11tt 1 \J . / / 11 fI - 1 � lr � t :,...c\ ‘. :111-11: ` ��� /Il \\��\ \ \ \ \ \` ` ` \ / � ` \ EN1 EN1 3.89 ZO.oa�/0 0. 20 0.�3 2.74 8. 66 To Pond E2 •.. I 1 i j `• -c `� 0.20J I \ . , / � \ \ \ \ 11 \ `� � ~ / ` ,''� • ` ► 1I , I , ,t ,\�' \ / L 1 a •. % 1t11 ♦ ♦ \ :- -- �' %- \ \\ \ \ ` t ` `- -- - / / / \ \ENZ EN2 2. 12 ?0.00�,'�0 0. 20 0.33 1.47 4. 64 To Pond E2 I `. i ` � Ili \ , \\ t III`♦ •:..•\ � ' _>r / �. 1 \ _-.--_�- _ 8 .77 , - , R1 , \ I � 1 It, `\� \\ \ \ \ \ , � ` /r / \ I \ 1 1 's••-•.0.4 \ �\ \ - / 0. 33 - _ -C} / ,� \ • \ NIS _ WO \ EN3 EN3 2.21 20.00% 0. 20 0.33 1.68 5.31 To Pond E2 \ \ \ \ 1 _ \ •- _ - t 1 y -- . �/ - 1 \ / L EN4 EN4 10. 83 Z0.00�� 0. 20 0.33 7.06 22.34 To Pond EZ � \ \ \ ` 1 I ! , .,".„. 1e ._, ..• .,. \ ` '. \` f -� / I . ` `. _ I - � �r 1 �- .,.. / ,..," t t II1t I 1 t \ \ N. \ `' '� �'''� ' it � •\\•\‘‘• , \,\ l 1 , `� � � \` \ t �\ t r \ � �� 4,, z :,1 -- -- , tom . _ + -• ./ " I1 \ \ � \\\ \ \ \ , \ ` 266r _ ► \ I , ' 111� I1 \ 1EN5 EN5 3. 65 20.00% 0. 20 0.33 2.48 7.83 To Pond E2 \` ` \•:1/4 ` ` , \ 11 • ' _ 1 , tlt 1 \ s \ \ \ \ \ E ` \ \ ` \ \ ' ' N \ � I \ \`` `\ , 1\`� \\ . \ti 268t \� ` ` .., r \ I 11 I I tt \ \ , \ \EN 6 EN 6 12. 10 20.ao% 0. 20 0.33 16.41 51.88 To Pond E2 ` \ \ \� ' < \ I \ ` 1 ` \ 269 , ` , ` \ \ ` � - I \\ - � :: , iii..... E., :_.;c: , 1I I � I t l t 't \ \ . \ 1 {,� _ \ \ \ ° I , \ - „ \ \ \ / 1 \ \\ ` . ` . `I , I ti / J / 1 ItI1 � t 1 1 \ \ 1 - ' � 1 1EN 7 EN7 . 52 20.00/ 0. 20 0.33 22. 75 7 .9 To and E21 \ 11 \ ` ; ES2 , ♦ ! 1 ♦ _ _ ,. \18 4 1 3 P8 t °` * ` \ ?; �i \ \ \ \ t • ` ! CULVERT E6 . / / / 1! Ill : + 1 t \, \\ \ \ - \:, 411/4ES1 E51 24. 86 20.00';x4 0. 20 0. 33 18.53 61.2a To Pond E1 • / \ \\ �,', \` \ ♦ % \ \ •. ` ifr / \ \ %''•% '. ` r \ ‘-` •4":\1/4}-1\ �� \ \ \ � r I I \ \ \ \ \ \ _ _ ES1 • .: �_,` 1• \ � / / / J 1 \ ! ,E52 ES2 8. 77 20.00% 0. 20 0.33 5. 79 18.31 Ta Pand E1 \ r1 •. \ \ — 1 \ '� -. - _•.- \ \ , . / / \ \ ` \ \ \ \ t ` \ \� � t \ / / / / / \ \ \ \ \ t _ ♦ \ES3 E53 27. 69 20.00% 0. 20 a. 33 29.59 96.50 o Pond E1 • \ 1/4 • \ • • \ \ l ♦ J \ \ \ --: ._ N - -__-_ , \ , < / , \ \ \ ♦ ` -. / t „IL . _ ♦ \ \ \ . EU1 EU1 14. 77 2.00% 0. 07 0.22 3. 19 19,36 Flows Offsite I ` '''_; ` `, ` \\ `��`� ` r PS �' 1 ` \ / '� \�� \ • F. ♦ \ / \ t g' ae • —aim. se ,/ / / / / 1 \ \ \ \ — � > > ` \ �, � \ \ \ \ \ ,, / / ! 1 \ \ 1. I t • N sit 1 / S I k \ % • X 1 II t \ tc- / 1 F2 . _ . , \ . 5 . \ / re / i I•\ \ -\\\ \ \. �`, _ 1` • ` ♦ \ \ ♦\ 1 '1 ' A 0. 15 \ ._ R � :�, ` \\ N. \` ♦ ` v, I fff r t 1 t t�(( \ti . •��\K "S \ \'\' N \ ` ` I11 ! 11/4 \ \ ; .` \ \ \ \ \ \ \ \ \ 1 "� 0 .860.29 F • \ r t I J / / / t 1 I a. \ •._\ \ • \ • N I • i I I 1 ( ( .1/4 MIS / i 1 1 i sv ,♦ �►. - ♦ r t 1 1 \ ♦ \ \ 11 1 I I \ '�. 1 ' , 1 ,fir- A \ \ I J / , \ I , , „/ , 1 \\\ \•\ , 1 ♦ J < I ES3 � ; \ ♦ •� •. / / t \ 5 1 • t. / , \•, , 1 1 1 1 1 I ` ` 4I / I , �I t ( 1 ���,• ..,`�•i \ \ \ It ""` • % °`• -7. -1—....-- .e.-- '1 ./` ' / 1 ` ` S. \ I - / r ( \ 111 1 1 / ! �ti ,�. ` \ , \\ ,1 \ , fit t itk_ _' _ �, . •. POND \ - - •�__ 1 \ 11 1 --t/ t -_ .;�f— — rr�rrr•�•t..s=•� \ , .` \ t , \ / / ' El \S\ i ._____ ---__ ----. _____ . . , . \ / 1 \ % I 1 /1 oes \ a . , . ‘‘. 1 /1 \ \ . ,\ \ \\ \ \\ \\ i+��*I \) I I + _ w ( \ \t 1 , ` /� I I • I- ,. / I` \ \\\ \ N . \ \ \ •\ 1 nI I1j , ` � / — ti t I t \ rr � �� ~ \\\ \` ,\ \-:\ \\ \ \ It tI Ilk, i tar �� 1�I * / ` �` � /1 \ t I I 1 N �'oe / .00 le _� \ ` \ \ \ 1 1 �` \ ES3 ��.. t \ , f t 1 , ✓�•. ` �� , e e, / f „ e _ 1 0 /// \ \ `\ I \ \ �� 0.20 / -II . / r \ i I / / � . � — �► t111t1 \ � 1 \ S. t ` 27 . 69 I — I t 1 t r / /i 4: 49 ... et'', /le 40. 11 t \ \`,' 1 1 1 1 N \ \ t 0.33 ` / \• \ \ �. / _ \ 1 < I \ ra/ ' /i / / � r \ ,1 ,I t \ � , 1 \ \ I 1 C S. , \ \ r " ,, / \ I t 1 \ / I 1 / / r , %N .. �, , 11 1111 It Or I ) 11 1 t I � � � / .- - � `\ • \ ` \ t , • 0 4 \\ \ 1 L S. \ I . ' 1 t t 1 11 1111 i1' 1 I / I I I \ \ I ,. ` / \ 1 Z ` •♦ \ •` / \ ` I \ ` t ^/ I 1 1 1 ‘ • • Nit‘ / • 1 • • N • ‘ ,_ a \ • 1 I J / t trcLLtr_4 ♦ � I ♦ 1 1 I t \ J 1 r t \ 1I 1 I / / / � - - 1t ' O -- / \ \ � • \ \ , w \ 1 1 I l , / •�` . \ I 1tI I I / / 1 r 1 ,' .� I 1 1 is ` ♦ ` �\ \ \ 1 I , \ 1 \` t . \ — _ �. 1 I g z — , . '\ t 1 I r , I � 1 I I / / _ . I \ E . G ` , r \ � � t i `D � �.\ \ \ � ' 0 se Z w 4 .,,, ... , , , 1 , c,.... .- ...„ / /71 , , , , • • • \ • ;% • i • ok e 2 W G -- . \ , t , , , , . r , I i I f • rEU 1 (-- , ___________ _ . • \ • ,' i / . g N %. -- -se %\• \•‘\t\\\‘\‘‘-‘\\\I•C \I\\\•% , 1 _ „ - Ct / 1/ ` % IIIIIII� ` \\ ` . \ / � t \ \ 41,•,, // a ir — lid -\ \,.\\\‘‘ •\ I I 0.07 1 l 1 _ __ �r D \e, �` \�\.\ �`.\ . 1 , \ / < ell / � � J \\ S. \ 1 14 .77 { / \ I 1 ` \ `�, _ —r U d \\\ ��\`` .` ` � I� ` \ I / , / .., \ 1 / 0.22 \ I \ / J / J \ \ , � \ \ 1 \ 1 I I II / / %\• \ \%\\•s • \ I I \ I , / I _ N'• ` / ``�`�`, '`` ``~ ♦ / / 3 ` \ \ t1 III 1 I I j r j `` • .. . "1k �\ I 1 / !� , 1 I / ♦ I \ / � ' / • \ ,1 ��ti / —~-i- UNCC C C ❑ • W . \• 'a- -/ \ \ �. \ ,\ \ / + \ t tl , III \ . , I I , I 1 t , ' I \ \ / \ \ \ . ~� U 1I CALL BEFORE Z (D 0 ♦ 7 , \ \ \ •\\\ `\ t / 1 1 t 1 1 1 1 `\ h ` \ / d 1 ,� 1 I 1 . ` ♦ / ./ r ,\ ` v l /! , \ • ` ` ` ` \ ` \ \ ` \ / I I It t . �. \ \ %. J J J ! s 1 1 1irp ` . / 1 \ ` � ` ` < Z `I t t % \ \ ` \ I I / , 1 11 I t _ _ _ I / / I l , i 00t ( \ 1 \ \ ______ l / �- - ,-/ \ t ... i'r1 , `, YOU DIGz 4 I. ilt \- . ♦ \ \ 1 , 1 \ \ \ / 1 / + I ` IIr rre ` 1 1 1 S. \ / �1 1 1 tX 811 Dooz D L \ \` � / / / J \ ` / 1 , J I + ,' ` � � � �se � I I I ( 1 / \ � _ `� , 11 , \ + r / ` `• 1 \ . \ \ � r I , Cl 1 ` \-. \_, \ t OR H 7 Z 4 % / i t \ ` . ' / / / / \ ` \ I 1 1 1 t I 1 I 1 \ T, , \ \. / r-- • \\ \ \ \ ♦ \ 4 I • ‘ \ • ` \ `� IIIINIkii A 50i 2// ♦ ,• `\ \ ` � � � / •/ ' / / / +� • \ �` . \ \ \ \ , \ \ 1 � � ' ` 1 / ` \` ` \ ` ♦ `• ./ /tom • //ii Isl tk — %. \ -.,, \ \ ‘ 11/4\ N \\ St ‘ ik, - Z No :kte, siN t3/4. gii, %a .... N \ Z LI j W s• \ • — ;‘\ i• %. \• • • \ • •• \\ • \ • ‘ Saillfrb *N. / • / % ‘ • \ % • NJ ' 1 ‘ ‘ .... —• -- % ‘'`N‘ Iky ii i i I/4 ; a.. .::%.\\\ .% \ \ 1 . .... . . „, ..... , N .... .0. i 8 1 ,, •_ • /it/ - •\\% `�Cab 1 _ 4 'S / / ,Il S t / 1 ` \ \ ` r \ !•• r r \ I 1 ci. LL 0 i. ` . ` % _�, `r *:.... \ 1 I1 800 922 1987 f •• 1 i . . 1 ` ` . `�s� `.....,, / / . ` •-� t 1 1 .�` . I •`\ `♦ ` � • •�• ` � ` 1 -\ r•� EU1 :. \ I I % ♦ •` ` � •1 ` / '� / `�"..____ , ` ,' � � \ \ ` / � �`\ `\� J • ` ` � � ` ��� \ \ �.,�. , 1 c •I \\ `\ \ �\ \ \ 1 X1111111 �▪ .� , • I , . . , . • \ ( f UTILITY NOTIFICATION ,,,��� \� . - / III , `\ •`\\� ` \ •\ •♦ \ �� \�` . ` \ ♦ �'' i` \ ` \ ` \ \•`• \ 1 `\ \ \\ / \\\�� EZ(� / / ` \ � � ` I - "'� 7 + III < Ns.. ♦ a \ .. _ , ♦ . ,• \ \ % \� \ \ / •, 1 , \ ♦ 1 j 1 \ •\ \\ t •�. \• �� •••.... .i .. ' .CI -am . ._ ft%_ _ \ . I1 , , \ \ � ,• • ti \ \ , , \ , — 1 + 1 \ . � , ' ` \\ \ ``- -\ CENTEROFCOLORADO ; - .. -- ; �/ w ` - `'-ter ` •�. J t r \ ` ` \• \ \ \ • ` \ \ , `\ 1 ^ • \ • • O • O 4,.. ... ... • • 1 \ • ,%1• \•( •‘ -'-• %. ‘ \ \ ‘ ‘ \ \ ‘ \ % I e • 1/4. \ I / / \ "\ t \ , / / ie ..‘ \ i \ \ / \ \ \ 1 \ \ ` \ \ ,\ \ \ ‘ ‘ • 1 \ I ‘1 \4ei 1 / \ ` r ••••• ....• \ • t 1♦ `, ` // r I e, 1 I \ 1 !III 1\ • 1 \ ‘,I , 1 t ` 1 •,‘ \' d7 N ‘‘`; �,`\ • •1 ~� \ \ t• l / // t t \•‘k \ It` •t \ • \ I ` � j� O�••• /16 /2025....•a �V `\ I ♦ �, . + I ` I \ 1 \ \ \ \ \ \ , \ \ \ • 1 \ \ \ k / \ ♦ \ \ \ • 1 t /i \ ' �. 1 % % \ . \ / 1 \ %. eel S. S. \ \ ♦ . \ '11 t \ . � k. ♦ 1 \ / NAL t I � ` . \ ` . J I l / I 1• \ ) 1 \ ► . -.\\,, \ \ \ \ \ l 1 ) 2 �) � `♦ ` \ ` � ` t \ \ \ t /j// ,S�O \\\\ \ \ 1 \ I . / \ \ \ \ l S. • / \ \ \ t IM CO \ \ _ - -% 5 \\�\\ ' / I I / 1 \ i 1 I ` - - • Iiilif� • , • ,, _ , 1IlI1 S. . / • \ \ J \ I , . ♦ ♦\ \ I I \k) \ ‘‘‘ • 1 •) % • \ , / - ` • ' . • � I I I ' / _ , ` ` t . // / ` I •\ \ •1 •• \ 1 / \ 1 \ \ �� olirt‘ \ ;\ S. \ \ \ ` � _ � ` t 1 1 , / �t ` \� t / / • % •// , \ \ S. 7 �,\ • • ♦ t \ •1t r•-' ROJ NO . PL 1 �, , 1 ♦\ ♦ ♦ \ \ \ \ / ` % % /IIIIII / - - - / t \ . , � I J - ter S. ; ' \ ` \ `, \ \ •\ tt1 - __ �- \ \‘‘ 1 ♦ \\‘‘, 1 l ` `` ♦`• �` '� `\ `\ / - - ... ....\ \` / I r 1 J ,- _ / it I I 1111 ! 11 S. \ \ `\ / \` •♦\ \ \\ •� 1 1 1` t \ •\1,1 = \ \ l I 1\ `\ , , ` t ♦ . � .. \ f\ 1 l 1 , (/ 14 1 t \\ \ \• /r.... • ` • \ \ \ \ ` / I 1 1 t1 ENG TAJ I 1 \ \ • • • % • / \ I I 1 \ ♦ I , ::\\\‘::\ / / 11 S ‘ \ ‘‘ *--- -- -_ \ • • 0 „ , „ 1 I • \ _ jj rl I 1 • • , _ Sa c CHKD .tr\\ \ `, =- �. ' \ • ` 1 J / . - - • .....� ! �,_._._� I 1 r' \ 1 1 '• `I ` . `:• ` ` ` -- , \ + DATE 1 /2$/2025 • I / i \ l \\\ ♦e\‘ s‘ 1 \ ♦ / 1 , S. / ♦ �� \ \ ►\ �, 1Il % ! I .. ... \ ! • \ \1 1 \ \ . ♦\ _' %. _-_4%\ • ,. • : ..,. /, / , \ . j / ♦ \ ♦ ♦ .. / I / ♦ • \ \\1/4 1 \ I ♦ �/1 -... • - RJ('S% 'S \\ SHEET NUMBER 1 ` �` •- II / \ / -1......„.... \ \ \ \ •\ \ \\ •\` •1 / • I ` • /1 I ' r , ` 1 r / //--•,rte, I \ t 1 ♦ •` ♦\ ` -�N. / t \ \\ S. \ \� , i 1 I is �- 0 300 ' 600 ' -• • _Mae f l ,, ` \ ' ) ,I ` ` l ` ` �\ , ` i '\ ' ....• 1 I , •' r \ ck /•�... \ IN / \\ I , ` 1 '1 i 1 ,�--- _••� ` ` ` ♦ ` ,� _- - J I1 — 300 HORIZONTAL 114 OF 141 Th _ RETENTION POND W1 DETA: .. . _ _ _ __ _______ __ ian IL - - - - - \ V A v _ _ v -� V / I A A A \ V \> / / _ - - - - _ - _ - - - _ - _ _ _ - - - - - - -iii -i_ _ - _ _ _ _ _ ,_ _ _ _ , , , /1 /- / - _ - _ - _ - _ _ - _ _ - - iii - -ii_ _ _ _ _ - _ _ _ - - _, , _ _ _ _ , ' ' ' ' ' ' N \\ \ \\ \\ ___ ci: III: TT N _ __ _ _______ j -_ - - _ - iIEI1iuuui:Etts2111 ' \ , ç/1 ,II/ > ao o °u - oo _ \ l / -- - - •- - — - - -/ /_ _ - - - _ - - \ / \ II ' I/' I /' / ' / I I I I' \ \ w - - I \ t O /� 8 4. 90 � - - � G - - - - - - 1 \ ' ` ` \ LEGEND H � � \ z - G ` ' \ I I ' \ J - 100 .00 SPOT ELEVATI N � / \\ \ I 1 \ \ ` - / \ \ / 1 I \ \ I I \ /1� I ' \ \ - - - PROPOSED MAJOR CONTOUR / -/ \ \ \ cA , ` , \ /00 PROPOSED MINOR CONTOUR O / \ - - , I \ ` ' ' / 'qo % EXISTING MAJOR CONTOUR W / / oo° ' ! \ ` - - \ ` `\ ` ` ` ♦ ` \ \ CEO , , \ \ \ / Ow ' - ' / - ` ` \\ ` \ ` o I ' \ \ ` \ ` l , X7O EXISTING MINOR CONTOUR OD I \ 1 / - ° / _ -\ \ \ ` N ` ` �� � ` � I rn 1 \\ o I / DRAINAGE FLOW ARROW OI I . i \ Qoo / \ \ \ \ ` ` - _ ' o 11 \ 1 i \ — EXISTING EASEMENT O 7/ / / . H. . - H _ / . . . . \Nt:)C - _ . 1 . / ' ' \ \ '\ \\ \ 7 r / 1 \ \ \ / 7 \\ \\ \\ OIL & GAS SETBACK 1 I I I1 1 • _ , / , - ' - \ i \ \ ` \ 1 i i i ' i � ' - - - - - - - PROPOSED EASEMENT / \ 1 / _ / / I \ ' ' \ \ ` PROPOSED SWALE/ROADSIDE DITCH '/ �b� �p . I i \ \ ` \ � ` \ \ \ ` N l ii \ ` \ `�' � \ RETENTION POND W1 / jC \� ` \ _ - ' \ ` ` \ \ \ \ \ � �' \ i \\ i � ` \ (SEE SHEETS 12$ - 130 FOR CULVERT / t \ \ `\ / 7 'j i \ \ PROFILES AND DETAILS ) G � - - v ' i- N. ` ` v ` v v A A V I , v\ \ \ ` _ NO BUILD/NO STORAGE ` - - - - \ \ , � / - - ` EXISTING WELL N / , ' t \ \ _ G G - - / ` \ \ \ EXISTING GAS LINE - r- - \ ` � \ _ \ \ - - \\` \` �' I ` \ ` \ •\ �` ' `\ ) ' �` / . \\ FO ! EXISTING COMMUNICATIONS LINE - - ' / � , ` \ \ \ \ \ �` ` \ \ ♦\ W- EXISTING WATER LINE \ \ \ ; \ \ �\ \ \ OH - EXISTING OVERHEAD ELECTRIC LINES _ N \ \ - �- - - - - ` \ \ \ \ `\ \ - - ' \ \\ ` \ E EXISTING UNDERGROUND ELECTRIC LINE 4 t - � \ ` ♦ \ \ \` ' - _ \ \ \ `\ `\ \ \`� \ I \ \ \\ ` \ ` \ `\ �` \ \ \ `� \`\ i X = EXISTING FENCE ` _ \ \ \\ \ ` `\ \ NORTH AMERICAN GREEN SHOREMAX v v OR APPROVED EQUAL Q o ` — / A vv V , V v V A A v ia ' ! \ ` \ � V A ? \ l�j ♦ A �, o O O O O � o \ �� boo ° vv `vv vv A ` v vv vv A `v `v `v ` v ` v \ ` ` ` X CONTROL MAT OR APPROVED EQUAL 7— \ \ \ \ .\ , / \ \ \ \ \\ \ ` `♦ \ 7 `\ RIPRAP z 1 1 \ p /r �`\ \\ \ X SWALE CROSS SECTION - SEE SHEET 127 Z O ; 0 ; _ \ ` ; D50= 12" \ ♦ `\\ \ LLI a <Cli I / ° \ // ! 1 ` _ii I ` \ \ \ \ \ I \ ` \ �\ \ ` \ \ \ `\\ \ UNCC ❑ o \\\ \ \/ / . . \ \'\ \ ' '1/I \ \ \ \\ \ \ / / \ 4895 `_ _ . _ _ _ _ _ _ _ \/ �, ; \ a \ \ \ \ \ ` \ CAYOU DIG O ORE Z Z z \ ` t , V O / \ l b _ _1 \�\ \ \ \ _ " - fir\ / ' \ \ ` \ \ \ ` \ OR J �. � ! - - - - ` \ , CONCRETE WEIR SPILLWAY \ \ \ \ \ ` \ \\ (n \ \\ \ \` `\ \I \ \I \ I \ / /• 1 ! / WEIRELEV = 4894 .00 `\ � _ - \ ` \ -'� \ ` 1 - 800 - 922 1 987 U \ N '\ \ \ '\ \\ \ N \ N1 ' ! , , \ UTILITY NOTIFICATION \ \ I Li � o a \ \ \ \ ' 228 / 1 � \ / \ ' I / � � '. 5 16 2025 •: <v � 365' RETENTION POND W1 4' 4' PL Q100 IN 355 .07 CFS 5' 1 ' 1 TWO #5 BARS 5' Q100 OUT 0 CFS TAJ BOTTOM 4884 . 5 3' 1 ' WQCV 2 . 16 AC-FT 3$ 3' 1 /28/2025 WQCV ELEVATION 4884 .82 100 YR VOLUME 40 .96 AC-FT , SET NUMBER 100 YR ELEVATION 489AC- EMERGENCY SPILLWAY DETAIL 0 60 ' 120 ' 1 .5 X 100 YR VOLUME 61A4 ACT 1 . 5X 100 YR ELEVATION 4892 .58 SCALE : 1 " = 20' 1 " = 60 ' ( HORIZONTAL) P N D I SPILLWAY ELEVATION 4894 115 141 RETENTION POND 4 Q100 IN 97 . 31 CFS RETENTION. POND 4 DETAIL Q100 OU OUT 0 CFS BOTTOM 4831 t� li VI WQCV 1 .88 AC-FT WQCV ELEVATION 4831 .78N. 0o 100 YR VOLUME 16 . 63 AC-FT L __ T 1 ! . z 100 YR ELEVATION 4835 . 10 < -J 1 .5 X 100 YR VOLUME 24 .95 AC-FT i 1 . 5 X 100 YR ELEVATION 4836 .65 . ...: . / . .. ../; SPILLWAY ELEVATION 4839 .08 W L0 N O ❑ UD U) H Z W KEYMAP 2 O 0 LEGEND S. \ ` ` `. \ \ / _ _ \ (,, / i i i i \ ' 100 .00 SPOT ELEVATION 0 ` \ \ \ S. / r I \I � \ `` // 1 I 1 I 1 ` \ \ \ 1 \ S. 0o . / PROPOSED MAJOR CONTOUR z \ PROPOSED MINOR CONTOUR S. - - - f \ . / , 1 o EXISTING MAJOR CONTOUR \ G , I I \ \ I ♦ \ \ / / I IIl I 1 \ \ \ \ \ ` \ \ \ \ r / / \ \ \ \ ♦ ♦ \ I � /S./ ` Ii I II I & _. _, ` \ \ \ \ \ ♦ \ ` \ \ \ \ / �O� EXISTING MINOR CONTOUR co > y `I / \ - \ \ - - - - ' ' ` •'S. r ` - DRAINAGE FLOW ARROW ❑ W/ ' / ` �• Ii \ - - EXISTING EASEMENT X11 I ♦ ' _ _ , \ - - - - - - - - - - - ' - ' ` \ \ / ' ` I ` \ ` \ \ ` OIL & GAS SETBACK - - - - - - - - - - - - - S 5- III I I , , \ `\ S. \ \ \ ` \ ` \ \� \ �� S. \ ` ` \ _ _ \` 1 J `♦ ` ` ♦ S. S. S. _ - - - - - _ _ - - - - - - _ _ - ` \ 1 1 \ S. \ PROPOSED EASEMENT , _ -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 48. 354. _ _ _ \ _ \ \ I I \ `\ \ \ \ `, - - - - - - - - - - - - - - - - - - - _ - - - - - - - - - - - _ _ _ _ ` ` \ \ - - PROPOSED SWALE/ROADSIDE DITCH S. 1 1 11 11 I ` _ _ _ \ , 1 I PROPOSED CULVERT/STORM SEWER i 1 Iii _ _ - - - - - / r' (SEE SHEETS 12$ - 130 FOR CULVERT 1 1 , -_ _ _ \ - \ _ 11 II I � \ ` \ PROFILES AND DETAILS ) 1 I \ II III 1 1 i G - - - , _ ' - - - - S. 1 I I ` \ \ EXISTING WELL 1 : 11 I / II , 1 I 1 _ �. 1 : - �I ; EXISTING GAS LINE , I 4 : 1 Q , I , - - - - _ , _ _ - IS. C _ _ ' ' \ - I FO ! EXISTING COMMUNICATIONS LINE ' - \ \ _ _ RETENTION POND. 4 i _ _ '_ _ '\ _ _ - w EXISTING WATER LINE S. o i I ' I I ' - - - _ \ ' ' ' \ � ' ' � ` \ OH — EXISTING OVERHEAD ELECTRIC LINES NO BUILD/ NO STORAGE - S. \ \ - - - ' I , i 1 ' S E EXISTING UNDERGROUND ELECTRIC LINE 4 I iI , S. Iii \ \ \ S. � ; - - X = EXISTING FENCE ' ' ' 1 _ _ -_ _- _ - - _ - - - - - - - - - - - - - - - - - - - - - - - - \ \.. \ ' NORTH AMERICAN GREEN SHOREMAX 1111 l �-- _ _ �d _ _ \ ' \ ' \ \ ` c `' oo0O ` ° ;. o - - - - - - - - - - - - - - - - - �. - - - - - - - - - - - - - - r - - - — - - - - - — — - - - - - - - - - - - r - - \ \ S. \ ` \ . OOO 0 0 0 0 0 0 c. C a - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - _ _ _ __ _` _ _._ - - -- - - _ _- - - - _ - - _ - _ - - - - - - - - - - - - - - - _ - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - i \ \ \ OR APPROVED EQUAL - - - - - - - - - - - - - - - - - - - - - - _ _ _ _ 48.35 _ _ _ _ _ _ _ _ _ _ _ - - W — I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- --- -- -- - - - -- - - - - - - -- - - - - - - - - - .� - - -=.a . - _ .. - - ���- - ��,.�- �Y - - �- _ - _ - � _ - _ _ _ - _ - _ _ - - - - _ _ _ - - - _ - _ _ - _ _ - _ - - _ - - _ - - _ _ - - - - - NORTH AMERICAN GREEN EROSION Di - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - �- �_`_ - - - - - - - - - - - - - _ - - - - - - CONTROL MAT OR APPROVED EQUAL Z 0 - \ - G - - _ - - --- -_ - l G G _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . . - . _ _ _ _ _ _ _ _ 1 _ _ \ `, \\ , - _ \ - - - - - - � - - - - - - - - - - - - - - - -- - - - - - - - - - - - -- - - - - - - - - -_- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - _ _ _ - _ _ _ _ _ S. - - ' ' _ _ _ SWALE CROSS SECTION - SEE SHEET 127 z _ _ - X z O \ J \ >AC ArC � �iYC �lC XC �K�! \ �_ _ _ _ r � ' - ._'`� W O ❑ V t G` - G -TG \\ G G G - EXISTING CONCRETE WEIR SPILLWAY G G G G G Gam- _ _ _ _ \ 1 \ ` \ G \� G _---� G GT Gam- G , UNCC ❑ C ` r / CALL BEFORE Z O � \ \ TOTAL LENGTH OF WEIR = 128 FT PLUS 9' WINGS ON EACH SIDE \ O S. - - ' ' ' YOU DIG 7 } \ \ \ `\ '\ `\ \\ EXISTING WEIR ELEV = 4839 . 08 - / i O Z ~ \ � � \ - - - - - 811 z \ \ \\ \ \ \ \ _ / - - - _ \\ ; ® OR - W O 1 11 _ _ - - P 1 - - 22 - 1987 I 800 9 t \ - - - \ \ \ S. / UTILITY NOTIFICATION � \ \ \ \ \ \ !\ \ _ - - - - - - - - - CENTER OF COLORADO a� . ..... ... 3 / 660 1 \ ` \ \ f - PL I v vv / `v TAJ � ` \ \ \ - \` I \`\ i \ � i 1 /28/2025 \ \ \ \ ` \ ` ♦ \ \ . \ 1 \ 1 \ 1 1 I 1 t 1 l \ \ \ 1 \ \ \ 1 \ 1 \ \\ i ; LET NUMBER \ \\ , \ \ ` \ \\ \ \\ ` ' ' - - - - \ I \ \ 0 60 ' 120 ' II \ � \ ` - ' PND2 `. `\ \ 1 1 \. 1 - 60 ( HORIZONTAL) 116 141 RETENTION POND W3 Q100 IN 34 . 79 CFS Q100OUT OCFS RETENTION POND W3 DETAIL li BOTTOM 4891 WQCV 0 .23 AC FT O Z WQCV ELEVATION 4891 .37 I 100 YR VOLUME 2 . 24 AC-FT 2 100 YR ELEVATION 4894 .04 I J O 1 .5 X 100 YR VOLUME 3 .36 AC-FT 1 . 5 X 100 YR ELEVATION 4895 .20 SPILLWAY ELEVATION N/A W . . HHY H_ If \HV A I 1 \ V A \ V V A V I I V - /• / •. / // . \ / , \ \ \ ` , . \ ` , ` . . , \ 1 ' ! I \ f 1 KEYMAP \ 134 / . . , 1 1 , , , \ , \ \ \ , . , ` , . . . \ . \ , , , \ ' \ LEGEND I- II 1 I 1 I \ I \ \ 100 .00 SPOT ELEVATION 1 1 \ \ \ \ \ \\ t I \ \ - ' 1 \ \ Q \ \ \ \ I \ \ ` ' \ \ \ \ \ I 1 \\ \ PROPOSED MAJOR CONTOUR \ i \ i , \ \ ` \\ \ `\ \ \ ` \ i \ \ ` \ \\ �\ `\ \ ` \ ` \ \ \ ' / ` / ` `\ 00�/ PROPOSED MINOR CONTOUR d \ � 1 \ \ \ \\ \ \ \ \ \ t \ \- � -\ -, \ 1 _ / \ / EXISTING MAJOR CONTOUR a ❑ sr - - -/ \ 1 I\ I I 1 1 I ` oW \ . . . . . .. ... . . . .. ..... ... ..... . . . . . . .... . . . . . .. \ ` \ \ \ \ \ , ^ J `, f' It `_ ` i { / O� EXISTING MINOR CONTOUR U) > ii Ii. 1 I \ \ ` \ \ + \ \ ' / " 1 \ 1 \ ` ` ` \ ` ` ` ` \ \ 1 \ \ \ ` 1 \ \ \ / _ W Wn/ \ \ \ \ \ \ \ - / , ' ` \ \ \ \ \ ` I 1 \ - DRAINAGE FLOW ARROW , I 1 1 I \ \ \ \, . \ \ \ \ \ `\ `\ \\ \ ` / t t `I `\ `\ 1 1 \ \ `\ \\ \ \\ \\ \\ \\ \\ \ \ \ - - \ J - __ _ _ - - EXISTING EASEMENT 1 ` 1 I 1 I , I \ ` � S. \ � ` `` \ \\ \ \ \ \ \ \ \ /' - - - ' ' 1 t \ \ \ \ \ \ - - - - - - - - - - - - \ ` \ � ` ` OIL & GAS SETBACK S.\ \ \ \ \ \ \ \ \ / \ \ \ , PROPOSED EASEMENT `\ ` \ `\ \\ \ ` \ 133 ` \ ` \ S. \ `\ \ `, \ \ `\ \ ` `\ \ \ ,' / / / / , 1 \ \ I - - PROPOSED SWALE/ROADSIDE DITCH ` ` \ . .. ... .'S , ` _ �_ ,' ; PROPOSED CULVERT/STORM SEWER S. \ \ S. S. , / /\ \ / ` \ S. (SEE SHEETS 128 - 130 FOR CULVERT \ \ \. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ... ... ............... \ \ \ \ \ \ / ' co \ - PROFILES AND DETAILS ) S. \ ?.. . . . .. .. . ... .I\ \ , + / I \ \ \ \ \ I _ _ _ EXISTING WELL . . . . . . . . . . . . . . . . . . . . . . . . . .. .... ... .... . . ................ \5. / I \ \ ` \ _ _ 1 EXISTING GAS LINE \ \ \ \ � \ \ \ , \ \ / i ` ` - - - \ ; I - / FO EXISTING COMMUNICATIONS LINE S. S. \ \ ` \ / - \ - - - S. W EXISTING WATER LINE ♦ ♦ \ \ \ \ \ \ , \ 1 y 1 I \ \ \�\ \ \ \ , \ 1 / I 1 1 ` \ I I I , ` ' - _ - - - - - - - - - - - - EXISTING OVERHEAD ELECTRIC LINES \ \ \ 1 1 1 I I . ! / t \ \ ` \ \ \ -\ ` \ , \ I I r I 1 I , \ - • - ` \ _ _ _ _ _ EXISTING UNDERGROUND ELECTRIC LINE / ` _ _ ` ` _ + \ \ \ �' ` \ ` \ \ \ \ \ \ / _ - NO BUILD/ _ - ` \ - - \ \ \ \ \ ` - \ ` \ \ \ ` \ ` ` \ \ \ \ - ` _ - _ _ a ` I I 1 / � NO STORAGE ' \ \ ` \ \ - _ _ X EXISTING FENCE 1 S. \ ` \ \S. - - - - - - - - - - - - \ I NIA \ / ' - - - I \ S. _ NORTH AMERICAN GREEN SHOREMAX W \ \ ` \ \ I . ) \ ` \ ' + \4lc — - - _ _ _ - - - o 0 0 0 oS. OR APPROVED EQUAL Q 1 \ \ `\ `\ \ ' , ' ' RETENTION I ! ! - - - - , \ ` , _ - _ - - - - - \ , I 1 S. `\ \ , , 1 , , \ \ \ \ , , '� `\ \ \ `\ \ ` \ \ \ ` \ _ — \ - — — — — Xx x x, NORTH AMERICAN GREEN EROSION = M ' I \ ` ` ` ` ` ` \ \ \ \ ` ` \ \ \ \ ' / I _ _ _ _ _ CONTROL MAT OR APPROVED EQUAL ' / I i \ 132 \ I i II i I 'Ii 'S\ \` .\ \\ \ `\ \ \ \ I I r \ � � \ ` \ / I \ \ \ \ ` \ _ _ \ \ _ _ RIPRAP Z ' r \ ` ` ` ` ` \ \ , \ ` I \ ` I I , I _ - _ - - - - - - - - - - - X SWALE CROSS SECTION - SEE SHEET 127 z O O \ , p \ f ♦ \ \ I \ I I I \ / / 1 r I ` ` \ \ \ \ \ \ cn , st \ \ \ \ ` \ / i lI — W ❑ S. ` \\ \ / I I 1 I I j I ct ` `\ ` ' N.) \ `\ `\ \ ` ` ` \ ` ` , ! ! \ I t II `\ , \ \ \ \ \ // , / - - - - J ` \ `, \ `\ ` 1 1 \ \ ,, \ ` / i' ` I ` `1 1 I / - / � / / / - , UNCC ❑ ® ® z — � � — \- - � — + — - - - � — t \ \ \ \ 1 ! 1 I p { ` \ 1 t I \ \ , / / CALL BEFORE Z \ \ 1 \ \ \ \ \ ` 1 1 \ , ` ^ \ ' I \ ` \ \ \ \ \ J \ \ - - / + 1 / , YOU DIG ® z H S. I 1 _ _ \ _ I 811 \ / 1 \ \ I 1 I I I I \ \ \ \ ` \ \ \ \ \ I ` \ / ❑ \ ` ` + ✓ / ` 1 1 I I I I I I I . \ \ \ \ \ ` \ \ ` \ k \ / I I I ' 1 \ 1 / \ \ \ I / — z w W \ - 1 21987 W \ \ \ \ ♦ \ \ \ C \ 1 1 ` \ I ` / / - \ \\ \ ` ` ` ` \ \ \ \ , - / , / / I lj ;l ! ' '' , \\ \\ '. \\ \ \ \\ \\ \ \ \ \` \\ \ \ \ \ \ \ \ \\ I I I 11 ` 1 TI, 1 \\ ` ` 126 I ; r / \ \ \ ` _ ` \ \ / / / \ `\ \ `, \ TI I 1` 1` 8 0 0 9 2 \ 1 ti I r\ \ \\ , \\ . , . , ` \ `, \ I UTILITY NOTIFICATION - I t `\ ` ` \ o ` ` i i `t `` I` i 1` \ \ / 1 / \ / \ \ \ \ s? \ \ \ \ \ ` \ I / I , I ; I 1 ` ` \ I . \ i ` ' "5 ` ` \ ` \ ` \ ` ' ` \ ` \ I I . , CENTER OF COLORADO a . l J I - t 1 \ _S. S. 37660 \ I 5 (16 /2025 \ - , / if / / I 1 I / I \ \ = . . '5\ \ \ \ \ \ \ \ \ I / / I I I II \\ \ t I 1 I , \ \ 1 1• 131 / / / / I f V \ ` , \ \ \ `\ I I I I I t / I \ . I f 1 I I ) ' 127 , ` � `\ \ �, , / / I I 1 I / / fl . \ I ( ,\ I \ \ ` \ \ \ ` \ \ ♦ I 1 I / / / PROD NO : PL / l , 1 `J I I I 1 1 \ \ ` \ \ ` \ \ \ ` \ ` \ \ \ \ \ \ \� \ , � 1 I I ,\ / ' /1' I 11 - - - \ ♦ \ f - 1— I (� / CHKD- . . ,/ j / / / / / / I 1 '\ 1 \ I \ \ ` \ \ ` ` `� ` \ / I ! 1 -`: \ \ \ , I \ \\ \ \ .. , n . . 1 /28/2025 5. 5- I t- - - - - - - - - - - - - - - - _ , , - � I I I \ I 1 . \ \\ \ \\ ` ` \ � , ETNUMBER _ _ - - 0 50 100 i ' , `\ - - _ - - \\ ` \ , \, . , • \ `\ ` `. ` \ ` \ _ j \ , '\ `\ ' ` \ \ \` \ 1 " = 50 ' ( HORIZONTAL) PND3 117 141 RETENTION POND SI Q1001N 107 . 38CFS RETENTION POND Sl DETAIL Q100 OUT 0 CFS BOTTOM 4915 WQCV 0 .82 AC-FT ____ N . / . . _______ g 0 Z WQCV ELEVATION 4915 . 21 \ \ \ N. \ \ I N N N __ ____ . /i!j liii 100 YR VOLUME 12 .46 AC-FT \ N N \ \ \ \ 1O5' II t1 %? D 100 YR ELEVATION 4918 .06 \ \ \ \ \ \ \ \ \ \ ♦ \ \ \ \ \ \ ` � \ ♦\ \ ♦ � ` \ \ \\ \ \ N. ` \ ` 1 1 I 4 41 .5 X 100 YR VOLUME 18 . 69 AC-FT \ \ \ `\ � \ \ `\ \ \ � ` \ `\ 5' 5' v V vv 1 ' �� TWO #5 BARS NNN 1 . 5X 100 YR ELEVATION 4919 .43 vvv vv ` v vN ` IF SPILLWAY ELEVATION 4921 ; ♦ \ \ \ \ \ ,\ A . - . _ .... . IT • 123 1 I / _ EMERGENCY SPILLWAY DETAIL w 1 ~ _ \ Q / / \ \ \ \ \ \ \ \ \ \ \ SCALE . 1 - 20 \ ) ( S I / \ / \ 1 I KEYMAP �,�� ` \ \. \ \ \ - - / ,- - - - - - LEGEND 30 CULVERT 20A - . I ' \ \ ` \ \\ `` \ `\ ` `` \ \ ` . , ,, 7- 100 .00 SPOT ELEVATION O \ \ \ \ \ \ \ \ \ \ `\ ` \ ` \ ` \ // / / 0 36F ESN \ `\ I I ` \ ` �\ • ` \ \\\ \\ \ \\\ % , / - ' / i1 \ 7p®�/ PROPOSED MAJOR CONTOUR z \\ \ ` \ \ \ \ ` \ \ \ \ \ \ \ \ \ \ I INV: 4917 .OO I , G' \\ \ . \ \ \ \ `\ `\ , - ' \ O W \ , \ , /, // �Op� PROPOSED MINOR CONTOUR H 36 FES ` \ \ \ r \ ` . . \ ` ♦ \ . . LL \ _ / / Oo EXISTING MAJOR CONTOUR W INV: 4917 . 00 I I \ \ \ ` \ / (> \ ` \\ Ni \ \ `� \� `\ • `\ \\ �` \ \ \ \ ` \\ � ' \ ` - - \ \ - - - - - - ' i / / �OO EXISTING MINOR CONTOUR Cn > 4915 \ \\ \ `. N a ` , % ' - DRAINAGE FLOW ARROW ❑ I \ ` ` ` ` `` `\ cis ` \ \ ` . \ \ ` � \ \ � / ' i 2 i CULVERT 2OB 1 \ \ \ ` \ •` \ N. � - � . � I — - EXISTING EASEMENT O 4920 ` \ Q o \ \ \ \ ` \ _ - - I I z ♦ I I ,\ - . � _. - I_\� �, \\ ` \ \ ` \ \ / \ \\ \ \ \ \ \ ` \ \ ' ' % I r > 36" FES � � ` \ OIL & GAS SETBACK L1_/- INV: 4915 . 00 N \ \ ``\ \ \ `\ \ . \\ \` ` \ ` . ` ` \ \ \ \ - ' , - ' � / i r - 36" FES \ \ ` \ \ \ \\\ \ >� ` \ \ - \ r INV: 4915 . 00 �\` \ \ \ \ \ \ \ \ ,r \ \ \ \ \ \ � � v ,' - - - - - - - PROPOSED EASEMENT % RETENTION POND SI \ ` \ \ \ 7.. .. . \` `\ �`\ \ \ `\ \ � � ' ' . \ \ - , 935 IN PROPOSED SWALE/ROADSIDE DITCH � ' - - - - - \ \ \ . \ . � . �� � \ \ ,\ - \ � \ \ - - - - - - - - - - - - - ' " \ � ` . i i/ PR(SEE O SOHEEDTS 12$ ER3 FOR CULVERT/STORM T - - - s NO BUILD/NO STORAGE ' - - - I • \ \ \ \ `\ •\ \ \ \ ► \ �` \ ` \ \\ % i PROFILES AND DETAILS ) \ ` ` \ \ \ \ \ ' \ \ \ \ \ \\ _ _ _ \ ' - ' :/ / * EXISTING WELL ` \ \ \ \ \ \ ` \ I 1 ` ` ` \ ` `v. \ \ \ � \ ` ' EXISTING GAS LINE \ \ \ \ \ ` \ `\ \ \ � • � \ \ \\ \ ` \ \\\\\ \ \\ � FO ! EXISTING COMMUNICATIONS LINE S. \ ` \ \ \ ' \ ' \\ \ �\ ` / W- EXISTING WATER LINE \ `\ \ i \ \ \ `\ `\ - ` `\ `\ `, r OH - EXISTING OVERHEAD ELECTRIC LINES I ' - �/ \ \ � \ \\` ` \\ inn i `, \\ `\ \ \ \ �\ / ' ' \\ i E EXISTING UNDERGROUND ELECTRIC LINE \ \ � ` \ ' ` - - - ' ` \ ' I X EXISTING FENCE 29 \ \ \ - / / _ - \ \ \ _ � ' \ \ ' ' NORTH AMERICAN GREEN SHOREMAX \ ` \ / ' - ^ \ \ \ \ \ \ / \ ` \ / , 1\ \ \ \ \ \ ° OO ° OO ° OOO ° OOOOO , OR APPROVED EQUAL \ \ \ \ \ \ \ ' � - - � ` `� i \ \ \ `I �\ \ \� \ \\, \ \ / \\ \\ / %/ NORTH AMERICAN GREEN EROSION_ _ _ _ _ _ - - - - - - - - - _ _ _ _ - - - - - s \N\ \ zi : ON ' \ '\ "\ ' \ I IIg30 X SWALE CROSS SECTION - SEE SHEET 127 Z � 0 0, UNCC ❑ I` ` ' ' I 1�\ \ CALL BEFORE Z ® 0 Z } - - - \ - - - - - - - - - - - - , ' ' \\ \ ` 32 �\ `\ \ \\ �\ \` \ \ \1 I ' \\ \` I YOU DIG 0Z Z \ 1 1 - - - _ _ - _ - a 811 O ow .1 1 • H • ,/ / N N . . N \ H , . . . OR Z 28 - . \ I \ (� I o OO. Og % O oO \ d. 4925 , \ 1 f UTILITY NOTIFICATION \ \ ` \ \ ` \ \ \ \ \ \ \ \ \ \ \ \ ` \ `\ \ \ \ � ,/ ' / I \I ' ` � \ I ` \` \ \ � / , / 1 , ° ° O \ \ � 492 I \ \�� •Q� ....... ... ••. Qi \ \ \ _ _ ` \ ` . ` \ \ I ,� � I ° - -`-_. - ; � CENTER OF COLORADO � � • ••• \ , ! y I I \ \ \ / I \ ` _ 3 / 660 _ \ \` ` \ ` \ ` ♦` \ \ / 1 / , \\ \ \ \ \ \ \ / � , , \ /J \ / n n 2� // S ` \ \ I TYPE M BURIED RIPRAP , ~ _ D50 = 12 " II iii�N� i��\\\��� \ - \ \ \ \ \ \ �o \ / ,/ i \ \ ` _ _ _ ^ ` \ ^ / ' ' / \ I , VCS "`i \ \ \ PL \ I / \ \ i I I \ \ - - - ' - ) i - 1- -� O TAJ \ I , 1 \ \ \ " / .rte — — I — / \ \ - - J- ' \ \ \ N N \ \ `, '\ , ' \ CONCRETE WEIR SPILLWAY 1 /28/2O25 \ WEIR ELEV = 4921 . 00 __ - _ _ \ \\ \\ \\ 27 ` 1 \\ ` \ \ \ \ \ , � ' / - - - - - - / '/ / / ; LET NUMBER 118 141 RETENTION POND S2 \ Q100 IN 88 . 66 CFS Q100OUT 0CFS RETENTI ON PO N D S 2 DETAIL li BOTTOM 4887 / \ In WQCV 0 .60 AC-FT O Z WQCV ELEVATION 4887 .68 I ®_ 100 YR VOLUME 5 .66 AC-FT 100 YR ELEVATION 4891 .98 I J 1 .5X100 YR VOLUME 8 .49 AC-FT 1 . 5X 100 YR ELEVATION 4893 .76 /K>> SPILLWAY ELEVATION 4895 \ \ \ \ L 1 \ 163 f \ \ \ \ \ \ \ ♦ \ \ \ ♦ \ ` ` \ ` \ // / ' . ' I\ / 1 / � I 1 / / \ \ ...m . f I � ` \ ' f ` \ \ ` \ • tea( . 1 / / / I / / 1 / / / , / T - ) ' N / / / N /1 . KEYMAP / \ / / \` 1` \ \`\ / //'' \ ' — ` \ T ` ` i- _ ` LEGEND / \ \ f \ f \ 100 .00 SPOT ELEVATION \ \ \ , " \\ \\ \ ` \ + + 1 i i I - I 1 PROPOSED MAJOR CONTOUR Z �, / `` 10p PROPOSED MINOR CONTOUR d \ \ \\\ \\\ \ \ I I \ \ \ \ \ \ � \ \ \ � \\ `I 1 \ \ / / \ �� / \ f ` / ��� EXISTING MAJOR CONTOUR \ \ \\ ;' : \\' \ \ \ \ \ \ \ \ \ / _ / \ _ l i �Oo EXISTING MINOR CONTOUR � \ . \9xQ \ \ \ \ \\ \ \ \ \\ ,` \ \ ♦\ \\ \ \ \ \ \ \ \\ \ o ` I \\ / + \ \ ` . \ \ f / 7 \ \ \ - DRAINAGE FLOW ARROW ❑ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 497y / - / - \ \ \ \ Y + \ \ - 4t . , \ /\ \ \ . \ `\ ♦\ / \ , - EXISTING EASEMENT 0 y _ / \ \\ \\ \ \\\ \\ \ \ \ \ `\ ` `\ ` \ \ \ \ ` . � ,. \ \ / \` \ / \ \ \ \ \\ 188 \ , \ ` ` - � � ' , , / ` \ \ \ \ , . W \ ` ` + ` ` \\ - - - ' ' - ` OIL & GAS SETBACK \ + \ \ \ \ \ s D ` ` ` \ `\ — - - - - — — — — — — — PROPOSED EASEMENT \ ` ` - 4970 - - - - ` - - PROPOSED SWALE/ROADSIDE DITCH PROPOSED CULVERT/STORM SEWER • \ \ 4 \ \ I ` \ 1 \ 1 \ ` ' - - - - - - - _ - - - - f/ ` ` f \ \ \ ` N \ i (SEE SHEETS 128 - 130 FOR CULVERT / ` \ ` pv^ ����\�\� v � Vic• \ + + \ \ ` ` - - - �- - - — ff - - - ' � `\ \ `f \ \ ` \ � \ ` \ / / . \ \ \ t \ _ ^ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , , ` � V \ f ♦ ` \ ` \ \ t 1 PROFILES AND DETAILS ) / \\ \\ \ \ \ \ \ \ \ \ \ \ \ - - - f _ _ f _ _ _ _ 189 ` +( \/ ` \ \ ` \ \ \ EXISTING WELL \ \ \ RETENTION '� , \ � - � � - � - - \ �� \ EXISTING GAS LINE ' ` \ ` %� , \ \\ \ '\ \\ \,`\ \ , , \ `\ . POND S2 ` 1 \, � _ - / - - - - - - - - - � � \ . \. / `, \ + \ /` \ \ \ \ \ \ ` ` \ \ \ \ I / \ \ \ `\ `\ ` .` \ \ FO ! EXISTING COMMUNICATIONS LINE `\ \ I \ / _ _ -I - - - - - - - - - - - - - - \ \ \` f \ ` \ �` \ \` \` ` \. N ` \ \ \ \`♦ W EXISTING WATER LINE / , - - \\ + \ \ \ \ \ \ \ , \ \ \ , NO BUILD I f A. f \ \ N N N \ OH - EXISTING OVERHEAD ELECTRIC LINES - _ \ \ ` \ + \ \ \ \ \ \ \ \ r _ \ \ \ \ \ \ ` \ \ E EXISTING UNDERGROUND ELECTRIC LINE •\ . `, . \ `\ ` \ \ \ \ \\ \ \ \ \ '\ \\ \ \ \ `\ \ + \ `\ `, `, \, \ • \ • I - _ � _ _ - - - - ` _ _ / ` `\ � \ \ 190 - - - - - - - - - - / ` \ ` \ \ `\ \ \ \ \ \ \ \ \ \ ` t \ ` / I I / - - ` / f \ ` \ \ `\ � � `\ \ \ X EXISTING FENCE ♦ V A \ , V ,+ t , t V \ V A A \ t V A A C5'ti V A\ / ! ` A \ ♦ c9 ♦ ♦ A o o o 0 0 0 0 0\ `\ ``\ t t \ \ \ \ \\ ` \I \ ` \ + \ \ \ ` ` \ \ - - 9pp _ � f a6 OR APPROVED EQUAL \\ `, NORTH AMERICAN GREEN EROSION\\ 1I +\ \ \ \ \ \ \ \ \ \ `\ `` `\ \\ \ `\ ` \ \ \ \ \` /\ / \ ` ` _ \ / / \ / 489 / \ ` 1 \ / S \ \ CONCRETE WEIR SPILLWAY CONTROL MAT OR APPROVED EQUAL , vI tv v75 \ vv vv vI v` vv vv vy v` vv vv \ . v - v y 8% TOTAL LENGTH OF WEIR = 81 ' PLUS 9 ' WINGS ON EACH SIDE 'v ' \ WEIR ELEV = 4895 . 00 \ \ \ I \ \ `I It \ \ \ \ ` \\ \\\ \ \ ` \\ \+ \ \\ \\ ` \X ` \ ` - - - - - - - - - ' - `\ I I / / \ / / ` \ \ , I \ Q \ \ , \ / \ \ i \ ` \ \ ` � / SWALE CROSS SECTION - SEE SHEET 127 Z a \ \ ' \` `\ `\ `\ \` ` `\ \ ` - ` - - - - - _ _ _ - - ' - �8 1 V TYPE " M " BURIED RIPRAP \ wwC I I I // \ ``\ + \ + , \ oct 1\ `\ ` \ \ ` `\ \\ \\ \/ / /` \ `\ \` ` ` - _ - � ' ' / Q9 1 \ �_ 1� ` — \ \ - - +_ — _ �\ \ — mac \ - -c \` , UNCC • \ H _ S � - N. `\ ` ` CALL BEFORE Z Z � .. / \ I I ; II ' \\\ \ `\\ \\ / / \ \\\ \` \ \\ \ \ / I b` r - - - - - - - - \ `\\ ` , \ \ \ YOU DIG 0 1I k \ , + \ `\ \ - \ ° 0 81 1 N� oz - o - - - - ' _ _ - / \ I 1 ,/ \ \ ,? \ \ \ , \ \ \ \ ` + \ /, / \ , \ 000 ° ° ° 1 ` % ` \ A OR Z 0 74 , \ /h \\ \` \ \ \ \ \ \ I , O 1 / - - I \ \ \ \ \ 4905 I I / / / 1 ♦ (n J 1 ❑ dY 1 800 922 1987 U � oc 37660 •\ \\ ,1 I\ / / / / I // / 1 I I ` \ \ ` ` ` ` ` `\ \ ` /N ///,/��S/ANAL ���\\\ 81 ' \ \ / / i � � I ' i I \ \ 4' 4' 1 t \ I / r , , / ' I I \ \I \ \ '� PROJ NO : PL 5' p 1 TWO #5 BARS 5' \ `\ `` \ / �/ C a I i i ,\ \\ I 41 ` ` / 1 \ 1 I I I \ \ h . N 1 \ *\ I E N f : TAJ ' « 1 , 1 /+ ++ `I / \ , \ \ 11 \\ \ / \ I \ I , t CHKD : 1 /28/2025 \ \ \ , 11 \ \' I 198 fl .IET\\ NUMBER EMERGENCY SPILLWAY DETAIL ` ` '\ \ / \ 200 1; I i , 199 N \ \\` 0 50 ' 100 ' \ ` + + , � I � - ` � I - SCALE : 1 " = 20' `, ', . . . \ I 1 `. \ `. `. + 1, 1 I + ` . \ ` 1 " = 50 ' ( HORIZONTAL) P N D 5 119 141 RETENTION POND S3 Q100 IN 87 . 22 CFS Q100 OUT 0 CFS RETENTION POND S3 D E T AI L li BOTTOM 4889 / In WQCV 0 .75 AC-FT O Z WQCV ELEVATION 4889 .85 fill, 0 100 YR VOLUME 6 .93 AC-FT 100 YR ELEVATION 4893 .45 J 1 .5X100 YR VOLUME 10 . 39 AC-FT 1 . 5 X 100 YR ELEVATION 4894 .88 SPILLWAY ELEVATION 4896 .00 W __ .EH5t2 . E - - - - - ` - � - - `� INV: 4897 .25 \ � . - - - - ` - - � - � � - - � - -� - - - �` - - - - `- - - - - - -� - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 , 1 v W N ._,� - - (O / / - CG 30" FES \ �` , ``♦ 1' \ ` \ ` \ / ` �l�` / : 4891 . 00 11 ,n ` \ \ ` t ` ' - - • - - - I . - - - - . KEYMAP - - - - - - - - - - - - - - - T + v 4895 - - � - - - - - - / - - - - - ' I \ LEGEND H I N N z j / - - - - � ) II �, 4890 ` ,� TYPE " M " BURIED RIPRAP 100 .00 SPOT ELEVATION , , TYPE VL RIPRAP I D50= 12" O / ' D50 =9" I / X7 PROPOSED MAJOR CONTOUR z 0 ' Lp =8' , W=4' , D = 1 . 5' I \ CONCRETE WEIR SPILLWAY ,' -I � `' '' ` � `� � � �Op�/ PROPOSED MINOR CONTOUR O � , / \ \ TOTAL LENGTH OF WEIR = 55 PLUS 9 WINGS ON EACH SIDE \ ' I � / `\ �� • ' WEIR ELEV = 4896 . 00 � � . �`� ` / �o\ % EXISTING MAJOR CONTOUR RETENTION E W i ' I , ' i 36 FES ' I r ' `\ / �0�, EXISTING MINOR CONTOUR a) > / INV: 4889 .00 POND S3 ', I `♦\ �' I , . / , \ ` � . ` , DRAINAGE FLOW ARROW �% �' ,' �•� \ \ TYPE " L" RIPRAP NO BUILD! ` `, `, `� t` / - - EXISTING EASEMENT 0 ,j' / _ s NO STORAGE \ \ / > r � ' I _ - Lp =30 , W= 16 , D= 1 . 5 1 , ' + _ - - _ ` W i / . ` I � _ _ 1 +� \ � `\ +� I � , - OIL & GAS SETBACK ;� / 1 ' ' � `� f •� �`\ � � t I '� PROPOSED EASEMENT ++ `` / � P `/ - o \\ `� `� ++ \ ,I / �' PROPOSED SWALE/ROADSIDE DITCH II �' ` i 1 l�Q ' I \\ `\ + \ ; PROPOSED CULVERT/STORM SEWER , I GJ� ��`b 36" FES ' , ' i ` ; I i / (SEE SHEETS 128 - 130 FOR CULVERT ; , / , F- \ INV: 4889 .00 ; ' ' I i , +` I I ; PROFILES AND DETAILS ) I / � ' - _ , - _ - ' ' ^ . ' 36" / , i ` \ � � � ` � L ` \ ' ' EXISTING WELL � ' ' � FES i �� � i i ,\ \ EXISTING GAS LINE INV: 4893 . 64 ' \ I + ` , = . \ ; ' ; �\ \ : . ` ♦ N .\ ` - - - - - - , \` \ � ' FO - EXISTING COMMUNICATIONS LINE ' / - ' I W- EXISTING WATER LINE 36 FES I + , T i A / . I Ni / INV: 4893 . 64 ' ' ' / ' I ' ' OH - EXISTING OVERHEAD ELECTRIC LINES - _ _ _ _ _ � I \ \ , \ ; I 1 , , \ _ `, ', E EXISTING UNDERGROUND ELECTRIC LINE i1 ` ` \ I � � \ � X EXISTING FENCE i I 1 '` 1 ♦ A V ♦ \ � \ V a000000000000000 NORTH AMERICAN GREEN SHOREMAX UJ i I 1 / / ♦ \ \ \ 1 o o 0 0 0 _ 0 0 it f - ♦ \ ♦ 1 O 0 - 0 0 0 - 0 0 V . , � � OR APPROVED EQUAL � - + ', I / / I �f' ; I I / 1 / ' . `\ `\ , ♦ ; - - - - - - - - - - - - `,- - � - T ' x x\ x xX / I , , , \ \ CONTROL MAT OR APPROVED EQUAL 'I I / I ; - , - - ` \ `\ ` i `. - - - - \ � RIPRAP + , ; , / 1 , I \ I �, ` ♦` ,` +, +` / \ `\\ ` X SWALE CROSS SECTION - SEE SHEET 127 Z z O ` \ , I / \ / \ ,/ , . ' \ , 1\ \ . O N \ t \ +` + + It k \ J O U co ' I \ '\ 1 '� , t `\ , CALL BEFORE z ° Z ' 1 � � , ,' / ^ _ ` �`� �� , \ '\ �` +� �, / / \ YOU DIG Z \ . ' - / \ 811 Q z ' , , , �` \ �+ t \ ® OR Z O 1 - 800 - 922 - 1987 O oc UTILITY NOTIFICATION �� - CENTER OF COLORADO tio. ` , 5/16 /2O25 ; \ jj 1 )♦ I `♦ , ` , , - . . ////////, \\ \\\\/°NAB ������ I \ - - ,' �� \t` +�+ 4' 4' 11 \ ` `F ` , \ ` \ ` ` \ ' ` ` ` - , \ � - - - / - / / � ' O `'\ 11+ 5' 1 l�— TWO #5 BARS 5' 4905 " ' � ` .- PRO\ J NO : PL -' - �- 1 - - _ ' ' EN � - - - - - - - t I I T TAJ 1 - _ / 73' CHKD : , -= -- -� = - - - - - G - _ EMERGENCY SPILLWAY DETAIL .1 /28/2025 ETNUMBER : SCALE : 1 - 20' r-` - COUNTY ROAD 32 . . . . . . . . . . . . . . . . -_ CO � �- �I 141 RETENTION POND S4 Q100 OU 286 . 84 CFS RETENTION POND S 4 DETAIL Q100 OUT 0 CFS N. BOTTOM 4854 WQCV 2 . 94 AC-FT WQCV ELEVATION 4854 .45 ri 0 100 YR VOLUME 26 .99 AC-FT 100 YR ELEVATION 4857 .89 I J 1 .5 X 100 YR VOLUME 40 .49 AC-FT V) 1 . 5X 100 YR ELEVATION 4859 .64 SPILLWAY ELEVATION 4861 - _ rTh. _ __ _________ / / // / / JT - - - ::; N - - - - . 109 i 110 y 111 1 U) L / / � / f vv 4865 ;` v \ _ _ � / I I I �� , I � �_ \ 1 / � z / _ _ - - / 11 ' \ \/ / I / / 7 N / /` r f KEYMAP - - - _ \ \ \ 1 ' LEGEND I,,, , , , " - - K / /\ I / -' / ` - - - - \ ` - - _ _ _ I I 1 \ / 100 .00 � / / � SPOT ELEVATION o / , ' ; � fi \ \ \ I `v / X70®�/ PROPOSED MAJOR CONTOUR z i i �' ' ' / / / 0 \ ` \` ` \ \ \ 1 \ I / 700 PROPOSED MINOR CONTOUR O W i i / i / ' ' / / / $6S ,' � % EXISTING MAJOR CONTOUR a ' ` I I 1 ' \ EXISTING MINOR CONTOUR • ' ' � ' ' / - ^ ` ` � ` ` - '/ - - - - ` - - - - - - � L - - - - - - - - - - - - - - - - - - - - - - - - - - - - ` - - ' ' - DRAINAGE FLOW ARROW ❑ Q_ \ 1\ 11G / /� / / ,� /� / / • - - - - - - - - - - - - - - - . ` \ \ \ \ - EXISTING EASEMENT 0 / / ,' ' / 4860 4860 �` ' \ OIL & GAS SETBACK � ' / ' '� / 4855 4855 \ \ 1/ / / � , l ' - - - \ \ , \ \ \ - - - - - PROPOSED EASEMENT - , / / 7 / - - - / PROPOSED SWALE/ROADSIDE DITCH / / , . �` \ \ , ' ' PROPOSED CULVERT/STORM SEWER � ' ' ' _ / / \ \ (SEE SHEETS 128 - 130 FOR CULVERT , ' I % / , \ \ PROFILES AND DETAILS ) ,,/ / / / / * EXISTING WELL ' ' , I EXISTING GAS LINE ' � Q60 - - _ _ _ _ - - - - - - - RETENTION POND S4 \ \\ - � , - .. 7 \\ FO ! EXISTING COMMUNICATIONS LINE / \ = W- EXISTING WATER LINE f _ -' - - - NO BUILD/NO STORAGE 1 - , _ _ _ , / / OH - EXISTING OVERHEAD ELECTRIC LINES x /' .J I / _ - - - - _ . E EXISTING UNDERGROUND ELECTRIC LINE / N I - X = EXISTING FENCE r I I _ A O nu O ' O ' O ` aUO� . NORTH AMERICAN GREEN SHOREMAX W 4 : , I _ OOOOooOa ' 00 " ° ° ° ° ° OR APPROVED EQUAL x 4 : 1 vv - - _ _ - ' NORTH AMERICAN GREEN EROSION CONCRETE WEIR SPILLWAY vv v \ `Av Z TOTAL LENGTH OF WEIR = 275' PLUS 9' WINGS ON EACH SIDE \ CONTROL MAT OR APPROVED EQUAL - WEIR ELEV = 4861 . 00 ` \ _ - - - _ \ \ ` 7 4855 RIPRAP L ' _ _ `\ \ - I _ 4860 _ , - - - _ - _ - __ - - - - - - - - \ X SWALE CROSS SECTION - SEE SHEET 127 z O ww O a 4860 a Q, i - ° �_-� _ _ _ - - - - - - - - - - - - - - _ _ _ O L TYPE " M " BURIED RIPRAP � \i t �' \ \ \ \ \ \ , UNCC ❑ •JJ ® U - - . - G D50 = 12 G G G G X x I '� , x \� CALL BEFORE z C' - ' - �' ' `' `\ YOU DIG L _ ' - - - - \ Z _ v II QQQ 0 Q / I a 8 11 i \\ * O O I \ \ D OR � z U - 7 // . . ... ... . ,: . h'.. 1 8 0 0 9 2 2 1 987 7 UTILITY NOTIFICATION \\ II .IL,,,,,,,, CENTER OF COLORADO 37660 i \ 5 /16 /2025 N� %�FSS 275' •..... .. .....�� ��� 5' • 1 ' TWO #5 BARS 5' // PL TAJ 3' 1 ' H. 293' 1 /28/2025 EMERGENCY SPILLWAY DETAIL fl.IETMBEfl 0 60 ' 120 ' SCALE : 1 " = 20' 1 " = 60 ' ( HORIZONTAL) P N D 7 121 141 RETENTION POND 9 Q100 IN 210 . 52 CFS RETENTION POND 9 DETAIL Q100 OUT 0 CFS BOTTOM 4829 V1 WQCV 0 .46 AC-FT N H O Z WQCV ELEVATION 4829 . 11 . ____ ill 1% 0 100 YR VOLUME 28 .28 AC-FT N tEl L 100 YR ELEVATION 4834 .73 Ru 1 .5X100 YR VOLUME 42 .43 AC-FT KI ^/ 0 Ii 1 . 5X 100 YR ELEVATION 4837 .05 SPILLWAY ELEVATION 4838 .66 \ ` ` ♦ `\ `\ \ ' \ '\ \ '\\ \ /I f I 1 11 I 1 1♦ `\ \\ _ � \ \ \ \ - ' i . \ \ \ \ \ \ \ \ 1 / . \� \ `\ `\ \ \ \ `\ 1 \ a j / I I 1 t \ \ \ ` ` , l �/ / . I / / \ \ \ \ \ \ \ \ `\ I I 1 \ \ `` \ , \\ \ jr / 1 r \ \ ,' w N: ' . \ /• . . :/ . I ( . .\ \ \ \ \ , �►� , ��� , , / _ _ EXISTING TRIPLE CULVERT - II , , 1 r , \ V 1 1 1 I I / / N \ ' ' t ' \ , / - r - _ _ _ \ , ' / KEYMAP \\ Q\` `\ ``�ri �/ / ' ' ' /iii' /, / - - \ / - .` \ \ \ \ ` -/ \ - \ ; `, \\ \ ` \ \ / / l i i / I i O \` �\ Tl ' � / /,7,1/ 7 / / / 1 / /t _ _ _ _ _ _ _ _ - - - \ / \ • ` \ ` / N, , \ ' \ / I I I ,t \ \ \ \ \ ' i i i i I ' i i I U / I \I / / / / / !� / \ \ /♦ ` ` � ' \ \ - _ , � ' � \ `\ /\ / ' I \\ \ \ \ r ' \ / l I ' I I 1 I I ' ' ' LEGEND I 1 \ 11 r / / / ,/',/ //,// /7' / j l I l ♦ - r 1 \ \ l / l I 1 ,/ / / , /i , j , / / � ' . \ \ / i ' ` \\ \ \ t/- i - i - �- ! _ I I I �' 100 .00 SPOT ELEVATION ❑ I 1 \ \ ` \ I \ ' / 1 I ' ' ' ` X70® PROPOSED MAJOR CONTOUR l //'// ¼Y ( / \ \ �� K , / ' /' , 1 1 1 ' ' `\ \ \ \ i / / I I I I 1 \ \ \ ��0 PROPOSED MINOR CONTOUR O d _ I , , !/ I ' 7 /' , Y j / / / I I I I I I ` \ \ ♦ ` \` `\ \ \\ ` ` \ 1' \ /I I ' \ , / ' / j /' I �r 1 I / f I I I 1 I 1 \ 1 ' ' � ' /: . r / I I 1 / * \ \ NNN \ \ \ \ ,� / �� 1, / 1 ' ' i i i / �� i EXISTING MAJOR CONTOUR a w I I�� I I I I I I f ` ♦ ` \ , 1 \ \ ` \ ` , � / / , I 1 I \ U U) _ - - I 1 ' 1 \Ir 1 ' I I \ \ ♦ \ ` ` \ ` ` ,I ` \ ♦ \ I \ ' ' � � 1 I I 1 G� '1 �7 1 1 ' \ I \ / / � , ' 1 I \ i OO EXISTING MINOR CONTOUR I t.. 1 1 I � ` \ ` l \ / / WW 1 , , , , , , I I - DRAINAGE FLOW ARROW \ \ / 1 , / , r / / / a � / \ \ z >"2"/" . ' I ' 1 , \ , / \ \ \\ , ; \ \ , \\ \ , — EXISTING EASEMENT O 1 \ , I \ ` \ ` \ . \ ♦ . \\ / ' ` \. \\ \ `\ \\ \ `\ \ ` ` \ / / `\ `. / / PROPOSED EASEMENT 1 1 1 I I . \ / \ \ If / / \ \ \ \ \ `, , ` `, `, `, `, \ b� , 1 > \ / / f 1 I I / `\ \\ \ 1 \ `\ \ / \ \ / \ PROPOSED CULVERT/STORM SEWER \ 1 I , I 1 \ \ \ \ \ \, \ i \ / \ `\ \ '\ \\ \\ \\ (SEE SHEETS 128 - 130 FOR CULVERT , I 1 I \ \\ , \ , \ \ \ \ \ ` / ` 1 , 1 1 1 , \\ � � \ ` \ \ \ \ ` ` �` ` N \\ \ PROFILES AND DETAILS ) ' / / i j l l 1 ' I 1 1 I I j 1 , 1 \ \ \ \ t , , / ` ♦ ` ` \ \ ♦ \. \ \ \ \. ` I I I 1 ' I ` �' '\ \ \ \ \ \\ \\ r\ \ \ ,/C \ \ ` ` I ,/ , � 1 1 \ \ 1 1 i i y 1 `\ \ `\ \ \ \ \ \ \ \ \ \\ I I ,• \ ` ` \ ` ` \ \ \\ \\ \ \\ \\ `\ It 1 ' ' i \ \/ \ \ �, \\ �/ '\ \ , I 1 \ \ \ �, , , \ , \ , \ \ \ 1 I1 1 \, �' , 1\ \\ \ \\ \\ \. FO ! EXISTING COMMUNICATIONS LINE \ _ \ 1 . \ \ \ \ \ \\ W EXISTING WATER LINE \ \ \ \ \ I 1 1 ' , OH - EXISTING OVERHEAD ELECTRIC LINES \ \ \ / RETENTION POND 9 ` \ \ EXISTING UNDERGROUND ELECTRIC LINE �, � ��\ \\ / `\ \ `� \ \ \ 1 \ \ ` ' ♦ � \ \ \ \ � ` \ \ cis I \ / \ \ ♦ �\ . \ \ \ \ . \ \ 1 , I 1 I X = EXISTING FENCE ♦ ` \ ` \ . \ \ \ \ `..,, ti,� \ \ \ \ \ \ \ ♦ \ ' I\ I I 1 I I I 1 / I I \ \ \ \\ \ \ \ \ \ \\ \ \ \ \ \` \ \ \ \ \ \ \ \ \ \ 1 1 \ \N \ \ \ \ \ ' � . \ / \�\ I I v '- . A A . \ a, - o o - o 0 0 O - o a 1 \ \ \ \ \ 1 \ ` ♦ \\ \` \� ` \\` \�` \ � ` \ �` ` / I I I / a a c a ° a NORTH AMERICAN GREEN SHOREMAX \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \\ \\ \\ '1 '\ 1 ' \ . . `\ ,� \ . \ \ \ \ \ \ \ 1 \ \ , It ° � ° ° " J ° ° ° ° ° ° ° ° ° ° ° OR APPROVED EQUAL I 1 '\ ' ' � \ , `• • , . \ , . \ \\.. . .. \ , . . ` I , 1 ja � o a ,. o a _ W \ \ NORTH AMERICAN GREEN EROSION I /j 1 \ \ N. \ \ ` ♦ \ \ \ \ \ \ \ \ \\ . \ \ \ \ ` \ \ ♦ \/ t v CONTROL MAT OR APPROVED EQUAL \ ` ice'— _ _ \ ♦ \ � \ \ 1 ' `\ \\ \ \ \ ` \\ \ \ l \ `\ \` \ \ ` \ \ `\ `\ \ \ `\ \ \ \ `� ♦ ` ` \ ` \ \ . ./\ \ \ ♦ \ \• \\` ` \ ` \ ` � ` \ \ ` \ ` / Z v v v , � v , v v v v v v v ` v ` vvv ` vv v v. . ♦ `! . � , \\ \ \ \I , \ I 1 1 \ ,\ \\ \ \ \\ ` \ \\ \; \ \ \ \ \\ \ \ \ \ ` ` ♦ \ \ ♦ ` \ ♦ \ \ >� ` ♦ \ ` ` ♦ ` \ \ \ \ \ \ \ \ \� // UNIT ❑ 11 1\ 1 ' •� A A I CALL BEFORE Z 0 / r \ / ' 1 I \ \\ \ 1 \ \` ` \ \ , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ , \ \ \ \ ` \ \ , F S 1 I L YOU DIG 0 Z } _ I� I \ \ \ \\ 811 — — � � _ _ _ \\ _ I \ \ \ � I \ \ \` `\ `\ \ \ \ \ \ ` ♦ \ ♦ \ `♦ \\ \ \\;\ \`\\ \ \ \ `\ \ \ \ \ 1 \ \ / / / J \_ NN \ ` \ ` ♦ \ — \ \ \ ` \ \ \ _ \ �. ® OR `Lrn O \ \ 0 2 987 \ , , ` \ ` ♦ \ / / / ` \ \ `\ \ \ , \ ♦ \ \ \ 1 \ " \ \\ .\ \\ \\ \ \ \ \ � / ' / / / r / i \ ✓, � , - , / ' — \ \ ` \ \ � ` \ ` ` \ \ ` �� \ — l = [ 37660 ` / ' ` \\ \\ \ ' ' \ 1 1 1 I ` �, \ \ \ \ \ \ \ \ \ / / \ \ \ ` \ ` > ♦ \ \ . _ ill / ' " \\ `\ \ \ `\ \ \ \ \ \ \ \ 1 \ \ , \ \ \ \ \ \ \ r '/ / ' / / p' / `, \ \\ \\ \V `\ \ A\ \\ \'\ \ 1`\ \V `\ `\ I �VAA \V `\ \\ V V A \ \ - `V A- - - -- r' i ' , i 'i / / / ° � v r A \ \Iv � v v ♦ ` v ♦ vvv �� v� `' ♦ ♦ ` � ` v \ ` vim ♦ ` v _ v � TAJ / ' `\ \ `\ `\ \\ \ \\ ` \ \ \ \ \ \ ` \ \ - - � - , ter , , , / ' c - >;_ -, ' c ° o. N. \ \ N. \ / � . \\ \\ \ \ • \ \ \ \\ \ \ \ \ �> o �' EXISTING SPILLWAY TO REMAIN \ / \ \ \ ;\ ` \ \ \ \ ♦ \\ \ \ . - / ova / , ELEV = 4838 .66 - : �` \ \ ` \ ` ♦ / \ \ ` \ \ `\ \ \ \ \ `\ . - Y ✓ . \ c , - ; ' \ / 1 /28/2025 / / / / I \ \ \ \ \ \ `\ ` \ ` \ \` \ \ \ \\ \ \ , \ , \ \ \ - - / / / / ' .> - ' - ' ' / . 1 \ Iill o ° % �I — \/r .\ : • \ \ \ \ \\ I ; `\ \ \ \ . \ ` `\ ♦ \ \ ` ♦ \ \u\ \ \ \ \ — i , ' • ' / , o c / - - - - - `\ \ \ \ SET NUMBER / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\\ �\ \\ \\ \ I \ , I \ ` ` \ \ \ � \ \ \ ♦ `\ \\\ ` 0 60 ' 120 v v v vy v v ! v v ' IN a° ° , 7 � _ v v v ` PN D8 . . . \ \ \ � a o _ a \ _ / . \ \ . ` . �\ \ \ . \ 1 = 60 ( HORIZONTAL) 122 141 TEMPORARY RETENTION Q100IN POND El101 . 80CFS TEMPORARY RETENTION POND El DETAIL Q100 OUT 0 CFS BOTTOM 4815 WQCV 0 .72 AC-FT ' O Q N. WQCV ELEVATION 4815 .57 100 YR VOLUME 7 .04 AC-FT J _ < 100 YR ELEVATION 4819 .87 1 .5 X 100 YR VOLUME 10 . 57 AC-FT 1 . 5 X 100 YR ELEVATION 4821 .65 ` N Iii SPILLWAY ELEVATION 4825 \ / II / \ \ N ' ` \ \ \ \ \ \\ �\ \ � \ I- t �\ \ \ I � \ o I \ '1 ' / \\ ` 'N ` \ `\ \ \ \ ` \ \\ \ ` \ \ \ \ _ \ � \ \ ice ' / ' I _ \\ \ `\\ 1 - _ _ _ _ _ \ I I \ \ \ \ \ \ ` \ \ ` \ ' ` \ N ` \ j I ❑ Ln I1 / `v v v v v v A v A A A A „ � , KEYMAP / \ \ \ \ \ \ \ \ \ \ \ \ 0 \ \ \ I LEGEND H I \ \ \ \`. `\ ` \ ` ` . ; ' 100 .00 SPOT ELEVATION ❑ O N . - - \ \ � \ \ \ `\ '\ ' \ \ `\ \ ` \ \ '` \\`\ `\`\ \ i/ i \ 700y PROPOSED MAJOR CONTOUR z 0, \ - - ` \\ \ \\ \ \\\ \\ \ ` \ `\\ ` \ ` , 700 PROPOSED MINOR CONTOUR d ` I ` \` \ ` \\ \ ` \ \ ` \ \ \ \ ` \ I\ / % EXISTING MAJOR CONTOUR __ ❑ \ \ ♦ \ ` ` \ \ \ \ \ ` \ I I tY w X II \ I \ / \\ ` \ \ \ \\ \ \ EXISTING MINOR CONTOUR W W \ \ \ \\. \\ '\ '`� \ ` \ ` . \ /' `, - DRAINAGE FLOW ARROW / \ \ \ \ \ \ \ \ \ ` \ ` \ \ \ \ \ c I G) +\ I \ \ \ \\ \ \ ` - EXISTING EASEMENT O �fi \ `\ \ ` \ , Z OIL & GAS SETBACK LL ' I ' I I I ' � \ \ \ \ - PROPOSED EASEMENT X 1 I I \ \\ \ \ � ' \ \ \ \ \ \ \ - \ \ - \ \ _ \ \ \ - - PROPOSED SWALE/ROADSIDE DITCH I \ \\\ \\\ \\ \ ` \ - \ \ \ \ \ \ \ - \ - \ - - - PROPOSED CULVERT/STORM SEWER _ _ (SEE SHEETS 128 - 130 FOR CULVERT I I d \ \ \ \ \ \ PROFILES AND DETAILS ) I X `\i '� // II X � / ' � , / \ \ + � \ \ - - - \ ` ' ' EXISTING WELL EXISTING GAS LINE I I - - - - \\ \ \ - \ - - - FO ! EXISTING COMMUNICATIONS LINE I II I o \ - _ - -- - -- - - - _ W TEMPORARY \ \ \ � , \ - . - - - W- EXISTING WATER LINE X -, - � � II X I RETENTION \\ OH - EXISTING OVERHEAD ELECTRIC LINES Z ' ' I POND E1 / �\ - - - - - - - -4 : 1 N - E EXISTING UNDERGROUND ELECTRIC LINE O III - \ , \ \ � / \ \ \ X EXISTING FENCE NO BUILD/ \ \ \ f - - - II / Z `I ' / - _ NORTH AMERICAN GREEN SHOREMAX L{} v A v / v boo n o O o n O _ 0 0 0 0 0 0 0 0 _ OR APPROVED EQUAL I X 0 - 0 0 - 0 O 0 00 a NO STORAGE /"\ \ - \ - — o O O O , v I I I I i v+ / NORTH AMERICAN GREEN EROSION I1 v / / _ � X CONTROL MAT OR APPROVED EQUAL Z \ ' RIPRAP Z W x I _ _ _ _ - _ _ X \\ - \\ I ij I - /�/ \ ` \ _ _ \ ` \ ` / ' SWALE CROSS SECTION - SEE SHEET 127 z W p 4 : 1 ;- ` - - - - w w 1 \ \ I I / / \ \ S. / \ ctx «x I _ I tSi O 1 � - - -' I I /' 1 / S. S. CALL BEFORE Z Q I ( I � '' % ''/ S. \ \ \ ` \ YOU DIG oz z > I i II I ` \ \ + \ 811 Q � o I 2 O I \ I OR IY / f I X I j pwJW w - � \ \ ` \\ I - - - - - - - _ - - - - - I I 18009221987 U u LL H II I I S. \ \ / S. II , l , ' \ ! N. UTILITY NOTIFICATION " � CENTER OF COLORADO ��,�� .... ... \ \S. I \J . \ , , \ \ + \ - 37660 I / - - ' I ` � ` `\\ I l \\ \ \ \ �/ , � - - - - - �\ \ \ \ �+ \ / , \ \ \ � 0NAL ��� ` v v I / \ ` f 1 v A v v , / ////lIIIIIII oA\ lb ` ' \ \ I i ./ \ \ \ ` . \ +\ \\ `\ `\ / PL i' I \ ` I• / 1 TAJ Iv A / / . . � v / / / A 1 vV vv \V c2 `V I 7; I \ I < I // - _ _ _ _ ; / ' \ \ \ \ ` ` \ 1 /28/2025 II I , ` \ \ ` '\\ \ / . - - \ � \ I ,I . ' � /� \\ \ \`\ \ \ \'\ `\ \ ` \ \\ ET NUMBER \ \ I , - - - \ ' 0 50 ' 100 ' \ ` \ l / 4 I / , ' - 1 - 50 ( HORIZONTAL) P N D 9 123 141 TEMPORARY RETENTION Q100IN POND E2 8226CFS TEMPORARY RETENTION POND E2 DETAIL Q100 OUT 0 CFS BOTTOM 4803 . 5 WQCV 0 .51 AC-FT ' O 0 WQCV ELEVATION 4803 .98 100 YR VOLUME 5 .06 AC-FT J 100 YR ELEVATION 4807 . 19 O 1 .5 X 100 YR VOLUME 7 .59 AC-FT 1 . 5X 100 YR ELEVATION 4808 .90 N` SPILLWAY ELEVATION 4811 I I / II 1 , \ \ \ \ \ \ \ \ O I I t I \ \ \ W N I I II I I \\ ' � ` \ ` I \ Q II i ' ' \`\ \\ � . `\ \`\ '\ ❑ o S. i I 1 \ \ \ \ \ vv ` II I I I \1 \\/ ' I I I W \ \ \ \ ` ` ` KEYMAP , • , 1 A A , 1v I I , ♦ v v, I Av ;' \\ I \\, I \ \ , LEGEND I I II II i 1 \ \ z - .- - - - - -t 11 I , , I , \ 8j \ . 7- 100 .00 SPOT ELEVATION \ I I \ \\\ \\\ I ` I 1\ \ 70®�/ PROPOSED MAJOR CONTOUR z \` \\ �\ \ � \ •\ �C9 ` ' � �\ / \ I \� �, / ' - - _ N. \ ` \ ` ` \ � PROPOSED MINOR CONTOUR O d _ \ \ `` I \ III t` �` / / EXISTING MAJOR CONTOUR ❑ - - - _ - - - -=t �,- • ..may ` \ i _ \ ' �� W I I ' /' \ /' \\ '\ / 7O EXISTING MINOR CONTOUR U) co W W - - ___ I I I VIII / ` \ \ \ \ , \ N o- Is.. III r � - \' '\ \ ` \ ` /' \`, \ 1 - DRAINAGE FLOW ARROW ❑ Q-' _ - _ '� I `\ ' I I I I II \ � \ � .___ - - - - 1 --- � - - - - - - - - - - - - - EXISTING EASEMENT O - - - - - - - - OIL & GAS SETBACK \ _ - _ - - - - - - - i PROPOSED EASEMENT � _� = _ \ _ 1 , - ��\ _ _ - - - - _ _ /\ `\ , - - PROPOSED SWALE/ROADSIDE DITCH _ -\ - - , \ I r - _ - - _ �_ _ 1 / PROPOSED CULVERT/STORM SEWER \ - -� = ` ' ` \ ` ` ' - - - ` =3 i / (SEE SHEETS 128 - 130 FOR CULVERT Q / / c / PROFILES AND DETAILS ) J' - _ ` J _ - - . \ - - - EXISTING WELL \ \ f i / - - _ � - \ \ ' ` - \\\_ 1 �= - - `- - - - - - _ EXISTING GAS LINE S. `\\\ _ _ _ FO ! EXISTING COMMUNICATIONS LINE W \ \ ' ' - - �r ___ _ _ \ I,I it l I ' - , � _ � - - - - - - - - - - ' ' __ \ _ _ _ _ - - - - - - - - - - - - EXISTINGWATERLINE_ _ - ` ` " - ` _ -' I ' \ i OH - EXISTING OVERHEAD ELECTRIC LINES Z - -- --- - - - - -------- / 1 \ _ 4810 ` ` _ --C.- / \ \\\ ``\ `, \ \ I I ' / I ' 'I - - _ = _ _ _ _� - - - - - - E EXISTING UNDERGROUND ELECTRIC LINE O I 1 1 \ \ 4805 ___ - __ _ - - _ _ _ - 1 -. X EXISTING FENCE \\ ` \ \ \ I ' \ I - / \ \ \ _ _ / O O O O O O O O NORTH AMERICAN GREEN SHOREMAX `\ S. - \ XI I I \ \ 1 _ _ � - _ - - \ I I I , , , , -� _ _ i. ' ° ° ° ° ° ° ° ° OR APPROVED EQUAL \ I I TEMPORARY RETENTION POND E2 N _ - - - � \ \ \ \ \ \\ \ \ \ I I x x x x x NORTH AMERICAN GREEN EROSION \ \ \ I _ _ _ _ _ _ _ _ _ _ _ _ _ 1 I \ \\ \\ \ I\ ' ` - _ - - _ CONTROL MAT OR APPROVED EQUAL f l \ I NO BUILD/NO STORAGE - - ` ` \ \ TM ' - - - - -��= - _= RIPRAP Z W ` - - - - ` - - ` \ `\ `\ \ \ \I \ \ I I - - - ` ` - ` ` \ \ \ I � ` - - - ` \ - - - - - - - - - ` - - X SWALE CROSS SECTION - SEE SHEET 127 Z W a J Ill\ I - - LIJ a \ \\ \ ` I i I \ I i 4805 / • ` \ \ ` - \ \ - _5 __ \, \\ \ \ \ \ _ ` \ \ \` \ I \ I I I ` \ � - t- --'r - - `� t -� - ` - -� - `� ` '� - \ - + - -IJ \\ I I I ` \ N� o 'r ` \'\ Ir - - - \ _ ` , CALL BEFORE Z ® Q ' ' YOU DIG ® Z Zs. li \ ` \ ` Lf- IJ a811 v O \ _ - - � . ® OR J U I I 1 , - - ' > / ` - , - - O w - W w \ ` \ \ \ \ ` \ I 1 - 800 - 922 - 1987 U CL LL I \ \ I _ \ z '\ \\ ` \\ \ `\ \ I �`, \ I - - - - ` , UTILITY NOTIFICATION \ \ `\ \ ` ` \\ ` \ \\ ` \ I rl ' ' \ i ���U\IIIIIIIIIII///j� �� \ \ \ \ \ \ `\ \ I � \ \ `� - - \ I \ \ \ \ \ \ - \ / \ I 1 it \ - - — - - — / CENTER OF COLORADO � , I I - ` \ _ , ' `,, _ 37660 = _ \ \ \ \ \ I ` \ I : /1 202 . • /lllllllllll����� ` \ I I\ 1 ` \: / `\ \ice 1 \ \ \ ` \ \ \ \ \ ^ \ , \ \ \ \ _ _ - - '/ \\ - ` \ - _ - - , / \ \ `\ i - / \ �' ': tf S.\ \ \\ \\ \ ` \ \\ \` \ I \ 1I I \ 1 1 ` \ / \ \ ` \ r \ \ \ \ }\ \ / . - \ \ ` r \\ \ 1 \ \ \ \ \ _ / ' - _ , - \ Q ` 1 /28/2025 f - - '¼ . / I \ \ \ \ \ \ \ \ S. \ \ \ \ \ \ / \ \ \ ' r \ \ \ \ \ \ \\ \ \ \ \ \ \ / \ \ \ \ = ET NUMBER I - _ _ s I \ `\ ` \ 1 / ` \ , \\ \ \ 1 `\ / v` \ 0 50 100 \ \ IN \ \ \ c .F \ Ir \ \ \ \ I \ `. \ \ \ ` 1 ` . �' \ . \ . I \ ` . ` \ ` / I . ' \\ `I G G 1 / l \ ` \ 1 " = 50 ' ( HORIZONTAL) PNDI 0 124 141 `rc / � � / / --� -' I I \ \\ /' it \ \ - T _ \ \ \\ \\ \\ \\ 1- 1 1 , ' � ' - 7' 1T � '/ - _ - " / / , ' ' / ' j-- -�- � 1--'1 �I _ I I / i l I ' \\\ \ / / \�� \ � � � � � ` ` \ Y I r \ \ ♦ \ \ \ 1 1 ' r _ -� - I i / 1 I I I -i-__---�_ 1 , 1 , / / '\� \ � / \ 181 O \\ \ \ I I I I ii ) / ) --- : \ `\ \ \ • ,/ ' /' l � / A/) / 1 / / l l / \ \ � \ ` _ _ _ r - - / / / / \ I `, \ / / f I ' 'I I / / 242 �. , / / / \ \ 241 I / N ( '\\ \\ \\ ' \ \"\ \\ \\ \ .:•: ,,/I / / / / // /11 •/ ,( % % _ _ , _ _ _ / I / 7/ . . _____ W 240 I / o / , ,L \ 1 1 \ \ ♦ \ N ` \ • , I \ ` ` \ _ / lI I , / / , /1 T \ ` ` - - - - - ' 243 STMH -4 Lam - \ ` - _ _ _ _ _ ' ' __ _ _ _ _ - - - �� - - - - - J } - KEYMAP - - - I - ` - T \ \ ` - T _ _ - - - - - ` " _ _ _ - \ STMH -3 / \ \ - - -� - I - - - - - - - � w - Y 458 . 90 LF OF 54 RCP 0 . 28 /o ♦ 1, W o ' f ` 424 . 08 LF OF 54" RCP @0 . 28 %0 . 28 % @ ° I N. 0 0 0 0 0} �� �� � ° - X7 0 - - T - - - � - - , STORM SEWER NOTES C� - — — _ — Via+ 2- 14t0o — +tl 12f00 — +@p— — , — . \ / \ —� _ — —\ — ` — — — — — — — - w 1 . PIPE LENGTHS ARE CALCULATED FROM THE CENTER OF 0 / cc ' '_ _ f / ' / • - ` ♦ \ z MANHOLES OR THE INSIDE FACE OF INLET BOX z ' y \ \ \ \ I J STRUCTURES . SPECIFIED LENGTH OF PIPE INCLUDES O W , , - - T " - ' y ` \ ` ` ` \ \ ' 1 j' THE LAYING LENGTH OF FLARED END SECTIONS . H \ = \ \ - 18+83 54" FES ` - _ _ - ' - ' � , - - ' ' � ' - ' ' \ \\ ` ` \\ \\ \ ` I / 2 . PIPES CONSTRUCTED UNDER THE TRAVEL LANES OF W S - - / INV: 4885 .35 `\ `\ I ,� _ / - - I. I7 N ` \ i , U NEW PUBLIC ROADWAY SHALL BE RCP OR AN APPROVED 49 - \ \ \ \ , I EQUAL . ` ' - \ \ \ \ \ \ \ � I 3 . PIPES CONSTRUCTED IN RIGHT OF WAY FOR PRIVATE \ — — — — o o I 1 f - � \ \ \ \ 1 / / / - \\ `, \ I '1 APPROVED EQUAL . 0 \ \ 248 / / \ \ \ \I i / - - ' - - - - =- , ' / / II \ \ \\ \, I 1 4 . CUTOFF WALLS SHALL BE INSTALLED BELOW ALL \ ` \ ` ` I / f , fi I I \ \ \ ` OUTLET FLARED END SECTIONS AND SHALL BE 4 , 500 PSI W \ \ \ � I ' \ 1 I f _ _ / I / I \ \ CONCRETE WITH EPDXY COATED #5 REBAR 12 ON \ - ` ` \ 1 ' / / . - - - - - - . - I_ ` I '�` ` ' i \ \ ' CENTER EACH WAY 3" CLEAR FROM ALL EARTHEN \ \ \ 247 \\ T 246 \ f �` Z \ I `\ \ ' I EDGES , 8" WIDE X 3 DEEP AND 2 BEYOND EACH OUTSIDE \ I I I ♦ ` ` \ \ I o \ ` I \ ` f \1,I \ �� , \ `\ \\ `\ `\ ` EDGE OF THE END SECTIONS . \ \ \ II I ` F ♦ ` \ \ ' I ' ` ` \ ` 1 5 . SAFETY GRATES SHALL BE PROVIDED AT ALL INLET N - I - .- --- ---- \ \ .\ , \ \ \ _ � ` , ` \ FLARED END SECTIONS BUT SHALL NOT BE PLACED AT 1 �\ \ - \ / I ` I \ \ ` ` \ \ f r - - - - - ' \ ` � ` ` \ `, ANY OUTLET FLARED END SECTIONS . / f I / / N N N, \\ N 'N 'I / I I / - - - \\ \ \ATh \ \ \NN / � ` . ` � ` , _ \ I I - - ` ` \, \` � \ `\ \ `` LEGEND \ `\ \\`` \ \ \ \ \ \ \ ` \ ` ` _ ` I I / / / \ ` ` \ \� \`\ \ \\ \\ \\\ `\\ `\ \ \`\ ♦` \\ \\I I - 245 `\ \` 1 1 \ \ \\ \ \\ \ /\ \ \ `, \ \ ` \ \ ` ` �\ \ ` ` _ � \ \\ ` _ \ \ \ \ I � I i `�` ♦ � � \\ \\`\ \\\ \ ` \ \ `\\ `\\ \`\\ � \ ` ` \ �\\ \�\ 1\\ �/ � \ \ \ I I 1 ' I I ` , PROPOSED MINOR CONTOUR EXISTING MAJOR CONTOUR STORM MAIN - PLAN VIEW __ _ EXISTING MINOR CONTOUR PROPOSED SWALE/ROADSIDE DITCH L6 O EXISTING EASEMENT ce PROPOSED EASEMENT 0 4915 4915 PROPOSED CULVERT/STORM SEWER 06 Z U Q 4910 Lo 4910 z J w U ti `' o w z o � N � o � 00 +II w w o N 4905 1� o 4905O ococ 4 +I = °o z p o O N rn r EXISTING GRADE ALONG > > > , UNCC ❑ ' W sc' z011 C0 moo_ ? zU ® U p - CALL BEFORE Z Z 7 ® ` , YOU DIG O L 4900 ` 4900 811 Z) o ° ? - OR® J Z o p 4895 - - - - -- -' 4895 O zw J ~ W 1 - 800 - 922 - 1987 U 0. 0- c 100-YR HGL UTILITY NOTIFICATION PROPOSED GRADE ALONG Q % vvvv0\\\��I ICI II�I�////j// CENTER OF COLORADO -- - - - - - -- -- -- -- 37660 5 /16 /2025 :/ ' 4885 4885 '' Ss �`�'� \ /// QNAIIIII\\ \\\\ -- -- -- -- -- - - - L=40 . 85' - - - - - -- -- -- =424.08' S =0 . 28 % S =0 . 28 % - - . - - ' - - -- -- -- -- 54" RCP L=458 .90 54" RCP PROJ NO : PL 4880 S=0. 28 % 4880 - FNfl : TAJ CHKD : 4875 4875 r\ " 1 /28/2025 19 + 00 18 + 00 17 + 00 16 + 00 15 + 00 14 + 00 13 + 00 12 + 00 11 + 00 10 + 00 9 + 50 ; LET NUMBER 0 60 ' 120 ' 1 " = 60 ' ( HORIZONTAL) ST I STORM MAIN PROFILE VIEW 1 " = 6 ' (VERTICAL) 125 141 Th \ _ vv� _ � v �, . - • � 1� 1 \) / �/ '\ 1V 1 , vV I 1 I � 1 I / / 1 \ V ' I ( 1v // - / // � A _ - - vv ♦ ` v ' ' i - \ - \ �/ \` \ ` \` � _ I ' / / / ` , mod`, _`` 1 '\ � 11 I 1 I 1\ 1\ \ \ I \ \ / Q \\ ` ' ` \\ , I I ` / \ O t S \ / - .,. - - - - - - - - - - - - - - - - - - - - - ' 11 ` ' \ \ \ \ 1 /11 / h / / i:/. : f - III / ' \ ( - . \ c - - N - ____ L( , 71 N _ - - - 48 \\ 1 I I C \ / f , r r // , ` ` \ ` \ \ 140 / / / / / I n n `\ 1 \ I 1 ` l _ � - ' f - - - - 1 TYPE M RIPRAP N. \ 4885 _ _ _ W N ' I ) \. r \ / / I D50= 12" 1 1 O - _ C4 I 1 1 �. . .• . `.y, / \ \� " 488 .r / 1 Lp= 33 , W= 13 , D =24 \ \ \ ❑ Lo � 85 (� \ \ ' ` - - - - - - T y/ . � /� \ ff \ f/ 26 .06 LF OF 30" RCP @3 .44%3 .44% `` \ ` \ \ \ ` ` 4$ w STMH -2 " - - - - - - - = - - - - . � _ ` / KEYMAP LLJ v (/) \ _ 519 .85 LF OF 54" RCP @ 0 .28% \� +- 339 . 37 LF OF 54" RCP @04 %0 . 84 °!0 - - ' f \ ` ♦ \ \ ` `\G\ STORM SEWER NOTES . H a+0o 8+ 1 — = +no , - - - - - _ _�� �� z uJ • - - _ - _ - _ ! / ../T: \\H. N 4880 I X , ' X X - , \ \ 1 . PIPE LENGTHS ARE CALCULATED FROM THE CENTER OF O - - - - - - \ MANHOLES OR THE INSIDE FACE OF INLET BOX -� _ J / / \ - \ , STMH -5 ` 1\ ( \ 4885 \-1 - ; 1 + ; STRUCTURES . SPECIFIED LENGTH OF PIPE INCLUDES 0 LOU '- -- - � / � IL \ THE LAYING LENGTH OF FLARED END SECTIONS . 2 � � v ` ` 1 ''` v � � o �� v 'v 1v v`v �' v`v v ` 4890 vv vv 1v 1 / � — . 7= - . � ❑ - - - - - /_ _ _ 1 � . ♦ \\ \ \ 1 1 \\ \ \ \ / / / \ � EQUAL . cn > /k/ ` \ \ \ \ ` ` ` \ \ ` \ \ ` PIPES CONSTRUCTED IN RIGHT OF WAY FOR PRIVATE, ' - - _ • I \ \ \ \ ` \ 4900\ \ \ \ \ \ \ \ \ \ \ c5 / \ \ ❑ � \ `\ ' 8 \— \ o \\ 1 _ ` \ \ 1 , \ ` \ \ ` ` ` \ / / DRIVEWAY ACCESS SHALL BE AT LEAST CMP OR AN _ / 9�\ 84 . 78LFOF24 RCP@5 . 11 /0 \ \ \ \ \ \ \ \ \ \ _ V ' '� ` v _ 1 V 1 \ \ V A 1 \ V \ V ` \ \ � / O - � \ / \ N. � \ \ \ , \ \ \ APPROVED EQUAL . / \ \ \ 1 11 11 `` \ \ \\ \\ \\ / / 4 . CUTOFF WALLS SHALL BE INSTALLED BELOW ALL z 1 , / h ' / \ / 1 \ \ \ \ 1 1 \ 1 CONCRETE WITH EPDXY COATED #5 REBAR 12 ON / ` ` \ � 24" FES - \ .� - - - \ I 1 \ \ \ \\ \ \ \ ', / EDGES , 8" WIDE X 3' DEEP AND 2' BEYOND EACH OUTSIDE 141 ` . / / �w I , �. _ , - � - - _ _ - - , \ � � . - 1 ` , ; `v \\ vV - . ` / / / ; ; ` . `. - - - - ' - v` �\ \I \ \\ \\ \\ \\ 1, ', 1 ` N x __ __ - -- � EDGE OF THE END SECTIONS . INV: 4889 . 09 1 " • zWz , \ I \ \ \ , NV 5 . SAFETY GRATES SHALL BE PROVIDED AT ALL INLET 1 v , , \ A \ \ v ANY OUTLET FLARED END SECTIONS . \ 1 I I 1 `\ \V // l / ` vvv I I /' // ' � / - , % ` �� I I \ \V 1 1 l \ A \ \ V A A\ V/ A ♦ ` ` A A v ` ` - - _ / 1 1 ' / ./ / 1 ` v / I I , �. I 1 I �/ � �� � � / 1 I , �. 1 1 A V A , ` \ Ate• \ V A '`'• v ` - - _ I I I / I /I 1 �. / I ♦ v v \ I I LEGEND V\ / / / � i0p PROPOSED MAJOR CONTOUR / i ` v I - - _ - - ��. � , l / // F . 142 ' 1 / / V v� \ vI �v /vv �v vv, `v v`• v ` v y ` , PROPOSED MINOR CONTOUR EXISTING MAJOR CONTOUR STORM MAIN - PLAN VIEW __ _ EXISTING MINOR CONTOUR PROPOSED SWALE/ROADSIDE DITCH L6 O 4915 4915 EXISTING EASEMENT ce PROPOSED EASEMENT 0 4915 4915 PROPOSED CULVERT/STORM SEWER 4910 ., 4910 iu Z LOU U Low D o w 4910 w 4910 0 0 - N ti EXISTING GRADE ALONG c. 0 4905 o 0No O N / PROPOSED GRADE ALONG Q ,_ ti T 4905 w N c'? _ L0 Z aS 0 o M I O M b W ZrCfl _ 'n OM W CWC O = N Z 1 co 0 - M M +� co h > (n I G / _ _ 4905 n � N J 4905 ❑ � W 4900 (n co EE z z z U 4900 EXISTING GRADE ` = o 00 ` o o° °� T UNCC ❑ U orn m cocoa ornd 4 cn <C CALL BEFORE Z �/� � . ` ALONG (i oo = z \nom ? ® i 00 w » ~ N » > i- , YOU DIG OZ Z H 4900 °o w + _ Z) + � i U c? ; cn z off ? z U cn olYz z z U 4900 Q 811 O Z _ - PROPOSED N ? ilf■ olI 4895 4895 GRADE ALONG H� D OR _ ❑ II 4895 - F 4895ISo_ u_ co W 100-YR HGL 1 //11 - 800 - 922 - 1 987 II 4890 . . __ __ 4890 UTILITY NOTIFICATION o ono I \\ "/!//// 1 — — — — — — — LL o 4890 `� 4890 CENTER OF COLORADO �° ti - - - - 100YRHGL 4885 4885 7 37660 — — 4 \ \ 5 /16 /2o25 ay 4885 ;s o$ 4885 4 ,� - - - - - 4880 — -- - - — — L=519 . 85' — — — — — -- 4880 Cp S =0 . 28 % PL L=458 .90' 54" RCP L=339. 37 - - S =0 . 28% ` - - S =o. 84 % T 4880 J 4880 TAJ 54" RCP 54 " RCP . . L=26 . 06' J 4875 4875 S =3 .44% TYPE "M" RIPRAP 30" RCP D50 = 12" 4875 4875 1 /28/2025 Lp=33' , W= 13' , D =24" 4870 4870 2 + 00 1 + 00 0 + 00 -0 + 50 ; EET NUMBER 9 + 50 9 + 00 8 + 00 7 + 00 6 + 00 5 + 00 4 + 00 3 + 00 2 + 00 1 + 00 0 + 00 0 60 ' 120 ' STORM LINE A - PROFILE VIEW 1 " = 60 ' ( HORIZONTAL) ST2 STORM MAIN - PROFILE VIEW 1 " = 6 ' (VERTICAL) 126 141 Q CHANNEL SECTIONS 0 5 ' 10 ' V) oz 1 " = 5 ' ( HORIZONTAL) ' 0 L < -J O 1■1� U) 3 . 33' 100-YEAR MAX FLOW DEPTH 1 ' MIN . FREEBOARD 1 .97' 100-YEAR MAX FLOW DEPTH 1 .96' 100-YEAR MAX FLOW DEPTH LLI1 ' MIN . FREEBOARD 1 ' MIN . FREEBOARD __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ I..'. N 1I I1 1I I1 1I I1 N 4 8' 4 4 • 12' 4 4 8 4 Q c� CHANNELA CHANNEL H CHANNEL O U) z w 2 . 62' 100-YEAR MAX FLOW DEPTH 2 2 . 68' 100-YEAR MAX FLOW DEPTH � 1 ' MIN . FREEBOARD 1 .67' 100-YEAR MAX FLOW DEPTH 1 ' MIN . FREEBOARD 0 1 ' MIN . FREEBOARD H 1 � � 1 1 � � 1 1 � � 1 U 4 I 4 4 4 4 4 z 0_ 8' - 10' - 16' - O O- H 0_ p CHANNEL B CHANNEL I CHANNEL P v CD > ww oo! 1 .23' 100-YEAR MAX FLOW DEPTH 1 .06' 100-YEAR MAX FLOW DEPTH Oz 1 ' MIN . FREEBOARD 0 . 67' 100-YEAR MAX FLOW DEPTH 1 ' MIN . FREEBOARD > 4444444 1 MIN . FREEBOARD Lu 4 - 4 4 - 4 4 4 8' 10' 8' CHANNEL C CHANNELJ CHANNEL Q 2 . 07' 100-YEAR MAX FLOW DEPTH 1 .68' 100-YEAR MAX FLOW DEPTH 1 .81 ' 100-YEAR MAX FLOW DEPTH 1 ' MIN . FREEBOARD 1 ' MIN . FREEBOARD 1 ' MIN . FREEBOARD•1 � f� 1 1 � � 1 1I I1 4 I 4 4 4 4 4 8' - 10' • 12' CHANNELD CHANNEL K CHANNELR 1 . 3' 100-YEAR MAX FLOW DEPTH 1 .09' 100-YEAR MAX FLOW DEPTH U 1 ' MIN . FREEBOARD 1 ' MIN . FREEBOARD z Z 0 H 0 W I OQ 4 - 8' 4 4 - 8' 4 w W at CHANNELE CHANNELL O o U OzzW z 2 . 24 100-YEAR MAX FLOW DEPTH (j Q n Z z 1 ' MIN . FREEBOARD 1 .09' 100-YEAR MAX FLOW DEPTH Z 0 1 ' MIN . FREEBOARD Q o o w l = w 4 I 6' 4 4 1 4 \\\��\\\PIIIIIIIIIII/// CHANNEL F CHANNEL M 37660 • ���•, 5 /16 /2025 / $' 1 .63' 100-YEAR MAX FLOW DEPTH %��FSS•• ��' ��\ 1 .81 ' 100-YEAR MAX FLOW DEPTH //!I0NAllllll� �\\\\\ 1 ' MIN . FREEBOARD 1 ' MIN . FREEBOARD ± 1 � 1 TAJ 4 I I 4 4 4 6' 16' CHKL . DATE 1 /28/2025 CHANNELG CHANNEL N SHEET NUMBER CHI 127 141 CULVERT NOTES : 1 . SPECIFIED LENGTH OF PIPE INCLUDES THE LAYING LENGTH OF FLARED END SECTIONS . CULVERT PROFILES 2 . PIPES CONSTRUCTED UNDER THE TRAVEL LANES OF NEW PUBLIC ROADWAY SHALL BE RCP OR AN APPROVED EQUAL . 0 50 , 3 . PIPES CONSTRUCTED IN RIGHT OF WAY FOR PRIVATE DRIVEWAY ACCESS SHALL BE AT LEAST 100 O z CMP OR AN APPROVED EQUAL . ' Q 1 " = 50 ' ( HORIZONTAL) 1 4 . CUTOFF WALLS SHALL BE INSTALLED BELOW ALL OUTLET FLARED END SECTIONS AND SHALL BE 1 " = 10 ' (VERTICAL) ii 4 , 500 PSI CONCRETE WITH EPDXY COATED #5 REBAR 12" ON CENTER EACH WAY, 3" CLEAR FROM ALL EARTHEN EDGES , 8" WIDE X 3' DEEP AND 2' BEYOND EACH OUTSIDE EDGE OF THE END J SECTIONS . 0 5 . SAFETY GRATES SHALL BE PROVIDED AT ALL INLET FLARED END SECTIONS BUT SHALL NOT BE li PLACED AT ANY OUTLET FLARED END SECTIONS . CULVERT 3 4920 4920 W MORNING ROVE LANE F-' CULVERT 1A CULVERT 1 B CULVERT 2 4930 4930 4930 4930 4930 4930 4915 N I PROPOSED GROUND 4915 o fV FAIRBANKS DRIVE O FAIRBANKS DRIVE EXISTING FAIRBANKS DRIVE LL N/1WN U- CD GROUND PROPOSED C Z U) O WO 4925 I PROPOSED O 4925 4925 I PROPOSED 4925 4925 4925 4910 4910 Q Zorn � GROUND 0 w GROUND GROUND 7 O Lo w EXISTING > EXISTING o o I o Z GROUND LL v v ? GROUND O � � /� w � w0) � U) 4920 z 4920 4920 LL 4920 4920 LL . cn m 4920 4905 _ 4905 ~ vZ coZ LL � L=83. 171 W Z S= 1 . 15% CD - - - - _ `Y' - 30" RCP 4915 4915 4915 4915 4915 4915 4900 [ 0100000 GROUND CUTOFF 4900 3WALL - - - H APPROXIMATE LOCATION OF L=85.47 Z APPROXIMATE LOCATION OF L=85.47' EX GAS - DEPTH IS NOT KNOWN S= 1 . 17 / ' EX GAS - DEPTH IS NOT KNOWN 0= 1 . 170 ° ° L=62. 01 48" RCP CUTOFF 48" RCP S=0. 81 % TYPE "L" RIPRAP z 4910 WALL 4910 4910 U CUTOFF 4910 4910 36" RCP 4910 4895 D50=9" , Lp= 16' , W=T , D= 1 . 5' 4895 O WALL CUTOFF WALL U TYPE "H" RIPRAP TYPE"H"RIPRAP Z 0_ ioi 050= 18" , Lp=40' , W=22' , D=3' TYPE "L" RIPRAP 4905 4905 4905 D - 18" , Lp=40', w=22' , D=3' 4905 4905 50 4905 4890 4890 F 0_ so— D —9" , Lp=24' , W=9' , D= 1 . 5' WW 0+00 1 +00 1 +35 0+00 1 +00 1 +35 0+00 1 +001 + 12 0 +00 1 +00 1 +33 W W U W > WW WW CULVERT 5 CULVERT 6 CULVERT 8 4900 4900 4905 4905 4920 4920 O Z EXISTING MORNING DOVE LANE BURGHLEY COURT LEDYARD ROAD SOUTH > o NIVIci 'TIVIVIVI CULVERT 4 GROUND PROPOSED GROUND PROPOSED GROUND W 4900 4915 PROPOSED 4915 4925 4925 4895 0 4895 4900 o GROUND EXISTING MORNING DOVE LANE ui v w 00 0 r0-, m GROUND :oT ST LL0 U � coo coZ (flZ - > UT w � M V M — w w . . 4920 I 4920 4890 4890 4895 N Z C > 4895 4910 A > 4910 N Z � .Z. CA r LL LL I LL N Z > - O Z > - - - 4915 - 4915 4885 L=61 . 75' '� 4885 4890 L=63. 06' 4890 4905 4905 S=0. 77% S= 1 .23% 36" RCP EXISTING 24" RCP EXISTING L=61 .26 L=51 . 86' GROUND S=0 .52 /° CUTOFF WALL S=0. 80% 15 RCP GROUND 15 RCP CUTOFF WALL 4910 ", 4910 4880 4880 4885 4885 4900 CUTOFFWALL 4900 CUTOFF WALL TYPE "OF" RIPRAP J TYPE " M" RIPRAP TYPE "OF" RIPRAP TYPE "XL" RIPRAP -1 D50=6" , Lp=4', W=2', D= 1 ' D50= 12" , Lp=26', W= 11 ' , D=2' D,0=6", Lp= 12', W=6', D= 1 ' D50=6", Lp=4', W=2' , D= 1 ' 4905 I PROPOSED GROUND I 4905 4875 I I I 4875 4880 I I 4880 4895 I I 4895 0+00 1 +00 1 + 15 0+00 1 +00 1 +25 0+00 1 +00 1 + 15 0+00 1 +00 1 +20 CULVERT 11 CULVERT 20A CULVERT 20B CULVERT 22 4935 4935 4930 4930 4930 4930 4940 4940 MORNING DOVE LANE EXISTING EXISTING GROUND FAIRBANKS DRIVE FAIRBANKS DRIVE 0 F PROPOSED GROUND GROUND FAIRBANKS DRIVE EXISTING PROPOSED GROUND PROPOSED GROUND GROUND r l 4930 G5 L N 4930 4925 C I 4925 4925 Co I 4925 4935 4935 �•/ LL N0LI io c o IPROPOSED GROUND 7 WO / / • 0- L v O w c (o w 0 o U _ 4925 : C 4925 4920 co z 5 LU 4920 4920 M Z M z 4920 4930 5 0_ / w m 4930 z L O M Z - _ O Z w . . W W M - O > ■ O Q L=51 .86' S= 1 . 13% _ M Z_ 4920 EXISTING 4920 4915 4915 4915 4915 4925 4925 N J GROUND 15" RCP L=72. 72' - = L=72. 9T q O J U S=2. 75% FF" 00 % L=63. 66' J� O s CUTOFF WALL 36" RCP 36" RCP Z S= 1 .22% 2- 4915 4915 4910 4910 4910 CUTOFF WALL 30" RCP O 7 7 c/ TYPE "VL" RIPRAP CUTOFF WALL 4910 4920 4920 H Z Z �■ z D50=6", Lp=4' , W=3' , D= 1 ' CUTOFF WALL U Q n W TYPE "L" RIPRAP TYPE "L" RIPRAP v O D50=9" , Lp=30' , W= 14' , D= 1 . 5' D50=9", Lp=30' , W= 13', D= 1 .5' TYPE "L" RIPRAP W 7 D50=9 , 7W10 , W=7 , D= 1 .5 W Z U 4910 4910 4905 4905 4905 4905 4915 4915 W - p Z w J 0+00 1 +00 1 + 15 0+00 1 +00 1 +50 0+00 1 +00 1 +50 0 +00 1 +00 1 +30 O (5 LL C ) 3 CULVERT 23 4910 4910 ULI\11111I III/I/ // CULVERT 24A CULVERT 24B CULVERT 25 FAIRBANKS DRIVE 40T . 10 / 4890 4890 4890 4890 4940 4940 FAIRBANKS DRIVE PELICAN LAKE LANE FAIRBANKS DRIVE _ 37660 4905 N I PROPOSED GROUND 4905 PROPOSED - + 0 PROPOSED '3 5 /16 /2025 ; � / rn O GROUND O ; � � w EXISTING GROUND 4885 N- GROUND 4885 4885 PROPOSED 4885 4935 LU If 4935 > N N 00 w N I 'r' I GROUND 06 o �i/ CAS ' •.. �C�\�� .... .. ....TM ? O w 0 w /� V O I- O w N ��////1111�I����� 4900 0 4900 w 00 cn rn L6 w w 4880Co w v 4880 4880 C > w 4880 4930 Z LL > 4930 Z w — r - So _ > — PL \ O Z M Z M 4895 4895 • L=57. 08' TAJ 4875 4875 4875 4875 4925 ExISTING 0= 1 .24% 4925 x ; 115.23, - � GROUND 15" RCP 3,542% EXISTING L=62. 77' ? EXISTING L=62. 7°711 / I YEN . 4890 RCP 4890 GROUND 0=0.000 / GROUND 0=0. 000 CUTOFF WALL 30" RCP 30" RCP DATE- 1 /28/2025 CUTOFF WALL 4870 4870 4870 TYPE "XL" RIPRAP 4870 4920 4920 CUTOFF WALL li CUTOFF WALL D50=6", 0O0' , W=3' , D= 1 ' 4885 TYPE "L" RIPRAP 4885 TYPE "L" RIPRAP TYPE "L" RIPRAP SHEET NUMBER D50=9", Lp= 19' , W=8', D= 1 .5' D50=9", Lp=25', W= 13' , D= 1 . 5' 0 =F", Lp=25', W= 13' , D= 1 . 5' 4883 4883 4865 4865 4865 50 4865 4915 4915 0+00 1 +00 1 +65 0+00 1 +00 1 +25 0+00 1 +00 1 +25 0+00 1 +00 1 + 15 C LV I 128 141 CULVERT NOTES : 1 . SPECIFIED LENGTH OF PIPE INCLUDES THE LAYING LENGTH OF FLARED END SECTIONS . CULVERT PROFILES 2 . PIPES CONSTRUCTED UNDER THE TRAVEL LANES OF NEW PUBLIC ROADWAY SHALL BE RCP OR AN APPROVED EQUAL . 0 50 ' 100 ' 3 . PIPES CONSTRUCTED IN RIGHT OF WAY FOR PRIVATE DRIVEWAY ACCESS SHALL BE AT LEAST ' O z CMP OR AN APPROVED EQUAL . 1 " = 50 ' ( HORIZONTAL) 1 4 . CUTOFF WALLS SHALL BE INSTALLED BELOW ALL OUTLET FLARED END SECTIONS AND SHALL BE ii 2 4 , 500 PSI CONCRETE WITH EPDXY COATED #5 REBAR 12" ON CENTER EACH WAY, 3" CLEAR FROM 1 " = 10 ' (VERTICAL) ALL EARTHEN EDGES , 8" WIDE X 3' DEEP AND 2' BEYOND EACH OUTSIDE EDGE OF THE END I J SECTIONS . O 5 . SAFETY GRATES SHALL BE PROVIDED AT ALL INLET FLARED END SECTIONS BUT SHALL NOT BE li PLACED AT ANY OUTLET FLARED END SECTIONS . W CULVERT 25 . 1 CULVERT 27 CULVERT 28 CULVERT 29 4940 4940 4910 4910 4915 4915 4910 4910 PELICAN LAKE LANE PELICAN LAKE LANE Co WARBLER WAY FALCON DRIVE N O PROPOSED PROPOSED GROUND LJJ N 4935 4905 co I 4905 4910 PROPosED GRouND < co w co Co I PROPOSED GROUND rn 4935 LO GRO ND 4910 4905 I 4905 W Co5 / WA) LL D > I w0000 cn5 o L L > co Co Z V OT O O > w r^ r M Z LL W 4930 Z Co r z 4930 4900 z 4900 4905 z 0 T 4905 4900 M z 4900 z __FE• EXISTING S= 1 10% EXISTING L=64.50' Q 4925 4925 4895 ° `' 4895 4900 w 4900 4895 L=69 .33' 4895 GROUND 15" RCP GROUND o =" LA /0 EXISTING L=51 .86' EXISTING U GROUND S=0.00% W 30" RCP S=0. 72% 30" RCP GROUND CUTOFF WALL CUTOFF WALL 18 RCP 4920 4920 4890 J 4890 4895 •CUTOFF WALL 4895 4890 curoFF WALL 4890 W TYPE "VL" RIPRAP • L TYPE "L" RIPRAP O D —6" , L —6', W=4', D- 1 ' Ds0=9" , Lp= 18' , W=8' , D= 1 . 5' TYPE "VL" RIPRAP U A50=0" , P— — TYPE "VL" RIPRAP Dso=6", Lp= 14', W=6', D= 1 ' W W D50=6" , LP=B', W=5' , D= 1 ' O W 4915 4915 4885 4885 4890 4890 4885 4885 W W WW 0+00 1 +00 1 + 15 0+00 1 +00 1 + 15 0+00 1 +00 1 + 15 0 +00 1 +00 1 +30 W W U W > WA) WW CULVERT 29 . 1 CULVERT 30 CULVERT 31 CULVERT 32 4925 4925 4915 4915 4900 4900 4905 4905 O Z NUTHATCH WAY FALCON DRIVE MEADOWLARK LANE MEADOWLARK LANE 0 4 44 4444 Co o PROPOSED GROUND m PROPOSED GROUND i PROPOSED GROUND Co PROPOSED GROUND m 4920 CoL I Co 4920 4910 cn Co 4910 4895 I 4895 4900 w A 4900 Ii Co 0002 (n V Z CoO U) 00 50..... MZ LLB / LSLY N - EXISTING Co LL LLLL0 i Mz Co I = 4915 z 4915 4905 GROUND \ N Z 4905 4890 m ? ° z r 4890 4895 4895 EXISTING _ _ _ _ GROUND L=65. 73' � ' EXISTING 1. 11 6' /i 4890 EXISTING S=0.86% 4890 GROUND S r1 Cp 4900 L=85 .68' 4900 4885 4885 GROUND 30" RCP 4910 4910 18" RCP S=0.57% L=56 .46' 24" RCP CUTOFF WALL 36'� RCP CUTOFF WALL CUTOFF WALL 4905 TYPE "VL" RIPRAP J 4905 4895 4895 4880 CUTOFF WALL 4880 4885 TYPE "L" RIPRAP 4885 D —6", Lp=5' , W=3' , D- 1 ' TYPE "L" RIPRAP Dso=9 ' , Lp=20' , W=9' , D= 1 . 5' s0— Dso=9", Lp= 13' , W=7', D= 1 .5' TYPE "L" RIPRAP D50=9" , Lp=22' , W=9' , D= 1 . 5' 4900 4900 4890 4890 4875 4875 4880 4880 0+00 1 +00 1 + 15 0+00 1 +00 1 +35 0+00 1 +00 1 +25 0+00 1 +00 1 +30 CULVERT 34 CULVERT 35 CULVERT 37A CULVERT 37B 4915 4915 4920 4920 4880 4880 4880 4880 � MEADOWLARK LANE NIGHTHAWK WAY � NIGHTHAWK DRIVE I NIGHTHAWK DRIVE _VCo PROPOSED GROUND PROPOSED GROUND Coo A PROPOSED PROPOSED CO LL v I 4910 4915 I 4915 4875 LL I GROUND Co 4875 4875 Co L I GROUND 4875 > I o Cn o LJ6 N Z Co O w 0 Co O z O 00 Co O LLB LLB Co MZ w V CorY r + co LL . . Co W < 4905 - _ 5 + 4905 4910 Co _CoCo Co 4910 4870 • v 4870 4870 M Z LL 0 4870 z L6 O N Z W rCo Z APPROXIMATE LOCATION OF C Z APPROXIMATE LOCATION OF IJJ Q U EX GAS - DEPTH IS NOT KNOWN U EX GAS - DEPTH IS NOT KNOWN W O EXISTING L-57" 92 O 4900 GROUND S=0.83% 4900 4905 4905 4865 4865 4865 • 4865 O N J 24 RCP L=62. 73' L=67.50' L=67. 50' - r O EXISTING S= 1 . 12% EXISTING ° - ° CUTOFF WALL GROUND GROUND ,. GRIOUND „ S=0 . 67 /° S=0.67 /° U 24" RCP 30 RCP 30 RCP • 7 7 �/ 4895 TYPE "AL" RIPRAP 4895 4900 4900 4860 4860 4860 4860 L L �■ D50=6", Lp=9', W=4' , D= 1 ' CUTOFF WALL CUTOFF WALL , , CUTOFF WALL T U Q W TYPE "L" RIPRAP TYPE "L" RIPRAP • W r , D50=9", Lp= 13' , W=6', D= 1 .5' TYPE "L" RIPRAP D 4855 4855 4855 so=9" , Lp=25' , W= 19', D= 1 .5' W ��/ 7 > 0 4890 4890 4895 4895 4855 Dso=9 Lp5',=2 W= 19' , D 5'= 1 . W Z W J z W J 0+00 1 +00 1 + 15 0+00 1 +00 1 + 15 0+00 1 +00 1 +25 0 +00 1 +00 1 +25 O - Ua. LLt.) 3 \\\\\\II li I� CULVERT 37C CULVERT 38A CULVERT 38B I 4880 4880 4905 4905 4905 4905LU \\\\\o�P...•• .•. ��� NIGHTHAWK DRIVE PROPOSED A EXISTING PELICAN LAKE DRIVE Co Co PELICAN LAKE DRIVE = 37660 _ Co A EXISTING % � CU 4875 Co 4875 4900 w 4900 4900 cn �' GROUND • 4900 %�� �" M � � •, 5 /16 /2025 , �j•L I • GROUND v GROUND • I PROPOSED GROUND Co I PROPOSED GROUND \� L�wL 00 Co M • cn --`�`' Z • CU rn /// ��NAIIIII\\\ \\\ Ln w00 • � « — 4870 z LL v 4870 4895 Co 4895 4895 5 1 4895 o > — - - - - - •• Mz PL Z APPROXIMATE LOCATION OF j O EX GAS - DEPTH IS NOT KNOWN N • TAJ 4865 • _ - 4865 4890 L= 16 4890 4890 L= 16s 4890 3. 85' . 72' L=67. 50' S=2. 83 % - • S=2. 73 % CHKL: EXISTING S=0.67% / 36" RCP �/ 36" RCP GROUND 30" RCP 4860 4860 4885 CUTOFF WALL ! • 4885 4885 CUTOFF WALL 4885 DAFT 1 /28/2025 CUTOFF WALL • W TYPE "L" RIPRAP TYPE "L" RIPRAP TYPE "L" RIPRAP D5=9" , LP=30' , W= 16', D1 .5= ' P5=9" , Lp=30' , W= 16' , D- 1 . 5' SHEET NUMBER P50=3" , Lp=25' , W= 19 , D= 1 .5' s0= 4855 4855 4880 4880 4880 4880 0+00 1 +00 1 +25 0+00 1 +00 2+00 2+50 0 +00 1 +00 2+00 2+50 C LV2 129 141 CULVERT NOTES : 1 . SPECIFIED LENGTH OF PIPE INCLUDES THE LAYING LENGTH OF FLARED END SECTIONS . CULVERT PROFILES 2 . PIPES CONSTRUCTED UNDER THE TRAVEL LANES OF NEW PUBLIC ROADWAY SHALL BE RCP OR AN APPROVED EQUAL . 0 50 ' 100 ' 3 . PIPES CONSTRUCTED IN RIGHT OF WAY FOR PRIVATE DRIVEWAY ACCESS SHALL BE AT LEAST - ' O z CMP OR AN APPROVED EQUAL . 1 " - 50 ' ( HORIZONTAL) 4 . CUTOFF WALLS SHALL BE INSTALLED BELOW ALL OUTLET FLARED END SECTIONS AND SHALL BE1 ' '- 2 1 " = 10 ' (VERTICAL) 4 , 500 PSI CONCRETE WITH EPDXY COATED #5 REBAR 12" ON CENTER EACH WAY, 3" CLEAR FROM ALL EARTHEN EDGES , 8" WIDE X 3' DEEP AND 2' BEYOND EACH OUTSIDE EDGE OF THE END J SECTIONS . 0 5 . SAFETY GRATES SHALL BE PROVIDED AT ALL INLET FLARED END SECTIONS BUT SHALL NOT BE li PLACED AT ANY OUTLET FLARED END SECTIONS . W CULVERT 39A CULVERT 39B CULVERT 40A CULVERT 40B 4925 4925 4925 4925 4915 4915 4915 4915 Lo SORA WAY SORA WAY M BUNTING WAY i BUNTING WAY op N PROPOSED rn PROPOSED W N O PROPOSED PROPOSED o o W CT4920 GROUND 4920 m GROUND o GROUND 4920 (3 D I GROUND 4920 4910 v 4910 4910 w N 4910 ,, N CV _ r LL > N Z V Z O N Z (0 O Z O W rn W M �/ N _ O V U) 4915 v 4915 4915 • • 4915 4905 > 4905 4905 N Z 4905 z N Z N Z - N - Lu L=67. 62 EXISTING L=57.33' 0 4910 - - 4910 4910 4910 4900 EXISTING , 4900 4900 4900 - 81 /0 GROUND S= 1 . 70% GROUND S- 1 , }O EXISTING L=64. 73' EXISTING _j L=51 . 63' 24" RCP 24" RCP GROUND S= 1 . 08% GROUND S= 1 . 12% 24" RCP Y 4" RCP 4905 4905 4905 4905 4895 cuTOFF WALL . / 4895 4895 CUTOFF WALL 4895 W CUTOFF WALL CUTOFF WALL O TYPE "L" RIPRAP TYPE "L" RIPRAP / O EE", Lp=25', W= 11 ' , D= 1 . 5' TYPE "L" RIPRAP TYPE "L" RIPRAP D50=9", Lp=25', W= 11 ' , D= 1 . 5' O so— D50=9" , Lp=25' , W= 11 ' , D= 1 .5' D50=9 Lp=25' , W= 11 ', D= 1 .5' W 4900 4900 4900 4900 4890 4890 4890 4890 H 0. WW 0+00 1 +00 1 + 15 0+00 1 +00 1 + 15 0+00 1 +00 1 + 18 0 +00 1 +00 1 + 15 W CT U W > CT CT OW CULVERT E1 CULVERT E2 CULVERT E3 CULVERT E4 4850 4850 4855 4855 4845 4845 4855 4855 W Z I I EGRET ROAD BLUE HERON STREET BLUE HERON STREET / EGRET ROAD W o aaaaaaa PROPOSED GROUND PROPOSED PROPOSED GROUND W PROPOSED GROUND 4840 4850 4850 4845 ,, 4845 4850 GROUND 4850 4840 m / M 0 0 I r V V w0 cn0 o � � o LL LWL V (n W / M W / O (n M M �J J V 00Z co LLT O LL > Luco LL LLI V 4840 0 ? 4840 4845 : > 0 0 4845 4835 N Z (3 4835 4845 > LLN . 4845 z T > r Z = > - - - - -- -N > - - N Z Z ,e 0 Z L=50.25' L=48.02' 4835 ETIETIPO s=o.85% 4835 4840 4840 4830 L-63. 17 4830 4840 •- EXISTING 4840 18 RCP / . L=51 .86' EXISTING GROUND ° EXISTING ° GROUND S=0. 97% 95'E.E6 CUTOFF WALL GROUND 115" RCP 24" RCP 4830 4830 4835 CUTOFF WALL 4835 4825 4825 4835 CUTOFF WALL 4835 TYPE "VL" RIPRAP CUTOFF WALL D50=6 ' , Lp=6', W=3' , D= 1 ' TYPE "VL" RIPRAP TYPE "VL" RIPRAP D50=6" , Lp=4', W=3', D= 1 ' TYPE "L" RIPRAP D50=6", Lp=4' , W=3' , D= 1 ' D50=9", Lp= 13', W=6', D= 1 .5' 4825 4825 4830 4830 4820 4820 4830 4830 0+00 1 +00 1 + 15 0+00 1 +00 1 + 15 0+00 1 +00 1 + 15 0+00 1 +00 1 + 15 CULVERT E5 CULVERT E6 4855 4855 4835 4835 EGRET ROAD BLUE HERON STREET T v PROPOSED GROUND L I PROPOSED GROUND (1 4850 cn c I rn 4850 4830 coN 4830 v M co M z W >00 LL ujco 0 n Z N Co4845 — — — — — 4845 4825 — — — N 4825 W O L=51 . 83' S=0. 99% EXISTING L=64. 18' 0 � 0 4840 15" RCP 4840 S=0.93% /� 4820 GROUND 24" RCP 4820 O V L F CUTOFF WALL W 0 - TYPE "VL" RIPRAP CUTOFF WALL W O w./ 4835 E0=6" , Lp-6', W4', D- 1 ' 4835 4815 " ,. 4815 0 Z c z TYPE VL RIPRAP EXISTING GROUND D50=6", Lp= 11 % W=5', D= 1 ' ? Q n W () z O 4830 4830 4810 4810 co p z WJ J 0+00 1 +00 1 + 15 0+00 1 +00 1 + 15 O — oILLC ) 3 \\\\\\\O\\\PDIII I 37660 : Y _ ���•, 5 /16 /2025 ; J/C // 0NAii IIIII\\ \\\\\ PL TAJ CHKL' . DATE 1 /28/2025 SHEET NUMBER CLV3 130 141 Project Name : PUDF24-0001 Pelican Lake Ranch ( Beebe Draw) lwt „ v The purpose of this checklist is to assist the applicant's Engineer with developing a drainage report that supports the intent of the Weld County Code using commonly accepted engineering practices and methodologies . Is the project in the MS4? ❑ Yes ❑X No If yes, the following requirements it bs apply. See Chapter 8, Article IX of the Weld County Code. Report Content Construction Drawings C Weld County Case Number ADDED TO COVER SHEET L1:] Stamped by PE PE STAMP HAS BEEN ADDED .% Certificate of Compliance signed and stamped by a ❑x Engineering scale & north arrow Colorado Licensed PE (See Comment 1 ) ❑x Property lines , rights-of-way, and easements ❑x Description/Scope of Work ADDED TO APPENDIX A ❑x 1 ' Contours & elevations (existing & proposed ) ❑x Location (County Roads , S-T- R) ❑x Pre- and post-development drainage basins ❑x Nearby water features and ownership ❑x Arrows depicting flow direction ` ` ' Total acres vs . developed acres ADDED TO THE END OF E Time of concentration critical path DH drolo ical soil t es/ma s SECTION I . B . OF THE INITIAL OVERLAND FLOW PATHS AND CHANNELIZED Y g yp p DRAINAGE REPORT 0 Drainage design points FLOW PATHS ARE SHOWN ON THE PROPOSED D FEMA Flood Zones NARRATIVE DRAINAGE PLANS AND Tc CALCULATIONS ARE D Improvements labeled INCLUDED IN APPENDIX B 0 Urbanizing or non -urbanizing N21 Permanent control measure and associated drainage ❑x Methodologies used for report & analysis features labeled ` No Build/No Storage' , include (full spectrum is not accepted ) design volume 'NO BUILD/NO STORAGE' LABELS ADDED TO THE PONDS ON THE GRADING PLANS AND POND PLANS IN THE I Base Design Standard used for permanent control REVISED CD's. DESIGN VOLUME INCLUDED IN THE TABLES ON THE POND PLANS measure design in the MSI ❑x Discussion of offsite drainage routing ❑x Cross sections for open channels , profiles for pipes ❑x Conclusion statement indicating that the design will Elevations for inverts , flow lines , top of grates , ELEVATIONS ARE PROVIDED IN CDs ON GRADING PLANS, adequately protect public health , safety, and general orifice(s) , etc. CULVERT PLANS, CHANNEL PLANS, STORM P&P's, ETC. PLEASE ADVISE IF THE COUNTY THINKS ANY CRITICAL welfare and have no adverse impacts on public ELEVATIONS ARE MISSING IN THE REVISED SUBMITTAL rights-of-way or offsite properties 0 Pipe specs (size , material , length , slope) Hydrology and Hydraulic Analysis r Outlet and spillway details ADDED SPILLWAY DETAILS TO APPLICABLE RETENTION ❑x Design Storm / Rainfall Information POND PLANS ( NOAA Atlas or Local Data) Maintenance Plan n Release Rate calculations (Retention Ponds Only) ❑x Frequency of onsite inspections ❑x Post construction site imperviousness ❑D Repairs , if needed ❑x Hydrologic calculations ( historic & developed basins) ❑x Cleaning of sediment and debris ❑x Hydraulic calculations for proposed drainage ❑x Vegetation maintenance improvements (swales , culverts , riprap , pond , outlet, ❑x Manufacturer maintenance specifications , if spillway, WQCV outlet , etc. ) applicable ❑x Detention/WQCV calculations Other Required Documents (If Applicable) ❑x Variance Request and documentation— explain Comments : hardship, applicable code section , and proposed mitigation . Variances will not be granted for the Base Desgn andard requirement in the MSI Department of Planning and Zoning I Development Review 1402 N . 17th Avenue, Greeley, CO 80632 1 Ph : 970-400-6100 www .weld . gov/Government/Departments/Planning-and-Zoning/Development-Review 4/15/2025 • rn 1 . Please submit the two (2) variance requests on Weld County Drainage Code Certificate of 9 Compliance" forms and include them in the report. VARIANCE REQUESTS FOR BOTH VARIANCES HAVE BEEN PREPARED AND SUBMITTED ON THE WELD COUNTY DRAINAGE CODE CERTIFICATE OF COMPLIANCE FORMS WHICH HAVE BEEN INCLUDED AS STANDALONE DOCUMENTS AS WELL AS IN APPENDIX A OF THE DRAINGE REPORT. 2 . Please address all items in red on the checklist. ITEMS HAVE BEEN ADDRESSED AND RESPONSES HAVE BEEN PROVIDED DIRECTLY ON THE CHECKLIST 3 . Once the revised design and drainage report have been submitted , the County may provide additional comments in addition to the ones listed above . Depending on the complexity of the changes made, a full 28-day review period may be required . UNDERSTOOD 4 . Please provide a written response on how the above comments have been addressed when resubmitting the drainage report. RESPONSES HAVE BEEN PROVIDED ON THIS DOCUMENT Department of Planning and Zoning I Development Review 1 1402 N . 17th Avenue, Greeley, CO 80632 1 Ph : 970-400-6100 www.weld . gov/Government/Departments/Planning-and-Zoning/Development-Review 4/15/2025 • • • 1 I - Weld County Case Number: PUDF24-0001 C O L ` ¶ Y Parcel Number: 121308000014 , 121317100016 and 121309000026 Legal Description , Section/Township/Range: Part of Sections 8 , 9 and 17 , T3N , R65W Date: February 16 , 2025 1 Todd A . Johnson Consultant Engineer for Terra Forma Solutions , Inc . (Applicant) , understand and acknowledge that the applicant is seeking land use approval of the case and parcel in the description above. I have designed or reviewed the design for the proposed land use set for in the application . I hereby certify , on behalf of the applicant, that the design will meet all applicable drainage requirements of the Weld County Code with the exception of the variance( s ) described on the attached exhibits . This certification is not a guarantee or warranty either expressed or implied . Engineer's Stamp: 0 It gam: 2/ 16/25 , Variance Request ( If Applicable) S�pNALG\\\\�� 1 . Describe the hardship for which the variance is being requested . Illllt�t��� 2 . List the design criteria of the Weld County Code of which a variance is being requested . 3. Describe the proposed alternative with engineering rationale which supports the intent of the Weld County Code. Demonstrate that granting of the variance will still adequately protect public health , safety, and general welfare and that there are no adverse impacts from stormwater runoff to the public rights-of-way and/or offsite properties as a result of the project. The site has several historic low points that are unfeasible to drain by gravity without extreme cuts ( > 50' or via pumping . Retention Ponds are not allowed per Section 8- 11 -40- E . We propose retention ponds due to the historic site constraints . The ponds will be sized for 1 . 5 times the 24hr 100- year event . The ponds will have a 1 ' freeboard and spillway . The site is very sandy and it is unlikely water will be retained in the ponds for any additional time that what has occurred historically . This condition is also similar to the current conditions within Filing No . 1 and any maintenance will be similar for the Metropolitan District to maintain . Public Works Director/Designee Review (If Applicable) Public Works Director/Designee Name Signature Date of Signature ❑ Approved ❑ Denied Comments : Department of Public Works I Development Review 1111 H Street, Greeley, CO 80631 1 Ph : 970-304-6496 1 www.weldgov.com/departments/public_works/development_review 08/02/2019 r TERRA FORMA SOLUTIONS PELICAN LAKE RANCH ( AKA BEEBE DRAW FARMS ) FILING NO . 2 FINAL DRAINAGE REPORT JANUARY 2025 For : REI Limited Liability Co P . O . BOX 156 Red Feather Lakes , CO 80545 By : Terra Forma Solutions , Inc . Todd Johnson , P . E . Todd@terraformas . com 303 . 257 . 7653 Weld County Case Number PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 1 of 21 PROFESSIONAL ENGINEER' S CERTIFICATION I hereby certify that this report for the Final Drainage Study for the Pelican Lake Ranch Filing No. 2, was prepared by me ( or under my direct supervision ) in accordance with the provisions of the Weld County Engineering and Construction Criteria Manual for the owners thereof. Todd Johnson , P . E . Date State of Colorado No . 37660 For and on behalf of Terra Forma Solutions , Inc . PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 2 of 21 TABLE OF CONTENTS I . GENERAL LOCATION AND PROJECT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 A . Project Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 B . Project Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 C . Site Features , Existing Land Use & Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 D . Floodplains & Wetland Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 E . Soils & Groundwater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 II . DRAINAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 A . Existing Onsite Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 B . Existing Offsite Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 C . Historic Conditions EPA-SWMM Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 III . DRAINAGE FACILITY DESIGN - PROPOSED CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 A . Developed Onsite Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 B . On-Site Retention- I nfiltration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 C . Erosion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 D . Drainage Facility Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 IV. VARIANCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 V. SUMMARY & CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 VI . GENERAL DRAINAGE MAINTENANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 VII . LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 3 of 21 I . GENERAL LOCATION AND PROJECT DESCRIPTION A . Project Location The Overall Project Site is located in the Sections 3 , 4 , 5 , 8 , 9 , 10 , 15 , and 17 of Township 3 North , Range 65 West of the 6th P . M . , and is currently within Weld County , Colorado . The Second Filing is located west of Milton Reservoir and State Own Land with a total area of approximately 854 . 2 acres . The Second Filing is bounded on the east by the State own land , on the north by the First Filing of Beebe Draw, on the south by County Road 32 and on the west by County Road 39 . A Project Vicinity map and Drainage Plan are included within this Report. This site is in a non- urbanizing area . According to Weld County ' s online GIS database , no portion of this project area is located within any Weld County MS4 areas and therefore this project is not subject to the requirements of the County ' s MS4 program . B . Project Plan In 1989 , a Zone Change was approved that included this proposed development . Also in 1989 , a portion of the approved PUD was platted (Corrected First Filing of Beebe Draw Farms and Equestrian Center) . The First Filing is located near the center of the PUD , and it is adjacent to WCR 39 . The First Filing also included outlots that are east of the Platte Valley Canal . In 1998 , A Phase III Drainage Report for Filing 1 was approved by Weld County . Subsequentially , additional drainage letters/calculations were approved by the County as different phases of Filing 1 were constructed . The proposed Second Filing consists of two areas of development with a total of 283 residential lots and associated infrastructure and open space . The area that is located between the First Filing eastern boundary and Milton Reservoir is called the East Area of Filing 2 and consists of 31 lots . The area that is located south of Filing 1 boundary , between WCR 39 and the State Land , is the main area and remainder of Filing 2 consisting of 252 lots . The minimum lot size is 1 acre . The Developer intends to utilize the natural grade and terrain as much as possible to facilitate adequate drainage of stormwater to the proposed retention/infiltration basins . All of the area within Filing 2 drains toward Milton Reservoir. The Farmers Reservoir and Irrigation Company has been contacted and they do not allow stormwater to discharge into their system . Infiltration basins will be used to eliminate , as much as possible , the storm runoff from the development . The development will have private maintained streets with borrow ditches on both sides . The roadway network will connect to the existing roadways that are located within Beebe Draw Farms & Equestrian Center First Filing . In addition , there will be two new accesses off of County Road 32 and 39 . C . Site Features , Existing Land Use & Constraints . The site can be characterized as relatively flat to gently rolling . There is approximately 96 feet of vertical elevation drop across the site . Numerous gas/oil wells are located throughout the site . The remainder of the site is currently being used as grazing land or dry farmland . The exiting runoff generally drains to the PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 4 of 21 southeast and into the Milton Reservoir. There are several low areas on the development that don ' t have an outfall , however, the soils in these areas are sandy and any runoff to these low areas currently infiltrates into the ground . D . Floodplains & Wetland Areas Based on the FEMA - Weld County , Colorado Flood Insurance Rate Map ( FIRM ) Community Panel Number 0812301935E ( 1 /20/2016) , the flood plain for Milton Reservoir does not encroach into this development . The proposed construction within Filing 2 will not impact the any FEMA flood plain . E . Soils & Groundwater Per the soils investigation study performed by Soilogic , Inc. , dated May 28 , 2020 , the soil types for the Project area consist mainly of a mix of the Valent sand and the Vona loamy sand . All soil types are representative of hydrological soil group A , which is indicative of soils that have low erosion potential and low runoff potential . All of these soils are suitable for residential development and septic systems , and it is recommended for individual wastewater disposal systems (septic tanks and leach fields ) . Groundwater was not encountered up to depths of 8 feet. II . DRAINAGE This section discusses historic, existing , and proposed , drainage basin hydrology . Since there are basins that will be larger than 160 acres , EPA- SWMM computer program was used , in addition to the rational method , to calculate the Historic and Developed Runoff for retention pond sizing , as well as the peak flows for several channels and culverts where the tributary areas exceeded 160 acres . The calculation conforms with the appropriate sections of the " Weld County Engineering and Construction Guidelines " updated January 2021 and the Weld County Code , as well as Mile High Flood District' s Drainage Criteria Manuals . The site is located in a non - urban area and therefore , the 10-year storm was utilized for the minor storm event . The Rational Method was used to determine runoff to the proposed culverts and drainage swales . The on - site swales were sized to pass the 100- year event . Per the Weld County Engineering and Construction Guidelines , the culverts need to be sized to convey the 10-year runoff with no more than 6 inches overtopping the roadway and convey the 100- year runoff with no more than 18 inches overtopping the roadway . In addition , the maximum headwater to depth ratio ( HW/ D ) shall not exceed 2 . 0 for culverts under 36" in diameter, and 1 . 7 for culverts 36" to 60" in diameter . This criteria was used as a minimum design standard . The Rational Method utilized the one- hour storm event. Using the NOAA Atlas 14 Volume 8 version 2 maps , point precipitation values were obtained to develop rainfall intensity calculations . One- hour rainfall depths of 1 . 39 inches and 2 . 69 inches were determined for the 10-year and 100- year event , respectively . The EPA SWMM computer model was used to calculate the major runoff, retention volume and release rates . The SCS Type II — 24 Hour hydrograph was used as the model storm in the SWMM program . The 100- year , 24- hour rainfall is 4 . 64 inches . The infiltration ponds will be sized assuming no infiltration rates . The infiltration rate that was used in the Filing 1 calculations was approximately 1 inch per hour. The SCS Soil map has predominately 2 types of sandy soil located in Filing 2 . One type (Vona Loamy Sand ) has published PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 5 of 21 infiltration rates between 2 and 6 inches per hour. While the second type (Valent Sand ) has published infiltration rates between 6 and 40 inches per hour . Given a 24- hour design storm , there will be infiltration occurring at the ponds and the assumption of no infiltration results in higher calculated volumes . The water quality capture volumes are designed within the pond to infiltrate into the soil . A. Existing Onsite Conditions The Site is in unincorporated Weld County . There are numerous gravel /dirt access roads located throughout the site that provides access to the existing gas/oil wells and tank batteries . The remainder of the site is pervious with the ground cover consisting of grasses and sage brush . There are several depressions that infiltrate the tributary runoff. The existing soil is capable of infiltrating runoff. The site drains toward the southeast and eventually into the Milton Reservoir. B . Existing Offsite Condition Approximately 1 , 956 acres of offsite tributary area historically drain towards/thru this site to the outfall into Milton Reservoir. While the roadside swales that are adjacent to the County Roads ( WCR 39 ) will intercept some of the runoff, it is not anticipated that they will be able to convey a significant amount . Therefore , it was assumed that the runoff from the offsite tributary areas will drain across the county roads . The offsite runoff will be conveyed to the proposed retention/infiltration ponds via open swales . In addition , the bottom of the proposed retention ponds will have native vegetation and sandy bottoms which will infiltrate all of the runoff. Where necessary , swales and pipes will be constructed to convey the runoff around lots and under streets . C . Historic Conditions EPA-SWMM Results The EPA SWMM model was set up for the historic conditions . Historic Conditions estimates the expected runoff prior to Filing 1 construction . The Horton ' s Equation for infiltration loss were used to model infiltration losses for the basins . The SCS Type II — 24 Hour hydrograph was multiplied by the NOAA 100- year value for the 24- hour storm and was used as the rain gage . The following table shows the results of the SWMM model for the historic conditions : PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 6 of 21 Historic Conditions Sub- Design Basin Area Basin 100yr Combined Combined Total Basin Point (Ac) Runoff (cfs) Total Trib 100yr Runoff (cfs) Area (Ac) OFFSITE ON1 DP ONI 307 234 OW1 DP OW1 48 41 OW2 DP OW2 182 93 OW3 DP OW3 66 45 OW4. DP OW4 81 42 OW5 DP OW5 591 284 OW6 DP OW6 174 93 OS1 DP OS1 187 140 OS2 DP OS2 23 8 ONSITE HI DP H1 1 666 521 1107 541 H2 DP H2 63 47 H3 DP H3 35 43 H4 DP H4 258 210 H5 DP H5 30 33 H6 DP H6 39 47 H7 DP H7 5 5 H8 DP H8 272 128 750 189 H9 DP H9 99 42 861 290 H10 DP H10 90 98 681 277 H11 DP H11 39 33 900 269 H12 DP H12 81 23 981 238 H13 DP H13 26 37 H14 DP H14 51 29 H15 DP H15 1475 625 2127 765 H16 DP H16 28 16 H17 DP H17 22 28 H18 DP H18 111 24 H19 DP H19 134 122 PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 7 of 21 III . DRAINAGE FACILITY DESIGN - PROPOSED CONDITIONS Due to the large size lots being proposed , the existing drainage patterns will remain as much as possible , with the exception of the flows to the existing sumps . The existing sumps will either have a retention pond constructed in their location , be filled with dirt , or be drained via swales . Some of the smaller existing sumps within the lots will be filled at the time of individual lot development . A . Developed Onsite Condition All roads will be paved and maintained by the metro district . The minimum lot size will be 1 acre and there will be a 150 feet setback from all existing (active) gas wells . With the setbacks from the wells and the access to the wells , areas of open space will be created . It is anticipated that approximately 15 to 20 percent of the land will be impervious due to streets , houses , paved driveways and auxiliary buildings . Per Mile High Flood District Table 6- 3 , for residential lots from 0 . 75 to 2 . 5 acres , a 20 % imperviousness is recommended . Therefore , a 20 % imperviousness was used for developed area in Filing 2 . The runoff coefficient for the developed condition incorporates the anticipated impervious areas . Filing 1 lots sizes were 2 to 4 acres in size . A half dozen lots that have been built out were selected at random and their percent imperviousness was calculated including the area of the street adjacent to their lot . These lots imperviousness varied between 10 . 4 to 13 . 8 percent with the average being 12 . 1 % . In addition to lots , there is a significant amount of open space in Filing 1 that was not included in the 12 . 1 % calculations . A 12 . 1 % imperviousness rate was utilized for Filing 1 area that drains onto Filing 2 . B . On - Site Retention - Infiltration In order to reduce/eliminate the total volume of runoff from the site , infiltration basins will be utilized . The infiltration basins will be sized to infiltrate 1 . 5 times the 100 year 24- hour storm event for the tributary area including onsite and offsite tributary runoff. A conservative infiltration rate of 1 inch per hour has been used to demonstrate appropriate drain times in accordance with Colorado Revised Statute 37- 92-602 (8 ) . Overflow swales will be provided at infiltration basins that will safely convey runoff in excess of the retention pond volumes . The retention ponds will provide for stormwater quality treatment in accordance with Mile High Flood District criteria . The Water Quality Capture Volume (WQCV) will be captured in the lower stages of the retention ponds and allowed to infiltrate . The swales leading to and from the proposed ponds will be grass lined with slopes as flat as 0 . 2 % . With the sandy soil , these swales will encourage the storm runoff to infiltrate and thereby reducing the volume of the runoff to the ponds . For calculations purposes , the swales were assumed not to have infiltration . Once the location of the infiltration ponds are finalized , infiltration tests will be conducted in accordance with Mile High Flood District criteria and an infiltration rate for each pond will be determined . Per Mile High Flood District criteria , the infiltration rate that is used in the design will be 50 % of the measured rate . PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 8 of 21 C . Erosion Control Erosion control will be provided and will be consistent with the Final Phasing Plan . More specifically , BMPs will be installed as appropriate to minimize erosion due to wind and surface runoff affects . BMPs during construction may include sediment traps , tracking pads , silt fencing , inlet protection , rock- lined rundowns , revegetation , and contour roughening . Post-Construction BMPs may include infiltration basins , vegetation , and proper maintenance of open areas . D . Drainage Facility Design General Concept The majority of the onsite areas will drain to the proposed infiltration ponds . The infiltration ponds were sized to hold and infiltrate 1 . 5 times the 100- year developed runoff. The emergency spillway was sized for the developed onsite and historic offsite 100-year runoff. No developed runoff from the West Area will be release into the Milton Reservoir during the 100-year storm event with the exception of about 5 . 6 acres that drains easterly onto the State Land . This area is comprised of the very rear portions of several lots and the downstream end of the Pond 4 Spillway and therefore will have little to no imperviousness and should not result in any adverse downstream impacts . Specific Details The onsite grading will convey the 100-year storm event to the infiltration ponds . Offsite Basins : Sub-Basin ON1 , 307- acres , 2 % impervious , undeveloped offsite area that drains onto future phases on this development and will drain to the proposed Retention Pond UP1 that is located north of the Beebe Draw Farms Parkway . This basin ground cover consists of open range . Sub-Basin OW1 , 48-acres , 2 % impervious , undeveloped offsite area that drains onto future phases on this development and will drain to the existing Retention Pond 9 that is located south of the Beebe Draw Farms Parkway . This basin ground cover consists of open range . Sub-Basin OW2, 181 . 8-acres , 2 % impervious , undeveloped offsite area that drains onto the First Filing and into the existing retention ponds . This basin ground cover consists of open range . Sub-Basin 0W3, 66 . 4-acres , 2 % impervious , undeveloped offsite area that drains onto the First Filing and into the existing retention ponds . This basin ground cover consists of open range . Sub-Basin OW4 , 80 . 7-acres , 2 % impervious , undeveloped offsite area that drains onto this site and combines with onsite Sub- basin W2 to drain to Pond W1 . This basin ground cover consists of open range . Sub-Basin OW5, 590 . 74- acres , 2 % impervious , undeveloped offsite area that drains onto this site and combines with onsite Sub- basin W1 to drain to Pond W1 . This basin ground cover consists of open range . PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 9 of 21 Sub-Basin OW6, 173 . 92 - acres , 2 % impervious , undeveloped offsite area that drains onto this site and combines with onsite Sub- basin Si to drain to Pond Si . This basin ground cover consists of open range . Sub-Basin OS1 , 187- acres , 2 % impervious , undeveloped offsite area that drains onto future phases of this development. This basin ground cover consists of open range . Sub-Basin OS2, 23- acres , 2 % impervious , undeveloped offsite area that drains onto future phases of this development at the southeast corner of future development . This basin ground cover consists of open range . Rational Method Calculations : Main Area Basins : Sub-Basin Ni , 11 . 3-acres, 20 % impervious, onsite area within Filing 2 . This sub- basin combines with basin OW5 and drains to a culvert under Fairbanks Road to basin W- 1a and then continues to Pond W1 . Sub-Basin W1a, 10. 26-acres, 20 % impervious, onsite area within Filing 2 . This sub- basin combines with Basins W- 1 and OW5 and drains via a grass- lined channel to Pond W1 . Sub-Basin W1b, 8 . 6-acres, 20 % impervious, onsite area within Filing 2 . This sub- basin combines with Basins W1 , W1a , and OW5 immediately before Pond W1 and drains via a grass - lined channel to Pond W1 . Sub-Basin W2, 32. 2-acres, 7. 3 % impervious, consisting of a small area of Filing 2 , and larger areas on Filing 1 and open space . This sub- basin combines with Basin OW4 and drains to a culvert under Fairbanks Road to basin W2a then continues to a grass - lined channel to Pond W1 . Sub-Basin W2a , 4 . 4-acres, 13. 8% impervious, consisting of onsite area within Filing 2 as well as open space . This sub- basin combines with Basins W2 and OW4 and drains via a grass- lined channel to Pond W1 . Sub-Basin W3, 15. 6-acres, 20 % impervious, consisting of onsite area within Filing 2 . This sub- basin is located south of Morning Dove Lane and drains via a culvert to Basin W3a then continues to a grass- lined channel to Pond W1 . Sub-Basin W3a , 26. 6-acres, 20 % impervious, consisting of onsite area within Filing 2 . This sub- basin combines with Basins W3 and W3b and drains via a grass- lined channel to Pond W1 . Sub-Basin W3b, 1 . 0-acres, 20 % impervious, consisting of onsite area within Filing 2 southeast of Morning Dove Lane and Falcon Way . This sub- basin drains via a culvert to Basin W3a and eventually to Pond W1 . Sub-Basin W4, 46. 8-acres, 9 . 5% impervious, consisting of onsite area within Filing 2 as well as area within Filing 1 and open space . This sub- basin drains directly into Pond W1 . PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 10 of 21 Sub-Basin W5, 36. 46-acres, 14 . 4 % impervious, consisting of onsite area within Filing 2 as well as open space associated with gas well production . This sub- basin is located south of Morning Dove Lane and drains via a culvert to Basin W6b then continues to the storm sewer system that discharges to Pond 4 . Sub-Basin W6a, 23. 2-acres, 10. 5% impervious, consisting of onsite area within Filing 2 as well as area within Filing 1 and open space . This sub- basin drains to Basin 6b then continues to the storm sewer system that discharges to Pond 4 . Sub-Basin W6b, 6. 5-acres, 20 % impervious, consisting of onsite area within Filing 2 . This sub- basin drains directly into the storm sewer system that discharges to Pond 4 after combining with Basin W5 and Basin W6a . Sub-Basin W6, 9 . 7-acres, 20% impervious, consisting of onsite area within Filing 2 . This sub- basin drains via a culvert to Basin W10 , then continues into the storm sewer system that discharges to Pond 4 . Sub-Basin W8a, 1 . 1 -acres, 20 % impervious, consisting of onsite area within Filing 2 . This sub- basin drains via a culvert to Basin W8 and into Pond W3 . Sub-Basin W8, 23. 3-acres, 20 % impervious, consisting of onsite area within Filing 2 as well as open space associated with gas well production . This sub- basin drains directly into Pond W3 . Sub-Basin W10, 18. 2-acres, 20 % impervious, consisting of onsite area within Filing 2 . This sub- basin is located between Morning Dove Lane and Ledyard Road and combines with Basins W7 , W9 , W11 , and W12 and drains directly into the storm sewer system and outfall channel which drains to Pond 4 . Sub-Basin W11 , 1 . 44-acres, 12. 1 % impervious, consisting of onsite area within Filing 1 . This sub- basin is located north of Ledyard Road and drains to Pond 4 via the Pond W1 outfall channel . Sub-Basin W12, 8. 1 -acres, 19 . 4% impervious, consisting of onsite area within Filing 2 as well as a small area within Filing 1 . This sub-basin is located north of Ledyard Road and drains via a culvert to Basin W10 , then continues into the storm sewer system that discharges to Pond 4 . Sub-Basin W13, 13. 7-acres, 10. 4 % impervious, consisting of area within State Land (which is considered open space) , open space and lot area within Filing 2 as well as a small area within Filing 1 . This sub- basin directly drains to the Pond W1 outfall channel and into Pond 4 . Sub-Basin W14, 179 . 2-acres, 9 . 2 % impervious, consisting of 125 . 5 acres of residential area within Filing 1 and 51 . 18 acres of open space within Filing 1 . This sub- basin directly drains to Pond 4 . Sub-Basin W15, 4 . 7-acres, 2 . 0 % impervious, consisting of area within State Land (which is considered open space) . This sub- basin directly drains to Pond 4 . Sub-Basin W16, 2. 4-acres, 20 % impervious, consisting of onsite area within Filing 2 . This sub- basin is located northeast of the intersection of Fairbanks Road and Morning Dove Lane . This Basin drains via a culvert into Basin S2 and continues into Pond Si . PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 11 of 21 Sub-Basin Si , 27. 7-acres, 20% impervious, consisting of onsite area within Filing 2 . This sub- basin is located between County Road 39 and Fairbanks Road and drains directly into a culvert under Fairbanks Road which drains directly into Pond Si . Sub-Basin 52, 22. 0-acres, 20% impervious, consisting of onsite area within Filing 2 . This sub- basin is located east of Fairbanks Road and drains directly into Pond Si . Sub-Basin S3, 6. 3-acres, 20% impervious, consisting of onsite area within Filing 2 . This sub- basin is located northeast of the intersection of Falcone Drive and Pelican Lake Lane , and drains directly into a culvert under Falcon Drive into Basin S4 . Sub-Basin S4, 21 . 1 -acres, 20% impervious, consisting of onsite area within Filing 2 . This sub- basin is located west of the intersection of Falcon Drive and Pelican Lake Lane , and drains directly into a culvert under Pelican Lake Lane which drains directly into Pond S2 . Sub-Basin 55, 9. 2-acres, 20% impervious, consisting of onsite area within Filing 2 . This sub- basin is located east of the intersection of Pelican Lake Lane and Falcon Drive , and drains directly into a culvert under Falcon Drive which drains directly into Pond 52 . Sub-Basin S6, 26. 2-acres, 20% impervious, consisting of onsite area within Filing 2 . This sub- basin is located south of the intersection of Pelican Lake Lane and Falcon Drive , and drains directly into Pond S2 . Sub-Basin S8, 1 . 9-acres, 20% impervious, consisting of onsite area within Filing 2 . This sub- basin is located northwest of the intersection of Falcon Drive and Nuthatch Way , and drains to a culvert under Nuthatch Way into Basin 59 . Sub-Basin S9, 10. 4-acres, 20% impervious, consisting of onsite area within Filing 2 . This sub- basin is located north of Falcon Drive , and drains southerly toward the culvert under Falcon Drive into Basin 510 . Sub-Basin S10, 12. 9-acres, 20 % impervious, consisting of onsite area within Filing 2 . This sub- basin is located north of Meadowlark Lane , and drains southerly toward a culvert under Meadowlark Lane into Basin 513 . Sub-Basin S1 1 , 11 . 2-acres, 20 % impervious, consisting of onsite area within Filing 2 . This sub- basin is located northwest of the intersection of Meadowlark Place and Nighthawk Way and drains easterly to a culvert under Nighthawk Way and into Basin S12 . Sub-Basin 512, 18. 2-acres, 20% impervious, consisting of onsite area within Filing 2 . This sub- basin is located north of Meadowlark Lane and drains southerly toward a culvert under Meadowlark Lane into Basin 513 . Sub -Basin S13, 72. 8-acres, 20 % impervious, consisting of onsite area within Filing 2 . This sub- basin is located between Nighthawk Drive and Meadowlark Lane and drains easterly to a culvert under Nighthawk Drive directly into Pond S4 . PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 12 of 21 Sub-Basin S14, 22. 8-acres, 20 % impervious, consisting of onsite area within Filing 2 . This sub- basin is located northwest of the intersection of Pelican Lake Place and Fairbanks Drive and drains southeasterly to a culvert under Pelican Lake Place directly into Pond S3 . Sub-Basin S15, 23. 3-acres, 20 % impervious, consisting of onsite area within Filing 2 . This sub- basin is located between Fairbanks Drive and County Road 39 and drains southeasterly to a culvert under Sora Way into Basin 516 . Sub-Basin S16, 2. 9-acres, 20% impervious, consisting of onsite area within Filing 2 . This sub- basin is located southwest of the intersection of Fairbanks Drive and Bunting Way and drains easterly to a culvert under Bunting Way into Basin S17 Sub-Basin S17, 29 . 2-acres, 20 % impervious, consisting of onsite area within Filing 2 . This sub- basin is located south of Fairbanks Drive and west of Pelican Lake Drive and drains easterly to a culvert under Pelican Lake Drive directly into Pond 53 . Sub-Basin S18, 12. 2-acres, 20 % impervious, consisting of onsite area within Filing 2 . This sub- basin is located west of Fairbanks Drive and east of County Road 39 and drains easterly to a culvert under Fairbanks Drive into Basin 519 . Sub-Basin S19a, 2. 2-acres, 20% impervious, consisting of onsite area within Filing 2 . This sub- basin is located northeast of the intersection of Fairbanks Drive and Pelican Lake Lane and drains to a culvert under Pelican Lake Lane into Basin S19 . Sub-Basin S19, 67. 5-acres, 20 % impervious, consisting of onsite area within Filing 2 . This sub- basin is located between Fairbanks Drive and Nighthawk Drive and drains southeasterly to a culvert under Fairbanks Drive into Basin S20 . Sub-Basin S20, 60. 2-acres, 20 % impervious, consisting of onsite area within Filing 2 . This sub- basin is located south of Fairbanks Drive and south of Nighthawk Drive and drains easterly into Pond 54 . Sub-Basin 521 , 7. 1 -acres, 20% impervious, consisting of onsite area within Filing 2 . This sub- basin is located northeast of the intersection of Meadowlark Way and Nighthawk Drive and drains southerly into a culvert under Meadowlark Way into Basin 522 . Sub-Basin 522, 17. 1 -acres, 20 % impervious, consisting of onsite area within Filing 2 . This sub- basin is located south of Meadowlark Way and east of Nighthawk Drive and drains southerly into Pond 54 . Sub-Basin 523, 7. 0-acres, 20% impervious, consisting of onsite area within Filing 2 . This sub- basin is located along the eastern boundary and drains southerly into Pond S4 . Sub-Basin U1 , 5. 4-acres, 2 % impervious, consisting of the rear portion of residential lots and open tract area . This Basin is anticipated to be almost entirely undeveloped and drains onto the State Land , following existing drainage patterns . PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 13 of 21 Sub-Basin U2, 2. 8-acres, 20% impervious, consisting of the rear portion of residential lots . This Basin is anticipated to be mostly undeveloped and drains onto the County Road 32 and 29 ROWs , following existing drainage patterns . Sub-Basin U3, 2. 6-acres, 2 % impervious, consisting of the downstream side of the Pond 4 spillway . This Basin will remain undeveloped and drains onto the State Land , following existing drainage patterns . East Area Basin : North Basins Sub-Basin H4, 255. 4-acres, 2 % impervious, consists of an area that is north of the existing Beebe Draw Farms Parkway and will be a part of future development of Pelican Lakes . This sub- basin drains Pond 9 . Sub- Basin H4 was used in the EPASWMM model , and the Rational Method runoff was not calculated for this sub- basin . Sub-Basin EN1 , 3. 9-acres, 20 % impervious, onsite area within Filing 2 . This sub- basin drains to a culvert under Egret Road into Basin EN6 and then continues along the south side of Beebe Draw Farms Parkway and eventually to Pond E2 . Sub-Basin EN2, 2. 1 acres, 20% impervious, onsite area within Filing 2 . This sub- basin drains to a culvert under Blue Huron Street at the northern intersection with Egret Road and then continues to Basin EN6 along the south side of Beebe Draw Farms Parkway and eventually to Pond E2 . Sub-Basin EN3, 2. 2-acres, 20 % impervious, onsite area within Filing 2 . This sub- basin drains along the southwest side of Egret Road to a culvert into Basin EN4 and eventually to Pond E2 . Sub-Basin EN4, 10. 9-acres, 20% impervious, onsite area within Filing 2 . This sub- basin drains to a culvert under Blue Heron Street and then continues north to toward Beebe Draw Farms Parkway and eventually to Pond E2 . Sub-Basin EN5, 3. 8-acres, 20 % impervious, onsite area within Filing 2 . This sub- basin drains north to toward Egret Road to a culvert into Basin EN6 and eventually to Pond 2 . Sub-Basin EN-6, 12. 2-acres, 20 % impervious, onsite area within Filing 2 . This sub- basin drains toward Beebe Draw Farms Parkway and eventually to Pond E2 . Sub-Basin EN7, 18. 2-acres, 20% impervious, onsite area within Filing 2 . This sub- basin drains towards Beebe Draw Farms Parkway and eventually to Pond E2 . Sub-Basin E9, 8. 3-acres, 20% impervious, onsite area within Filing 2 containing the existing Pond 9 from Filing 1 , as well as the rear portion of several lots . This sub- basin drains directly into Pond 9 , following existing drainage patterns . PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 14 of 21 South Basins Sub-Basin F1 , 12 . 3-acres, 12. 1 % impervious, consisting of offsite residential area within Filing 1 . This sub- basin drains to the overflow swale for Pond 9 and eventually to Pond El . Sub-Basin F2, 6. 9-acres, 12. 1 % impervious, consisting of offsite residential area within Filing 1 . This sub- basin drains to the overflow swale for Pond 9 and eventually to Pond El . Sub-Basin ES1 , 24 . 9 -acres, 20 % impervious, consisting of open space areas and residential areas . This sub- basin drains to the overflow swale for Pond 9 and eventually to Pond El . Sub-Basin ES2, 8. 9-acres, 20% impervious, consisting of residential areas . This sub- basin drains to a culvert under Blue Heron Street, continuing to the overflow swale for Pond 9 and eventually to Pond El . Sub-Basin ES3, 27. 6-acres, 20 % impervious, consisting of open space areas and residential areas . This sub- basin drains to the overflow swale for Pond 9 which drains to Pond El . Sub-Basin EU1 , 14. 8-acres, 2 % impervious, onsite area within Filing 2 . This area will remain undeveloped and will drain to the southeast , following existing drainage patterns . Retention Ponds : Since the tributary areas to most of the Ponds are greater than 160 acres , the EPASWMM Computer Model was utilized to model the ponds . In addition , since the irrigation company who owns/operate the downstream reservoir doesn ' t permit storm water to drain into their facilities , the 100-year runoff must be retained onsite and infiltrated in the sandy soil . The ponds in the EPASWMM model have no infiltration . Upon review of the SOS soil map descriptions , the expected infiltration rate will be between 2 inches per hour and 40 inches per hour. Therefore , the assumption of no infiltration is very conservative . Upon construction of the ponds , infiltration tests will be performed to confirm drain down times . Since the ponds will retain stormwater and infiltrate it into the soil , the 100- year, 24- hour storm was used to size the ponds . The 100-year, 24- hour rainfall is 4 . 64 inches . Upstream of Filing 2 are the existing retention ponds located within the First Filing . The 1998 Drainage Report for the First Filing has a table listing the volumes for each retention pond . In order to determine the runoff from Filing 1 that is tributary to Filing 2 , the Filing 1 retention ponds were modeled within the EPASWMM model for Filing 2 . With the exception of one small pond , the EPASWMM model shows that all of the existing Filing 1 ponds will retain 100 percent of the 100-year runoff. Upon additional examination , Pond 9 , as constructed , will retain the 100- year historic runoff but does not provide the additional required volume ( 1 . 5 times the 100- yr volume) plus the one-foot freeboard , and therefore will be expanded with the development of Filing 2 . PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 15 of 21 Ponds for West Area Pond Ni , tributary area of 828. 00 acres, of which 671 . 44 acres is offsite area from west of CR 39 and 42 . 01 acres consists of Filing 1 residential area . Per the EPA SWMM model , the peak 100-year flow into Pond W1 is 355 . 07 cfs . The County requires 1 . 5 times the 100-year volume for retention ponds . The 100- year retention volume is 40 . 96 ac-ft . The bottom of the retention pond is at an elevation of 4884 . 5 and the 100- year water surface is 4890 . 09 . Multiplying the 100- year volume by 1 . 5 gives a required volume of 61 . 44 ac- ft of storage . The corresponding water surface for the 1 . 5 times the 100- year volume is 4892 . 58 . The elevation of the spillway is 4894 . Per the calculations in the Appendix, the length of the spillway will need to be 365 feet long . The 100-year water depth is approximately 5 . 59 feet deep . Using an infiltration rate of 1 inch per hour, the 100-year volume will drain in approximately 67 . 1 hours . Pond 4, tributary area of 301 . 11 acres, of which 133 . 6 acres is offsite area from Filing 1 residential area . Pond 4 is an existing infiltration pond that was constructed with Filing 1 but will be expanded with developed tributary area from Filing 2 . Per the EPA SWMM model , the peak 100- year flow into Pond 4 is 96 . 52 cfs . The County requires 1 . 5 times the 100-year volume for retention ponds . The 100-year retention volume is 16 . 57 ac-ft . The bottom of the detention pond is at an elevation of 4831 and the 100- year water surface is 4835 . 08 . Multiplying the 100- year volume by 1 . 5 gives a required volume of 24 . 86 ac- ft of storage . The corresponding water surface for the 1 . 5 times the 100- year volume is 4836 . 64 . The existing elevation of the spillway is 4839 . 08 . The length of the existing spillway is approximately 128 feet long . Per the calculations in the Appendix, the length of the existing spillway is sufficient to pass the 100-year developed flow at a flow depth of 0 . 5 ' and therefore no changes to the existing spillway are necessary . The 100- year water depth is approximately 4 . 08 feet deep . Using an infiltration rate of 1 inch per hour, the 100- year volume will drain in approximately 49 . 0 hours . Pond W3, tributary area of 24. 36 acres. Pond W3 is a natural depression/sump that will be utilized as a retention pond for this Filing . Per the EPASWMM model , the peak 100- year flow into Pond W3 is 34 . 79 cfs . The County requires 1 . 5 times the 100- year volume for retention ponds . The 100-year retention volume is 2 . 24 ac-ft . The bottom of the detention pond is at an elevation of 4891 and the 100-year water surface is 4894 . 04 . Multiplying the 100- year volume by 1 . 5 gives a required volume of 3 . 36 ac-ft of storage . The corresponding water surface for the 1 . 5 times the 100- year volume is 4895 . 20 . Since this pond is located in an existing natural depression , no feasible overflow path exists and it will be allowed to pond several feet above the required volume . Therefore , no adverse impacts are anticipated to any proposed lots . A variance request has been included for the absence of a spillway on this pond . The 100-year water depth is approximately 3 . 04 feet deep . Using an infiltration rate of 1 inch per hour, the 100- year volume will drain in approximately 36 . 4 hours . Pond Si , tributary area of 225. 93 acres of which only 52 . 01 acres are within Filing 2. Pond Si is situated on land that is planned for Open Space . Per the EPA SWMM model , the peak 100- year flow into Pond Si is 107 . 38 cfs . The County requires 1 . 5 times the 100-year volume for retention ponds . The 100- year retention volume is 12 . 46 ac-ft. The bottom of the detention pond is at an elevation of 4915 and the 100- PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 16 of 21 year water surface is 4918 . 06 . Multiplying the 100- year volume by 1 . 5 gives a required volume of 18 . 69 ac-ft of storage . The corresponding water surface for the 1 . 5 times the 100-year volume is 4919 . 43 . The elevation of the spillway is 4921 . Per the calculations in the Appendix , the length of the spillway will need to be 105 feet long . The 100- year water depth is approximately 3 . 06 feet deep . Using an infiltration rate of 1 inch per hour, the 100- year volume will drain in approximately 36 . 8 hours . Pond S2, tributary area of 62. 82 acres. Pond S2 is situated on land that is planned for Open Space . Per the EPA SWMM model , the peak 100-year flow into Pond S2 is 89 . 46 cfs . The County requires 1 . 5 times the 100-year volume for retention ponds . The 100- year retention volume is 5 . 72 ac-ft. The bottom of the detention pond is at an elevation of 4887 and the 100-year water surface is 4892 . 03 . Multiplying the 100- year volume by 1 . 5 gives a required volume of 8 . 59 ac-ft of storage . The corresponding water surface for the 1 . 5 times the 100-year volume is 4893 . 82 . The elevation of the spillway is 4895 . 0 . Per the calculations in the Appendix , the length of the spillway will need to be 85 feet long . The 100- year water depth is approximately 5 . 03 feet deep . Using an infiltration rate of 1 inch per hour, the 100- year volume will drain in approximately 60 . 3 hours . Pond S3, tributary area of 78. 16 acres. Pond S3 is situated on land that is planned for Open Space . Per the EPA SWMM model , the peak 100- year flow into Pond S3 is 87 . 21 cfs . The County requires 1 . 5 times the 100-year volume for retention ponds . The 100- year retention volume is 6 . 93 ac-ft. The bottom of the detention pond is at an elevation of 4889 and the 100-year water surface is 4893 . 60 . Multiplying the 100- year volume by 1 . 5 gives a required volume of 10 . 39 ac-ft of storage . The corresponding water surface for the 1 . 5 times the 100- year volume is 4895 . 06 . The elevation of the spillway is 4896 . 25 . Per the calculations in the Appendix , the length of the spillway will need to be 55 feet long . The 100- year water depth is approximately 4 . 60 feet deep . Using an infiltration rate of 1 inch per hour, the 100- year volume will drain in approximately 55 . 2 hours . Pond S4, tributary area of 304 . 49 acres. Pond S4 is situated on land that is planned for Open Space . Per the EPA SWMM model , the peak 100-year flow into Pond S4 is 286 . 88 cfs . The County requires 1 . 5 times the 100- year volume for retention ponds . The 100- year retention volume is 26 . 99 ac-ft . The bottom of the detention pond is at an approximate elevation of 4854 and the 100-year water surface is 4857 . 89 . Multiplying the 100- year volume by 1 . 5 gives a required volume of 40 . 49 ac-ft of storage . The corresponding water surface for the 1 . 5 times the 100-year volume is 4859 . 64 . The elevation of the spillway is 4861 . 0 . Per the calculations in the Appendix , the length of the spillway will need to be 275 feet long . The 100- year water depth is approximately 3 . 89 feet deep . Using an infiltration rate of 1 inch per hour, the 100- year volume will drain in approximately 46 . 7 hours . Ponds For East Areas Pond 9, tributary area of 366. 6 acres, of which 48 . 0 acres is offsite area from west of CR 39 . All of the tributary area to Pond 9 is undeveloped therefore , 2 percent imperviousness was used in determining the runoff to Pond 9 . The existing pond encroaches onto existing lots within Filing 1 and the existing pond doesn 't have the County requirement of 1 . 5 times the 100-year volume for retention ponds . Therefore , Pond 9 will be enlarged to provide the 1 . 5 times the 100-year volume plus a PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 17 of 21 minimum of one foot freeboard above the water surface associated with the 1 . 5 times the 100- year volume . Per the EPASWMM model , the peak flow into Pond 9 is 210 . 52 cfs . The County requires 1 . 5 times the 100-year volume for retention ponds . The 100- year retention volume is 28 . 28 ac-ft . The bottom of the retention pond is at an approximate elevation of 4829 and the 100-year water surface is 4834 . 73 . Multiplying the 100- year volume by 1 . 5 give the required volume of 42 . 43 ac- ft of storage . The corresponding water surface for the 1 . 5 times the 100-year volume is 4837 . 05 . The existing elevation of the overflow is 4838 . 66 and is 194 . 4 feet long . Per the calculations in the Appendix , the length of the existing spillway is sufficient to pass the 100-year developed flow at a flow depth of 0 . 55 ' and therefore no changes to the existing spillway are necessary . The 100- year water depth is approximately 5 . 73 feet deep . Using an infiltration rate of 1 inch per hour, the 100- year volume will drain in approximately 68 . 8 hours . The enlargement of Pond 9 will lower the 100- year water surface thereby reducing the impacts on the existing residential lots on Filing 1 . With future development on the northside of Beebe Draw Farms Parkway , it is anticipated that would reduce the runoff to Pond 9 . Pond El , tributary area of 80. 52 acres, of which 19 . 2 acres consists of Filing 1 residential area . Per the EPA SWMM model , the peak flow into Pond El is 101 . 85 cfs . The County requires 1 . 5 times the 100- year volume for retention ponds . The 100-year retention volume is 7 . 05 ac-ft . The bottom of the retention pond is at an elevation of 4815 and the 100- year water surface is 4819 . 87 . Multiplying the 100- year volume by 1 . 5 gives a required volume of 10 . 57 ac-ft of storage . The corresponding water surface for the 1 . 5 times the 100-year volume is 4821 . 65 . Since Pond El is a temporary pond , no overflow is provided . The 100- year water depth is approximately 4 . 87 feet deep . Using an infiltration rate of 1 inch per hour, the 100- year volume will drain in approximately 58 . 4 hours . Pond E2, tributary area of 53. 31 acres . Per the Rational Method model , the peak flow into Pond E2 is 82 . 22 cfs . The County requires 1 . 5 times the 100-year volume for retention ponds . The 100- year retention volume is 5 . 06 ac-ft . The bottom of the retention pond is at an elevation of 4803 . 5 and the 100-year water surface is 4807 . 19 . Multiplying the 100-year volume by 1 . 5 gives a required volume of 7 . 59 ac- ft of storage . The corresponding water surface for the 1 . 5 times the 100- year volume is 4808 . 90 . Since Pond E2 is a temporary pond , no overflow is provided . The 100- year water depth is approximately 3 . 69 feet deep . Using an infiltration rate of 1 inch per hour, the 100- year volume will drain in approximately 44 . 3 hours . IV. VARIANCES The following variances from the Weld County Engineering and Construction Criteria are proposed as a part of this project : 1 . Allowing Retention Ponds • Per section 5 . 10 . 1 " Stormwater retention facilities ( stormwater infiltration facilities ) normally are not allowed in Weld County but shall be considered for special circumstances with the issuance of a variance . Variance requests shall only be considered in situations where there is a proven hardship on the proposed site . A hardship would be considered where there is not adequate PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 18 of 21 topography to physically drain a pond ( sump in basin ) , refusal of an irrigation ditch to accept additional drainage , or some other physical site constraint . " • The proposed project conditions have both hardships . There are multiple large existing depressional areas throughout the development that do not surface drain . With the presence of Type A sandy soils , these areas currently infiltrate into the ground . The proposed design is attempting to minimize disturbance and maintain existing drainage patterns as much as possible by placing retention ponds in the general area of the larger depressions . By doing so , there is no feasible way to drain these ponds with a typical gravity outlet structure , and therefore , runoff entering these ponds will infiltrate into the ground , as is occurring in the existing condition . In addition , The Farmers Reservoir and Irrigation Company who owns and operates the downstream reservoir, does not allow stormwater to discharge into their system . Therefore , all developed runoff is proposed to be captured by retention ponds and infiltrated into the ground with no negative impacts to surrounding areas . 2 . Emergency Spillway • Per section 5 . 10 . 1 , an emergency spillway is required for retention ponds . • Pond W3 is located in a deep natural depression . When calculating the 1 . 5 times the 100- year runoff volume storage , the corresponding elevation is roughly 5 feet below the natural overflow point for this pond , which drains off- site to the east . In addition , this area cannot be filled without creating a low point directly on top of an existing Oil & Gas facility . Therefore , there is no feasible way to construct a concrete spillway within the reasonable limits of this pond area . There should be no adverse impacts to any proposed lots by not constructing a spillway as this pond will infiltrate all runoff and will have much more than the required storage volume , including freeboard . V. SUMMARY & CONCLUSIONS In summary , the Pelican Lakes project will make use of existing grades to the greatest extent possible , minimize impacts to on - site environmental amenities , provide conveyance of on - and off- site storm flows through the site , and provide storm retention in manner consistent with Best Management Practices . Under the Plan , no adverse impacts to the local community or environment are expected . PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 19 of 21 VI . GENERAL DRAINAGE MAINTENANCE The following is the drainage/site maintenance plan for the project : 1 . At all times , any erosion that may occur shall be corrected as soon as possible to mitigate the chance of sediment leaving the site . 2 . All outlet structures , storm pipes and swales shall be inspected regularly and cleaned if necessary . 3 . Any seeded areas that are not covered with vegetation shall be re- seeded and irrigated as necessary to establish permanent vegetation . 4 . Snow should not be piled in swales or near the detention pond . 5 . Any necessary repairs shall be made as soon as possible . Repairs to privately owned stormwater facilities shall not be the responsibility of Weld County . Retention/Infiltration Pond Maintenance : The following description was taken from the Mile High Flood District Urban Storm Drainage Criteria Manual Volume 3 ( November 2010 ) and modified for this specific situation : Inspection Inspect the infiltrating surface at least twice annually following precipitation events to determine if the retention area is providing acceptable infiltration . Retention/ Infiltration facilities are designed with a maximum depth for the WQCV of one foot and soils that will typically drain the WQCV over approximately 12 hours . If standing water persists for more than 24 hours after runoff has ceased , clogging should be further investigated and remedied . Additionally , check for erosion and repair as necessary . Debris and Litter Removal Remove debris and litter from the infiltrating surface to minimize clogging of the media . Mowing and Plant Care All vegetation : Maintain healthy , weed -free vegetation . Weeds should be removed before they flower. The frequency of weeding will depend on the planting scheme and cover. When the growing media is covered with mulch or densely vegetated , less frequent weeding will be required . Grasses : When started from seed , allow time for germination and establishment of grass prior to mowing . If mowing is required during this period for weed control , it should be accomplished with hand - held string trimmers to minimize disturbance to the seedbed . After established , mow as desired or as needed for weed control . Following this period , mowing of native/drought tolerant grasses may stop or be reduced to maintain a length of no less than 6 inches . Mowing of manicured grasses may vary from as frequently as weekly during the summer , to no mowing during the winter. Irrigation Scheduling and Maintenance Adjust irrigation throughout the growing season to provide the proper irrigation application rate to maintain healthy vegetation . Less irrigation is typically needed in early summer and fall , while more irrigation is needed during the peak summer months . PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 20 of 21 Native grasses and other drought tolerant plantings should not typically require routine irrigation after establishment, except during prolonged dry periods . Sediment Removal and Growing Media Replacement If ponded water is observed in a retention pond for more than 24 hours after the end of a runoff event , maintenance is needed . Maintenance activities to restore infiltration capacity of infiltration facilities will vary with the degree and nature of the clogging . If clogging is primarily related to sediment accumulation on the surface , infiltration may be improved by removing excess accumulated sediment and scarifying the surface with a rake . If the clogging is due to migration of sediments deeper into the pore spaces of the soil , removal , and replacement of a portion of the underlying may be required . The frequency of media replacement will depend on site- specific pollutant loading characteristics . Based on experience to date in the metro Denver area , the required frequency of media replacement is not known . Although surface clogging of the media is expected over time , established root systems promote infiltration . This means that mature vegetation that covers the filter surface should increase the life span of the growing media , serving to promote infiltration even as the media surface clogs . VII . LIST OF REFERENCES 1 . Soilogic Inc . , Geology and Preliminary On- Site Wastewater Treatment Systems (OWTS) Site Evaluation Report for Pelican Lakes Ranch Subdivision , Project No . 20- 1130 , May 28 , 2020 . 2 . FEMA Flood Insurance Rate Map , Weld County , Colorado Unincorporated Area , Community Panel Number 08123O1935E , January 20 , 2016 . 3 . Weld County Engineering and Construction Criteria , Updated January 2021 . 4 . Weld County Code , Chapter 8 , Article XI — Storm Drainage Criteria 5 . Mile High Flood District , Urban Storm Drainage Design Criteria Manual , V . 1 - 3 , 2001 , latest additions . 6 . Phase III Drainage Report for Beebe Draw Farms Filing 1 , June 1 , 1998 , by Milestone Engineering . 7 . Drainage Letter Beebe Draw Farms and Equestrian Center Filing 1 — Phase 5 , December 29 , 2017 , by Crestone Consultants , LLC . PELICAN LAKE RANCH FILING NO . 2 FINAL DRAINAGE REPORT Page 21 of 21 APPENDICES APPENDIX A — Referenced Material APPENDIX B — Hydrologic Calculations APPENDIX C — Hydraulic Calculations APPENDIX D — SWMM Calculations APPENDIX E — Drainage Plans APPENDIXA - REFERENCED MATERIAL • !_S, SØ • M .• Ji^' . III Ala______ _ • . " Wfl C. ` WCe'ri w`I .. ' r-'AI ON C.l R i 1. r - U IN rR Legend r u� -, — Highway ` ! - Road ., W . R WCR 38 _WtaR r � V . — Highway County Boundary ____H \ J 'I SITE � y Y { 3 ie _ v 1t21 ; 2 Cfl 2 C I y1 VII . . - i ••• WCR :30 1 2I,f I • %j c v T i WIN - - ry I ' 6 . � 4 w . H •i- _____________ 141 . 2 i 1 : 94, 128 - , Notes 15,688.0 0 7,844.01 15,688.0 Feet This map is a user generated static output from an Internet mapping site and is for reference only. Data layers that appear on this map may or may not be accurate, WGS_1984_Web_Mercator-Auxiliary_Sphere current, or otherwise reliable . © Weld County Colorado 28 THIS MAP IS NOT TO BE USED FOR NAVIGATION 10/14/24, 5:00 PM Precipitation Frequency Data Server NOAAAtlas 14, Volume 8, Version 2 Location name: Platteville, Colorado, USA* Latitude: 40.2288°, Longitude: -104.6816° € , ii Elevation: 4919 ft** source: ESRI Maps +a 9� ** source: USGS "" POINT PRECIPITATION FREQUENCY ESTIMATES Sanja Perica, Deborah Martin; Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin NOAH, National Weather Service, Silver Spring, Maryland PF tabular I PF graphical I Maps & aerials PF tabular PDS-based point precipitation frequency estimates with 90 % confidence intervals ( in inches) 1 Average recurrence interval (years) Duration ���� �01� � � 1 2 5 10 25 50 100 200 500 1000 5-min 0.240 0.290 0,388 0.482 0.632 0.764 0.909 1 .07 1 .31 1 .50 (0. 194-0.299) (0.234-0.363) (0.311 -0 .486) (0.385-0.608) (0.494-0.853) (0.576- 1 .04) (0.658-1 .27) (0.739-1 .54) (0.861 -1 .93) (0.953-2.22) 10-min 0,351 0,425 0.568 0,706 0,926 1 ,12 1 ,33 1 .57 1 .91 2.20(0.283-0.438) (0.343-0.532) (0.456-0.712) (0,563-0.890) (0.723-1 .25) (0.844-1 .52) (0.964-1 .86) (1 .08-2 .25) (1 .26-2.82) (1 .403.26) 15-min 0,428 0,519 0,692 0,861 1 .13 1 .36 1 .62 1 .91 2.33 2.68 (0.346-0.535) (0.418-0.648) (0.556-0.868) (0.687-1 .08) (0.882-1 .52) (1 .03-1 .85) (1 .18-2 .26) (1 .32-2 .74) (1 .54-3.44) (1 .70-3.97) 30-min 0.575 0,694 0,924 1 .15 1 ,51 1 .83 2.18 2,57 3,15 3,62 (0.464-0.718) (0.559-0.86 0 .742-1 . 16) (0.917-1 .45) (1 . 18-2.04) 1 .38-2.49) (1 .58-3.04) (1 .78-3.70) (2.08-4.65) 2.30-5.37 60-min 0.709 0.845 1 .12 1 .39 1 .84 2.24 2.69 3.20 3.95 4.58 (0.5720.886) (0.681 -1 .06) (0.897-1 .40) ( 1 . 11 -1 .75) (1 .44-2.50) (1 .70-3.06) ( 1 .96-3 .77) (2.21 .61 ) (2.61 -5.84) (2.916.78) 2-hr 0.844 0.996 1 .31 1 .63 2. 17 2.66 3.21 3.83 4.75 5.53(0.686- 1 .04) (0.809-1 .23) (1 .06-1 .63) ( 1 .31 -2.04) (1 .72-2.93) (2.03-3.60) (2.35-4 .45) (2.68-5.46) 3. 17-6.96) (3.55-8.09) 3-hr 0921 1 ,08 140 1 .75 2,33 2,86 3.46 4,14 5.16 6.02 (o753..1 . 13) (0.8781 .33) (1 . 14-1 .74) ( 1 .41-2. 1 7) (1 .863. 13) (2.20-3.86) (25&4 .78) (29L5.88) (3.47-7.52) (3.898.76)62 6.62 6-hr (0.88816.32 1 .0321553 1 .3261197) 1 .62 2945 2. 121 3.48 2.48 4926 (2.86 5526 (3.26-6.44) 3.86 8019) (432-9.52 12-hr 1 .27 1 .49 1 .92 2.33 299 3.57 4.21 492 5.97 6.83( 1 .05-1 .53) (1 .24-1 .80) (1 .58-2 .32) ( 1 .91 -2.84) (2.41 -3.88) (2.78-4.67) (3. 15-5.65) (3.52-6.79) (4.08-8.45) (4.50-9.70) 24-hr 1 .50 1 .77 2.26 2.71 3.40 4,00 4.64 5.35 6.36 7. 19 ( 1 .26-1 .80) (1 .48-2.12) (1 .88-2.71 ) (2.24-3.27) (2.75-4.34) (3.13-5. 15) (3.50-6.13) (3.85-7.26) (4.38-8.87) (4.79-10.1 ) 2-day 1 .71 2,05 2.64 3.15 3.90 4.50 5.14 5,82 676 7.50(145-2M3) (1 .73-2.44) (2.21 -3.14) (2 .63-3.77) (3A5-486) (3.545.70) (3.90-6.67). (4.21 -7.76) (4.69-9.27) (5.05-10.4) 3-day 1 ,88 2,22 2.81 3.33 4,09 4.70 5.35 6.03 6,97 7.72 (1 .59-2.21 ) (1 .88-2.62) (2.37-3.33) (2 .79-3.96) (3.325.07) (3.72-5.90) (4.075.88) (4.39-7.98) (4.87-9.50) (5.23-10 .6) 4-day 2.00 2,35 294 3.47 4.23 4,85 5.50 6.18 7,13 7M9(1 .70-2.36) (2.00-2.76) (2.49-3.47) (2.92-4. 11 ) (3.45-5.22) 3.85-6.06) (4.20-7.04) (4.52-814). (5.00-9.66) (5.37-10 .8) 7-day 2.29 2.68 3.32 3.88 4.67 5,30 5.94 6,62 7.54 826 (1 .96-2.67) (2.29-3. 12) (2.83-3.89) (3.28-4.56) (3.82-5.69) (4.23-6.54) (4.58-7.53) 4.87-862) (5.33-10. 1 ) (5.67-11 .2) 10-day 2.54 296 3.65 4.24 5.06 5.70 6.35 702 7,91 8,60 (2.18-2.94) (2.54-3.43) (3. 12-4 .25) (3.60-4.96) (4. 15-6. 11 ) (4.56-6.98) (4.90-7.97) (5.19-9.06) (5.62-10.5) (5.94-11 .6) 20-day 3.24 3.73 4.53 5.19 6.09 6.77 7.45 8.14 9.04 9.71 (2.81-3.72) (3.23-4.29) (3.91 -5.22) (4 .45-6.01 ) (5.03-7.25) (5.47-8. 18) (5.81 -9.23) (6.07-10.4) (6.48-11 .8) (6.78-12.9) 30 day 3.80 4,36 5.26 5.99 6,97 7.71 8.44 9,16 10. 1 10,8 (3 4.31 -4.34) 3.80 98) (4.56-6.03) (5. 16-6.89) (5.79-8.23) (6.26-9.25) (6 .61 -10.4) (6.87-11 .6) 7.28-13. 1 ) (7.58-14 .3) 454 4.48 5.14 6,19 7.04 8. 16 8.99 9,79 10.6 11 ,6 12,3 ay (3.92-5.09) (4.50-5.84) (5.40-7.06) (6 . 10-8.05) (6.80-9.56) (7.33-10.7) (7.71 -11 .9) (7.98-13.2) (8.39-14$9) (8.70-16.1 ) 60-day 5.03 £80 7,01 7.97 9.23 101 11 ,0 11 .9 12,9 13,7(442-5.69) 5.09-6.56) (6. 13-7.95) (6.93-9.08) (7.71 -10.7) (8.30-12.0) (8.71 -13.3) 8.98-14M8) 9.40-16.5) (911 -17.8) Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval . The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values, Please refer to NOAA Atlas 14 document for more information . Back to Top PF graphical https://hdsc.nws.noaa.gov/pfds/pfds_printpage.html?lat=40.2288&Ion=-104.6816&data=depth&units=eng lish&series=pds 1 /4 10/14/24, 5:00 PM Precipitation Frequency Data Server PDS- based depth-duration -frequency ( DDF ) curves Latitude : 40 . 2288 " , Longitude : - 104 . 6816 " 14 -! - Average rcc i = ;7 nter•, I 12 q;years} 1 �_. lt➢ 2 d 5 16 0 — 25 6 — 5'D a — 100 4 — 200 500 2r 1000 0 _ r t . ra r ru ru ru ro E ro ro ro . 0 n N f1�5 4b tV N p O C7 LI C] U1 f ca r�I m w Duration H N rn ct w 14 - 12 - * 10 Duration C' 8 — 5-mm — 2 -day c — 10-nun — 3 -day ,z 6 15-mm — 4-day — 30-min — 7-day 4 60-man — 10-day a. — 2-hr — 20-day 2 — 3-hr — 30-day 6-hr — 45-day © _ __ __ 12-hr — 60-day 24-hr 1 2 5 10 25 50 100 200 500 1000 Average recurrence interval (years) F4OAA Atlas 14, Volume 8, Version 2 Created (GMT): Mon Oct 14 23 :O0:09 24]24 Back to Top Maps & aerials Small scale terrain https://hdsc.nws.noaa.gov/pfds/pfds_printpage.html?lat=40.2288&Ion=-104.6816&data=depth&units=english&series=pds 2/4 10/14/24, 5:00 PM Precipitation Frequency Data Server Milton Lake . Reservoir I MUG IL ; 57iEfAdwf � g/PWI�"JA + 3km 2mi Large scale terrain• Fl - ¼ rc • S -Cheyenne tat' -2- C Fr, rtCollins a Greeley L:Irr_Is Peak. 1345 h, . £'r I Qi 131 I I I:A , Denver U + Z 100krr: F- II:i 60mi Large scale map Fort Collirps - a -'' Greeley __ J Lp 1 oBuurder - - - - -- - - a [ .4... ] 100km 's 60mi Large scale aerial https://hdsc.nws.noaa.gov/pfds/pfds_printpage.html?lat=40.2288&Ion=-104.6816&data=depth&units=english&series=pds 3/4 10/14/24, 5:00 PM Precipitation Frequency Data Server T a • •" ♦ .• . Y , . • 100km 60mi -. • I $ Back to Top US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring , MD 20910 Questions? : HDSC.Questionss noaa.gov Disclaimer https://hdsc.nws.noaa.gov/pfds/pfds_printpage.html?lat=40.2288&Ion=-104.6816&data=depth&units=english&series=pds 4/4 IIr rr 11 r rr III ' rr 11 rr /1•r 11 f r Y 11 r ll) • 1() L!) • O O . CO Ln f Co Y O O O . _- . 4I N ' 1 i J .mot, . I . VIII yi �'y, • xs� YY 'Y .�, '. . rsyT , N 1111 e • 1 m � t / ,• 1 1 J $ • \ 4 • • • _ - , r r r r r1 11 rr /1 . . r H> ' ' 11• rr 11 rr Soil Map—Weld County, Colorado, Southern Part MAP LEGEND MAP INFORMATION Area of Interest (AOI) p Spoil Area The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) 1 :24 , 000 . Stony Spot Soils Please rely on the bar scale on each map sheet for map Very Stony Spot measurements . Soil Map Unit Polygons Wet Spot Source of Map: Natural Resources Conservation Service r r. Soil Map Unit Lines Other Web Soil Survey URL: O Soil Map Unit Points Coordinate System : Web Mercator (EPSG :3857) . Special Line Features Special Point Features Maps from the Web Soil Survey are based on the Web Mercator t Blowout Water Features projection , which preserves direction and shape but distorts Streams and Canals distance and area . A projection that preserves area , such as the Borrow Pit Albers equal-area conic projection , should be used if more Transportation accurate calculations of distance or area are required . Clay Spot Rails t1 Closed Depression This product is generated from the USDA-NRCS certified data as ._.++ Interstate Highways of the version date(s) listed below. Gravel Pit US Routes Soil Survey Area : Weld County, Colorado, Southern Part Gravelly Spot Major Roads Survey Area Data : Version 21 , Sep 1 , 2022 w ° Landfill Local Roads Soil map units are labeled (as space allows) for map scales 1 :50 , 000 or larger. Lava Flow Background Marsh or swamp Aerial Photography Date(s) aerial images were photographed : Jun 8, 2021 —Jun 12, 2021 • Mine or Quarry The orthophoto or other base map on which the soil lines were Miscellaneous Water compiled and digitized probably differs from the background imagery displayed on these maps . As a result, some minor O Perennial Water shifting of map unit boundaries may be evident. Rock Outcrop Saline Spot Sandy Spot 4 .. Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot USDA Natural Resources Web Soil Survey 3/29/2023 Conservation Service National Cooperative Soil Survey Page 2 of 3 Soil Map—Weld County, Colorado, Southern Part Map Unit Legend Map Unit Symbol Map Unit Name Acres in AOI Percent of AOI 10 Ellicott-Ellicott sandy-skeletal 33.4 1 .0% complex, 0 to 3 percent slopes, rarely flooded 35 Loup-Boel loamy sands, 0 to 3 14 .7 0 .4% percent slopes 44 Olney loamy sand , 1 to 3 78.8 2 .3% percent slopes 69 Valent sand, 0 to 3 percent 502.2 14 .8% slopes 70 Valent sand, 3 to 9 percent 1 , 658.3 48 .8% slopes 72 Vona loamy sand , 0 to 3 988.2 29 . 1 % percent slopes 85 Water 122.6 3 .6% Totals for Area of Interest 3, 398.3 100 .0% USDA Natural Resources Web Soil Survey 3/29/2023 Conservation Service National Cooperative Soil Survey Page 3 of 3 34 Map Unit Description : Olney loamy sand , 1 to 3 percent slopes---Weld County, Colorado, Southern Part Weld County, Colorado , Southern Part 44—Olney loamy sand , 1 to 3 percent slopes Map Unit Setting National map unit symbol: 362r Elevation: 4 , 600 to 5 , 200 feet Mean annual precipitation: 11 to 15 inches Mean annual air temperature: 46 to 54 degrees F Frost-free period: 125 to 175 days Farmland classification : Farmland of statewide importance Map Unit Composition Olney and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Olney Setting Landform: Plains Down-slope shape: Linear Across-slope shape: Linear Parent material: Mixed deposit outwash Typical profile HI - 0 to 10 inches: loamy sand H2 - 10 to 20 inches: sandy clay loam H3 - 20 to 25 inches: sandy clay loam H4 - 25 to 60 inches: fine sandy loam Properties and qualities Slope: 1 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat) : Moderately high to high (0 . 60 to 2 . 00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 15 percent Maximum salinity: Nonsaline to very slightly saline (0 . 0 to 2 . 0 mmhos/cm ) Available water supply, 0 to 60 inches: Moderate (about 6 . 5 inches) Interpretive groups Land capability classification (irrigated): 3e Land capability classification (non irrigated) : 4c Hydrologic Soil Group: B Natural Resources Web Soil Survey 8/20/2022 Conservation Service National Cooperative Soil Survey Page 1 of 2 35 Map Unit Description : Olney loamy sand , 1 to 3 percent slopes---Weld County, Colorado, Southern Part Ecological site: R067BY024CO - Sandy Plains Hydric soil rating: No Minor Components Vona Percent of map unit: 8 percent Hydric soil rating: No Zigweid Percent of map unit: 7 percent Hydric soil rating: No Data Source Information Soil Survey Area : Weld County, Colorado , Southern Part Survey Area Data : Version 19 , Jun 5 , 2020 Natural Resources Web Soil Survey 8/20/2022 Conservation Service National Cooperative Soil Survey Page 2 of 2 36 Map Unit Description : Valent sand, 0 to 3 percent slopes---Weld County, Colorado, Southern Part Weld County, Colorado , Southern Part 69 Valent sand , 0 to 3 percent slopes Map Unit Setting National map unit symbol: 2tczd Elevation: 3 , 000 to 5 , 210 feet Mean annual precipitation: 13 to 20 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 130 to 166 days Farmland classification: Farmland of local importance Map Unit Composition Valent and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Valent Setting Landform: Interdunes Landform position (two-dimensional) : Footslope , toeslope Landform position (three-dimensional) : Base slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Noncalcareous eolian sands Typical profile A - 0 to 5 inches: sand AC - 5 to 12 inches: sand Cl - 12 to 30 inches: sand C2 - 30 to 80 inches: sand Properties and qualities Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Excessively drained Runoff class: Negligible Capacity of the most limiting layer to transmit water (Ksat): High to very high (6 . 00 to 39 . 96 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 1 percent Maximum salinity: Nonsaline (0 . 1 to 1 . 9 mmhos/cm ) Available water supply, 0 to 60 inches: Very low (about 2 .4 inches) Interpretive groups Land capability classification (irrigated) : 4e Land capability classification (nonirrigated) : 6e Hydrologic Soil Group: A USDA Natural Resources Web Soil Survey 3/29/2023 Conservation Service National Cooperative Soil Survey Page 1 of 2 37 Map Unit Description : Valent sand, 0 to 3 percent slopes---Weld County, Colorado, Southern Part Ecological site: R067BY015CO - Deep Sand , R072XA021 KS - Sands (North ) ( PE 16-20) Hydric soil rating: No Minor Components Dailey Percent of map unit: 5 percent Landform: Interdunes Landform position (two-dimensional) : Toeslope Landform position (three-dimensional) : Base slope Down-slope shape: Linear Across-slope shape: Concave Ecological site: R067BY015CO - Deep Sand , R072XA022KS - Sandy (North ) Draft (April 2010) ( PE 16-20) Hydric soil rating: No Julesburg Percent of map unit: 5 percent Landform: Interdunes Landform position (two-dimensional) : Toeslope Landform position (three-dimensional) : Base slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY024CO - Sandy Plains, R072XA022KS - Sandy (North ) Draft (April 2010) ( PE 16-20) Hydric soil rating: No Vona Percent of map unit: 5 percent Landform: Interdunes Landform position (two-dimensional) : Toeslope Landform position (three-dimensional) : Base slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY024CO - Sandy Plains, R072XA022KS - Sandy (North ) Draft (April 2010) ( PE 16-20) Hydric soil rating: No Data Source Information Soil Survey Area : Weld County, Colorado , Southern Part Survey Area Data : Version 21 , Sep 1 , 2022 USDA Natural Resources Web Soil Survey 3/29/2023 Conservation Service National Cooperative Soil Survey Page 2 of 2 38 Map Unit Description : Valent sand, 3 to 9 percent slopes---Weld County, Colorado, Southern Part Weld County, Colorado , Southern Part 70 Valent sand , 3 to 9 percent slopes Map Unit Setting National map unit symbol: 2tczf Elevation: 3 , 050 to 5 , 150 feet Mean annual precipitation: 12 to 18 inches Mean annual air temperature: 48 to 55 degrees F Frost-free period: 130 to 180 days Farmland classification : Not prime farmland Map Unit Composition Valent and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Valent Setting Landform: Dunes, hills Landform position (two-dimensional): Summit, shoulder, backslope , footslope Landform position (three-dimensional) : Side slope , crest, head slope , nose slope Down-slope shape: Convex, linear Across-slope shape: Convex, linear Parent material: Noncalcareous eolian sands Typical profile A - 0 to 5 inches: sand AC - 5 to 12 inches: sand Cl - 12 to 30 inches: sand C2 - 30 to 80 inches: sand Properties and qualities Slope: 3 to 9 percent Depth to restrictive feature: More than 80 inches Drainage class: Excessively drained Runoff class: Very low Capacity of the most limiting layer to transmit water (Ksat) : High to very high (6 . 00 to 39 . 96 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 1 percent Maximum salinity: Nonsaline (0 . 0 to 1 . 9 mmhos/cm) Available water supply, 0 to 60 inches: Very low (about 2 .4 inches) Interpretive groups Land capability classification (irrigated): 4e Natural Resources Web Soil Survey 10/28/2022 Conservation Service National Cooperative Soil Survey Page 1 of 2 39 Map Unit Description : Valent sand, 3 to 9 percent slopes---Weld County, Colorado, Southern Part Land capability classification (non irrigated) : 6e Hydrologic Soil Group: A Ecological site: R072XY109KS - Rolling Sands , R067BY015CO - Deep Sand Hydric soil rating: No Minor Components Dailey Percent of map unit: 10 percent Landform: Interdunes Landform position (two-dimensional): Footslope , toeslope Landform position (three-dimensional) : Base slope Down-slope shape: Linear Across-slope shape: Concave Ecological site: R067BY015CO - Deep Sand , R072XA021 KS - Sands (North ) ( PE 16-20) Hydric soil rating: No Vona Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Shoulder, backslope , footslope Landform position (three-dimensional) : Head slope , nose slope , side slope , base slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY024CO - Sandy Plains , R072XA022KS - Sandy (North ) Draft (April 2010) (PE 16-20) Hydric soil rating: No Haxtun Percent of map unit: 5 percent Landform: Interdunes Landform position (two-dimensional): Footslope , toeslope Landform position (three-dimensional) : Base slope Down-slope shape: Linear Across-slope shape: Concave Ecological site: R067BY024CO - Sandy Plains , R072XY111 KS - Sandy Plains Hydric soil rating: No Data Source Information Soil Survey Area : Weld County, Colorado , Southern Part Survey Area Data : Version 20 , Aug 31 , 2021 Natural Resources Web Soil Survey 10/28/2022 Conservation Service National Cooperative Soil Survey Page 2 of 2 40 Map Unit Description : Vona loamy sand, 0 to 3 percent slopes---Weld County, Colorado, Southern Part Weld County, Colorado , Southern Part 72 Vona loamy sand , 0 to 3 percent slopes Map Unit Setting National map unit symbol: 363r Elevation: 4 , 600 to 5 , 200 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 55 degrees F Frost-free period: 130 to 160 days Farmland classification : Farmland of local importance Map Unit Composition Vona and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Vona Setting Landform: Terraces , plains Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium and/or eolian deposits Typical profile HI - 0 to 6 inches: loamy sand H2 - 6 to 28 inches: fine sandy loam H3 - 28 to 60 inches: sandy loam Properties and qualities Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Runoff class: Very low Capacity of the most limiting layer to transmit water (Ksat) : High ( 1 . 98 to 6 . 00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 15 percent Maximum salinity: Nonsaline to slightly saline (0 . 0 to 4 . 0 mmhos/cm ) Available water supply, 0 to 60 inches: Moderate (about 6 . 5 inches) Interpretive groups Land capability classification (irrigated): 3e Land capability classification (nonirrigated) : 4e Hydrologic Soil Group: A Ecological site: R067BY024CO - Sandy Plains Natural Resources Web Soil Survey 10/28/2022 Conservation Service National Cooperative Soil Survey Page 1 of 2 41 Map Unit Description : Vona loamy sand, 0 to 3 percent slopes---Weld County, Colorado, Southern Part Hydric soil rating: No Minor Components Remmit Percent of map unit: 10 percent Hydric soil rating: No Valent Percent of map unit: 5 percent Hydric soil rating: No Data Source Information Soil Survey Area : Weld County, Colorado , Southern Part Survey Area Data : Version 20 , Aug 31 , 2021 Natural Resources Web Soil Survey 10/28/2022 Conservation Service National Cooperative Soil Survey Page 2 of 2 42 • x •11 • • 11 + 11 : 1 .. 1 • 1 1 1 , � d- 72 72 ul i f ' 72 1 , 72 72 70 72 10 V a 85 "� 72 Y- z 85 72 72 r 72 � T a 4'4 69 72 Y 69 k69 1. 70 72 t � 69 72 85 I 70ii 72 44 7.2 69 70 TO72.. + . 1 1 •1 . 1 • 1 41 ♦.•• A1 1i II 1" 1 11' 1 + 111 s 11 Hydrologic Soil Group—Weld County, Colorado, Southern Part MAP LEGEND MAP INFORMATION Area of Interest (AOI) 0 C The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) 1 :24 , 000 . 0 C/D Soils Please rely on the bar scale on each map sheet for map Soil Rating Polygons ® D measurements . A 0 Not rated or not available Source of Map: Natural Resources Conservation Service A/D Water Features Web Soil Survey URL: Streams and Canals Coordinate System : Web Mercator (EPSG :3857) 0 B Maps from the Web Soil Survey are based on the Web Mercator O Transportation B/D projection , which preserves direction and shape but distorts 1-4-I Rails distance and area . A projection that preserves area , such as the 0 C Interstate Highways Albers equal-area conic projection , should be used if more accurate calculations of distance or area are required . C/D US Routes This product is generated from the USDA-NRCS certified data as 0 D Major Roads of the version date(s) listed below. Not rated or not available Local Roads Soil Survey Area : Weld County, Colorado, Southern Part Soil Rating Lines Survey Area Data : Version 21 , Sep 1 , 2022 Background a A Aerial Photography Soil map units are labeled (as space allows) for map scales A/D 1 :50 , 000 or larger. B Date(s) aerial images were photographed : Jun 8, 2021 —Jun 12, 2021 B/D The orthophoto or other base map on which the soil lines were C compiled and digitized probably differs from the background rw C/D imagery displayed on these maps . As a result, some minor shifting of map unit boundaries may be evident. y D • / Not rated or not available Soil Rating Points 0 A ,3 A/D B B/D USDA Natural Resources Web Soil Survey 3/29/2023 Conservation Service National Cooperative Soil Survey Page 2 of 4 Hydrologic Soil Group—Weld County, Colorado, Southern Part Hydrologic Soil Group Map unit symbol Map unit name Rating Acres in AOI Percent of AOI 10 Ellicott-Ellicott sandy- A 33.4 1 .0% skeletal complex, 0 to 3 percent slopes, rarely flooded 35 Loup-Boel loamy sands, AID 14 . 7 0 .4% 0 to 3 percent slopes 44 Olney loamy sand, 1 to B 78. 8 2 .3% 3 percent slopes 69 Valent sand, 0 to 3 A 502 . 2 14 .8% percent slopes 70 Valent sand, 3 to 9 A 1 ,658. 3 48 .8% percent slopes 72 Vona loamy sand, 0 to 3 A 988.2 291 % percent slopes 85 Water 122 . 6 3 .6% Totals for Area of Interest 3,398. 3 100 .0% USDA Natural Resources Web Soil Survey 3/29/2023 Conservation Service National Cooperative Soil Survey Page 3 of 4 45 Hydrologic Soil Group—Weld County, Colorado, Southern Part Description Hydrologic soil groups are based on estimates of runoff potential . Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation , are thoroughly wet, and receive precipitation from long -duration storms. The soils in the United States are assigned to four groups (A, B , C , and D ) and three dual classes (A/D , B/D , and C/D ) . The groups are defined as follows : Group A. Soils having a high infiltration rate ( low runoff potential ) when thoroughly wet . These consist mainly of deep , well drained to excessively drained sands or gravelly sands . These soils have a high rate of water transmission . Group B . Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep , moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture . These soils have a moderate rate of water transmission . Group C . Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture . These soils have a slow rate of water transmission . Group D . Soils having a very slow infiltration rate (high runoff potential ) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential , soils that have a high water table , soils that have a claypan or clay layer at or near the surface , and soils that are shallow over nearly impervious material . These soils have a very slow rate of water transmission . If a soil is assigned to a dual hydrologic group (A/D , B/D , or C/D ) , the first letter is for drained areas and the second is for undrained areas . Only the soils that in their natural condition are in group D are assigned to dual classes . Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher USDA Natural Resources Web Soil Survey 3/29/2023 Conservation Service National Cooperative Soil Survey Page 4 of 4 46 APPENDIX - HYDROLOGIC COMPUTATIONS TERRA FORMA +rte --90LUTION5------- Project: Pelican Lake Ranch Filing No. 2 Location: Weld County., CO Designer: TAJ Date: • 10/14/2024 Latest Revision: 1/28/2025 11 IIthLkII .O stir' OW4 OW4 80.70 2.00% 0.07 0.22 6.53 39.60 To Pond Wi OW5 OW5 590.74 2.00% 0.07 0.22 - 572.20 To Pond W1 OW6 OW6 173.92 2.00% 0.07 0.22 - 192. 10 To Pond Si Wi Wi 11.26 20.00% 0.20 0.33 - 286.70 To Pond Wi W1a Wla 10.26 20.00% 0.20 0.33 - 290.77 To Pond Wi Wlb Wlb 8.61 20.00% 0.20 0.33 4.96 15.69 To Pond Wi W2 W2 32.15 7.34% 0.12 0.26 9.70 52.01 To Pond Wi W2a W2a 4.40 13.76% 0.16 0.30 10.01 52.37 To Pond Wi W3 W3 15.56 20.00% 0.20 0.33 9.68 30.61 To Pond Wi W3a W3a 26.56 20.00% 0.20 0.33 19.65 62.14 To Pond W1 W3b W3b 0.97 20.00% 0.20 0.33 0.69 2.19 To Pond Wi W4 W4 46.79 9.51% 0.13 0.27 17.56 69.72 To Pond Wi W8a W8a 1.11 20.00% 0.20 0.33 0.78 2.47 To Pond W3 W8 W8 23. 25 20.00% 0.20 0.33 14.05 44.45 To Pond W3 W5 W5 36.46 14.35% 0.17 0.30 17.23 60.13 To Pond 4 W6a W6a 23.24 10.49% 0.14 0.28 9.81 37.75 To Pond 4 W6b W6b 6.46 20.00% 0.20 0.33 26.59 94.65 To Pond 4 W6 W6 9.70 20.00% 0.20 0.33 6.19 19.59 To Pond 4 W10 W10 18.22 20.00% 0.20 0.33 13.86 43.82 To Pond 4 Wil Wil 1.44 12.10% 0.15 0.29 0.78 2.88 To Pond 4 W12 W12 8.06 19.44% 0.20 0.33 5.14 16.69 To Pond 4 W13 W13 13.69 10.35% 0.14 0.28 32.66 112.63 To Pond 4 W14 W14 179.18 9.22% 0.13 0.27 - 119.80 To Pond 4 W15 W15 4.66 2.00% 0.07 0.22 0.93 5.63 To Pond 4 W16 W16 2.35 20.00% 0.20 0.33 1.66 5.25 To Pond Si Si Si 27.67 20.00% 0.20 0.33 - 101.70 To Pond Si S2 $2 21.99 20.00% 0.20 0.33 - 107.40 To Pond Si S3 53 6.31 20.00% 0.20 0.33 4.11 12.98 To Pond 52 $4 54 21.13 20.00% 0.20 0.33 10.75 34.00 To Pond 52 S5 S5 9.16 20.00% 0.20 0.33 8.87 28.05 To Pond S2 $6 $6 26.22 20.00% 0.20 0.33 29.23 92.45 To Pond S2 S14 S14 22.83 20.00% 0.20 0.33 11.80 37.31 To Pond S3 S15 515 23.29 20.00% 0.20 0.33 12.97 41.02 To Pond 53 S16 S16 2.85 20.00% 0.20 0.33 12.85 40.65 To Pond 53 517 $17 29. 19 20.00% 0.20 0.33 23.30 73.68 To Pond 53 Sla Sla 3.70 20.00% 0.20 0.33 2.45 7.74 To Pond 53 S8 58 1.93 20.00% 0.20 0.33 1.34 4.23 To Pond 54 59 59 10.40 20.00% 0.20 0.33 7.88 24.91 To Pond 54 510 S10 12.93 20.00% 0.20 0.33 13.00 41.11 To Pond S4 Sil Sil 11.22 20.00% 0.20 0.33 6.93 21.91 To Pond 54 S12 S12 18.24 20.00% 0.20 0.33 14.92 47.19 To Pond 54 S13 513 72.83 20.00% 0.20 0.33 38.11 120.53 To Pond 54 S18 $18 12. 17 20.00% 0.20 0.33 9.47 29.95 To Pond 54 519a S19a 2.21 20.00% 0.20 0.33 1.52 4.81 To Pond 55 S19 519 67.45 20.00% 0.20 0.33 27.07 85.61 To Pond 54 520 S20 60. 16 20.00% 0.20 0.33 - 253 .00 To Pond S4 S21 521 7.12 20.00% 0.20 0.33 4.61 14.58 To Pond S4 S22 522 17. 11 20.00% 0.20 0.33 11.29 35.69 To Pond 54 S23 523 7.02 20.00% 0.20 0.33 4.07 12.87 To Pond 54 U1 U1 5.44 2.00% 0.07 0.22 1.32 8.02 Flows Offsite U2 U2 2.75 20.00% 0.20 0.33 1.93 6.09 Flows Offsite U3 U3 2.59 2.00% 0.07 0.22 0.66 4.02 Flows Offsite EAST AREA Fl Fl 12.34 12. 10% 0. 15 0. 29 5 .46 20.07 To Pond El F2 F2 6.86 12.10% 0.15 0.29 3.62 13.31 To Pond El E9 E9 8.26 20.00% 0.20 0.33 5.98 18.91 To Pond 9 EN1 EN1 3.89 20.00% 0.20 0.33 2.74 8.66 To Pond E2 EN2 EN2 2.12 20.00% 0.20 0.33 1.47 4.64 To Pond E2 EN3 EN3 2.21 20.00% 0.20 0.33 1.68 5.31 To Pond E2 EN4 EN4 10.86 20.00% 0.20 0.33 7.08 22.39 To Pond E2 ENS ENS 3.83 20.00% 0.20 0.33 2.60 8.22 To Pond E2 EN6 EN6 12.20 20.00% 0.20 0.33 16.55 52.34 To Pond E2 EN7 EN7 18.20 20.00% 0.20 0.33 22.74 71.92 To Pond E2 ES1 ES1 24.86 20.00% 0.20 0.33 18.53 61.20 To Pond El ES2 ES2 8.88 20.00% 0.20 0.33 5.86 18.54 To Pond El ES3 ES3 27.58 20.00% 0.20 0.33 29.59 96.50 To Pond El EU1 EU1 14.77 2.00% 0.07 0.22 3.19 19.36 Flows Offsite P:\_Projects\PL\05 - Design\Drainage\Calculations\Pelican Lakes - Developed Rational Method Calculations.xlsx f TERRA FORMA Project: Pelican Lake Ranch Filing No. 2 From Weld County Engineering & Construction Criteria Table 5-2 Location: Weld County, CO 'From Weld County Engineering & Construction Criteria Table 5-3 Designer: TAJ Date: 10/14/2024 Latest Revision: 1/28/2025 IMPERVIOUSNESS AND RUNOFF COEFFICIENT CALCULATIONS 12.1% 20% 90% 2% • . OW4 A 80.70 0.00 0.00 0.00 80.70 2.00% 0.00 0.07 0.22 To Pond W1 OWS A 590.74 0.00 0.00 0.00 590.74 2.00% 0.00 0.07 0.22 To Pond 01 000 A 173.92 0.00 0.00 0.00 173.92 2.00% 0.00 0.07 0.22 To Pond Si DEVELOPED W1 A 11.26 0.00 11.26 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond W1 Wla A 10.26 0.00 10.26 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 01 W1b A 8.61 0.00 8.61 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond Wl W2 A 32.15 12.06 1.70 0.22 18.17 7.34% 0.04 0.12 0.26 To Pond Wl W2a A 4.40 1.86 1.83 0.00 0.71 13.76% 0.09 0.16 0.30 To Pond 01 W3 A 15.56 0.00 15.56 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 01 W3a A 26.56 0.00 26.56 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond Wl W3b A 0.97 0.00 0.97 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond Wl W4 A 46.79 28.09 3.76 0.00 14.94 9.51% 0.06 0.13 0.27 To Pond Wl • . rr r : V r . r • r r r nO e W8a A 1.11 0.00 1.11 0.00 0.00 20.00% 0.13 0. 20 0.33 To Pond W3 W8 A 23.25 0.00 23.25 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 03 r rr , 'Er' '8.1' r rr4 'ISP 401 r W5 A 36.46 0.00 25.01 0.00 11.45 14.35% 0.10 0.17 0.30 To Pond 4 W6a A 23.24 3.59 8.95 0.00 10.70 10.49% 0.07 0.14 0.28 To Pond 4 W6b A 6.46 0.00 6.46 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 4 W6 A 9.70 0.00 9.70 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 4 W10 A 18.22 0.00 18.22 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 4 W11 A 1.44 1.44 0.00 0.00 0.00 12. 10% 0.08 0.15 0.29 To Pond 4 W12 A 8.06 0.57 7.49 0.00 0.00 19.44% 0.13 0.20 0.33 To Pond 4 W13 A 13.69 0.00 6.35 0.00 7.34 10.35% 0.07 0.14 0.28 To Pond 4 W14 A 179.18 128.01 0.00 0.00 51.17 9.22% 0.06 0.13 0.27 To Pond 4 W15 A 4.66 0.00 0.00 0.00 4.66 2.00% 0.00 0.07 0.22 To Pond 4 r e ri 'E'P r 'ISV 016 A 2.35 0.00 2.35 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond Si Si A 27.67 0.00 27.67 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 51 52 A 21.99 0.00 21.99 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond Si o.nr.DA + r rr ALE ''l' 8408 LOOt 'E'P'E'P LE Li. S3 A 6.31 0.00 6.31 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S2 S4 A 21.13 0.00 21.13 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 52 55 A 9.16 0.00 9. 16 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S2 $6 A 26.22 0.00 26. 22 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 52 •o . ON ''l' /_ ••p_, 51Tf r rr r rr • , r i 'ISP S14 A 22.83 0.00 22.83 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 53 S15 A 23.29 0.00 23.29 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 53 516 A 2.85 0.00 2.85 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 53 517 A 29.19 0.00 29.19 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S3 • . 'P'i' 1 !yi;.,_:y •'W ''I' 1,01W 'DP tAT Sla A 3.70 0.00 3.70 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S3 58 A 1.93 0.00 1.93 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 54 S9 A 10.40 0.00 10.40 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S4 S10 A 12.93 0.00 12.93 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 04 511 A 11.22 0.00 11.22 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S4 S12 A 18.24 0.00 18.24 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 54 S13 A 72.83 0.00 72.83 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S4 518 A 12.17 0.00 12.17 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 54 519a A 2.21 0.00 2.21 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond SS S19 A 67.45 0.00 67.45 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 54 S20 A 60.16 0.00 60.16 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S4 S21 A 7.12 0.00 7.12 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 54 S22 A 17.11 0.00 17.11 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S4 S23 A 7.02 0.00 7.02 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond S4 0's,:.1.0 I'PIS 0 ''l' r - r rr ''l' r 30% r '01' 'ICR Ul A 5.44 0.00 0.00 0.00 5.44 2.00% 0.00 0.07 0.22 Flows Offsite U2 A 2.75 0.00 2.75 0.00 0.00 20.00% 0.13 0.20 0.33 Flows Offsite U3 A 2.59 0.00 0.00 0.00 2.59 2.00% 0.00 0.07 0.22 Flows Offsite • '01. r HISTORIC OFFSITE - EAST _ Fl A 12.34 12.34 0.00 0.00 0.00 12. 10% 0.08 0.15 0.29 To Pond El F2 A 086 686 0.00 0.00 0.00 12. 10% 0.08 0.15 0.29 To Pond El DEVELOPED - EAST E9 I A I8.26 000 8.26 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond 9 501 A 3.89 0.00 3.89 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond E2 002 A 2.12 0.00 2.12 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond E2 103 A 2.21 0.00 2.21 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond E2 004 A 10.86 0.00 10.86 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond E2 205 A 3.83 0.00 3.83 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond E2 000 A 12.20 0.00 12.20 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond E2 EN7 A 18.20 0.00 18.20 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond E2 • . G' VISE 'P4' •'Pd' r rr r rr • . r 'Dl' 'ISP 551 A 24.86 0.00 24.86 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond El E52 A 8.88 0.00 8.88 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond E1 E53 A 27.58 0.00 27.58 0.00 0.00 20.00% 0.13 0.20 0.33 To Pond El • . // : r r TNt 'Pr' r rr OISPAP r r 'ISP EU1 A 14.77 0.00 0.00 0.00 14.77 2.00% 0.00 0.07 0.22 Flows Offsite P:LProjects\PL\05- Design\Drainage\Calculations\Pelican Lakes - Developed Rational Method Calculations.xlsx TERRA FORMA r,_. SOLUTIONS Project: Pelican Lake Ranch Filing No. 2 1Max 300 ft in Urban areas and 500 ft in rural areas Location: Weld County, CO Type of Land Surface K From Table 6-2 in UDFCD Volume 1 Designer: TAJ Heavy Meadow 2.5 Minimum Te 10 Date: 10/14/2024 Tillage/Field S Latest Revision: 1/28/2025 Short Pasture/Lawns 7 Nearly Bare Ground 10 Grassed Waterway 15 Paved Areas 20 DEVELOPED TIME OF CONCENTRATION CALCULATIONS :ecre.arwrwm000 - imo00jm5rm0 -' aww4NM Inor-iM 111,0w .oe.Lneaerc- nneeDTM S:oe-m%M 'gjij1' looM RooailHnceoeRt OW4 2.00% 0.00 I 646 2.30 38.35 Short Pasture/Lawns 2,875 2.90 1.19 40.20 78.54 N/A 78.54 OWS 2.00% 0.00 1524 2.20 59.77 Short Pasture/Lawns 5,293 1.80 0.94 93.93 153.70 N/A 153.70 OW6 2.00% 0.00 718 4.60 32.16 5hortPasture/Lawns 3,909 2.60 1.13 57.72 89.88 N/A 89.88 Wk 20.00% 0.13 300 3.20 20.58 Grassed waterway 735 0.75 1.30 9.43 30.01 15.75 15.75 Wla 20.00% 0.13 300 4.60 18.26 Grassed Waterway 1,357 2.70 2.46 9.18 27.44 19.21 19.21 W1b 20.000% 0.13 215 3.60 16.76 Grassed Waterway 1,298 3.10 2.64 8.19 24.95 18.41 18.41 W2 7.34% 0.04 300 2.50 24.49 Grassed Waterway 1,960 1.70 1.96 16.70 41.20 22.56 22.56 W2a 13.76% 0.09 300 3.50 20.86 Grassed waterway 1,335 1.70 1.96 11.38 32.24 19.08 19.08 W3 20.00% 0.13 300 2.20 23.29 Grassed Waterway 738 3.30 2.72 4.51 27.81 15.77 15.77 W3a 20.000% 0.13 217 3.90 16.40 Grassed Waterway 1,418 1.30 1.71 13.82 30.22 19.08 19.08 W3b 20.00% 0.13 220 6.40 14.02 Grassed Waterway 66 0.50 1.06 1.04 15.06 11.59 11.59 W4 9.51% 0.06 210 2.90 19. 18 Grassed waterway 1,363 1.50 1.84 12.37 31.54 18.74 18.74 W8a 20.00% 0. 13 289 3.00 20.64 Grassed waterway 83 1.60 1.90 0. 73 21.37 12.07 12.07 W8 20.000% 0. 13 247 8.70 13.43 Grassed Waterway 529 2.98 2.59 3.40 16.83 14.31 14.31 WS 14.35% 0. 10 300 5.10 18.35 Grassed waterway 1,270 1.50 1.84 11.52 29.87 18.72 18.72 W6a 10.490% 0.07 296 4.00 20.32 Grassed Waterway 875 1.89 2.06 7.07 27.39 16.51 16.51 W6b 20.00% 0.13 179 7.80 11.85 Grassed waterway 766 1,60 1.90 6.73 18.58 15.25 15.25 W6 20.00% 0.13 215 4.20 15.93 Grassed Waterway 671 1.16 1.61 6.93 22.86 14.92 14.92 W10 20.00% 0.13 300 2.00 24.04 Grassed waterway 1,587 1.30 1.71 15.47 39.50 20.48 20.48 W11 12.10% 0,08 227 2.00 22.10 Grassed Waterway 0 0.00 0.00 0.00 22.10 11.26 11.26 W12 19.44% 0.13 300 4.60 18.33 Grassed Waterway 1,280 1.50 1.84 11.61 29.94 18.78 18.78 W13 10.35% 0.07 291 8.60 15.67 Grassed Waterway 1,540 3.10 2.64 9.72 25.39 20.17 20.17 W14 9.22% 0.06 300 6.70 17.43 Grassed waterway 3,673 1.67 1.94 31.55 48.98 32.07 32.07 W15 2.000% 0.00 294 6.50 18.36 Grassed Waterway 1,176 5.30 3.45 5.68 24.04 18.17 18.17 W16 20.00% 0.13 137 8.00 10.28 Grassed Waterway 218 2.20 2.22 1.63 11.91 11.97 11.91 S1 20.00% 0.13 279 2.80 20.74 Grassed Waterway 1,981 1.70 1.96 16.88 37.62 22.56 22.56 S2 20.00% 0.13 196 4.60 14.76 Grassed Waterway 1,161 2.10 2.17 8.90 23.66 17.54 17.54 S3 20.000% 0.13 300 3.70 19.62 Grassed Waterway 480 3.90 2.96 2.70 22.32 14.33 14.33 S4 20.00% 0.13 269 3.70 18.58 Grassed Waterway 2,121 1.60 1.90 18.63 37.21 23.28 23.28 S5 20.00% 0.13 255 6.80 14.80 Grassed Waterway 385 4.30 3. 11 2.06 16.86 13.56 13.56 $6 20.00% 0.13 300 6.50 16.29 Grassed Waterway 1,766 2.87 2.54 11.59 27.88 21.48 21.48 S14 20.000% 0.13 246 1.70 22.96 Grassed Waterway 2,027 1.60 1.90 17.81 40.77 22.63 22.63 S15 20.00% 0.13 300 1.70 25.36 Grassed Waterway 1,439 2.90 2.55 9.39 34.75 19.66 19.66 S16 20.000% 0.13 67 3.90 9.11 Grassed Waterway 1,023 1.70 1.96 8.72 17.83 16.06 16.06 S17 20.00% 0.13 300 4.70 18.13 Grassed Waterway 1,594 1.50 1.84 14.46 32.59 20.52 20.52 Sla 20.000% 0.13 300 5.90 16.82 Grassed Waterway 389 1.60 1.90 3.42 20.24 13.83 13.83 58 20.00% 0.13 50 4.40 7.56 Grassed Waterway 395 0.60 1.16 5.67 13.23 12.47 12.47 S9 20.000% 0.13 232 1.90 21.50 Grassed Waterway 651 0.40 0.95 11.44 32.93 14.91 14.91 S10 20.00% 0.13 139 7.90 10.40 Grassed Waterway 1,240 1.90 2.07 10.00 20.39 17.66 17.66 211 20.000% 0.13 217 9.20 12.35 Grassed Waterway 865 3.40 2.77 5.21 17.57 16.01 16.01 S12 20.00% 0.13 300 6.30 16.46 Grassed Waterway 912 2.00 2.12 7. 17 23.62 16.73 16.73 S13 20.000% 0.13 245 55.10 7.27 Grassed Waterway 2,684 1.10 1.57 28.43 35.71 26.27 26.27 S18 20.00% 0.13 272 4.80 17.14 Grassed Waterway 590 3.40 2.77 3.56 20.70 14.79 14.79 S19a 20.000% 0.13 281 3.60 19.16 Grassed Waterway 200 1.90 2.07 1.61 20.77 12.67 12.67 S19 20.00% 0.13 300 6.70 16. 13 Grassed Waterway 3,710 1.40 1.77 34.84 50.97 32.28 32.28 S20 20.000% 0. 13 300 2.30 22.95 Grassed waterway 3,213 1.20 1.64 32.59 55.54 29.52 29.52 S21 20.00% 0. 13 224 6.30 14.22 Grassed Waterway 583 2.10 2.17 4.47 18.69 14.48 14.48 S22 20.00% 0. 13 267 10.10 13.29 Grassed waterway 1,283 3.00 2.60 8.23 21.52 18.61 18.61 S23 20.00% 0.13 128 6.30 10.75 Grassed waterway 1,344 3.40 2.77 8.10 18.85 18.18 18.18 Cl 2.000% 0.00 202 6.20 15.46 Grassed Waterway 128 0.50 1.06 2.01 17.47 11.83 11.83 U2 20.00% 0.13 300 4.80 18.00 Grassed Waterway 87 1.30 1.71 0.85 18.85 12.15 12. 15 Cl 2.00% 0.00 83 4.20 11.27 Grassed Waterway 0 0.00 0.00 0.00 11.27 10.46 10.46 East Area F1 12.100% 0.08 297 5.90 17.69 Grassed Waterway 1,080 2.77 2.50 7.21 24.90 17.65 17.65 F2 12.10% 0.08 377 2.30 27.19 Grassed Waterway 0 0.00 0.00 0.00 27.19 12.09 12.09 E9 20.00% 0.13 225 1.10 25.35 Grassed waterway 0 0.00 0.00 0.00 25.35 11.25 11.25 301 20.00% 0.13 182 3.90 15.02 Grassed waterway 180 0.50 1.06 2.83 17.85 12.01 12.01 EN2 20.00% 0.13 114 5.30 10.74 Grassed Waterway 334 0.90 1.42 3.91 14.65 12.49 12.49 302 20.00% 0.13 36 8.30 5.21 Grassed Waterway 505 2.00 2.12 3.97 9.17 13.01 10.00 EN4 20.00% 0.13 257 3.70 18.16 Grassed Waterway 562 1.45 1.81 5.18 23.34 14.55 14.55 ENS 20.00% 0.13 256 4.70 16.75 Grassed waterway 298 3.70 2.89 1.72 18.47 13.08 13.08 EN6 20.000% 0.13 145 4.80 12.52 Grassed Waterway 1,192 1.71 1.96 10.14 22.65 17.43 17.43 307 20.00% 0.13 300 12.00 13.31 Grassed waterway 760 2.20 2.22 5.69 19.00 15.89 15.89 251 20.00% 0.13 274 9. 10 13.93 Grassed Waterway 1,641 0.40 0.95 28.83 42.76 20.64 20.64 212 20.00% 0.13 300 7.40 15.61 Grassed waterway 400 4.40 3. 15 2.12 17.73 13.89 13.89 ES3 20.00% 0.13 300 1.20 28.45 Grassed Waterway 600 0.40 0.95 10.54 38.99 15.00 15.00 301 2.00% 0.00 242 2.50 22.83 Grassed Waterway 725 0.40 0.95 12.74 35.57 15.37 15.37 21 Channelized Flow Time 2.4.1 Initial o m mew r dverld Tim .4. e Ic = .t, + 1, Equation G-2 Else ehaanehzzed flow firma {trench rime) is ealcvlafed news On the gene h ofco to afihe none velax The initial or overland now lime, 5, may be calculated using Equation 63: elnowoo The c q unelved flow r,, . n. e o 2013)ed by dividing On lwno + ufconvw veld by On veloc:ry. Where: The following equsuoq Equation 64 lOan 2ma), can be used w yowon:vo m flaw outwI y in 0.$951.1 -L' Lri conjuocdon with Table 6-2 form conveyance fagot z - � - ° Equation or o computed drat of coe000wo ioa (minutes) T $I r L` L' = 60X - 60V Equation r,= overland (initial) flow time :minutes) W e e: whoa: r,= channelized flow time (minutes). 4 = overland (initial) now time :moown) Cs = runoff coefficient for 5-year frequency {from Table 6.4) r. = nsononlizednwn yaw (uavet dme, vdvl fn = length of overland flow (ft) L Waterway length (6- 6-= average slope along the overland flow path (ft!R). S, =iwo0 so slope oy ( I':=travel time velocity (flswc) = -4s K=tvg.CS conveyance :aeon(per Table 6-2). 5.5.1.4 Urban Check For developed and urbanizing basins, the maximum time of concentration shall not exceed the time of 2.4.4 Minimum Time of Concentration concentration calculated by the urban check equation as follows: Use a minimum 1, value of 5 minutes for urbanized areas and a minimorm to value of 10 minutos. for °yeas tc = V + 10 Eq. 5.5.1.4 that are not considered urban. Use minimum values- even when calculations result in a lesser time of concentration. Where: L,= Waterway length, ft The minimum time of concentration for urbanizing areas is 5 minutes and the minimum time of concentration for non-urbanizing areas is 10 minutes. P:\_Projects\PL\05 - Design\Drainage\Calculations\Pelican Lakes - Developed Rational Method Calculations.xlsx TERRA FQRMA __ auwnvms Project: Pelican Lake Ranch Filing No. 2 Design Storm : 10-Yr Location: Weld County, CO 1-hr Design Point Rainfall (in): 1.39 Designer: TAJ Date: 10/14/2024 Latest Revision: 1/28/2025 DEVELOPED 10-YEAR PEAK RUNOFF CALCULATIONS OW4 OW4 80.70 0.07 5. 60 78.54 1.17 6.53 OW5 OW5 590.74 0.07 40.96 153.70 0.72 29.51 OW6 OW6 173.92 0.07 12.06 89.88 1.06 12.81 W1 W1 11.26 0.20 2.27 15.75 3.08 7.01 Wla W1a 10.26 0.20 2.07 19.21 2.79 5.78 W1b Wib 8.61 0.20 1.74 18.41 2.85 4.96 W2 W2 32.15 0.12 3.72 22.56 2.56 9.55 W2a W2a 4.40 0.16 0.72 19.08 2.80 2.01 W3 W3 15.56 0.20 3.14 15.77 3.08 9.68 W3a W3a 26.56 0.20 5.36 19.08 2.80 15.02 W3b W3b 0.97 0.20 0.20 11.59 3.54 0.69 W4 W4 46.79 0.13 6.21 18.74 2.83 17.56 W8a W8a 1.11 0.20 0.22 12.07 3.48 0.78 W8 W8 23.25 0.20 4.69 14.31 3.23 15.14 W5 W5 36.46 0.17 6.09 18.72 2.83 17.23 W6a W6a 23.24 0.14 3.25 16.51 3.01 9.81 W6b W6b 6.46 0.20 1.30 15.25 3.13 4.08 W6 W6 9.70 0.20 1.96 14.92 3.16 6.19 W10 W10 18.22 0.20 3.68 20.48 2.70 9.93 Wil Wil 1.44 0.15 0.22 11.26 3.58 0.78 W12 W12 8.06 0.20 1.60 18.78 2.83 4.52 W13 W13 13.69 0.14 1.90 20.17 2.72 5.18 W14 W14 179.18 0.13 23.38 32.07 2.10 49.01 W15 W15 4.66 0.07 0.32 18.17 2.87 0.93 W16 W16 2.35 0.20 0.47 11.91 3.50 1.66 Si Si 27.67 0.20 5.59 22.56 2.56 14.32 S2 52 21.99 0.20 4.44 17.54 2.92 12.98 53 S3 6.31 0.20 1.27 14.33 3.22 4.11 54 S4 21.13 0.20 4.27 23.28 2.52 10.75 S5 55 9.16 0.20 1.85 13.56 3.31 6.11 $6 $6 26.22 0.20 5.29 21.48 2.63 13.94 S14 514 22.83 0.20 4.61 22.63 2.56 11.80 S15 515 23.29 0.20 4.70 19.66 2.76 12.97 S16 S16 2.85 0.20 0.58 16.06 3.05 1.76 S17 S17 29.19 0.20 5.89 20.52 2.70 15.90 Sla 51a 3.70 0.20 0.75 13.83 3.28 2.45 S8 S8 1.93 0.20 0.39 12.47 3.43 1.34 S9 S9 10.40 0.20 2.10 14.91 3.16 6.65 510 510 12.93 0.20 2.61 17.66 2.91 7.61 511 Sll 11.22 0.20 2.27 16.01 3.06 6.93 512 S12 18.24 0.20 3.68 16.73 2.99 11.02 S13 513 72.83 0.20 14.70 26.27 2.36 34.63 S18 518 12.17 0.20 2.46 14.79 3.18 7.80 S19a S19a 2.21 0.20 0.45 12.67 3.41 1.52 519 519 67.45 0.20 13.62 32.28 2.09 28.43 520 520 60.16 0.20 12.15 29.52 2.20 26.74 521 S21 7.12 0.20 1.44 14.48 3.21 4.61 S22 522 17.11 0.20 3.45 18.61 2.84 9.80 523 523 7.02 0.20 1.42 18.18 2.87 4.07 U1 U1 5.44 0.07 0.38 11.83 3.51 1.32 U2 U2 2.75 0.20 0.56 12.15 3.47 1.93 U3 U3 2.59 0.07 0.18 10.46 3.69 0.66 East Area F1 F1 12.34 0.15 1.87 17.65 2.92 5.46 F2 F2 6.86 0.15 1.04 12.09 3.48 3.62 E9 E9 8.26 0.20 1.67 11.25 3.59 5.98 EN1 EN1 3.89 0.20 0.79 12.01 3.49 2.74 EN2 EN2 2.12 0.20 0.43 12.49 3.43 1.47 EN3 EN3 2.21 0.20 0.45 10.00 3.76 1.68 EN4 EN4 10.86 0.20 2.19 14.55 3.20 7.02 ENS ENS 3.83 0.20 0.77 13.08 3.36 2.60 EN6 EN6 12.20 0.20 2.46 17.43 2.93 7.23 EN7 EN7 18.20 0.20 3.67 15.89 3.07 11.28 ES1 ES1 24.86 0.20 5.02 20.64 2.69 13.50 ES2 ES2 8.88 0.20 1.79 13.89 3.27 5.86 ES3 E53 27.58 0.20 5.57 15.00 3.16 17.57 EU1 EU1 14.77 0.07 1.02 15.37 3.12 3.19 P:'Projects\PL\D5 - Design\Drainage\Calculations\Pelican Lakes - Developed Rational Method Calculations.xlsx TERRA FORMA SOLUTIONS Project: Pelican Lake Ranch Filing No. 2 Design Storm : 100-Yr Location: Weld County, CO 1-hr Design Point Rainfall (in): 2.69 Designer: TAJ Date: 10/14/2024 Latest Revision: 1/28/2025 DEVELOPED 100-YEAR PEAK RUNOFF CALCULATIONS OW4 OW4 80. 70 0. 22 17. 52 78. 54 2.26 39.60 OW5 OW5 590.74 0.22 128.27 153.70 1.39 178.84 OW6 OW6 173.92 0.22 37.76 89.88 2.06 77.64 W1 Wl 11.26 0.33 3.71 15.75 5.97 22.16 Wla Wla 10.26 0.33 3.38 19.21 5.40 18.29 W1b W1b 8.61 0.33 2.84 18.41 5.52 15.69 W2 W2 32.15 0.26 8.29 22.56 4.96 41.12 W2a W2a 4.40 0.30 1.31 19.08 5.42 7.11 W3 W3 15.56 0.33 5.13 15.77 5.96 30.61 W3a W3a 26.56 0.33 8.76 19.08 5.42 47.51 W3b W3b 0.97 0.33 0.32 11.59 6.85 2.19 W4 W4 46.79 0.27 12.74 18.74 5.47 69.72 W8a W8a 1.11 0.33 0.37 12.07 6.74 2.47 W8 W8 23.25 0.33 7.67 14.31 6.24 47.88 W5 W5 36.46 0.30 10.98 18.72 5.48 60.13 W6a W6a 23.24 0.28 6.47 16.51 5.83 37.75 W6b W6b 6.46 0.33 2.13 15.25 6.06 12.91 W6 W6 9.70 0.33 3.20 14.92 6.12 19.59 W10 W10 18.22 0.33 6.01 20.48 5 .23 31.41 Wil Wil 1.44 0.29 0.42 11.26 6.94 2.88 W12 W12 8.06 0.33 2.64 18.78 5 .47 14.42 W13 W13 13.69 0.28 3.80 20.17 5 .27 20.02 W14 W14 179 .18 0.27 48.44 32.07 4.06 196.50 W15 W15 4.66 0.22 1.01 18.17 5.56 5.63 W16 W16 2.35 0.33 0.78 11.91 6.77 5.25 Si Si 27.67 0.33 9.13 22.56 4.96 45.29 S2 S2 21.99 0.33 7.25 17.54 5.66 41.06 S3 S3 6.31 0.33 2.08 14.33 6.24 12.98 S4 S4 21.13 0.33 6.97 23.28 4.88 34.00 S5 55 9.16 0.33 3.02 13.56 6.40 19.34 $6 $6 26.22 0.33 8.65 21.48 5.10 44.07 S14 514 22.83 0.33 7.53 22.63 4.95 37.31 S15 S15 23.29 0.33 7.68 19.66 5.34 41.02 S16 516 2.85 0.33 0.94 16.06 5.91 5.56 S17 S17 29.19 0.33 9.63 20.52 5.22 50.27 Sla Sla 3.70 0.33 1.22 13.83 6.34 7.74 S8 58 1.93 0.33 0.64 12.47 6.64 4.23 S9 59 10.40 0.33 3.43 14.91 6.13 21.01 510 510 12.93 0.33 4.27 17.66 5.64 24.06 Sll Sll 11.22 0.33 3.70 16.01 5.92 21.91 512 512 18.24 0.33 6.02 16.73 5.79 34.86 S13 $13 72.83 0.33 24.03 26.27 4.56 109.51 518 518 12.17 0.33 4.01 14.79 6.15 24.68 S19a S19a 2.21 0.33 0.73 12.67 6.59 4.81 S19 S19 67.45 0.33 22.25 32.28 4.04 89.91 520 520 60.16 0.33 19.85 29.52 4.26 84.57 S21 S21 7.12 0.33 2.35 14.48 6.21 14.58 522 522 17.11 0.33 5.64 18.61 5.49 31.00 523 523 7.02 0.33 2.32 18.18 5.56 12.87 U1 U1 5.44 0.22 1.18 11.83 6.79 8.02 U2 U2 2.75 0.33 0.91 12.15 6.72 6.09 U3 U3 2.59 0.22 0.56 10.46 7.15 4.02 East Area F1 F1 12.34 0.29 3.56 17.65 5.64 20.07 F2 F2 6.86 0.29 1.98 12.09 6.73 13.31 E9 E9 8.26 0.33 2.72 11.25 6.94 18.91 EN1 EN1 3.89 0.33 1.28 12.01 6.75 8.66 EN2 EN2 2.12 0.33 0.70 12,49 6.64 4.64 EN3 EN3 2.21 0.33 0.73 10.00 7.28 5.31 EN4 EN4 10.86 0.33 3.58 14.55 6.19 22.19 EN5 EN5 3.83 0.33 1.26 13.08 6.50 8.22 EN6 EN6 12.20 0.33 4.02 17.43 5.68 22.85 EN7 EN7 18.20 0.33 6.00 15.89 5.94 35.67 ES1 Ni 24.86 0.33 8.20 20.64 5.20 42.68 ES2 ES2 8.88 0.33 2.93 13.89 6.33 18.54 E53 E53 27.58 0.33 9.10 15.00 6.11 55.56 EU1 EU1 14.77 0.22 3.21 15.37 6.04 19.36 P:'Projects\PL\D5 - Design\Drainage\Calculations\Pelican Lakes - Developed Rational Method Calculations.xlsx ;:■` TERRA FORMA SOLUTIONS Project: Pelican Lake Ranch Filing No. 2 Design Storm: 10-Yr Location: Weld County, CO 1-hr Design Point Rainfall (in): 1.39 Designer: TAJ Design Storm: 100-Yr Date: 10/14/2024 1-hr Design Point Rainfall (in): 2.69 Latest Revision: 1/28/2025 ROUTING CALCULATIONS r r r . t lr t tr - . OW4 0W4 I N/A I CR 39 OW4 80.70 0.07 0.22 5.60 17.52 78.54 1.17 2.26 6.53 39.60 I 1,533 1.50 1.84 ::;:TToo basin W2 80.70 RATIONAL W2 0W4, W2 N/A Culvert 2 W2 32. 15 0. 12 0.26 3.72 8. 29 22. 56 2.56 4.96 9.55 41.12 92.45 9.32 25.81 1.04 2.02 9.70 52.01 950 3.40 2.77 basin W2a 112.85 RATIONALW2a OW4, W2, W2a ChannelC Pond Wl W2a 4.40 0. 16 030 0.72 1.31 19.08 2.80 5.42 2.01 7. 11 98.18 10.04 27.12 1.00 1.93 10.01 52.37 Pond W1 117.25 RATIONAL n OW5 OW5 N/A CR39 OW5 590.74 0.07 0.22 40.96 128.27 153.70 0.72 1.39 - 572.20 575 2.50 2.37 4.04 To basin Wi 590.74 SWMM Wi OW5, Wi ChanneLA Culvert l WT 11.26 0.20 0.33 2.27 3.71 15.75 3.08 5.97 7.01 22.16 157.74 43.23 131.98 0. 71 1.37 - 286.70 1,030 1.80 2.01 8.53 To basin Wia 602.00 SWMM W1a OW5, W1, Wla Channel B Pond Wi Wla 10.26 0.20 0.33 2.07 3.38 19.21 2.79 5.40 5.78 18.29 166.27 45. 30 135.37 0.68 1.32 - 290.77 To Pond W1 612.26 SWMM W1b Wlb N/A Pond Wi W1b 8.61 0.20 0.33 1. 74 2.84 18.41 2.85 5.52 4.96 15.69 To Pond Wi 8.61 RATIONAL W3 W3 N/A Culvert 3 W3 15.56 0.20 0.33 3.14 5.13 ]12.07 3.08 5.96 9.68 30.61 1,005 0.80 1.34 12.48 To W3a 15.56 RATIONAL W3b W3b N/A Culvert 4 W3b 0.97 0.20 0.33 0.20 0.32 3.54 6.85 0.69 2.19 1,525 130 1.71 14.86 To W3a 0.97 RATIONAL W3a W3, W3a, W3b Channel D Pond Wi W3a 26.56 0.20 0.33 5.36 8.76 2.80 5.42 15.02 47.51 28.25 8.70 14.21 2. 26 4.37 19.65 62.14 To Pond Wi 43.09 RATIONAL W4 W4 N/A Pond Wi W4 46. 79 0.13 0.27 6.21 12.74 2.83 5.47 17. 56 69.72 46.79 RATIONAL W8a W8a N/A Culvert 8 W8a 1. 11 0.20 0.33 0.22 0.37 3.48 6.74 0.78 2.47 670 1.40 1.77 6. 29 To W8 1.11 RATIONAL W8 W8a, W8 N/A Pond W3 W8 23.25 0.20 0.33 4.69 7.67 3.23 6.24 15.14 47.88 18.36 4.92 88.04 2.86 5.53 14.05 44.45 To Pond W3 24.36 RATIONAL W5 W5 N/A Culvert 5 W5 36.46 0.17 0.30 6.09 10.98 18.72 2.83 5.48 17.23 60.13 315 0.50 1.06 4.95 To W6b 36.46 RATIONAL W6a W6a Channel E W6b W6a 23.24 0.14 0.28 3.25 6.47 16,51 3.01 5.83 9.81 37.75 0 0.00 0.00 0.00 To W6b 23.24 RATIONAL W6b W5, W6a, W6b Channel F FES-3 W6b 6.46 0.20 0.33 1.30 2.13 15.25 3.13 6.06 4.08 12.91 23.67 10.65 19.59 2.50 4.83 26.59 94.65 3,000 1.40 2.07 24.15 To W13 66.16 RATIONAL W6 W6 N/A Culvert6 W6 9.70 0.20 0.33 1.96 3.20 14.92 3.16 6.12 6.19 19.59 600 0.50 1.06 9.43 ToW10 9.70 RATIONAL W10 W6, W10 Channel G FES-2 W10 18.22 0.20 0.33 3.68 6.01 20.48 2.70 5.23 9.93 31.41 24.35 5.64 9.21 2.46 4.76 13.86 43.82 1,750 2.70 2.88 10. 14 To W13 37.42 RATIONAL W11 Wll N/A W12 Wil 1.44 0.15 0.29 0.22 0.42 11.26 3.58 6.94 0.78 2.88 295 1.90 2.07 2.38 ToW12 1.44 RATIONAL W12 WI]., W12 N/A STMH-5 W12 8.06 0.20 0.33 1.60 2.64 18.78 2.83 5.47 4.52 14.42 18.78 1.82 3.05 2.83 5.47 5.14 16.69 1,577 2.50 2.77 9.50 To W13 8.06 RATIONAL W13 W5, W6a, W6b, W6, W10, Wil, W12, W13 Channel H Pond 4 W13 13.69 0.14 0.28 1.90 3.80 20.17 2.72 5.27 5.18 20.02 47.82 20.01 35.65 1.63 3.16 32.66 112.63 To Pond 4 117.27 RATIONAL W14 W14 N/A Pond 4 W14 179.18 0. 13 0.27 23.38 48.44 32.07 2.10 4.06 - 119.80 To Pond 4 179.18 SWMM W15 W15 N/A Pond 4 W15 4.66 0.07 0.22 0.32 1.01 18.17 2.87 5.56 0.93 5.63 To Pond 4 4.66 RATIONAL OW6 OW6 N/A CR39 OW6 173.92 0.07 0.22 12.06 37.76 89.88 1.06 2.06 - 192.10 380 3.70 2.89 2.20 To Si 173.92 SWMM Si OW6, Si Channel I Culvert 20 Si 27.67 0.20 0.33 5.59 9.13 22.56 2.56 4.96 14.32 45.29 92.08 17.64 46.89 1.04 2.02 - 101.70 To Pond Si 201.59 SWMM 52 OW6, Si, W16, 52 N/A Pond Si 52 21.99 0.20 0.33 4.44 7.25 17.54 2.92 5.66 12.98 41.06 92.08 22.56 54.92 1.04 2.02 - 107.40 To Pond Si 225.93 SWMM W16 W16 N/A Culvert 11 Wi6 2.35 0.20 0.33 0.47 0.78 11.91 3.50 6.77 1.66 5.25 To Pond Si 235 RATIONAL S3 53 N/A Culvert 28 S3 6.31 0.20 0.33H 2.08 14.33 3.22 6.24 4.11 12.98 320 0.70 1.25 4.25 To55 6.31 RATIONAL 54 54 Channel J Culvert 27 54 21.13 0.20 0.336.97 23.28 2.52 4.88 10.75 34.00 360 1.00 1.50 4.00 To 56 21.13 RATIONAL 55 53, 55 N/A Culvert 29 55 9.16 0.20 0.333.02 13. 56 3.31 6.40 6.11 19.34 18.58 3.12 5.10 2.84 5.50 8.87 28.05 275 1.30 1.71 2.68 To $6 15.47 RATIONAL $6 53, 54, 55, $6 Channel K Pond S2 56 26.22 0.20 0.338,65 21.48 2.63 5.10 13.94 44.07 27.28 12.68 20.72 2.31 4.46 29.23 92.45 To Pond S2 62.82 RATIONAL S14 S14 N/A Culvert 23 514 22.83 0.20 0.337.53 22.63 2.56 4.95 11.80 37.31 To Pond S3 22.83 RATIONAL 515 515 N/A Culvert 39 S15 23.29 0.20 0.337.68 19.66 2.76 5.34 12.97 41.02 580 1.60 1.90 5.09 To S16 23.29 RATIONAL S16 515, 516 N/A Culvert40 S16 2.85 0.20 0.330.94 16.06 3.05 5.91 1.76 5.56 24.76 5.28 8.62 2.44 4.71 12.85 40.65 715 1.10 1.57 7.57 To 517 26.14 RATIONAL S17 515, 516, S17 N/A Culvert 38 S17 29. 19 020 0339.63 20.52 2.70 5.22 15.90 50.27 32.33 11. 17 18. 25 2.09 4.04 23. 30 73.68 To Pond 53 55.33 RATIONAL Sla Sla N/A Culvert 25.1 Sla 3.70 0.20 0.33 0.75 1.22 13.83 3.28 6.34 2.45 7.74 300 1.00 1.50 3.33 To S18 3.70 RATIONAL S8 58 N/A Culvert 29.1 $8 1.93 0.20 0.33 0.39 0.64 12.47 3.43 6.64 1.34 4.23 300 3.10 2.64 1.89 To 59 1.93 RATIONAL 59 S8, 59 N/A Culvert 30 59 10.40 0.20 0.33 2.10 3.43 14.91 3.16 6.13 6.65 21.01 14.91 2.49 4.07 3.16 6.13 7.88 24.91 745 1.10 1.57 7.89 To 510 12.33 RATIONAL Si0 58, 59, 510 Channel Culvert 32 S10 12.93 0.20 0.33 2.61 4.27 17.66 2.91 5.64 7.61 24.06 22.80 5.10 8.33 2.55 4.93 13.00 41.11 2,075 1.50 1.84 18.82 To 513 25.26 RATIONAL 511 511 N/A Culvert 35 Sil 11.22 0.20 0.33 2.27 3.70 16.01 3.06 5.92 6.93 21.91 900 1.80 2.01 7.45 To 512 11.22 RATIONAL 512 511, S12 Channel M Culvert 31 512 18.24 0.20 0.33 3.68 6.02 16.73 2.99 5.79 11.02 34.86 23.46 5.95 9.72 2.51 4.86. 14.92 47.19 2,735 0.90 1.42 32.03 To 513 29.46 RATIONAL S13 58, S9, 510, S11, 512, 513 Channel N Culvert 37 S13 72.83 0.20 0.33 14.70 24.03 26.27 2.36 4.56 34.63 109.51 55.50 25.75 42.08 1.48 2.86 38.11 120.53 To 520 127.55 RATIONAL 518 Sla, 518 N/A Culvert 22 S18 12.17 0.20 0.33 2.46 4.01 14.79 3.18 6.15 7.80 24.68 17.16 3.20 5.24 2.96 5.72 9.47 29.95 3,590 1.40 1.77 33.71 To 519 15.87 RATIONAL 519a 519a N/A Culvert 25 S19a 2.21 0.20 0.33 0.45 0.73 12.67 3.41 6.59 1.52 4.81 3,877 1.40 1.77 36.41 To 519 2.21 RATIONAL 519 Sla, 518, 519a, 519 Channel0 Culvert 24 Si9 67.45 0.20 0.33 13.62 22.25 32.28 2.09 4.04 28.43 89.91 50.87 17.27 28.21 1.57 3.03 27.07 85.61 2,335 1.00 1.50 25.94 To 520 85.53 RATIONAL 520 Sla,S8, 59, 510, 511, 512S13, 518, 519, S19a, 520 Channel P Pond S4 S20 60. 16 0.20 0.33 12.15 19.85 29.52 2.20 4.26 26.74 84.57 76.82 55.16 90.14 1.19 2.30 - 253.00 To Pond S4 273.24 SWMM 521 521 N/A Culvert 34 521 7.12 0.20 0.33 1.44 2.35 14.48 3.21 6.21 4.61 14.58 1,850 2.60 2.42 12.75 To 522 7.12 RATIONAL 522 521, S22 N/A Pond S4 S22 17. 11 0.20 0.33 3.45 5.64 18.61 2.84 5.49 9.80 31.00 27.23 4.89 7.99 2.31 4.47 11.29 35.69 To Pond S4 24.23 RATIONAL 523 523 N/A Pond S4 S23 7.02 0.20 0.33 1.42 2.32 18.18 2.87 5.56 4.07 12.87 To Pond S4 7.02 RATIONAL U1 U1 N/A Off-site UI 5.44 0.07 0.22 0.38 1.18 11.83 3.51 6.79 1.32 8.02 Flows Offsite 5.44 RATIONAL U2 U2 N/A Off-site U2 2.75 0.20 0.33 0.56 0.97 12.15 3.47 6.72 1.93 6.09 Flows Offsite 2.75 RATIONAL U3 U3 N/A Off-site U3 2.59 0.07 0.22 0.18 0.56 10.46 3.69 7.15 0.66 4.02 Flows Offsite 2.59 RATIONAL East Area E9 EN9 N/A Pond 9 E9 8.26 0.20 0.33 1.67 2.72 11.25 3.59 6.94 5.98 18.91 To Pond 9 8.26 RATIONAL [Ni EN1 N/A Culvert El EN1 3.89 0.20 0.33 0.79 1.28 12.01 3.49 6.75 2.74 8.66 1,260 1.50 1.84 11.43 To N6 3.89 RATIONAL EN2 EN2 N/A Culvert E2 EN2 2.12 0.20 0.33 0.43 0.70 12.49 3.43 6.64 1.47 4.64 1,510 1.40 1.77 14.18 To N6 2.12 RATIONAL EN3 EN3 N/A Culvert E4 EN3 2.21 0.20 0.33 0.45 0.73 10.00 3.76 7.28 1.68 5.31 965 1.00 1.50 10.72 To N4 2.21 RATIONAL EN4 EN3, EN4 N/A Culvert E3 EN4 10.86 0.20 0.33 2.19 3.58 14.55 3.20 6.19 7.02 22.19 20.72 2.64 4.31 2.68 5.19 7.08 22.39 275 4.50 3.18 1.44 To N6 13.07 RATIONAL ENS ENS N/A Culvert ES ENS 3.83 0.20 0.33 0.77 1.26 13.08 3.36 6.50 2.60 8.22 1,005 2.50 2.37 7.06 To N6 3.83 RATIONAL EN6 EN1, EN2, EN3, EN4, ENS, EN6 Channel Q EN7 EN6 12.20 0.20 0.33 2.46 4.02 17.43 2.93 5.68 7.23 22.85 26.67 7.09 11. 58 2.34 4. 52 16.55 52.34 510 1.30 1.71 4.97 To N7 35.11 RATIONAL EN7 ENl, EN2, EN3, EN4, ENS, EN6, EN7 N/A Pond E2 EN7 18.20 0.20 0.33 3.67 6.00 15.89 3.07 5.94 11.28 35.67 31.64 10. 76 17.59 2.11 4.09 22.74 71.92 To Pond E2 53.31 RATIONAL Fl Fl N/A ES1 Fl 12.34 0. 15 0.29 1.87 3.56 17.65 2.92 5.64 5.46 20.07 340 1.90 2.07 2.74 To [Si 12.34 RATIONAL F2 F2 N/A E53 F2 6.86 0. 15 0.29 1.04 1.98 12.09 3.48 6.73 3.62 13.31 860 1.00 1.50 9.56 To ES3 6.86 RATIONAL ES1 Fl, ES1 N/A ES3 ES1 24.86 0.20 0.33 5.02 8.20 20.64 2.69 5.20 13.50 42.68 20.64 6.89 11.76 2.69 5.20 18.53 61.20 785 0.30 0.82 15.92 To ES3 37.20 RATIONAL E52 ES2 N/A. Culvert E6 E52 8.88 0.20 0.33 1.79 2.93 13.89 3.27 6.33 5.86 18.54 480 0.30 0.82 9.74 To ES3 8.88 RATIONAL E53 Fl, F2, ES1, E52, E53 Channel R Pond El ES3 27.58 0.20 0.33 5.57 99.10 15.00 3.16 6.11 17.57 55.56 36.56 15.29 25.76 1.94 3.75 29.59 96.50 To Pond El 80.52 RATIONAL Fill I EUl N/A Off-site EUl 14.77 0.07 0.22 1.02 3. 21 15.37 3.12 6.04 3.19 19. 36 I I I I I Flows offsite 14.77 RATIONAL P:\_Projecis\PL\05 - Design\Drainage\Calculations\Pelican Lakes - Developed Rational Method Calculalions.xisx APPENDIXC - HYDRAULIC COMPUTATIONS RETENTION POND CALCULATIONS a. TERRA FORMA ------e v n t I T:v e S------ Project: Pelican Lake Ranch Filing No. 2 Location: Weld County, CO Designer: TAJ Date: 11/6/2024 Latest Revision: 1/2812025 RETENTION POND W1 CALCULATIONS rt 1 ,764,345 ci 0.96 ac-ft • 2,676,518 cf 61 .44 ac-ft IFet11A.ttIa1TW105c1e14D5.tr8WD . . • . . • . Pond Bottom 4884.5 293,654 0.00 295,905 0.5 147,953 3.40 4885 298,156 3.40 302,682 1 .0 302,682 6.95 4886 307,208 10.35 311 ,788 1 .0 311 ,788 7.16 4887 316,367 17.50 320,999 1 .0 320,999 7.37 4888 325,631 24.87 330,314 1 .0 330,314 7.58 4889 334,997 32.45 339,731 1 .0 339,731 7.80 4890 344,464 40.25 349,250 1 .0 349,250 8.02 4891 354,035 48.27 358,873 1 .0 358,873 8.24 4892 363,710 56.51 369,203 1 .0 369,203 8.48 4893 374,696 64.99 381 ,923 1 .0 381 ,923 8.77 Spillway 4894 389,149 73.75 828.00 acres 4.29% 111N1 • 2.16 ac-[t 4884.62 it WQCV = a(0.91i3 - 1.19/2 + 0.78/) Table 5-14 Drain Time Coefficients for WQCV Calculations Where: uraleT7me lets Coefficent, a 12 hours 0.8 WQCV = Water Quality Capture Volume (watershed inches) 24 hours 0.9 a = Coefficient corresponding to WQN drain time (5-) 40hours 1.0 i = Imperviousness (%/100) 11 fl a6.66 ac-ft 4990.09 P rt . • . • - • - s 5.59 ft II • . 67.06 hours • 61.44 ac-ft 4cmvnee, 4692.58 P . . . 1 .42 ft r rs 355.07 365 3.0 387.14 1 .90 TAP: ii Q = CenvrC23t'5 Eq. 5.10.2.3 Where: Q= Discharge, cis 0erm = &oadcrested weir coefficient, dimensionless (ranges from 2.6 to 3.0) IIIII L= Length of weir, ft H= Head above weir vest, ft Trapezoidal with Sloped Sides Total flow over trapezoidal weirs with side slopes is computed using the standard weir equation as shown above, plus two times the Flow given from the following equation. Q = C7ZHz.5 where: Q = discharge over sidrsloped portion of welr, cis ( rod Z = side slope (2 horizontal to t verccat) of the weir crest H = distance between water surface and the crest,ft (m) cm = weir coeffcient. typically 3.367 (1 ,93) TERRA FORMA SOLUTfOws Project: Pelican Lake Ranch Filing No. 2 Location: Weld County, CO Designer: TAJ Date: 11/6/2024 Latest Revision: 1/2812025 RETENTION. POND 4 CALCULATIONS 721 ,848 ci 1 ,082,772 cf . . • . . • . Pond Bottom 4831 13,487 0.00 76,834 0.5 38,417 0.88 4831 .5 140,180 0.88 157,085 0.5 78,542 1 .80 4832 173,989 2.69 180,757 1 .0 180,757 4.15 4833 187,525 6.83 1.94,973 1 .0 194,973 4.48 4834 202,421 11 .31 210,292 1 .0 210,292 4.83 4835 218,163 16.14 225,764 1 .0 225,764 5.18 4836 233,364 21 .32 241 ,370 1 .0 241 ,370 5.54 4837 249,376 26.86 261 ,686 1 .0 261 ,686 6.01 4838 273,996 32.87 294,388 1 .0 294,388 6.76 4839 314,779 39.63 Spillway (4839.08) 341 ,491 1 .0 341 ,491 7.84 4840 368,203 47.47 301.11 acres 11.39Ye • 1.88 ac-it 4831,78 ft WQCV = a(0.91i3 - 1.1912 + 0.781) Table 5-14 Drain Time Coefficients for WQCV calculations Where: DrabhTime Ibis) coefficient, a 12 hours 0.8 WQCV = Water Quality Capture Volume (watershed inches) 24 hours 0.9 a = Coefficient corresponding to WQCV drain time (5-) 40hours 1.0 i = Imperviousness (%/100) fl 16.57 ac-ft 4835.08 ft II . . . . - • - . 4.08 ft 11 • . 49.00 hours 24.66 ac-ft 4836.64 ft. . . 2.44 ft 1 96.52 128 3.0 135.76 1 .90 ` D! ii Q = Cecg,LHt'$ Eq. 5.10.2.3 Where: Q= Discharge, cis Cacw = Broad-crested weir coefficient, dimensionless (ranges from 26th 3.0) IIIII L= Length of weir, ft H= Head above weir crest, ft Trapezoidal with Sloped Sides Total flow over trapezoidal weirs with side slopes is computed using the standard weir equation as shown above, plus two times the flow given from the following equation. Q = SC..2H25 Where: Q = discharge over side-sloped portion of weir, cis (cms) Z = side slope (Z horizontal to 1 vertica() of the weir crest H = distance between water surface and the crest,ft (m) Cw = weir coefficient, typically 3.367 (1 ,83) TERRA FORMA so�.� riar+s Project : Pelican Lake Ranch Filing No . 2 Location : Weld County, CO Designer: TAJ Date: 111612024 Latest Revision: 1 /28/2025 RETENTION POND W3 CALCULATIONS 97 ,595 cf ac -ft • 146 , 393 cf ac -ft • - • • - - . Pond Bottom 4891 25 , 510 0 . 00 27,655 1 . 0 27,655 0 . 63 4892 29 , 800 0 . 63 31 , 997 1 . 0 31 , 997 0.73 4893 34 , 193 1 . 37 36,439 1 . 0 36,439 0 . 84 4894 38 , 685 2 . 21 40,981 1 . 0 40,981 0 . 94 4895 43 , 277 3 . 15 45,624 1 . 0 45,624 1 . 05 4896 47 , 971 4 . 19 45, 500 1 . 0 45, 500 1 .04 4897 43 , 029 5 . 24 • - A 24. 36 acres • A - 20 .00% 0 . 23 ac-ft 4891 . 37 ft WQCV = a (0.91i3 — 1 . 1912 + 0. 78i) Table 5-14 Drain Time Coefficients for WQCV Calculations Where: Drain Time (hrs) Coefficient, a 12 hours 0.8 WQCV = Water Quality Capture Volume (watershed inches) 24 hours 0.9 a = Coefficient corresponding to WQCV drain time (5-) 40 hours 1.0 = Imperviousness (%/100) 2.24 ac-ft 4894.04 ft ii ■ 3 .04 ft 11 - • - 36 .44 hours 3 .36 ac-ft 4895. 20 ft • • . 1 .80 ft TERRA FORMA SOLUTWON5 Project: Pelican Lake Ranch Filing No. 2 Location: Weld County, CO Designer: TAJ Date: 11 /6/2024 Latest Revision: 1 /28/2025 RETENTION POND S1 CALCULATIONS II 542,839 cf 12.46 ac-ft • 814,259 cf 18.69 Pond Bottom 4915 162,881 0.00 167,421 1 .0 167,421 3.84 4916 171 ,960 3.84 176,668 1 .0 176,668 4.06 4917 181 ,375 7.90 186,236 1 .0 186,236 4.28 4918 191 ,097 12. 17 196,069 1 .0 196,069 4.50 4919 201 ,041 16.68 206,216 1 .0 206,216 4.73 4920 211 ,390 21 .41 216,664 1 .0 216,664 4.97 Spillway 4921 221 ,938 26.38 • - 225.93 acres 6.14% • 0.82 ac-ft 4915.21 ft WQCV = a(0.9113 - 1.1912 + 0.78i) Table 5-14 Drain Time Coefficients for WQCV Calculations Where: Drain Time lhrs) Coefticient, a 12 hours 0.8 WQCV = Water Quality Capture Volume (watershed inches) 24 hours OS a = Coefficient corresponding to WQCV drain time (S-) 40 hours 1.0 i Imperviousness (96/100) 12.46 ac-ft 4918.06 ft II . • - I - • 3.06 ft r • a 36.77 hours 18.69 ac-ft 4919.43 ft 1 .57 ft • • • . . • • - 107.38 105 3.0 111 .37 1 .90 Q = CHc•H,LH1-5 Eq. 5.10.2.3 Where: Q Discharge, cfs Cam, = Broad-crested weir coefficient, dimensionless (ranges from 2.6 to 3.0) L= Length of weir, ft H= Head above weir crest, ft Trapezoidal with Sloped Sides Total flow over trapezoidal weirs with side slopes is computed using the standard weir equation as shown above, plus two times the flow given from the following equation. Q = s C.ZHZ.s Where: 0 = discharge over side-sloped portion of weir, cis (ems) Z = side slope (Z horizontal to 1 vertical) of the weir crest H = distance between water surface and the crest, ft (m) Cw = weir coefficient, typically 3.367 (1 .83) TERRA FORMA S--------- Project: Pelican Lake Ranch Filing No. 2 Location: Weld County, CO Designer: TAJ Date: 11/6/2024 Latest Revision: 1/28/2025 RETENTION POND S2 CALCULATIONS II 249,376 cf 5. 72 ac-A • - 374,064 cf 8.59 ac-ft rtDlUipt.tiIDstii.thtthOOfDthO1.1rOfD 111 'fuftl'i . . - ■ - - ' . Pond Bottom 4887 35524 0.00 38,259 1 .0 38,259 0.88 4888 40,993 0.88 43,778 1 .0 43,778 1 .00 4889 46,562 1 .88 49,398 1 .0 49,398 1 . 13 4890 52,233 3.02 55, 118 1 .0 55, 118 1 .27 4891 58,003 4.28 60,939 1 .0 60,939 1 .40 4892 63,874 5.68 66,860 1 .0 66,860 1 .53 4893 69,846 7.22 72,882 1 .0 72,882 1 .67 4894 75,918 8.89 79, 142 1 .0 79, 142 1 .82 Spillway 4895 82,366 10.71 • - 62.82 acres 20.000 • 0.61 ac-ft Navoor.r. 4887.69 It WQCV — a(D.91t3 — 1.1912 + 0.781) Table 5-14 Drain Time Coefficients for WQCV Calculations Where: oreinvlmethrs) Coerclem, a 12 hours 0.8 WQCV = Water Quality Capture Volume (watershed inches) 24 hours 0.5 a = Coefficient corresponding to WQCV drain time (5-) 40 hours 1.0 i = Imperviousness (%/100) II 5.72 :hours thawvor. 4892.03 ft II - ■ - • 5.03 II - ■ . 60.34 8.59 - 4893.91 . 18 • - , • r 89.46 85 3.0 90. 16 1 .90 92. 06 Q = Cgm ++r.5 Eq. 5.10.2.3 Where: Q= Discharge, cis Car,, = Broad-crested weir coefficient, dimensionless (ranges from 2.6 to 3.0) L= Length of weir, H H= Head above weir crest, it Trep000idal with Sloped Sides Total flow over trapezoidal weirs with side slopes is computed using the standard weir equation as shown above, plus two times the flow given from the following equation. Q — sC ZHzs Where: Q = discharge over side-sloped portion of weir, cis (ems) Z = side slope (Z horizontal to 1 vertical) of the weir crest H = distance between water surface and the crest, it (m) Ca = weir coefficient,typically 3.367 (1 :83) TERRA FORMA SOLUTIOti5 Project: Pelican Lake Ranch Filing No. 2 Location: Weld County, CO Designer: TAJ Date: 11/6/2024 Latest Revision: 1/28/2025 RETENTION POND S3 CALCULATIONS II 301 ,716 cf 6.93 ac-ft • - 452574 cf 10.39 ac-ft rtDlNipjf.1fIoetfi.I.adLoo1ffl*o9.1rsn1ffl . . - ■ - - 'lilt Pond Bottom 4889 65,988 0.00 36,391 1 .0 36,391 0.84 4890 72,782 0.84 39,839 1 .0 39,839 0.91 4891 79,678 1 .75 76,366 1 .0 76,366 1 .75 4892 86,744 3.50 90,335 1 .0 90,335 2.07 4893 93,925 5.58 97,574 1 .0 97,574 2.24 4894 101 ,377 7.82 104,928 1 .0 104,928 2.41 4895 108,634 10.23 115,835 1 .3 144,793 3.32 Spillway 4896.25 123,035 13.55 • - 78. 16 acres 26.00% • 0.75 ac-ft - 4689.90 it WQOO = Q(8.pTtn — 1.LN12 + 8.78t) ' Table 5-14 Drain Time coefficients forwQCV calculatlans Where: Drain Time (Ias) coeKcient, a 12 hours 0.e WQCV - Water Quality Capture Volume (watetshed Inches) 24 hours 0.9 a = Coefficient corresponding to WQCV drain time (5-) 40 hours 1.0 i = Imperviousness (%/100) I , 6.93 :hours - 4693.60 ft II - . • - • - . 4.60 it - • . 55.23 10.39 - 4695.01 .19 • t 87.21 55 3.0 86.47 3.67 Q = CLfl1•s BCHr Eq. 5.10.2.3 Where: Q= Discharge, W Cam = Broad-crested weir coefficient, dimensionless (ranges from 2.6 to 3.0) L= Length of weir, ft H= Head above weir crest, ft Trapezoidal with Sloped Sides Total flow over trapezoidal weirs with side slopes is computed using the standard weir equation as shown above. plus two times the flow given from the following equation. QjCaZHzs Where: D = discharge over side-sloped portion of weir, cis faros) Z = side scope (Z horizontal to 1 vertical) of the weir crest H = distance between water surface and the.crest, It (m) Cw = weir coefficient, Typically 3.367 (1-33) TERRA FORMA c In L V T l o to c—^•^^^^^^ Project: Pelican Lake Ranch Filing No. 2 Location: Weld County, CO Designer: TAJ Date: 11/6/2024 Latest Revision: 1/28/2025 RETENTION POND S4 CALCULATIONS rr 1 , 175,830 cf 26.99 ac-ft • - 1 ,763,745 cf 40.49 se-ft rtDl4ipItetiIEetii.Jn1LO6cfA*O6etrfnfA . . - ■ - - e . Pond Bottom 4854 280,687 0.00 286,048 1 .0 286,048 6.57 4855 291 ,408 6.57 296,821 1 .0 296,821 6.81 4856 302,233 13.38 307,698 1 .0 307,698 7.06 4857 313, 163 20.44 319,059 1 .0 319,059 7.32 4858 324,954 27.77 331 ,653 1 .0 331 ,653 7.61 4859 338,352 35.38 345,764 1 .0 345,764 7.94 4860 353, 176 43.32 362,266 1 .0 362,266 8.32 Spillway 4861 371 ,355 51 .64 • - 304.49 acres 20.00% • 294 ac-ft - 4854.45 ft WQCV = Q(8.BLtn — 1.T912 + 8.781) I Table 5-14 Drain Time Coefficients for WQCV Calculations Where: Drain Time (ms) nnaaiOent, a 12 hours 0.e WQCV - Water Quality Capture Volume (watershed Inches) 24 hours we a = Coefficient corresponding to WQCV drain time (5-) 40 hours 1.0 i = Imperviousness (%/100) I , 26.99 :hours Ermoar.o 4857.89 ft II - . • - • - • 3.69 11 - • . 46.73 40.49 - - 4859.61 .36 • I • - • - • • - 286.88 275 8.0 291 .68 1 .90 Q = BCHt CLflI•s Eq. 5.10.2.3 Where: Q= Discharge, cis d4, . = Broad-crested weir coefficient, dimensionless (ranges from 2.6 to 3.0) L= Length of weir, ft H= Head above weir crest, ft Trapezoidal with Sloped Sides Total flow over trapezoidal weirs with side slopes is computed using the standard weir equation as shown above. plus two times the flow given from the following equation. Q = !C,,.ZHzs Where: D = discharge over side-sloped portion of weir, cis (cros) Z = side scope (Z horizontal to 1 vertical) of the weir crest H = distance between water surface and the.crest. It (m) Cw = weir coefficient, Typically 3.367 (1-33) .w� TERRA FORMA cvLUrnee Project: Pelican Lake Ranch Filing No. 2 Location: Weld County, CO Designer: TAJ Date: 11/6/2024 Latest Revision: 1/2812025 RETENTION. POND 9 CALCULATIONS II rt0ORt1 ,232,065 ci 1 ,848,098 cf • - • a • - . . • . . a . Pond Bottom 4829 181 ,302 0.00 186,531 1 .0 186531 4.28 4830 191 ,759 4.28 1.97,053 1 .0 197,053 4.52 4831 202,347 8.81 209,007 1 .0 209,007 4.80 4832 215,667 13.60 222,607 1 .0 222,607 5.11 4833 229,547 18.71 235,703 1 .0 235,703 5.41 4834 241 ,859 24.13 248,027 1 .0 248,027 5.69 4835 254,194 29.82 260,492 1 .0 260,492 5.98 4836 266,790 35.80 273,186 1 .0 273,186 6.27 4837 279,582 42.07 286,160 1 .0 286,160 6.57 4838 292,738 48.64 Spillway (4838.86) 299,069 1 .0 299,069 6.87 4839 305,399 55.51 366.60 acres 2,00% IIlNI • 0.46 ac-it Wnmeen 4029.11 ft WQCV = Q(0.911° - 1.191° t U.781) Table s-14 Drain Time Coefficients for WQCV Calculations Where: unleclme lhrsl Coefficent, a 12 hours 0.8 WQCV = Water Quality capture Volume (watershed inches) 24 hours 0.9 a = Coefficient corresponding to WQN drain rime / 7 40hours 1.0 i = Imperviousness (%/100) 11 fl 28,28 ac-ft 48W..73 P rI . . . . - a - . 5.73 ft II • a . 68.77 hours 42.43 ac-ft Wmneie. 4837,05 ft . . . 1 .95 ft I • i: ? i1 I a . :?1O52 194.4 3.0 237.88 2.42 Q = Csc cL s '5 Eq. 5.10.2.3 Where: Q= Discharge, Vs Vertu = emadcrested weir coefficient, dimensionless (ranges from 2.6 to 3.0) L= Length of weir, ft H= Head above weir vest, ft Trapezoldal with Sloped Sides Total flow over trapezoidal weirs with side slopes is computed using the standard weir equation as shown above, plus two times the mm given from the following equation. P7 = I CaZHa.5 where: Q = discharge over sidrsloped portion of welr, cis ( rod Z = side slope (2 horizontal to t vertical) of the weir crest H = distance between water surface and the crest,ft (m) cm = weir coeffcient. typically 3.367 (1 ,93) TERRA FORMA SOLUTIONS Project: Pelican Lake Ranch Filing No. 2 Location: Weld County, CO Designer: TAJ Date: 11 /6/2024 Latest Revision: 1 /28/2025 TEMPORARY RETENTION POND El CALCULATIONS rr 306,896 cf 7.05 ac-ft • 460,344 cf 10.57 . . - • - ■ - . Pond Bottom 4815 52,911 0.00 54,901 1 .0 54,901 1 .26 4816 56,890 1 .26 58,933 1 .0 58,933 1 .35 4817 60,976 2.61 63,069 1 .0 63,069 1 .45 4818 65, 162 4.06 67,312 1 .0 67,312 1 .55 4819 69,462 5.61 72, 180 1 .0 72, 180 1 .66 4820 74,897 7.26 81 ,393 1 .0 81 ,393 1 .87 4821 87,889 9. 13 96,613 1 .0 96,613 2.22 4822 105,336 11 .35 115,333 1 .0 115,333 2.65 4823 125329 14.00 13.5591 1 .0 135591 3. 11 4824 145,853 17.11 • - 80.52 acres 18.12% • 0.72 ac-ft 4815.57 ft WQCV = a(0.91i1 - 1.1912 + 0.781) Table 5-14 Drain Time Coefficients for WQCV Calculations Where: Drain Time (hrs) Coefficient a 12 hours 0.8 WQCV = Water Quality Capture Volume (watershed inches) 24 hours 09 a = Coefficient corresponding to WQCV drain time (5-) 40 hours LO i = Imperviousness (%/100) t 1 7.05 ac-ft 4819.87 ft II a - • 4.87 ft II a 58.42 hours 10.57 ac-ft 4821 .65 ft 2.35 ft TERRA FORMA SOLUTIONS Project: Pelican Lake Ranch Filing No. 2 Location: Weld County, CO Designer: TAJ Date: 11 /6/2024 Latest Revision: 1 /28/2025 TEMPORARY RETENTION POND E2 CALCULATIONS rt 220,537 cf 5.06 ac-ft • 330,806 cf 7.59 1(1 • - ■ - . Pond Bottom 4803.5 46,095 0.00 47,042 0.5 23,521 0.54 4804 47,989 0.54 48,984 1 .5 73,475 1 .69 4805 51 ,872 2.23 53,879 1 .0 53,879 1 .24 4806 55,886 3.46 57,957 1 .0 57,957 1 .33 4807 60,028 4.79 62, 164 1 .0 62, 164 1 .43 4808 64,300 6.22 66,501 1 .0 66,501 1 .53 4809 68,702 7.75 70,967 1 .0 70,967 1 .63 4810 73,232 9.38 75,562 1 .0 75,562 1 .73 4811 77,892 11 .11 • 53.31 acres 20.00% • 0.51 ac-ft 4803.98 ft WQCV = U(0.9 1i3 1.1912 + 0.78i) Table 5-14 Drain Time Coefficients for WQCV Calculations Where'. OrainTimelhrs) Coefflcient, a 12 hours 0.8 WQCV = Water Quality Capture Volume (watershed inches) 24 hours 09 a = Coefficient corresponding to WQCV drain time (5-) 40 hours 1.0 i = Imperviousness (%/100) t t 5.06 ac-ft 4807.19 ft II . . . - I - . 3.69 ft I . • 44.26 hours 7.59 ac-ft 4808.90 ft • • 2.10 ft CHANNEL /SWALE CALCULATIONS Channel Report Project filename : Pelican Lakes - Channel Calculations (Roadside Ditch and A through G).stx Studio Express by Hydrology Studio v 1 .0.0. 16 11 - 19-2024 Road Side Ditch Max Capacity Channel 1 TRIANGULAR DISCHARGE Bottom Width = 0 . 00 ft Method = Known Depth Side Slope Left , z : 1 = 4 . 00 known Depth = 2 . 25 ft Side Slope Right , z : 1 = 4 . 00 Total Depth = 2 . 25 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 500 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( Ib/sgft) ( ft) 50 . 12 2 . 25 20 . 25 2 . 48 18 . 55 0 . 045 1 . 58 102. 25 102 . 35 0 . 70 18 . 00 E]ev(a) Road Side Ditch Max Capacity - Section (W 10256 250 l m zoo misn 10100 00 10050 0u 4 6 a 1u is i4 16 to 20 xM Channel Report Project filename : Pelican Lakes - Channel Calculations (Roadside Ditch and A through G).stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 -28-2025 Channel A Channel 2 TRAPEZOIDAL DISCHARGE Bottom Width = 8 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 286 . 70 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 4 . 50 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 600 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( Ib/sgft) ( ft) 286 . 70 3 . 33 71 . 00 4 . 04 35 . 46 0 . 045 2 . 36 103. 33 103 . 58 1 . 25 34 . 64 Ele+itn) Channel A - Section D pincn: 105.00 5-00 104.00 4.00 103D0 3.00 10200 too 101.00 1 .00 100.00 0.00 as.00 -1.00 -5 0 5 10 15 20 25 30 35 40 45 xW Channel Report Project filename : Pelican Lakes - Channel Calculations (Roadside Ditch and A through G).stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 -28-2025 Channel B Channel 3 TRAPEZOIDAL DISCHARGE Bottom Width = 8 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 288 . 70 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 5 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 1 . 700 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( Ib/sgft) ( ft) 288 . 70 2 . 62 48 . 42 5 . 96 29 . 61 0 . 045 2 . 36 102. 62 103 . 17 2 . 78 28 . 96 Em {It) Channel B - Section WPM (n) 105.00 6.00 195.00 5 G0 104.00 4.0U 103.00 300 102.00 2 0D 101 00 1 00 100.00 - 000 99.00 -1 01) -5 0 5 10 15 20 25 30 35 40 45 50 X 0F) Channel Report Project filename : Pelican Lakes - Channel Calculations (Roadside Ditch and A through G).stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel C Channel 5 TRAPEZOIDAL DISCHARGE Bottom Width = 8 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 52 . 37 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 2 . 50 ft Invert Elevation = 100 . 00 ft Channel Slope = 1 . 200 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( Ib/sgft) ( ft) 52 . 37 1 . 23 15 . 89 3 . 30 18 . 14 0 . 045 0 . 94 101 . 23 101 . 40 0 . 92 17 . 84 eev I ) Channel C - Section oeplti ^ , 103.00 3 0J 102.56 250 102.00 2.00 101.50 1.50 101.00 1.00 100.56 0.50 100.00 fl 00 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 x {81 Channel Report Project filename : Pelican Lakes - Channel Calculations (Roadside Ditch and A through G).stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel D Channel 7 TRAPEZOIDAL DISCHARGE Bottom Width = 8 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 62 . 14 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 3 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 500 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( Ib/sgft) ( ft) 62 . 14 1 . 68 24 . 73 2 . 51 21 . 85 0 . 045 1 . 04 101 . 68 101 . 78 0 . 52 21 . 44 Elev cre7 Channel D - Section oepIt ra) 103.50 — 3.50 103.00 3:00 102.50 2 .50 102.00 2.00 101.50 1.50 101.00 1_G0 100.50 0.50 100.00 0.00 -5 0 5 10 15 -n 25 30 35 x (n: Channel Report Project filename : Pelican Lakes - Channel Calculations (Roadside Ditch and A through G).stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel E Channel 8 TRAPEZOIDAL DISCHARGE Bottom Width = 8 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 37 . 75 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 3 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 500 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( Ib/sgft) ( ft) 37 . 75 1 . 30 17 . 16 2 . 20 18 . 72 0 . 045 0 . 78 101 . 30 101 . 38 0 . 41 18 . 40 Eev (R) Channel E - Section Oeplh (ft) 103.50 — 3.50 103.00 300 102.50 2.50 102.00 2.00 101.5D 1.50 101.00 1 00 100.50 050 100.00 0.00 -5 0 5 10 15 ^0 25 30 35 Xffil Channel Report Project filename : Pelican Lakes - Channel Calculations (Roadside Ditch and A through G).stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel F Channel 9 TRAPEZOIDAL DISCHARGE Bottom Width = 6 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 94 . 65 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 5 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 500 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( Ib/sgft) ( ft) 94 . 65 2 . 23 33 . 27 2 . 84 24 . 39 0 . 045 1 . 45 102. 23 102 . 36 0 . 70 23 . 84 Ekv (R) Channel F - Section DOOM MI 106.80 - - 8.00 105.80 5.00 104 00 4.00 103.00 3.00 102.00 2.00 101.00 1 00 100.00 0.00 99.00 -1.00 -5 0 5 10 15 20 25 30 35 40 45 50 Channel Report Project filename : Pelican Lakes - Channel Calculations (Roadside Ditch and A through G).stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 -07-2025 Channel G Channel 10 TRAPEZOIDAL DISCHARGE Bottom Width = 6 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 43 . 82 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 3 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 400 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( Ib/sgft) ( ft) 43 . 82 1 . 63 20 . 41 2 . 15 19 . 44 0 . 045 0 . 96 101 . 63 101 . 70 0 . 41 19 . 04 EW (1t7 Channel G - Section o�,a1 (ftr 103.50 3.50 103.00 3.00 102.50 2 .50 102.00 2.00 101.50 1 .5J 101.00 1 00 100.50 050 100.00 0.00 -2 0 2 4 6 8 10 12 14 18 18 20 22 24 28 28 30 32. X1J Channel Report Project filename: Pelican Lakes - Channel Calculations (H through P) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel H Channel 1 TRAPEZOIDAL DISCHARGE Bottom Width = 12 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 112 . 63 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 4 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 500 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( Ib/sgft) ( ft) 112 . 63 1 . 97 39 . 16 2 . 88 28 . 25 0 . 045 1 . 22 101 . 97 102 . 10 0 . 61 27 . 76 e1V tm Channel H - Section Depth rft:: 105.00 5.00 104.00 4.00 103.00 3.00 102.00 2.00 101.00 too 100.00 0.00 §9.00 -t ao -5 0 5 10 15 20 25 30 35 40 45 X011 Channel Report Project filename: Pelican Lakes - Channel Calculations (H through P) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 11 - 19-2024 Channel I Channel 3 TRAPEZOIDAL DISCHARGE Bottom Width = 10 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 101 . 60 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 3 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 1 . 000 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( Ib/sgft) ( ft) 101 . 70 1 . 67 27 . 86 3 . 65 23 . 77 0 . 045 1 . 25 101 . 67 101 . 88 1 . 04 23 . 36 d�'M7 Channel I • Section �(W -03 U 350 1-0300 300 10L50 250 102.00 200 7 10150 150 10100 100 (0030 050 100.00 0.00 -S 8 5 10 is 20 u 30 35 SW_ Channel Report Project filename: Pelican Lakes - Channel Calculations (H through P) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel J Channel 4 TRAPEZOIDAL DISCHARGE Bottom Width = 10 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 34 . 00 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 3 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 3 . 400 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( Ib/sgft) ( ft) 34 . 00 0 . 67 8 . 50 4 . 00 15 . 52 0 . 045 0 . 65 100. 67 100 . 92 1 . 42 15 . 36 Elev Q Channel J - Section (n1 103.50 3.50 103.00 3.00 102.50 250 102.00 2.00 101.50 1.50 10100 100 100.50 0 50 100.00 0.00 -5 0 5 10 15 20 Z5 30 35 X (ft) Channel Report Project filename: Pelican Lakes - Channel Calculations (H through P) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel K Channel 5 TRAPEZOIDAL DISCHARGE Bottom Width = 10 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 92 . 45 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 3 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 600 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( Ib/sgft) ( ft) 92 . 45 1 . 81 31 . 20 2 . 96 24 . 93 0 . 045 1 . 18 101 . 81 101 . 95 0 . 68 24 . 48 ElevQ Channel K - Section Depth rn; 103.50 3.50 103.00 3.00 102.50 2 .50 102.00 2.00 101.50 1.50 101 00 1 00 100.50 0 50 1@0:00 0.00 -5 0 5 10 15 20 25 30 35 X CO) Channel Report Project filename: Pelican Lakes - Channel Calculations (H through P) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel L Channel 6 TRAPEZOIDAL DISCHARGE Bottom Width = 8 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 41 . 11 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 3 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 1 . 200 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( Ib/sgft) ( ft) 41 . 11 1 . 09 13 . 47 3 . 05 16 . 99 0 . 045 0 . 82 101 . 09 101 . 23 0 . 82 16 . 72 Eer QO Channel L - Section Depth lOi 103.50 3.50 103.00 3:00 102.50 2.50 102.00 2.00 1@1.50 1.50 10100 100 100.50 0.50 100.00 000 -5 0 5 10 1 ; 20 25 30 35 x i T. Channel Report Project filename: Pelican Lakes - Channel Calculations (H through P) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel M Channel 7 TRAPEZOIDAL DISCHARGE Bottom Width = 16 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 47 . 19 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 3 . 50 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 500 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( Ib/sgft) ( ft) 47 . 19 1 . 09 22 . 19 2 . 13 24 . 99 0 . 045 0 . 62 101 . 09 101 . 16 0 . 34 24 . 72 Elev (6) Channel M - Section 6epdh iii 104.00 4.UQ 103.00 300 102.00 2.00 101.00 1.00 100.00 000 66.00 -1.60 -5 0 5 10 15 20 25 30 35 40 45 X (R) Channel Report Project filename: Pelican Lakes - Channel Calculations (H through P) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel N Channel 8 TRAPEZOIDAL DISCHARGE Bottom Width = 16 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 120 . 53 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 4 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 500 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( Ib/sgft) ( ft) 120 . 53 1 . 81 42 . 06 2 . 87 30 . 93 0 . 045 1 . 10 101 . 81 101 . 94 0 . 56 30 . 48 EIe ca) Channel N - Section vein (01 1705.00 5.00 10400 4.00 103.00 3.00 10200 2 00 101.00 100 100.40 0 00 48.00 -100 -5 0 5 10 15 20 25 30 35 40 45 50 Channel Report Project filename: Pelican Lakes - Channel Calculations (H through P) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel O Channel 9 TRAPEZOIDAL DISCHARGE Bottom Width = 8 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 85 . 61 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 3 . 50 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 500 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( Ib/sgft) ( ft) 85 . 61 1 . 96 31 . 05 2 . 76 24 . 16 0 . 045 1 . 24 101 . 96 102 . 08 0 . 61 23 . 68 Elev (R) Channel O - Section Deplh It 104.00 - 40Q 10100 - 300 102.00 200 101.00 1 00 100-00 0-00 4000 -1-00 -5 0 5 10 15 20 25 30 35 40 X (I ) Channel Report Project filename: Pelican Lakes - Channel Calculations (H through P) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 -28-2025 Channel P Channel 10 TRAPEZOIDAL DISCHARGE Bottom Width = 16 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 253 . 00 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 4 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 500 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( Ib/sgft) ( ft) 253 . 00 2 . 68 71 . 61 3 . 53 38 . 10 0 . 045 1 . 71 102. 68 102 . 87 0 . 84 37 . 44 E {fl) Channel P - Section r1apm {n 105.00 - 5.00 101.00 4D0 103.00 3.00 10200 200 101.00 1 .00 100.00 0.00 99.00 -1.00 -5 0 5 10 15 20 25 30 35 90 45 50 xtl Channel Report Project filename: Pelican Lakes - Channel Calculations (Q through S) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel Q Channel 1 TRAPEZOIDAL DISCHARGE Bottom Width = 8 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 52 . 34 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 4 . 00 ft Invert Elevation = 100 . 00 ft Channel Slope = 2 . 100 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( Ib/sgft) ( ft) 52 . 34 1 . 06 12 . 97 4 . 03 16 . 74 0 . 045 0 . 94 101 . 06 101 . 31 1 . 39 16 . 48 Elevgfl Channel Q - Section ❑eplh ini 105.00 5.00 103.00 4.00 103.00 3.00 102.00 2.00 101.00 1-00 100.00 000 40.00 -1.00 -5 0 5 10 15 20 25 30 35 40 45 X011 Channel Report Project filename: Pelican Lakes - Channel Calculations (Q through S) .stx Studio Express by Hydrology Studio v 1 .0.0. 16 01 - 13-2025 Channel R Channel 2 TRAPEZOIDAL DISCHARGE Bottom Width = 12 . 00 ft Method = Known Q Side Slope Left , z : 1 = 4 . 00 Known Q = 96 . 50 cfs Side Slope Right , z : 1 = 4 . 00 Total Depth = 3 . 50 ft Invert Elevation = 100 . 00 ft Channel Slope = 0 . 300 % Manning 's n = 0 . 045 CALCULATION SAMPLE Flow Depth Area Velocity WP n -value Crit Depth HGL EGL Max Shear Top Width ( cfs ) ( ft) ( sqft) (ft/s ) (ft) (ft) ( ft) (ft) ( Ib/sgft) ( ft) 96 . 50 2 . 07 41 . 98 2 . 30 29 . 07 0 . 045 1 . 11 102. 07 102 . 15 0 . 39 28 . 56 elev (g) Channel R - Section 6eplh if i 104.00 4.05 10106 300 102.00 2.00 101.00 1.00 100.00 000 9g.66 -1.00 -5 0 5 10 1s 20 25 30 35 40 45 X(It) CULVERT CALCULATIONS • • n • " • • MHFD-Culvert, Version 4.00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 1 4 ec;, _IRgLE H `I I � L Lp H+. _ --- _ Soil Type: _ - - Choose One: - --- - --.--_ ® Sandy Q Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 286.70 cfs Circular Culvert: Barrel Diameter in Inches D = 48 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge ( 1. 5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 2 Inlet Elevation Elev IN = 4915.00 ft Outlet Elevation OR Slope Elev OUT = 4914.00 ft Culvert Length L = 85.47 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 12.57 ft2 Culvert Normal Depth Yn = 3.02 ft Culvert Critical Depth Y4 = 3 . 54 ft Froude Number Fr = 1.44 Supercritical! Entrance Loss Coefficient ke = 0. 20 Friction Loss Coefficient kF = 0.42 Sum of All Loss Coefficients ks = 1.62 ft Headwater: Inlet Control Headwater HW, = 6. 53 ft Outlet Control Headwater HWo = 6.04 ft Design Headwater Elevation HW = 4921.53 ft Headwater/Diameter OR Headwater/Rise Ratio HW/D = 1.63 HW/D > 1.5! Outlet Protection : Flow/(Diameter^2. 5) Q/D^2.5 = 4.48 ft°'5/s Tailwater Surface Height Yt = 1.60 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(O)) = 2.98 Flow Area at Max Channel Velocity At = 57.34 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = 8.00 ft Length of Riprap Protection LP = 40 ft Width of Riprap Protection at Downstream End T = 22 ft Adjusted Diameter for Supercritical Flow Da = 3 . 51 ft Minimum Theoretical Riprap Size ds° min = 15 in Nominal Riprap Size ds° nominal= 18 in MHFD Riprap Type Type = H ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 2 I _ Li. Soil Type: I _ -i�r�— Choose One: ------ �— -:� . I �- ® Sandy O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 52.01 cfs Circular Culvert: Barrel Diameter in Inches D = 36 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4914.00 ft Outlet Elevation OR Slope Elev OUT = 4913.50 ft Culvert Length L = 62.01 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 7.07 ftz Culvert Normal Depth Y„ = 2. 16 ft Culvert Critical Depth Ye = 2.34 ft Froude Number Fr = 1 . 19 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.45 Sum of All Loss Coefficients ks = 1.65 ft Headwater: Inlet Control Headwater HW, = 3 .72 ft Outlet Control Headwater HWo = 3 .56 ft Design Headwater Elevation HW = 4917.72 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1.24 Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 3 .34 ftQ5/s Tailwater Surface Height Yt = 1.20 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 4.09 Flow Area at Max Channel Velocity At = 10.40 ftz Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 24 ft Width of Riprap Protection at Downstream End T = 9 ft Adjusted Diameter for Supercritical Flow Da = 2.58 ft Minimum Theoretical Riprap Size d5o min= 9 in Nominal Riprap Size d5o nominal= 9 in MHFD Riprap Type Type = L ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 3 I _ Li. Soil Type: I _ -i�r�— Choose One: ------ �— -:� . I �- ® Sandy O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 30.61 cfs Circular Culvert: Barrel Diameter in Inches D = 30 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4906.21 ft Outlet Elevation OR Slope Elev OUT = 4905.25 ft Culvert Length L = 83. 17 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 4.91 ft2 Culvert Normal Depth Yo = 1 .53 ft Culvert Critical Depth Ye = 1.89 ft Froude Number Fr = 1 .51 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.76 Sum of All Loss Coefficients ks = 1 .96 ft Headwater: Inlet Control Headwater HW, = 2.92 ft Outlet Control Headwater HWo = 2.42 ft Design Headwater Elevation HW = 4909.13 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1. 17 Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 3 . 10 ftQ5/s Tailwater Surface Height Yt = 1.00 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 4.30 Flow Area at Max Channel Velocity At = 6. 12 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 16 ft Width of Riprap Protection at Downstream End T = 7 ft Adjusted Diameter for Supercritical Flow Da = 2.02 ft Minimum Theoretical Riprap Size d5o min= 7 in Nominal Riprap Size d5o nominal= 9 in MHFD Riprap Type Type = L ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 4 I _ Li. Soil Type: i _ �-i—� — Choose QQ Sandy O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 2. 19 cfs Circular Culvert: Barrel Diameter in Inches D = 15 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4914.54 ft Outlet Elevation OR Slope Elev OUT = 4914. 14 ft Culvert Length L = 51.86 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 1 .23 ft2 Culvert Normal Depth Yo = 0.54 ft Culvert Critical Depth Ye = 0.59 ft Froude Number Fr = 1 .20 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 1.20 Sum of All Loss Coefficients ks = 2.40 ft Headwater: Inlet Control Headwater HW1 = 0.83 ft Outlet Control Headwater HWo = N/A ft Design Headwater Elevation HW = N/A ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = N/A Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 1 .26 ftQ5/s Tailwater Surface Height Yt = 0.50 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 6.46 Flow Area at Max Channel Velocity At = 0.44 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 4 ft Width of Riprap Protection at Downstream End T = 2 ft Adjusted Diameter for Supercritical Flow Da = 0.89 ft Minimum Theoretical Riprap Size d5o min= 1 in Nominal Riprap Size d5o nominal= 6 in MHFD Riprap Type Type = VL MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 5 I _ Li. Soil Type: i Choose One: =4 - Q Sandy ~= wawa O Non-Sandy Design Information : Design Discharge Q = 60. 13 cfs Circular Culvert: Barrel Diameter in Inches D = 36 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4887.47 ft Outlet Elevation OR Slope Elev OUT = 4887.00 ft Culvert Length L = 61.75 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 7.07 ft2 Culvert Normal Depth Y„ = 2.54 ft Culvert Critical Depth Ye = 2.50 ft Froude Number Fr = 0.97 Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.44 Sum of All Loss Coefficients ks = 1.64 ft Headwater: Inlet Control Headwater HW, = 4.22 ft Outlet Control Headwater HWo = 4. 13 ft Design Headwater Elevation HW = 4891.70 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1.41 Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 3 .86 ftQ5/s Tailwater Surface Height Yt = 1.20 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 3.63 Flow Area at Max Channel Velocity At = 12.03 ftz Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 26 ft Width of Riprap Protection at Downstream End T = 11 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d5o min= 10 in Nominal Riprap Size d5e nominal= 12 in MHFD Riprap Type Type = M ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 6 I _ Li. Soil Type: I _ -i�r�— Choose One: ------ �— -:� . I �- ® Sandy O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 19.59 cfs Circular Culvert: Barrel Diameter in Inches D = 24 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4892.25 ft Outlet Elevation OR Slope Elev OUT = 4891 .75 ft Culvert Length L = 54.05 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 3 . 14 ft2 Culvert Normal Depth Y„ = 1 .48 ft Culvert Critical Depth Ye = 1 .59 ft Froude Number Fr = 1 . 16 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.67 Sum of All Loss Coefficients ks = 1 .87 ft Headwater: Inlet Control Headwater HW, = 2.56 ft Outlet Control Headwater HWo = 2.42 ft Design Headwater Elevation HW = 4894.81 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1.28 Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 3 .46 ftQ5/s Tailwater Surface Height Yt = 0.80 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 3.98 Flow Area at Max Channel Velocity At = 3.92 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 12 ft Width of Riprap Protection at Downstream End T = 6 ft Adjusted Diameter for Supercritical Flow Da = 1 .74 ft Minimum Theoretical Riprap Size d5o min= 6 in Nominal Riprap Size d5o nominal= 6 in MHFD Riprap Type Type = VL ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 8 I _ Li. Soil Type: Choose One: QQ Sandy O Non-Sandy Design Information : Design Discharge Q = 2.47 cfs Circular Culvert: Barrel Diameter in Inches D = 15 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4905.66 ft Outlet Elevation OR Slope Elev OUT = 4905.34 ft Culvert Length L = 61.26 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 1 .23 ftz Culvert Normal Depth Yo = 0.65 ft Culvert Critical Depth Ye = 0.63 ft Froude Number Fr = 0.95 Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 1 .42 Sum of All Loss Coefficients ks = 2.62 ft Headwater: Inlet Control Headwater HW1 = 0.89 ft Outlet Control Headwater HWo = N/A ft Design Headwater Elevation HW = N/A ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = N/A Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection : Flow/(DiameterA2.5) QJDA2.5 = 1 .41 ftQ5/s Tailwater Surface Height Yt = 0.50 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 6.31 Flow Area at Max Channel Velocity At = 0.49 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 4 ft Width of Riprap Protection at Downstream End T = 2 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d5o min= 1 in Nominal Riprap Size d5e nominal= 6 in MHFD Riprap Type Type = VL ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 11 I Li. Soil Type: I _ -i�r�— Choose One: ------ �— -:� . I �- ® Sandy O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 5.25 cfs Circular Culvert: Barrel Diameter in Inches D = 15 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4923 .50 ft Outlet Elevation OR Slope Elev OUT = 4922.92 ft Culvert Length L = 51.86 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 1 .23 ftz Culvert Normal Depth Yo = 0.82 ft Culvert Critical Depth Ye = 0.93 ft Froude Number Fr = 1 .28 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 1.20 Sum of All Loss Coefficients ks = 2.40 ft Headwater: Inlet Control Headwater HW, = 1.43 ft Outlet Control Headwater HWo = 1 . 19 ft Design Headwater Elevation HW = 4924.93 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1. 14 Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 3 .01 ftQ5/s Tailwater Surface Height Yt = 0.50 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 4.38 Flow Area at Max Channel Velocity At = 1 .05 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 4 ft Width of Riprap Protection at Downstream End T = 3 ft Adjusted Diameter for Supercritical Flow Da = 1 .04 ft Minimum Theoretical Riprap Size d5o min= 3 in Nominal Riprap Size d5o nominal= 6 in MHFD Riprap Type Type = VL • • n • " • • MHFD-Culvert, Version 4.00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID: Culvert 20 I BOX CWCLE H L LP H+. _ __ Soil Type: * + ,r' 1 Choose One: . ^ - ® Sandy � RiPenr Q Non-Sandy Supercritical Flowl Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 101.70 cfs Circular Culvert: Barrel Diameter in Inches D = 36 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge ( 1. 5: 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 2 Inlet Elevation Elev IN = 4917.00 ft Outlet Elevation OR Slope Elev OUT = 4915.00 ft Culvert Length L = 84.37 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results : Culvert Cross Sectional Area Available A = 7 .07 ft2 Culvert Normal Depth Yn = 1.49 ft Culvert Critical Depth Y4 = 2.32 ft Froude Number Fr = 2.37 Supercritical! Entrance Loss Coefficient ke = 0. 20 Friction Loss Coefficient kF = 0.61 Sum of All Loss Coefficients ks = 1.81 ft Headwater: Inlet Control Headwater HWI = 3 .63 ft Outlet Control Headwater HWo = N/A ft Design Headwater Elevation HW = 4920.63 ft Headwater/Diameter OR Headwater/Rise Ratio HW/D = 1.21 Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection : Flow/(DiameterA2. 5) Q/DA2.5 = 3 . 26 ft°'5/s Tailwater Surface Height Yt = 1. 20 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(0)) = 4. 15 Flow Area at Max Channel Velocity At = 20.34 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = 6.00 ft Length of Riprap Protection LP = 30 ft Width of Riprap Protection at Downstream End T = 14 ft Adjusted Diameter for Supercritical Flow Da = 2. 24 ft Minimum Theoretical Riprap Size ds° min = 9 in Nominal Riprap Size ds° nominal= 9 in MHFD Riprap Type Type = L ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 22 I Li. Soil Type: I _ -i�r�— Choose One: ------ �— -:� . I �- ® Sandy O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 29.95 cfs Circular Culvert: Barrel Diameter in Inches D = 30 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4924.78 ft Outlet Elevation OR Slope Elev OUT = 4924.00 ft Culvert Length L = 63.66 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 4.91 ft2 Culvert Normal Depth Y„ = 1 .48 ft Culvert Critical Depth Ye = 1.87 ft Froude Number Fr = 1 .57 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.58 Sum of All Loss Coefficients ks = 1 .78 ft Headwater: Inlet Control Headwater HW, = 2.87 ft Outlet Control Headwater HWo = 2.44 ft Design Headwater Elevation HW = 4927.65 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1. 15 Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 3 .03 ftQ5/s Tailwater Surface Height Yt = 1.00 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 4.35 Flow Area at Max Channel Velocity At = 5.99 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 16 ft Width of Riprap Protection at Downstream End T = 7 ft Adjusted Diameter for Supercritical Flow Da = 1.99 ft Minimum Theoretical Riprap Size d5o min= 7 in Nominal Riprap Size d5o nominal= 9 in MHFD Riprap Type Type = L ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 23 I Li. Soil Type: i _ �-i—� — Choose QQ Sandy O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 37.31 cfs Circular Culvert: Barrel Diameter in Inches D = 30 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4897.25 ft Outlet Elevation OR Slope Elev OUT = 4891 .00 ft Culvert Length L = 115.23 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 4.91 ft2 Culvert Normal Depth Yn = 1 .08 ft Culvert Critical Depth Ye = 2.07 ft Froude Number Fr = 3 .55 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 1 .06 Sum of All Loss Coefficients ks = 2.26 ft Headwater: Inlet Control Headwater HW1 = 3 .39 ft Outlet Control Headwater HWo = N/A ft Design Headwater Elevation HW = 4900.64 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1.36 Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 3 .78 ftQ5/s Tailwater Surface Height Yt = 1.00 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 3 .70 Flow Area at Max Channel Velocity At = 7.46 ftz Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 19 ft Width of Riprap Protection at Downstream End T = 8 ft Adjusted Diameter for Supercritical Flow Da = 1 .79 ft Minimum Theoretical Riprap Size d5o min= 9 in Nominal Riprap Size d5o nominal= 9 in MHFD Riprap Type Type = L ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 24 I Li. Soil Type: i Choose One: =4 - Q Sandy ~= wawa O Non-Sandy Design Information : Design Discharge Q = 85.61 cfs Circular Culvert: Barrel Diameter in Inches D = 30 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 2 Inlet Elevation Elev IN = 4875.25 ft Outlet Elevation OR Slope Elev OUT = 4875.01 ft Culvert Length L = 62.77 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 4.91 ft2 Culvert Normal Depth Yn = 2.50 ft Culvert Critical Depth Ye = 2. 19 ft Froude Number Fr = - Pressure flow! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.58 Sum of All Loss Coefficients ks = 1 .78 ft Headwater: Inlet Control Headwater HW, = 3.95 ft Outlet Control Headwater HWo = 4.20 ft Design Headwater Elevation HW = 4879.45 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1.68 HW/ D > 1.5! Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 4.33 ftQ5/s Tailwater Surface Height Yt = 1.00 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 3 . 14 Flow Area at Max Channel Velocity At = 17. 12 ftz Width of Equivalent Conduit for Multiple Barrels Weq = 5.00 ft Length of Riprap Protection LP = 25 ft Width of Riprap Protection at Downstream End T = 13 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d5o min= 9 in Nominal Riprap Size d5e nominal= 9 in MHFD Riprap Type Type = L ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 25 . 1 I Li. Soil Type: I _ -i�r�— Choose One: ® Sandy ~cwaa ro, O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 7.74 cfs Circular Culvert: Barrel Diameter in Inches D = 18 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4928.50 ft Outlet Elevation OR Slope Elev OUT = 4927.93 ft Culvert Length L = 51.86 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 1 .77 ftz Culvert Normal Depth Yo = 0.93 ft Culvert Critical Depth Ye = 1 .08 ft Froude Number Fr = 1.35 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.94 Sum of All Loss Coefficients ks = 2. 14 ft Headwater: Inlet Control Headwater HW, = 1.63 ft Outlet Control Headwater HWo = 1 .36 ft Design Headwater Elevation HW = 4930.13 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1.09 Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 2.81 ftQ5/s Tailwater Surface Height Yt = 0.60 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 4.64 Flow Area at Max Channel Velocity At = 1 .55 ftz Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 6 ft Width of Riprap Protection at Downstream End T = 3 ft Adjusted Diameter for Supercritical Flow Da = 1.21 ft Minimum Theoretical Riprap Size d5o min= 4 in Nominal Riprap Size d5o nominal= 6 in MHFD Riprap Type Type = VL ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 25 f F n C C > t �l l� t Lp Soil Type: i _ ,�-i—�~— Choose QQ Sandy O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 4.81 cfs Circular Culvert: Barrel Diameter in Inches D = 18 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4928.50 ft Outlet Elevation OR Slope Elev OUT = 4927.80 ft Culvert Length L = 57.08 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Eievat;on = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 1 .77 ft2 Culvert Normal Depth Y„ = 0.67 ft Culvert Critical Depth Ye = 0.84 ft Froude Number Fr = 1 .55 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 1 .03 Sum of All Loss Coefficients ks = 2.23 ft Headwater: Inlet Control Headwater HW1 = 1.21 ft Outlet Control Headwater HWo = N/A ft Design Headwater Elevation HW = 4929.71 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 0.81 Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 1 .74 ftQ5/s Tailwater Surface Height Yt = 0.60 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 5.99 Flow Area at Max Channel Velocity At = 0.96 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 5 ft Width of Riprap Protection at Downstream End T = 3 ft Adjusted Diameter for Supercritical Flow Da = 1 .09 ft Minimum Theoretical Riprap Size d5o min= 2 in Nominal Riprap Size d5o nominal= 6 in MHFD Riprap Type Type = VL ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 27 I Li. Soil Type: i Choose One: =4 - Q Sandy ~= wawa O Non-Sandy Design Information : Design Discharge Q = 34.00 cfs Circular Culvert: Barrel Diameter in Inches D = 30 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4897.76 ft Outlet Elevation OR Slope Elev OUT = 4897.51 ft Culvert Length L = 64.50 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 4.91 ftz Culvert Normal Depth Yn = 2.50 ft Culvert Critical Depth Ye = 1 .98 ft Froude Number Fr = - Pressure flow! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.59 Sum of All Loss Coefficients ks = 1 .79 ft Headwater: Inlet Control Headwater HW, = 3 . 18 ft Outlet Control Headwater HWo = 3 .33 ft Design Headwater Elevation HW = 4901.09 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1.33 Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 3 .44 ftQ5/s Tailwater Surface Height Yt = 1.00 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 4.00 Flow Area at Max Channel Velocity At = 6.80 ftz Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 18 ft Width of Riprap Protection at Downstream End T = 8 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d5o min= 7 in Nominal Riprap Size d5e nominal= 9 in MHFD Riprap Type Type = L ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 28 I Li. Soil Type: i Choose One: =4 - Q Sandy ~= wawa O Non-Sandy Design Information : Design Discharge Q = 12.98 cfs Circular Culvert: Barrel Diameter in Inches D = 18 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4901 .64 ft Outlet Elevation OR Slope Elev OUT = 4901 .23 ft Culvert Length L = 51.86 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 1 .77 ftz Culvert Normal Depth Yn = 1 .50 ft Culvert Critical Depth Ye = 1.35 ft Froude Number Fr = - Pressure flow! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.94 Sum of All Loss Coefficients ks = 2. 14 ft Headwater: Inlet Control Headwater HW, = 2.59 ft Outlet Control Headwater HWo = 2.81 ft Design Headwater Elevation HW = 4904.45 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1.87 HW/ D > 1.5! Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 4.71 ftQ5/s Tailwater Surface Height Yt = 0.60 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 2.72 Flow Area at Max Channel Velocity At = 2.60 ftz Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 8 ft Width of Riprap Protection at Downstream End T = 5 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d5o min= 6 in Nominal Riprap Size d5e nominal= 6 in MHFD Riprap Type Type = VL ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 29 . 1 f F n C C > t �l l� t Lp Soil Type: i _ , -i—�~— Choose QQ Sandy O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 4.23 cfs Circular Culvert: Barrel Diameter in Inches D = 18 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4914.00 ft Outlet Elevation OR Slope Elev OUT = 4912.97 ft Culvert Length L = 51.86 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevat;on = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 1 .77 ft2 Culvert Normal Depth Yo = 0.55 ft Culvert Critical Depth Ye = 0.79 ft Froude Number Fr = 2.01 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.94 Sum of All Loss Coefficients ks = 2. 14 ft Headwater: Inlet Control Headwater HW1 = 1 . 12 ft Outlet Control Headwater HWo = N/A ft Design Headwater Elevation HW = N/A ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = N/A Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 1 .53 ftQ5/s Tailwater Surface Height Yt = 0.60 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 6. 19 Flow Area at Max Channel Velocity At = 0.85 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 5 ft Width of Riprap Protection at Downstream End T = 3 ft Adjusted Diameter for Supercritical Flow Da = 1 .02 ft Minimum Theoretical Riprap Size d5o min= 2 in Nominal Riprap Size d5o nominal= 6 in MHFD Riprap Type Type = VL ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 29 I Li. Soil Type: i Choose One: =4 - Q Sandy ~= wawa O Non-Sandy Design Information : Design Discharge Q = 28.05 cfs Circular Culvert: Barrel Diameter in Inches D = 30 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4897.00 ft Outlet Elevation OR Slope Elev OUT = 4896.75 ft Culvert Length L = 69.33 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 4.91 ft2 Culvert Normal Depth Yn = 2.50 ft Culvert Critical Depth Ye = 1.81 ft Froude Number Fr = - Pressure flow! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.64 Sum of All Loss Coefficients ks = 1 .84 ft Headwater: Inlet Control Headwater HW, = 2.75 ft Outlet Control Headwater HWo = 2.83 ft Design Headwater Elevation HW = 4899.83 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1. 13 Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 2.84 ftQ5/s Tailwater Surface Height Yt = 1.00 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 4.60 Flow Area at Max Channel Velocity At = 5.61 ftz Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 15 ft Width of Riprap Protection at Downstream End T = 6 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d5o min= 6 in Nominal Riprap Size d5e nominal= 6 in MHFD Riprap Type Type = VL ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 30 I Li. Soil Type: Choose One: i =4 - Q Sandy ~= wawa 0 Non-Sandy Design Information : Design Discharge Q = 24.91 cfs Circular Culvert: Barrel Diameter in Inches D = 24 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4902.71 ft Outlet Elevation OR Slope Elev OUT = 4902.32 ft Culvert Length L = 77.79 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 3 . 14 ft2 Culvert Normal Depth Yn = 2.00 ft Culvert Critical Depth Ye = 1 .76 ft Froude Number Fr = - Pressure flow! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.96 Sum of All Loss Coefficients ks = 2. 16 ft Headwater: Inlet Control Headwater HW, = 3.21 ft Outlet Control Headwater HWo = 3 .60 ft Design Headwater Elevation HW = 4906.31 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1.80 HW/ D > 1.5! Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 4.40 ftQ5/s Tailwater Surface Height Yt = 0.80 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 3.06 Flow Area at Max Channel Velocity At = 4.98 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 13 ft Width of Riprap Protection at Downstream End T = 7 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d5o min= 7 in Nominal Riprap Size d5e nominal= 9 in MHFD Riprap Type Type = L ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 31 I Li. Soil Type: i Choose One: =4 - Q Sandy ~= wawa O Non-Sandy Design Information : Design Discharge Q = 47. 19 cfs Circular Culvert: Barrel Diameter in Inches D = 36 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4886. 16 ft Outlet Elevation OR Slope Elev OUT = 4886.00 ft Culvert Length L = 56.46 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 7.07 ftz Culvert Normal Depth Yn = 3 .00 ft Culvert Critical Depth Ye = 2.24 ft Froude Number Fr = - Pressure flow! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.41 Sum of All Loss Coefficients ks = 1.61 ft Headwater: Inlet Control Headwater HW, = 3.45 ft Outlet Control Headwater HWo = 3 .57 ft Design Headwater Elevation HW = 4889.73 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1. 19 Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 3 .03 ftQ5/s Tailwater Surface Height Yt = 1.20 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 4.36 Flow Area at Max Channel Velocity At = 9.44 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 22 ft Width of Riprap Protection at Downstream End T = 9 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d5o min= 8 in Nominal Riprap Size d5e nominal= 9 in MHFD Riprap Type Type = L ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 32 I Li. Soil Type: i Choose One: =4 - Q Sandy ~= wawa O Non-Sandy Design Information : Design Discharge Q = 41. 11 cfs Circular Culvert: Barrel Diameter in Inches D = 30 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4893 .79 ft Outlet Elevation OR Slope Elev OUT = 4893.23 ft Culvert Length L = 65.73 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 4.91 ft2 Culvert Normal Depth Yn = 2.50 ft Culvert Critical Depth Ye = 2. 15 ft Froude Number Fr = - Pressure flow! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.60 Sum of All Loss Coefficients ks = 1 .80 ft Headwater: Inlet Control Headwater HW, = 3 .79 ft Outlet Control Headwater HWo = 3 .73 ft Design Headwater Elevation HW = 4897.58 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1.51 HW/ D > 1.5! Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 4. 16 ftQ5/s Tailwater Surface Height Yt = 1.00 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 3 .33 Flow Area at Max Channel Velocity At = 8.22 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 20 ft Width of Riprap Protection at Downstream End T = 9 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d5o min= 9 in Nominal Riprap Size d5e nominal= 9 in MHFD Riprap Type Type = L ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 34 y} C M 1.:= {} `r Li. Soil Type: i _ . -i —s Choose One: ------ �— -`�- 3 - ® Sandy ~cwaaro, Q Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 14.58 cfs Circular Culvert: Barrel Diameter in Inches D = 24 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4903 .25 ft Outlet Elevation OR Slope Elev OUT = 4902.77 ft Culvert Length L = 57.92 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevat;on = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 3 . 14 ft2 Culvert Normal Depth Yo = 1 .24 ft Culvert Critical Depth Ye = 1.38 ft Froude Number Fr = 1 .22 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.72 Sum of All Loss Coefficients ks = 1 .92 ft Headwater: Inlet Control Headwater HW, = 2.05 ft Outlet Control Headwater HWo = 1 .85 ft Design Headwater Elevation HW = 4905.30 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1.03 Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 2.58 ftQ5/s Tailwater Surface Height Yt = 0.80 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 4.96 Flow Area at Max Channel Velocity At = 2.92 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 9 ft Width of Riprap Protection at Downstream End T = 4 ft Adjusted Diameter for Supercritical Flow Da = 1 .62 ft Minimum Theoretical Riprap Size d5o min= 5 in Nominal Riprap Size d5o nominal= 6 in MHFD Riprap Type Type = VL ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 35 4 Ma Soil Type: i _ r Choose One: �c waa ro, O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 21.91 cfs Circular Culvert: Barrel Diameter in Inches D = 24 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4905.90 ft Outlet Elevation OR Slope Elev OUT = 4905.20 ft Culvert Length L = 62.73 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevat;on = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 3 . 14 ft2 Culvert Normal Depth Yo = 1 .50 ft Culvert Critical Depth Ye = 1 .67 ft Froude Number Fr = 1 .26 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.77 Sum of All Loss Coefficients ks = 1 .97 ft Headwater: Inlet Control Headwater HW, = 2.82 ft Outlet Control Headwater HWo = 2.63 ft Design Headwater Elevation HW = 4908.72 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1.41 Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 3 .87 ftQ5/s Tailwater Surface Height Yt = 0.80 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 3.62 Flow Area at Max Channel Velocity At = 4.38 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 13 ft Width of Riprap Protection at Downstream End T = 6 ft Adjusted Diameter for Supercritical Flow Da = 1.75 ft Minimum Theoretical Riprap Size d5o min= 7 in Nominal Riprap Size d5o nominal= 9 in MHFD Riprap Type Type = L ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 37 CM Li. { Soil Type: i - -s Choose One: ® Sandy ~= wawa O Non-Sandy Design Information : Design Discharge Q = 120.53 cfs Circular Culvert: Barrel Diameter in Inches D = 30 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 3 Inlet Elevation Elev IN = 4865.55 ft Outlet Elevation OR Slope Elev OUT = 4865. 10 ft Culvert Length L = 67.50 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 4.91 ft2 Culvert Normal Depth Yo = 2.50 ft Culvert Critical Depth Ye = 2. 13 ft Froude Number Fr = - Pressure flow! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.62 Sum of All Loss Coefficients ks = 1.82 ft Headwater: Inlet Control Headwater HW, = 3 .70 ft Outlet Control Headwater HWo = 3 .76 ft Design Headwater Elevation HW = 4869.31 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1.50 HW/ D > 1.5! Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 4.07 ftQ5/s Tailwater Surface Height Yt = 1.00 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 3 .43 Flow Area at Max Channel Velocity At = 24. 11 ftz Width of Equivalent Conduit for Multiple Barrels Weq = 7.50 ft Length of Riprap Protection LP = 25 ft Width of Riprap Protection at Downstream End T = 15 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d5o min= 8 in Nominal Riprap Size d5e nominal= 9 in MHFD Riprap Type Type = L ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 38 Soil Type: i _ `rte—s Choose One: -----��.- - -:4 �. Q Sandy O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 73.68 cfs Circular Culvert: Barrel Diameter in Inches D = 36 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 2 Inlet Elevation Elev IN = 4893 .64 ft Outlet Elevation OR Slope Elev OUT = 4889.00 ft Culvert Length L = 194.87 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 7.07 ft2 Culvert Normal Depth Yn = 1 .24 ft Culvert Critical Depth Ye = 1 .97 ft Froude Number Fr = 2.44 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 1 .40 Sum of All Loss Coefficients ks = 2.60 ft Headwater: Inlet Control Headwater HW1 = 2.88 ft Outlet Control Headwater HWo = N/A ft Design Headwater Elevation HW = 4896.52 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 0.96 Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 2.36 ftQ5/s Tailwater Surface Height Yt = 1.20 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 5.25 Flow Area at Max Channel Velocity At = 14.74 ftz Width of Equivalent Conduit for Multiple Barrels Weq = 6.00 ft Length of Riprap Protection LP = 30 ft Width of Riprap Protection at Downstream End T = 12 ft Adjusted Diameter for Supercritical Flow Da = 2. 12 ft Minimum Theoretical Riprap Size d5o min= 7 in Nominal Riprap Size d5o nominal= 9 in MHFD Riprap Type Type = L ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 39 } n _ w f Lp soil Type: Choose One: �c waaro, Q Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 41.02 cfs Circular Culvert: Barrel Diameter in Inches D = 24 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 2 Inlet Elevation Elev IN = 4911 . 10 ft Outlet Elevation OR Slope Elev OUT = 4910.40 ft Culvert Length L = 64.73 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Eievat;on = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 3 . 14 ft2 Culvert Normal Depth Y„ = 1 .44 ft Culvert Critical Depth Ye = 1 .62 ft Froude Number Fr = 1 .28 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.80 Sum of All Loss Coefficients ks = 2.00 ft Headwater: Inlet Control Headwater HW, = 2.66 ft Outlet Control Headwater HWo = 2.44 ft Design Headwater Elevation HW = 4913.76 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1.33 Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 3 .63 ftQ5/s Tailwater Surface Height Yt = 0.80 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 3.83 Flow Area at Max Channel Velocity At = 8.20 ftz Width of Equivalent Conduit for Multiple Barrels Weq = 4.00 ft Length of Riprap Protection LP = 20 ft Width of Riprap Protection at Downstream End T = 10 ft Adjusted Diameter for Supercritical Flow Da = 1 .72 ft Minimum Theoretical Riprap Size d5o min= 6 in Nominal Riprap Size d5o nominal= 9 in MHFD Riprap Type Type = L ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert 40 y L . V f - - -= _ - Soil Type: i — r��—z- Choose One: `_� Q Sandy ~cwaa ro, 0 Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 40.65 cfs Circular Culvert: Barrel Diameter in Inches D = 24 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 2 Inlet Elevation Elev IN = 4902.93 ft Outlet Elevation OR Slope Elev OUT = 4901 .78 ft Culvert Length L = 67.62 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 3 . 14 ft2 Culvert Normal Depth Y„ = 1 .22 ft Culvert Critical Depth Ye = 1 .62 ft Froude Number Fr = 1 .77 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.84 Sum of All Loss Coefficients ks = 2.04 ft Headwater: Inlet Control Headwater HW, = 2.63 ft Outlet Control Headwater HWo = 1 .98 ft Design Headwater Elevation HW = 4905.56 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1.32 Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 3 .59 ftQ5/s Tailwater Surface Height Yt = 0.80 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 3.86 Flow Area at Max Channel Velocity At = 8. 13 ftz Width of Equivalent Conduit for Multiple Barrels Weq = 4.00 ft Length of Riprap Protection LP = 20 ft Width of Riprap Protection at Downstream End T = 10 ft Adjusted Diameter for Supercritical Flow Da = 1 .61 ft Minimum Theoretical Riprap Size d5o min= 6 in Nominal Riprap Size d5o nominal= 9 in MHFD Riprap Type Type = L ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert El t Lp V Soil Type: -„ Choose One: - r QQ Sandy gip „ O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 8.66 cfs Circular Culvert: Barrel Diameter in Inches D = 18 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4838. 10 ft Outlet Elevation OR Slope Elev OUT = 4837.67 ft Culvert Length L = 50.25 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Eievat;on = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 1 .77 ftz Culvert Normal Depth Y„ = 1 . 10 ft Culvert Critical Depth Ye = 1 . 14 ft Froude Number Fr = 1 .07 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.91 Sum of All Loss Coefficients ks = 2. 11 ft Headwater: Inlet Control Headwater HW, = 1 .77 ft Outlet Control Headwater HWo = 1 .68 ft Design Headwater Elevation HW = 4839.87 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1. 18 Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 3 . 14 ftQ5/s Tailwater Surface Height Yt = 0.60 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 4.26 Flow Area at Max Channel Velocity At = 1 .73 ftz Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 6 ft Width of Riprap Protection at Downstream End T = 3 ft Adjusted Diameter for Supercritical Flow Da = 1 .30 ft Minimum Theoretical Riprap Size d5o min= 4 in Nominal Riprap Size d5o nominal= 6 in MHFD Riprap Type Type = VL ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert E2 }h 11 LIP T Soil Type: . .. ! . Choose One: QQ Sandy �• _ wpw, O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 4.64 cfs Circular Culvert: Barrel Diameter in Inches D = 15 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4840.75 ft Outlet Elevation OR Slope Elev OUT = 4840.32 ft Culvert Length L = 51.86 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevat;on = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 1 .23 ftz Culvert Normal Depth Yo = 0.84 ft Culvert Critical Depth Ye = 0.87 ft Froude Number Fr = 1 .09 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 1.20 Sum of All Loss Coefficients ks = 2.40 ft Headwater: Inlet Control Headwater HW, = 1 .31 ft Outlet Control Headwater HWo = 1 . 16 ft Design Headwater Elevation HW = 4842.06 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1.05 Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 2.66 ftQ5/s Tailwater Surface Height Yt = 0.50 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 4.85 Flow Area at Max Channel Velocity At = 0.93 ftz Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 4 ft Width of Riprap Protection at Downstream End T = 3 ft Adjusted Diameter for Supercritical Flow Da = 1 .04 ft Minimum Theoretical Riprap Size d5o min= 3 in Nominal Riprap Size d5o nominal= 6 in MHFD Riprap Type Type = VL ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert E3 H Lp r H.. {r Soil Type: , i--r .� Choose One: wPw Q Non-Sandy Design Information : Design Discharge Q = 22.39 cfs Circular Culvert: Barrel Diameter in Inches D = 24 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4831 .35 ft Outlet Elevation OR Slope Elev OUT = 4831 .00 ft Culvert Length L = 62.63 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 3 . 14 ft2 Culvert Normal Depth Yo = 2.00 ft Culvert Critical Depth Ye = 1 .69 ft Froude Number Fr = - Pressure flow! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.77 Sum of All Loss Coefficients ks = 1 .97 ft Headwater: Inlet Control Headwater HW, = 2.89 ft Outlet Control Headwater HWo = 3 .05 ft Design Headwater Elevation HW = 4834.40 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1.53 HW/ D > 1.5! Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 3 .96 ftQ5/s Tailwater Surface Height Yt = 0.80 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 3 .54 Flow Area at Max Channel Velocity At = 4.48 ftz Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 13 ft Width of Riprap Protection at Downstream End T = 6 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d5o min= 7 in Nominal Riprap Size d5e nominal= 9 in MHFD Riprap Type Type = L ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert E4 Wx CIRCLE H i L LP H 4_ 1. Soil Type: Choose One: o Sandy ,mom„ O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 5.31 cfs Circular Culvert: Barrel Diameter in Inches D = 15 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4841 .45 ft Outlet Elevation OR Slope Elev OUT = 4841 .04 ft Culvert Length L = 48.02 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Eievat;on = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 1 .23 ftz Culvert Normal Depth Y„ = 0.92 ft Culvert Critical Depth Ye = 0.93 ft Froude Number Fr = 1 .04 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 1. 11 Sum of All Loss Coefficients ks = 2.31 ft Headwater: Inlet Control Headwater HW, = 1.44 ft Outlet Control Headwater HWo = 1 .35 ft Design Headwater Elevation HW = 4842.89 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1. 15 Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 3 .04 ftQ5/s Tailwater Surface Height Yt = 0.50 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 4.35 Flow Area at Max Channel Velocity At = 1 .06 ft2 Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 4 ft Width of Riprap Protection at Downstream End T = 3 ft Adjusted Diameter for Supercritical Flow Da = 1 .08 ft Minimum Theoretical Riprap Size d5o min= 3 in Nominal Riprap Size d5o nominal= 6 in MHFD Riprap Type Type = VL ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert E5 n n L Lp Hn. soil Type: Choose One: 0 Non-Sandy Design Information : Design Discharge Q = 8.22 cfs Circular Culvert: Barrel Diameter in Inches D = 15 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4844.49 ft Outlet Elevation OR Slope Elev OUT = 4843 .98 ft Culvert Length L = 51.83 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, Elevation = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 1 .23 ft2 Culvert Normal Depth Yo = 1 .25 ft Culvert Critical Depth Ye = 1 . 12 ft Froude Number Fr = - Pressure flow! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 1.20 Sum of All Loss Coefficients ks = 2.40 ft Headwater: Inlet Control Headwater HW, = 2. 15 ft Outlet Control Headwater HWo = 2.35 ft Design Headwater Elevation HW = 4846.84 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1.88 HW/ D > 1.5! Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 4.70 ftQ5/s Tailwater Surface Height Yt = 0.50 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 2.73 Flow Area at Max Channel Velocity At = 1 .64 ftz Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 6 ft Width of Riprap Protection at Downstream End T = 4 ft Adjusted Diameter for Supercritical Flow Da = - ft Minimum Theoretical Riprap Size d5o min= 5 in Nominal Riprap Size d5e nominal= 6 in MHFD Riprap Type Type = VL ' • • • " • • MHFD-Culvert, Version 4. 00 (May 2020) Project: Pelican Lakes PUD - Filing No. 2 ID : Culvert E6 try L Li Soil Type: -, : 1 !—`rte Choose One: Q Sandy �_ P�Pwa O Non-Sandy Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information : Design Discharge Q = 18.54 cfs Circular Culvert: Barrel Diameter in Inches D = 24 inches Inlet Edge Type (Choose from pull-down list) Beveled Edge (1.5 : 1) OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = ft Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = 1 Inlet Elevation Elev IN = 4823 .85 ft Outlet Elevation OR Slope Elev OUT = 4823.25 ft Culvert Length L = 60.39 ft Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k, = 1 Tailwater Surface Elevation Yt, = ft Max Allowable Channel Velocity V = 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A = 3 . 14 ftz Culvert Normal Depth Y„ = 1 .38 ft Culvert Critical Depth Ye = 1 .55 ft Froude Number Fr = 1 .27 Supercritical! Entrance Loss Coefficient ke = 0.20 Friction Loss Coefficient kf = 0.75 Sum of All Loss Coefficients ks = 1 .95 ft Headwater: Inlet Control Headwater HW, = 2.44 ft Outlet Control Headwater HWo = 2.23 ft Design Headwater Elevation HW = 4826.29 ft Headwater/Diameter OR Headwater/ Rise Ratio HW/ D = 1.22 Outlet Protection : Flow/(DiameterA2.5) Q/DA2.5 = 3 .28 ftQ5/s Tailwater Surface Height Yt = 0.80 ft Tailwater/Diameter Yt/D = 0.40 Expansion Factor 1/(2*tan(e)) = 4. 14 Flow Area at Max Channel Velocity At = 3.71 ftz Width of Equivalent Conduit for Multiple Barrels Weq = - ft Length of Riprap Protection LP = 11 ft Width of Riprap Protection at Downstream End T = 5 ft Adjusted Diameter for Supercritical Flow Da = 1 .69 ft Minimum Theoretical Riprap Size d5o min= 6 in Nominal Riprap Size d5o nominal= 6 in MHFD Riprap Type Type = VL • TERRA FORMA SOLUTIONS Project: Pelican Lake Ranch Filing No. 2 Location: Weld County, CO Designer: TAJ Date: 10/16/2024 Latest Revision: 1/13/2025 STORM SEWER CALCULATIONS Caluculated Using "Analyze Gravity Network" function within Autodesk Civil 30 P-1 STMH-1 FES-1 339.386 0 155.16 4.5 180.032 11.32 12.723 4881.37 4878.531 0.84% P-2 STMH-2 STMH-1 519.847 0 94.65 4.5 103.363 6.499 7.364 4882.803 4881.37 0.28% P-3 STMH-3 STMH-2 458.905 0 94.65 4.5 103.363 6.499 7.364 4884.069 4882.803 0.28% P-4 STMH-4 STMH-3 424.083 0 94.65 4.5 103.363 6.499 7.364 4885.238 4884.069 0.28% P-5 FES-3 STMH-4 40.852 94.65 94.65 4.5 103.363 6.499 7.364 4885.351 4885.238 0.28% P-6 STMH-5 STMH-1 26.078 16.69 60.51 2.5 76.133 15.51 17.197 4884.266 4883.37 3.44% P-7 FES-2 STMH-5 84.891 43.82 43.82 2 51.165 16.286 18.288 4889.095 4884.766 5.11% FES-1 0 0 4883.031 4883.656 STMH-1 4.5 155.16 339.386 12.723 3.224 3.65 2.517 4884.272 4881.755 0 0 4887.111 4884.594 6.989 4888.359 4885.87 4896 N/A Case A N/A STMH-2 4.5 94.65 519.847 5.951 4.5 n/a 0.551 4888.579 4888.028 0.002 1.204 4889.783 4889.232 7.09 4889.893 4887.303 4898.463 Case B N/A Case A STMH-3 4.5 94.65 458.905 5.951 4.5 n/a 0.551 4890.113 4889.563 0.002 1.063 4891.177 4890.626 7.218 4891.287 4888.569 4900.945 Case B N/A Case A STMH-4 4.5 94.65 424.083 5.951 4.5 n/a 0.551 4891.507 4890.956 0.002 0.982 4892.489 4891.939 7.522 4892.76 4889.738 4895.807 Case 8 N/A Case A FES-3 45 94.65 40.852 5.951 4.5 n/a 0.551 4892.98 4892.43 0.002 0.095 4893.075 4892.524 7.834 4893.185 --- 4890.476 Case B N/A Case A STMH-5 2.5 60.51 26.078 12.327 2.5 n/a 2.362 4889.304 4886.941 0.022 0.568 4889.871 4887.509 6.56 4890.826 4886.766 4888.6 Case B N/A Case A FES-2 2 43<82 84.891 13.948 2 n/a 3.025 4892,036 4689.011 0.038 3.165 4895.221 4892.196 6.731 4895.826 --- 4691.511 Case a N/A Case A *URBAN DRAINAGE DESIGN MANUAL - Hydraulic Engineering Circular No.22 Third Edition APPENDIXD - SWMM CALCULATIONS HISTORIC CONDITIONS 199 //g / /, Historic Conditions '" 10-Yr Runoff // ///// W E i a ///////////// fLL ID / �/ //�/// / ////// V iiB lA / //// ] 11 ////// / In N YW gggq L+ ON1 Ill x1 // U ////// CM 4 IN ///// / JMOI Vntl �/ LL FV a / / ///// /// //////� / of ///////// /// ///////// ///////////////////////// /////////// tb ///////////////////////// /////////// 200 Pelican Lakes PUD - Historic Conditions - 10 Yr - 24 Hour Type 2 Storm Node Inflow Summary Maximum Maximum Lateral Total Flow Lateral Total Day of Hour of Inflow Inflow Balance Inflow Inflow Maximum Maximum Volume Volume Error Node Type CFS CFS Inflow Inflow 10^6 gal 10^6 gal Percent J1 JUNCTION 0. 00 24.21 0 12 : 30 0 0. 87 0. 000 ill JUNCTION 0. 00 1 . 08 0 12 : 11 0 0. 0679 0. 000 J12 JUNCTION 0. 00 7. 54 0 13 :21 0 1 . 14 0. 000 J14 JUNCTION 0. 00 1 . 96 0 12 : 11 0 0. 0436 0. 000 J16 JUNCTION 0. 00 1 .31 0 12 : 11 0 0. 0692 0. 000 J17 JUNCTION 0. 00 6.33 0 16 : 05 0 1 . 17 0. 000 J19 JUNCTION 0. 00 0.23 0 12 : 11 0 0 .00716 0. 000 J2 JUNCTION 0. 00 2. 88 0 12 : 11 0 0. 0699 0. 000 J20 JUNCTION 0. 00 6. 17 0 17 : 14 0 1 .08 0.000 J21 JUNCTION 0. 00 5 . 87 0 12 : 11 0 0. 355 0. 000 J22 JUNCTION 0. 00 2.27 0 12 : 11 0 0. 117 0. 000 J23 JUNCTION 0. 00 2. 07 0 12 : 11 0 0. 0674 0. 000 J24 JUNCTION 0 . 00 5 .43 0 13 :24 0 0. 606 0. 000 J25 JUNCTION 0. 00 2. 55 0 12: 11 0 0. 166 0. 000 J26 JUNCTION 0. 00 1. 8 .97 0 12 : 11 0 1 .2 0. 000 J27 JUNCTION 0. 00 15 .78 0 13 : 00 0 1 .42 0. 000 J28 JUNCTION 0. 00 15 . 16 0 14 : 03 0 1 . 83 0. 000 J29 JUNCTION 0. 00 14. 04 0 15 : 02 0 1 . 85 0. 000 J3 JUNCTION 0. 00 2. 16 0 12 : 11 0 0. 115 0. 000 J30 JUNCTION 0. 00 12. 76 0 16 : 18 0 1 . 92 0. 000 J31 JUNCTION 0. 00 1 . 05 0 12 : 11 0 0.0359 0. 000 SWMM 5. 1 201 Page 1 Pelican Lakes PUD - Historic Conditions - 10 Yr - 24 Hour Type 2 Storm Maximum Maximum Lateral Total Flow Lateral Total Day of Hour of Inflow Inflow Balance Inflow Inflow Maximum Maximum Volume Volume Error Node Type CFS CFS Inflow Inflow 10^6 gal 10^6 gal Percent J32 JUNCTION 0. 00 5 . 39 0 12 : 11 0 0. 359 0. 000 J33 JUNCTION 0. 00 6. 62 0 12 : 15 0 0. 52 0. 000 J34 JUNCTION 0. 00 51 . 76 0 12 :41 0 9.21 0. 000 J37 JUNCTION 0. 00 24. 65 0 13 :45 0 4.21 0. 000 J38 JUNCTION 0. 00 7. 94 0 12: 35 0 1 . 78 0. 000 J4 JUNCTION 0. 00 2 .27 0 13 :26 0 0.279 0. 000 J7 JUNCTION 0. 00 4. 07 0 12: 15 0 0. 365 0. 000 J9 JUNCTION 0. 00 7. 92 0 12 : 15 0 1 . 01 0. 000 JE1 JUNCTION 3 . 60 3 . 60 0 12 : 00 0. 0709 0. 0709 -0. 000 JE2 JUNCTION 13 .64 13 . 64 0 12 : 00 0.269 0.269 0. 000 JE3 JUNCTION 4. 95 4. 95 0 12 : 00 0. 098 0. 098 0. 000 1E4 JUNCTION 6. 07 6. 07 0 12 : 00 0. 119 0. 119 0. 000 JE5 JUNCTION 44.28 44.28 0 12 : 00 0. 87 0. 87 0. 000 JE6 JUNCTION 13 .04 13 . 04 0 12 : 00 0.256 0.256 0. 000 JH1 JUNCTION 49.90 49. 90 0 11 : 59 0. 98 0. 98 0. 000 JH10 JUNCTION 6. 74 6. 74 0 11 : 59 0. 132 0. 132 0. 000 JH11 JUNCTION 2 .92 2. 92 0 12 : 00 0.0574 0. 0574 0. 000 JH12 JUNCTION 6. 07 6. 07 0 12 : 00 0. 119 0. 119 0. 000 JH13 JUNCTION 1 . 87 1 . 87 0 12 : 00 0.0368 0. 0368 0. 000 JH14 JUNCTION 3 . 82 3 . 82 0 11 : 59 0. 0751 0. 0751 0.000 JH15 JUNCTION 110. 52 11.0.52 0 12 : 00 2 . 17 2. 17 0.000 JH16 JUNCTION 2 . 10 2. 10 0 12 : 00 0. 0412 0. 0412 0.000 SWMM 5. 1 202 Page 2 Pelican Lakes PUD - Historic Conditions - 10 Yr - 24 Hour Type 2 Storm Maximum Maximum Lateral Total Flow Lateral Total Day of Hour of Inflow Inflow Balance Inflow Inflow Maximum Maximum Volume Volume Error Node Type CFS CFS Inflow Inflow 10^6 gal 10^6 gal Percent JH17 JUNCTION 1 .65 1 .65 0 12 : 00 0.0324 0. 0324 0. 000 JH18 JUNCTION 3 .37 3. 37 0 12 : 00 0.0662 0.0662 0. 000 JH19 JUNCTION 10.04 10. 04 0 12 : 00 0. 197 0. 197 0.000 JH2 JUNCTION 4. 72 4. 72 0 11 : 59 0. 0927 0.0927 0.000 JH3 JUNCTION 2 . 62 2. 62 0 12 : 00 0. 0515 0. 0515 0.000 JH4 JUNCTION 19. 33 19. 33 0 11 : 59 0. 38 0. 38 0.000 JH5 JUNCTION 2 .25 2 .25 0 11 : 59 0. 0442 0.0441 0.000 JH6 JUNCTION 2 . 92 2. 92 0 12 : 00 0. 0574 0.0574 0.000 JH7 JUNCTION 0. 37 0. 37 0 12 : 00 0. 00736 0 . 00736 0.000 JH8 JUNCTION 20. 38 20.38 0 12 : 00 0.4 0.4 0.000 JH9 JUNCTION 7.42 7.42 0 12 :00 0. 146 0. 146 0.000 JN1 JUNCTION 52 . 13 52. 13 0 12 :06 0.687 0.687 0.000 JS1 JUNCTION 14. 01 14 .01 0 11 :59 0.275 0.275 0.000 JS2 JUNCTION 1 . 72 1 . 72 0 12 :00 0. 0338 0.0338 0.000 OUT1 OUTFALL 0.00 24.65 0 13 :46 0 4.21 0.000 OUT2 OUTFALL 0.00 7 .93 0 12 : 36 0 1 .78 0.000 OUT3 OUTFALL 0.00 51 . 57 0 12 :48 0 9. 14 0.000 OUT4 OUTFALL 0.00 1 .02 0 12 : 11 0 0.0343 0.000 OUTS OUTFALL 0.00 1 . 50 0 12 : 15 0 0. 111 0.000 OUT6 OUTFALL 0.00 1 . 11 0 12 : 11 0 0.045 0.000 OUT7 OUTFALL 0.00 1 .03 0 12 : 11 0 0.0316 0.000 SWMM 5. 1 203 Page 3 Pelican Lakes PUD - Historic Conditions - 10 Yr - 24 Hour Type 2 Storm Link Flow Summary Maximum Day of Hour of Maximum Max / Max / IF1owl Maximum Maximum IVelocityl Full Full Link Type CFS Flow Flow ft/sec Flow Depth Cl CONDUIT 9. 53 0 14 :24 0. 51 0. 00 0 . 04 C 10 CONDUIT 0. 61 0 13 :49 0. 13 0. 00 0 . 01 C11 CONDUIT 6. 67 0 13 :24 0. 30 0. 00 0 . 04 C12 CONDUIT 1 . 01 0 12 :26 0.25 0. 00 0 . 02 C14 CONDUIT 0. 74 0 13 :27 0. 12 0 . 00 0. 02 C15 CONDUIT 6. 03 0 16 : 15 0.20 0. 00 0. 06 C17 CONDUIT 0. 09 0 13 : 30 0. 10 0. 00 0. 00 C18 CONDUIT 6. 14 0 17 : 15 0.23 0. 00 0. 04 C19 CONDUIT 5 . 92 0 18 :29 0. 32 0. 00 0. 04 C20 CONDUIT 3 . 63 0 13 : 30 0.40 0. 00 0. 05 C21 CONDUIT 1 . 33 0 13 :21 0. 34 0. 00 0. 03 C22 CONDUIT 1 .43 0 12 :27 0.24 0. 00 0. 02 C23 CONDUIT 14.28 0 13 : 03 0. 68 0. 00 0. 09 C24 CONDUIT 12.49 0 14 : 05 0. 31 0. 01 0. 09 C25 CONDUIT 1 .36 0 14 : 12 0. 31 0. 00 0. 02 C26 CONDUIT 13 . 65 0 15 : 03 0. 31 0. 01 0. 10 C27 CONDUIT 12.25 0 16 :22 0. 33 0. 02 0. 14 C3 CONDUIT 1 . 06 0 13 :20 0.40 0. 00 0. 02 C30 CONDUIT 2 . 59 0 18 : 15 0. 37 0. 00 0. 03 C31 CONDUIT 8 .44 0 20 : 00 0.49 0. 00 0. 06 C32 CONDUIT 0 . 37 0 15 : 12 0. 13 0. 00 0. 00 SWMM 5. 1 204 Page 1 Pelican Lakes PUD - Historic Conditions - 10 Yr - 24 Hour Type 2 Storm Maximum Day of Hour of Maximum Max / Max / IFlowl Maximum Maximum IVelocityl Full Full Link Type CFS Flow Flow ft/sec Flow Depth C33 CONDUIT 2.27 0 15 :48 0 .40 0. 00 0. 03 C34 CONDUIT 4. 54 0 13 :48 0.29 0. 00 0. 03 C35 CONDUIT 51 .57 0 12 :48 0. 65 0. 01 0. 13 C39 CONDUIT 24.65 0 13 :46 0. 86 0. 01 0. 06 C4 CONDUIT 1 .22 0 13 : 30 0. 34 0. 00 0. 02 C40 CONDUIT 7. 93 0 12 : 36 0. 57 0. 00 0. 03 C6 CONDUIT 2. 15 0 15 : 36 0. 36 0. 00 0. 02 C7 CONDUIT 1 . 92 0 14 :45 0. 38 0. 00 0. 03 CE1 CONDUIT 2. 88 0 12 : 11 1 . 13 0. 00 0. 07 CE2 CONDUIT 5 . 87 0 12 : 11 0. 60 0. 00 0. 02 CE3 CONDUIT 2.27 0 12 : 11 0.46 0. 00 0. 01 CE4 CONDUIT 2. 55 0 12 : 11 0.46 0 . 00 0.02 CE5 CONDUIT 18 . 97 0 12 : 11 0. 88 0 . 00 0.05 CE6 CONDUIT 5 . 39 0 12 : 11 0. 61 0.00 0.03 CH1 CONDUIT 19. 17 0 12 : 35 0. 72 0.01 0.06 CH10 CONDUIT 3 .21 0 12 : 11 0.41 0. 00 0. 02 CH11 CONDUIT 1 . 14 0 12 : 15 0. 15 0. 00 0. 02 CH12 CONDUIT 2.42 0 12 : 15 0.41 0. 00 0. 04 CH13 CONDUIT 1 .05 0 12 : 11 0.32 0. 00 0. 01 CH14 CONDUIT 1 . 50 0 12 : 15 0.23 0. 00 0. 02 CH15 CONDUIT 49. 67 0 12 :35 1 . 1.7 0. 01 0. 12 CH16 CONDUIT 1 . 11 0 12 : 11 0.23 0. 00 0. 03 SWMM 5. 1 205 Page 2 Pelican Lakes PUD - Historic Conditions - 10 Yr - 24 Hour Type 2 Storm Maximum Day of Hour of Maximum Max / Max / IFlowl Maximum Maximum IVelocityl Full Full Link Type CFS Flow Flow ft/sec Flow Depth CH17 CONDUIT 1 .03 0 12 : 11 0 .40 0. 00 0. 03 CH18 CONDUIT 2.07 0 12 : 11 0. 76 0. 00 0. 05 CH19 CONDUIT 4.07 0 12 : 15 0. 55 0. 00 0. 05 CH2 CONDUIT 2. 16 0 12 : 11 0.43 0. 00 0. 02 CH3 CONDUIT 1 .08 0 12 : 11 0. 35 0. 00 0. 01 CH4 CONDUIT 7.92 0 12 : 15 0. 88 0. 00 0. 05 CH5 CONDUIT 1 .96 0 12 : 11 1 .37 0. 00 0. 04 CH6 CONDUIT 1 .31 0 12 : 11 0.42 0.00 0. 02 CH7 CONDUIT 0.23 0 12 : 11 0.24 0.00 0. 01 CH8 CONDUIT 7 .94 0 12: 35 0.50 0.00 0.04 CH9 CONDUIT 3 .04 0 12: 15 0.50 0 .00 0.04 CN1 CONDUIT 24 .21 0 12: 30 1 . 18 0 .00 0.05 CS1 CONDUIT 6 .62 0 12: 15 0.95 0 .00 0.08 CS2 CONDUIT 1 .02 0 12: 11 0.67 0.01 0.07 SWMM 5. 1 206 Page 3 Pelican Lakes PUD - Historic Conditions - 10 Yr - 24 Hour Type 2 Storm Outfall Loading Summary Flow Avg. Max. Total Freq. Flow Flow Volume Outfall Node Pcnt. CFS CFS 10^6 gal OUT1 83 . 85 7. 76 24. 65 4.205 OUT2 79. 97 3 .45 7. 93 1 . 781 OUT3 85 .49 16. 54 51 . 57 9. 136 OUT4 95 . 00 0. 06 1 . 02 0. 034 OUTS 88 . 82 0. 19 1 . 50 0. 111 OUT6 94.24 0. 07 1 . 11 0. 045 OUT7 96. 11 0. 05 1 . 03 0. 032 SWMM 5. 1 207 Page 1 ///4 ; .�.m Historic Conditions ' �! `� 1oo-YrRunoff z, j C. ����� ,,,1////// „ n /, q a, //� // J W// // 4N O nP 0.WI OM ,,,,,,,,,,,,/ „ ,,,,,,,,,, 1 �W %FFFFFFFFFF% 'F �T /FFF Pelican Lakes PUD - Historic Conditions - 100 Yr - 24 Hour Type 2 Storm Node Inflow Summary Maximum Maximum Lateral Total Flow Lateral Total Day of Hour of Inflow Inflow Balance Inflow Inflow Maximum Maximum Volume Volume Error Node Type CFS CFS Inflow Inflow 10^6 gal 10^6 gal Percent J1 JUNCTION 0. 00 233 . 62 0 12 : 30 0 6. 85 0. 000 ill JUNCTION 0. 00 42. 80 0 12 : 18 0 0. 749 0. 000 J12 JUNCTION 0. 00 232. 00 0 12 :43 0 11 . 6 0. 000 J14 JUNCTION 0. 00 33 . 03 0 12 : 10 0 0. 34 0. 000 J16 JUNCTION 0. 00 46. 69 0 12 : 17 0 0. 758 -0. 000 J17 JUNCTION 0. 00 169.22 0 13 :43 0 13 . 9 0. 000 J19 JUNCTION 0. 00 5 .35 0 12 : 13 0 0. 065 0. 000 J2 JUNCTION 0. 00 41 .43 0 12 : 15 0 0. 656 0. 000 J20 JUNCTION 0. 00 166. 69 0 14 : 04 0 14 0. 000 J21 JUNCTION 0. 00 92 . 79 0 12 : 34 0 2. 84 0. 000 J22 JUNCTION 0. 00 44. 75 0 12 :26 0 1 . 1 0. 000 J23 JUNCTION 0. 00 24.41 0 12 :20 0 0.466 0. 000 J24 JUNCTION 0 . 00 113 .46 0 13 : 03 0 4. 87 0. 000 J25 JUNCTION 0. 00 41 . 97 0 12: 33 0 1 .27 0. 000 J26 JUNCTION 0. 00 283 .63 0 12: 35 0 8 .68 0. 000 J27 JUNCTION 0. 00 276.70 0 12: 51 0 10. 6 0. 000 J28 JUNCTION 0. 00 290. 14 0 13 : 13 0 14 0. 000 J29 JUNCTION 0. 00 269.45 0 13 : 36 0 14.9 0. 000 J3 JUNCTION 0.00 47.24 0 12 :23 0 1 . 01 0. 000 J30 JUNCTION 0. 00 238 .22 0 14 : 10 0 16 0. 000 J31 JUNCTION 0.00 36. 88 0 12 : 11 0 0. 381 0. 000 SWMM 5. 1 209 Page 1 Pelican Lakes PUD - Historic Conditions - 100 Yr - 24 Hour Type 2 Storm Maximum Maximum Lateral Total Flow Lateral Total Day of Hour of Inflow Inflow Balance Inflow Inflow Maximum Maximum Volume Volume Error Node Type CFS CFS Inflow Inflow 10^6 gal 10^6 gal Percent J32 JUNCTION 0. 00 92. 76 0 12 :29 0 2. 6 0.000 J33 JUNCTION 0. 00 139. 66 0 12 : 35 0 5 . 32 0. 000 J34 JUNCTION 0. 00 769.29 0 12 : 54 0 80.6 0. 000 J37 JUNCTION 0. 00 541 . 59 0 12 : 36 0 38 .2 0. 000 J38 JUNCTION 0. 00 188. 82 0 14 :24 0 19.7 0. 000 J4 JUNCTION 0. 00 55 . 85 0 12 : 51 0 2.46 0. 000 J7 JUNCTION 0. 00 121 . 55 0 12 :29 0 3 . 94 0. 000 J9 JUNCTION 0. 00 210.44 0 12 : 30 0 10. 1 0.000 JE1 JUNCTION 56.78 56. 78 0 12 : 06 0. 639 0. 639 0. 000 JE2 JUNCTION 179. 15 179. 15 0 12 : 06 2 .24 2.24 0. 000 JE3 JUNCTION 81 .33 81 .33 0 12 : 06 0. 924 0. 924 0. 000 1E4 JUNCTION 85 .24 85 .24 0 12 : 06 0. 915 0. 915 0. 000 JE5 JUNCTION 572.29 572.29 0 12 : 06 6.23 6.23 -0. 000 JE6 JUNCTION 192. 02 192. 02 0 12 : 06 1 . 82 1 . 82 0. 000 JH1 JUNCTION 1034. 55 1034. 55 0 12 : 06 8 . 31 8 . 31 0. 000 JH10 JUNCTION 169 . 74 169.74 0 12 : 06 1 .24 1 .24 0. 000 JH11 JUNCTION 69.51 69. 51 0 12 : 06 0. 523 0. 523 0.000 JH12 JUNCTION 46.06 46. 06 0 12 : 06 0. 584 0. 584 0.000 JH13 JUNCTION 50.33 50. 33 0 12 : 06 0.358 0. 358 0.000 JH14 JUNCTION 60.67 60.67 0 12 : 06 0. 554 0. 554 0.000 JH15 JUNCTION 1160.22 1160.22 0 12 : 06 13 .9 13 .9 0. 000 JH16 JUNCTION 29.33 29. 33 0 12 : 06 0.284 0.284 0.000 SWMM 5. 1 210 Page 2 Pelican Lakes PUD - Historic Conditions - 100 Yr - 24 Hour Type 2 Storm Maximum Maximum Lateral Total Flow Lateral Total Day of Hour of Inflow Inflow Balance Inflow Inflow Maximum Maximum Volume Volume Error Node Type CFS CFS Inflow Inflow 10^6 gal 10^6 gal Percent JH17 JUNCTION 39.65 39. 65 0 12 : 06 0.297 0.297 0. 000 JH18 JUNCTION 41 . 10 41 . 10 0 12 : 06 0.424 0.424 0. 000 JH19 JUNCTION 245. 53 245 .53 0 12 : 06 1 . 82 1 . 82 0. 000 JH2 JUNCTION 92.76 92. 76 0 12 : 06 0.765 0. 765 0. 000 JH3 JUNCTION 78 .63 78. 63 0 12: 06 0. 532 0. 532 0. 000 JH4 JUNCTION 422. 09 422. 09 0 12 : 06 3 . 31 3 .31 0.000 JH5 JUNCTION 38 . 88 38. 88 0 12: 06 0. 341 0. 341 0.000 JH6 JUNCTION 83 . 01 83 . 01 0 12 : 06 0. 575 0.575 0.000 JH7 JUNCTION 7. 70 7. 70 0 12 : 06 0. 0621 0.0621 0.000 JH8 JUNCTION 250. 08 250. 08 0 12 :06 2.57 2.57 0.000 JH9 JUNCTION 84. 54 84. 54 0 12 : 06 0. 899 0. 899 0.000 JN1 JUNCTION 384. 72 384. 72 0 12 :06 5 .97 5 .97 0.000 JS1 JUNCTION 276. 68 276. 68 0 12 :06 2 .54 2.54 0.000 JS2 JUNCTION 13 . 54 13 . 54 0 12 :06 0. 169 0. 169 0.000 OUT1 OUTFALL 0. 00 540. 80 0 12 :36 0 38 .2 0.000 OUT2 OUTFALL 0. 00 188 . 82 0 14 :24 0 19.7 0.000 OUT3 OUTFALL 0. 00 765 . 03 0 12 :57 0 80.5 0.000 OUT4 OUTFALL 0. 00 7.96 0 12 :23 0 0. 182 0.000 OUTS OUTFALL 0. 00 28 .64 0 12 :29 0 0. 823 0.000 OUT6 OUTFALL 0. 00 1.6. 16 0 12 :23 0 0.331 0.000 OUT7 OUTFALL 0. 00 27.71 0 12 : 12 0 0.316 0.000 SWMM 5. 1 211 Page 3 Pelican Lakes PUD - Historic Conditions - 100 Yr - 24 Hour Type 2 Storm Link Flow Summary Maximum Day of Hour of Maximum Max / Max / IF1owl Maximum Maximum IVelocityl Full Full Link Type CFS Flow Flow ft/sec Flow Depth Cl CONDUIT 135 .92 0 13 :42 1 .44 0. 06 0.20 C10 CONDUIT 29. 55 0 12 :40 0. 56 0. 02 0. 13 Cli CONDUIT 193 .49 0 12 :44 0. 91 0. 07 0.27 C12 CONDUIT 23 . 72 0 12 :21 0. 65 0. 01 0. 10 C14 CONDUIT 33 .49 0 12 : 38 0. 50 0 . 01 0. 13 C15 CONDUIT 163. 06 0 13 :46 0. 53 0. 07 0. 32 C17 CONDUIT 2. 89 0 12 :44 0.45 0. 00 0. 02 C18 CONDUIT 166. 05 0 14 : 04 0. 75 0. 07 0.24 C19 CONDUIT 161 .29 0 14 : 30 0. 95 0. 06 0.26 C20 CONDUIT 75 . 32 0 13 : 07 1 . 12 0. 05 0.25 C21 CONDUIT 34. 61 0 12 : 56 1 . 04 0. 02 0. 1.7 C22 CONDUIT 24. 06 0 12 :25 0. 68 0. 02 0. 1. 1 C23 CONDUIT 258. 87 0 12 : 52 1 . 53 0. 07 0.32 C24 CONDUIT 242. 98 0 13 : 14 0. 79 0. 19 0.45 C25 CONDUIT 28 . 81 0 13 : 12 0. 98 0. 02 0. 13 C26 CONDUIT 263 . 59 0 13 :37 0. 79 0.20 0.46 C27 CONDUIT 233 . 15 0 14 : 11 0. 77 0. 31 0. 59 C3 CONDUIT 22. 96 0 13 : 02 1 .43 0. 01 0. 10 C30 CONDUIT 59. 37 0 14 :42 1 . 17 0 . 02 0. 16 C31 CONDUIT 157.22 0 15 :43 1 .24 0 . 05 0.26 C32 CONDUIT 16.31 0 13 : 00 0. 65 0. 00 0. 03 SWMM 5. 1 212 Page 1 Pelican Lakes PUD - Historic Conditions - 100 Yr - 24 Hour Type 2 Storm Maximum Day of Hour of Maximum Max / Max / IFlowl Maximum Maximum IVelocityl Full Full Link Type CFS Flow Flow ft/sec Flow Depth C33 CONDUIT 44. 85 0 13 :43 1 .28 0. 03 0. 14 C34 CONDUIT 112.56 0 13 : 03 0. 83 0. 03 0. 19 C35 CONDUIT 765. 03 0 12 : 57 1 .40 0.21 0. 50 C39 CONDUIT 540. 80 0 12 : 36 2.28 0. 11 0. 35 C4 CONDUIT 34. 80 0 12 :48 1 . 14 0. 02 0. 14 C40 CONDUIT 188. 82 0 14 :24 1 . 67 0. 04 0.20 C6 CONDUIT 65 .79 0 13 :29 1 .21 0. 02 0. 17 C7 CONDUIT 48 . 36 0 13 : 19 1 . 14 0. 03 0. 18 CE1 CONDUIT 41 .43 0 12 : 15 1 . 69 0. 04 0.26 CE2 CONDUIT 92. 79 0 12 : 34 1 . 93 0. 01 0. 11 CE3 CONDUIT 44. 75 0 12 :26 1 .45 0. 01 0. 09 CE4 CONDUIT 41 . 97 0 12 : 33 1 . 57 0 . 01 0. 08 CE5 CONDUIT 283 .63 0 12 : 35 2 . 89 0. 07 0.24 CE6 CONDUIT 92. 76 0 12 :29 2.23 0. 02 0. 14 CH1 CONDUIT 521 .42 0 12 : 35 3 . 02 0.21 0. 36 CH10 CONDUIT 98. 04 0 12 : 16 1 . 60 0. 03 0. 17 CH1. 1 CONDUIT 32. 93 0 12 :29 0. 66 0. 03 0. 16 CH1.2 CONDUIT 22. 86 0 12 :45 1 . 1.6 0. 03 0. 1.6 CH13 CONDUIT 36. 88 0 12 : 11 1 . 05 0. 02 0. 1. 1 CH14 CONDUIT 28. 64 0 12 :29 0. 89 0. 01 0. 09 CH15 CONDUIT 624.51 0 12 : 53 3 .26 0. 16 0. 39 CH16 CONDUIT 16. 16 0 12 :23 0. 65 0. 02 0. 15 SWMM 5. 1 213 Page 2 Pelican Lakes PUD - Historic Conditions - 100 Yr - 24 Hour Type 2 Storm Maximum Day of Hour of Maximum Max / Max / IFlowl Maximum Maximum IVelocityl Full Full Link Type CFS Flow Flow ft/sec Flow Depth CH17 CONDUIT 27. 71 0 12 : 12 1 . 06 0. 04 0.21 CH18 CONDUIT 24.41 0 12 :20 1 . 74 0. 02 0.20 CH19 CONDUIT 121 .55 0 12 :29 2. 37 0. 13 0. 33 CH2 CONDUIT 47.24 0 12 :23 1 . 64 0. 01 0. 12 CH3 CONDUIT 42. 80 0 12 : 18 1 . 81 0. 02 0. 12 CH4 CONDUIT 210.44 0 12 : 30 3 . 59 0. 10 0. 30 CH5 CONDUIT 33 . 03 0 12 : 10 2. 35 0. 04 0.22 CH6 CONDUIT 46. 69 0 12 : 17 1 . 93 0. 02 0. 13 CH7 CONDUIT 5 . 35 0 12 : 13 0. 61 0. 01 0. 08 CH8 CONDUIT 127.55 0 12 :42 1 . 72 0. 05 0.20 CH9 CONDUIT 41 .75 0 12 : 35 1 . 63 0. 03 0. 16 CN1 CONDUIT 233 .62 0 12 : 30 1 . 97 0. 03 0. 19 CS1 CONDUIT 139.66 0 12 : 35 3 .29 0. 07 0. 32 CS2 CONDUIT 7. 96 0 12 :23 1 .29 0. 05 0.24 SWMM 5. 1 214 Page 3 Pelican Lakes PUD - Historic Conditions - 100 Yr - 24 Hour Type 2 Storm Outfall Loading Summary Flow Avg. Max. Total Freq. Flow Flow Volume Outfall Node Pcnt. CFS CFS 10^6 gal OUT1 90. 94 64. 99 540. 80 38 . 196 OUT2 87. 12 35 . 04 188 . 82 19. 730 OUT3 91 .08 136. 81 765 . 03 80. 523 OUT4 96.49 0.29 7. 96 0. 182 OUTS 91 . 84 1 .39 28 . 64 0. 823 OUT6 96. 11 0. 53 16. 16 0. 331 OUT7 97.26 0. 50 27.71 0. 316 SWMM 5. 1 215 Page 1 DEVELOPED CONDITIONS Pelican Lakes PUD - East Area - South Basins - Developed 100yr 3 Fl ES1 ES2 JS2 JH3 JS1 CS2 OW1 JE1 H4 J2 CE1 CH3 J46 J11 C5 Cl C7 J3 J4 C6 J47 C2 fl68 CH2 J61 JH4 WEIR 9 C8 JH2 - J48 POND_9 H2 C3 JF2 CH4 F2 C4 C9 C10 POND El Jg ES3 - JS3 C74 CS3 J49 WEIR E1 J38 SWMM 5.2 Page 1 Pelican Lakes PUD - East Area - South Basins - Developed 100yr OUTFACE E2 CN2 . 1 WEIR E2 J N2 .2 POND_E2�� JN6 CN8 .2 CN1 NJ8. 1 CN6 JN1 CN2 CN5.2 EN6 EN1 JN2 EN2 JN5 .2 CN4 JN4 EN4 CN5. 1 CN7 CN3. 1 JN3.2 EN7 JN5. 1 CN3 JN3 JN7 EN3 CN5 JN5 EN5 SWMM 5.2 Page 1 I. TERRA FORMA ___e SOLUTIONS Input [ TITLE ] ; ; Project Title /Notes Pelican Lakes POD - East Area - South Basins - Developed 100yr [ OPTIONS ] ; ; Option Value FLOW UNITS CFS INFILTRATION HORTON FLOW_ROUTING KINWAVE LINK_OFFSETS DEPTH MIN SLOPE 0 ALLOW_PONDING NO SKIP_STEADY_S TATE NO START_DATE 06/ 24 /2023 START TIME 00 : 00 : 00 REPORT START DATE 06/ 24 /2023 REPORT START-TIME 00 : 00 : 00 END_DATE 06/ 25 /2023 END TIME 00 : 00 : 00 SWEEP START 01 / 01 SWEEP END 12 / 31 DRY_DAYS 0 REPORT_STEP 00 : 05 : 00 WET_STEP 00 : 05 : 00 DRYSTEP 01 : 00 : 00 ROUTING_STEP 0 : 00 : 30 INERTIAL DAMPING PARTIAL NORMAL_FLOW LIMITED BOTH FORCE MAIN_EQUATION H-W VARIABLE STEP 0 . 75 LENGTHENING STEP 0 MINSURFAREA 12 . 566 NOD TRIALS 12 HEADTOLERANCE 0 . 005 SYS_FLOW_TOL 5 TAT_FLOWSOT 5 MINIMUM STEP 0 . 5 THREADS 1 [ EVAPORATION] ; ; Data Source Parameters . . - ---- -- ------- --- ---- - --- -- --- CONSTANT 0 . 0 DRY_ONLY NO [ RAINDROPS ] ; ; Name Format Interval SOD Source -- - --- ----- - - -- -- - -- ---- - -- -- ----- Doomll0 CUMULATIVE 0 : 06 1 . 0 TIMESERIES Type2 - 10OYr GagelS CUMULATIVE 0 : 06 1 . 0 TIMESERIES Type2 - 10Yr [ SUBCATCHMENTS ] ; ; Name Rain Gage Outlet Area olmpery Width %Slope CurbLen SnowPack - -- -- -- -- -- -- - --- -- -- - --- -- -- - -- -- --- - -- -- --- - -- -- -- -- - -- -- -- - --- -- -- - -- -- -- -- - -- --- -- -- --- -- -- -- -- ENl Gage100 1O1 3 . 89 20 200 3 . 9 0 EN2 Gage100 JN2 2 . 12 20 150 5 . 3 0 EN3 GagelOO JN3 2 . 21 20 50 8 . 3 0 EN4 Gage100 JN4 10 . 86 20 470 3 . 7 0 EN5 Gage100 1O1 3 . 83 20 240 4 . 7 0 EN6 Gage100 JN6 12 . 20 20 440 4 . 8 0 EN7 0005155 101 18 . 20 20 700 5 0 ES1 GagelOO 051 24 . 86 20 910 9 . 1 0 ES2 Gage055 JS2 8 . 88 20 560 7 . 1 0 ES3 Gage100 050 27 . 58 20 790 1 . 1 0 F1 GagelOO JH3 12 . 34 12 . 1 690 5 . 7 0 F2 Gage100 JF2 6 . 86 12 . 1 832 2 . 2 0 H2 Gage100 JH2 63 . 18 2 5729 4 . 8 0 H4 GagelOO 004 255 . 4 2 27335 4 . 9 0 001 GagelOO JE1 48 . 01 2 2475 3 . 9 0 [ SUBAREAS ] ; ; Subeatchment N-Impery N- Peru S- Impery S -Peru PctZero RouteTo PctRouted -- ---- -- -- - ----- -- --- -- -- -- ---- -- ----- --- ------- -- - ---- -- ---- ---- -- ---- - -- ------- EN1 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET EN2 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET EN3 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET EN4 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET EN5 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET 1 :\2024\2404044\Design\Ca [c\Drainage\SWMM\Pelican Lakes_EastArea_Input.docx 1 /27/2025 TERRA FORMA 1e SOLUTIONS Input EN6 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET EN7 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET ES1 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET ES2 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET ES3 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET F1 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET F2 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET H2 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET H4 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET Owl . 011 0 . 13 0 . 05 0 . 2 90 OUTLET [ INFILTRATION ] ; ; Subcatchment MaxRate MinRate Decay DryTime Maxlnfil . . - ------ ------- --- ----- -- -- ------ -- -- --- -- --- ----- -- --- -- -------- EN1 5 1 2 . 52 1 0 EN2 5 1 2 . 52 1 0 EN3 5 1 2 . 52 1 0 EN4 5 1 2 . 52 1 0 EN5 5 1 2 . 52 1 0 EN6 5 1 2 . 52 1 0 EN7 5 1 2 . 52 1 0 ES1 5 1 2 . 52 1 0 ES2 5 1 2 . 52 1 0 ES3 5 1 2 . 52 1 0 Fl 5 1 2 . 52 1 0 F2 5 1 2 . 52 1 0 H2 5 1 2 . 52 1 0 H4 5 1 2 . 52 1 0 Owl 4 . 94 . 95 3 . 01 1 0 [ JUNCTIONS ] ; ; Name Elevation MaxDepth InitDepth SurDepth Aponded - -- -- - --- -- -- - -- - -- -- -- -- - - -- -- --- - -- -- -- -- - -- -- -- -- -- J1l 4829 0 0 0 0 J2 4939 0 0 0 0 J3 4890 0 0 0 0 J38 4821 0 0 0 0 J4 4858 0 0 0 0 J46 4826 0 0 0 0 J47 4822 . 65 0 0 0 0 J48 4820 . 73 0 0 0 0 J49 4825 0 0 0 0 J61 4838 . 6 0 0 0 0 J9 4856 0 0 0 0 JE1 4960 0 0 0 0 JF2 4823 . 7 0 0 0 0 JH2 4918 0 0 0 0 JH3 4858 0 0 0 0 JH4 4934 0 0 0 0 JN1 4838 . 9 0 0 0 0 JN2 4844 . 5 0 0 0 0 JN2 . 2 4838 0 0 0 0 JN3 4851 0 0 0 0 JN3 . 2 4841 0 0 0 0 JN4 4838 . 2 0 0 0 0 JN5 4855 0 0 0 0 JN5 . 1 4844 0 0 0 0 JN5 . 2 4830 0 0 0 0 JN6 4818 0 0 0 0 JN7 4831 . 9 0 0 0 0 JS1 4829 . 5 0 0 0 0 JS2 4847 0 0 0 0 JS3 4827 . 0 0 0 0 0 NJ8 . 1 4815 . 2 0 0 0 0 [ OUTFALLS ] ; ; Name Elevation Type Stage Data Gated Route To . . - ------ ------- --- ----- -- -- ------ -- -- --- -- --------- - ------ - --------- ------- OUTFALL_E2 4814 FREE NO [ STORAGE ] ; ; Name Elev . MaxDepth InitDepth Shape Curve Name / Params N/A Fevap Psi Ksat IMD -- - --- -- -- - -- -- -- -- -- - --- - -- -- -- -- -- -- -- -- - -- -- ---- --- -- -- ---- -- -- -- -- - --- -- - - --- -- -- - - - ----- ---- ---- POND_9 4829 10 0 TABULAR Pond9 Storage 0 0 POND El 4815 9 0 TABULAR PondEl Storage 0 0 POND E2 4803 . 5 7 . 5 0 TABULAR PondE2 Storage 0 0 1 :\2024\2404044\Design\Ca [c\Drainage\SWMM\Pelican Lakes_EastArea_Input.docx 1 /27/2025 I. TERRA FORMA 1e SOLUTIONS Input [ CONDUITS ] ; ; Name From Node To Node Length Roughness InOffset PeCPP2set InitFlow MaxFlow - -- -- -- -- ---- - -- - - - - - - --- -- -- - -- -- --- - -- -- --- - -- -- -- -- -- - -- ---- --- - -- ---- -- - -- -- -- --- - - -- --- -- -- - -- Cl J2 J4 6363 0 . 13 0 0 0 0 210 JF2 POND_El 377 0 . 035 0 0 0 0 CO CO J4 2299 0 . 13 0 0 0 0 Cl J4 CO 573 0 . 13 0 0 0 0 Cl CO POND 9 1782 0 . 045 0 0 0 0 C5 Cli J47 1641 0 . 035 0 0 0 0 CO ill J47 343 0 . 035 0 0 0 0 C68 J61 J47 1113 0 . 035 0 0 0 0 Cl O46 347 581 0 . 035 0 0 0 0 C74 J49 POND_El 1 0 . 035 0 0 0 0 C8 347 J48 300 . 035 0 0 0 0 C9 J48 POND_El 512 . 035 0 0 0 0 CE1 JE1 32 1052 0 . 13 0 0 0 0 CH2 JH2 Cl 2072 0 . 13 0 0 0 0 CH3 JH3 322 1040 0 . 45 0 0 0 0 CH4 JH4 J9 7020 0 . 13 0 0 0 0 CN1 2O1 JN2 . 2 180 . 035 0 0 0 0 CN2 0O2 JN2 . 2 334 0 . 035 0 0 0 0 CN2 . 1 JN2 . 2 JN6 1200 . 030 0 0 0 0 CN3 JN3 JN3 . 2 505 0 . 035 0 0 0 0 CN3 . 1 JN3 . 2 JN4 400 0 . 01 0 0 0 0 CN4 JN4 JN5 . 2 560 0 . 035 0 0 0 0 CN5 JN5 JN5 . 1 298 0 . 035 0 0 0 0 CN5 . 1 JN5 . 1 JN5 . 2 400 0 . 01 0 0 0 0 CN5 . 2 JN5 . 2 JN6 400 0 . 01 0 0 0 0 CN6 JN6 NJ8 . 1 400 0 . 01 0 0 0 0 CN7 5O7 NJ8 . 1 760 0 . 035 0 0 0 0 CN8 . 2 NJ8 . 1 POND E2 400 0 . 01 0 0 0 0 CS2 JS2 J46 400 0 . 035 0 0 0 0 CS3 JS3 J49 600 . 035 0 0 0 0 [ WEIRS ] ; ; Name From Node To Node Type CrestHt Qcoeff Gated EndCon EndCoeff Surcharge RoadWidth RoadSurf . . - -- -- -- -- -- -- - --- -- -- - --- -- -- - -- -- --- - -- -- --- - -- -- -- -- -- -- - -- -- --- -- - -- -- -- -- - -- -- --- - - -- --- -- - -- --- • - -- --- ------ - --- ----- -- -- -- ---- -- WEIRS POND_9 J61 TRANSVERSE 9 . 66 3 . 33 NO 0 0 YES WEIR_El POND_El J38 TRANSVERSE 7 ..5 3 . 00 NO 0 0 YES WEIR_E2 POND_E2 OUTFALL_E2 TRANSVERSE 10 3. . 33• NO 0 0 YES [ XSECTIONS ] ; ; Link Shape Geoml Geom2 Geom3 Geom4 Barrels Culvert . . - ------ ------- --- ----- --- - ------ ----- --- -- ---------- ----- ----- ----- ----- -- -- ------ -- -- --- --- Cl TRAPEZOIDAL 5 35 19 18 1 C10 TRAPEZOIDAL 2 60 35 50 1 C2 TRAPEZOIDAL 5 35 26 22 1 C3 TRAPEZOIDAL 5 35 19 18 1 C4 TRAPEZOIDAL 4 8 4 4 1 C5 TRAPEZOIDAL 4 8 4 4 1 C6 TRAPEZOIDAL 4 10 4 4 1 C68 TRAPEZOIDAL 4 8 4 4 1 C7 TRAPEZOIDAL 4 10 4 4 1 C74 TRAPEZOIDAL 3 16 4 4 1 C8 TRAPEZOIDAL 4 10 4 4 1 C9 TRAPEZOIDAL 4 10 4 4 1 CE1 TRAPEZOIDAL 5 4 25 4 1 CH2 TRAPEZOIDAL 5 50 50 30 1 CH3 TRAPEZOIDAL 5 2 4 4 1 CH4 TRAPEZOIDAL 5 35 19 18 1 CNl TRIANGULAR 2 16 0 0 1 CN2 TRIANGULAR 2 16 0 0 1 CN2 . 1 TRIANGULAR 2 16 0 0 1 CN3 TRIANGULAR 2 16 0 0 1 CN3 . 1 DUMMY 0 0 0 0 1 CN4 TRIANGULAR 2 16 0 0 1 CN5 TRIANGULAR 2 16 0 0 1 CN5 . 1 DUMMY 0 0 0 0 1 CN5 . 2 DUMMY 0 0 0 0 1 CN6 DUMMY 0 0 0 0 1 CN7 TRAPEZOIDAL 3 150 4 4 1 CN8 . 2 DUMMY 0 0 0 0 1 CS2 TRIANGULAR 2 . 5 20 0 0 1 1 :\2024\2404044\Design\Ca [c\Drainage\SWMM\Pelican Lakes_EastArea_Input.docx 1 /27/2025 TERRA FORMA 1e SOLUTIONS Input CS3 TRAPEZOIDAL 4 12 50 50 1 WEIRS RECTOPEN . 2 100 4 4 WEIR El RECTOPEN 1 70 100 100 WEIR_E2 RECT_OPEN 1 50 0 0 [ CURVES ] ; ; Name Type X-Value Y-Value - -- -- ----- --- -- --- -- -- ------ -- -- ----- --- ; Pond El PondEl Storage Storage 0 52911 PondEl Storage 1 56890 PondEl Storage 2 60976 PondEl Storage 3 65162 PondEl Storage 4 69462 PondEl Storage 5 74897 PondEl Storage 6 87889 PondEl Storage 7 105336 PondEl Storage 8 125329 PondEl Storage 9 145853 ; Pond E2 PondE2 Storage Storage 0 46095 PondE2 Storage 0 . 5 47989 PondE2 Storage 1 . 5 51872 PondE2 Storage 2 . 5 55886 PondE2 Storage 3 . 5 60028 PondE2 Storage 4 . 5 64300 PondE2 Storage 5 . 5 68702 PondE2 Storage 6 . 5 73232 PondE2 Storage 7 . 5 77892 ; Pond F9 Pond9 Storage Storage 0 181302 Pond9 Storage 1 191759 Pond9 Storage 2 202347 Pond9 Storage 3 215667 Pond9 Storage 4 229547 Pond9 Storage 5 241859 Pond9 Storage 6 254194 Pond9 Storage 7 266790 Pond9 Storage 8 279582 Pond9 Storage 9 292738 Pond9 Storage 10 305399 [ REPORT ] ; ; Reporting Options INPUT NO CONTROLS NO SUBCATCBMENTS ALL NODES ALL LINKS ALL [ TAGS ] [ MAP] DIMENSIONS -4689 . 394 0 . 000 14689 . 394 10000 . 000 Units None [ SYMBOLS ] ; ; Gage X-Coord Y-Coord . . - -- -- -- ------ -- -- -- -- ------ - --- ----- ----- -- -- - ----- - -- -- ------- - ' ' 8711 . 712 7927 . 928 Gagell 9629 . 377 8056 . 346 1 :\2024\2404044\Design\Ca [c\Drainage\SWMM\Pelican Lakes_EastArea_Input.docx 1 /27/2025 I. TERRA FORMA SOLUTIONS 100-Year Results EPA STORM WATER MANAGEMENT MODEL - VERSION 5 . 1 (Build 5 . 1 . 012 ) - -- -- -- -- ---- -- --- -- --- --- -- -- -- -- -- --- - -- -- --- ---- -- -- -- ---- - Pelican Lakes PUD - East Area - South Basins - Developed 100yr WARNING 08 : elevation drop exceeds length for Conduit C74 WARNING 10 : crest elevation raised to downstream invert for regulator Link WEIR E2 * ** * * * * ** * * ** * * ** * ** * * * ** * ** ** * * * * ** * ** * * * ** o** * * ** * * ** ** NOTE :NOTE : The summary statistics displayed in this report are based on results found at every computational time step , not just on results from each reporting time step . * * * ** * * * * * * * * * r * Analysis Options Flow Units . . . . . . . . . . . . . . . IFS Process Models : Rainfall/Runoff . . . . . . . . YES RDII . . . . . . . . . . . . . . . . . . . NO Snowmelt . . . . . . . . . . . . . . . NO Groundwater . . . . . . . . . . . . NO Flow Routing . . . . . . . . . . . YES Ponding Allowed . . . . . . . . NO Water Quality . . . . . . . . . . NO Infiltration Method . . . . . . HORTON Flow Routing Method . . . . . . KINWAVE Starting Date . . . . . . . . . . . . 06/ 24 /2023 00 : 00 : 00 Ending Date . . . . . . . . . . . . . . 06/ 25 /2023 00 : 00 : 00 Antecedent Dry Days . . . . . . 0 . 0 Report Time Step . . . . . . . . . 00 : 05 : 00 Wet Time Step . . . . . . . . . . . . 00 : 05 : 00 Dry Time Step . . . . . . . . . . . . 01 : 00 : 00 Routing Time Step . . . . . . . . 30 . 00 sec * ** * * ** ** * * * * * * ** * ** * * * ** * Volume Depth Runoff Quantity Continuity acre- feet inches Total Precipitation . . . . . . 193 . 283 4 . 635 Evaporation Loss . . . . . . . . . 0 . 000 0 . 000 Infiltration Loss . . . . . . . . 167 . 148 4 . 008 Surface Runoff . . . . . . . . . . . 26 . 370 0 . 632 Final Storage . . . . . . . . . . . . 0 . 040 0 . 001 Continuity Error ( 1 ) . . . . . -0 . 142 * ** * * * * * * * * * * ** * * * * * * * * * ** Volume Volume Flow Routing Continuity acre- feet 10 ^ 6 gal -------- - Dry Weather Inflow . . . . . . . 0 . 000 0 . 000 Wet Weather Inflow . . . . . . . 26 . 530 8 . 645 Groundwater Inflow . . . . . . . 0 . 000 0 . 000 RDII Inflow . . . . . . . . . . . . . . 0 . 000 0 . 000 External Inflow . . . . . . . . . . 0 . 000 0 . 000 External Outflow . . . . . . . . . 0 . 000 0 . 000 Flooding Loss . . . . . . . . . . . . 0 . 000 0 . 000 Evaporation Loss . . . . . . . . . 0 . 000 0 . 000 Exfiltration Loss . . . . . . . . 0 . 000 0 . 000 Initial Stored Volume . . . . 0 . 000 0 . 000 Final Stored Volume . . . . . . 41 . 184 13 . 421 Continuity Error ( o ) . . . . . - 55 . 235 Highest Flow Instability Indexes * * r* * * * r* * * ** * * ** rr* * * rr* * ** * r* * Link 154 ( 3 ) Link C4 ( 1 ) * * * * * ** ** * * * * ** ** * ** * * * ** Routing Time Step Summary * * rr* * rr* * * ** * * ** rr* * * rr* Minimum Time Step 30 . 00 sec Average Time Step 30 . 00 sec Maximum Time Step 30 . 00 sec Percent in Steady State 0 . 00 Average Iterations per Step : 1 . 00 J :\2021\2101011\oesigo\Ceta\oreioege\OWMM\letiaeo La kes_EastArea_Results_100. rpt.docx 1 /21/2025 TERRA FORMA SOLUTIONS 100-Year Results Percent Not Converging : 0 . 00 Subcatchment Runoff Summary - ------ -- --------- -- --- ----- ------ -- --- - ---- --- -------- ------ -- --------- -- -------- ------ ----- ------ -- --- Total Total Total Total Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Coeff Subcatchment in in in in in 10 ^ 6 gal CFS - -- -- -- -- ---- -- --- -- --- --- -- -- -- -- -- --- - -- -- --- ---- -- -- -- -- -- -- ---- --- -- -- ---- -- -- -- -- -- --- -- - -- --- -- --- 551 4 . 63 0 . 00 0 . 00 3 . 48 1 . 16 0 . 12 6 . 58 0 . 250 EN2 4 . 63 0 . 00 0 . 00 3 . 43 1 . 21 0 . 07 4 . 29 0 . 262 551 4 . 63 0 . 00 0 . 00 3 . 53 1 . 11 0 . 07 3 . 40 0 . 239 EN4 4 . 63 0 . 00 0 . 00 3 . 50 1 . 13 0 . 33 17 . 47 0 . 245 EN5 4 . 63 0 . 00 0 . 00 3 . 45 1 . 19 0 . 12 7 . 23 0 . 257 ENS 4 . 63 0 . 00 0 . 00 3 . 51 1 . 13 0 . 37 19 . 43 0 . 243 EN7 4 . 63 0 . 00 0 . 00 3 . 50 1 . 14 0 . 56 29 . 48 0 . 245 501 4 . 63 0 . 00 0 . 00 3 . 47 1 . 17 0 . 79 43 . 39 0 . 252 ES2 4 . 63 0 . 00 0 . 00 3 . 42 1 . 22 0 . 29 18 . 16 0 . 262 ES3 4 . 63 0 . 00 0 . 00 3 . 60 1 . 03 0 . 77 37 . 52 0 . 223 Ti 4 . 63 0 . 00 0 . 00 3 . 80 0 . 84 0 . 28 19 . 09 0 . 181 F2 4 . 63 0 . 00 0 . 00 3 . 76 0 . 88 0 . 16 12 . 25 0 . 189 H2 4 . 63 0 . 00 0 . 00 4 . 20 0 . 44 0 . 76 92 . 90 0 . 096 H4 4 . 63 0 . 00 0 . 00 4 . 17 0 . 47 3 . 25 418 . 67 0 . 101 Owl 4 . 63 0 . 00 0 . 00 4 . 15 0 . 49 0 . 64 56 . 78 0 . 105 Node Depth Summary - -- -- -- -- ---- -- --- -- --- --- -- -- -- -- -- --- - -- -- --- ---- -- -- -- -- -- -- ---- --- -- -- ---- -- - Average Maximum Maximum Time of Max Reported Depth Depth HGL Occurrence Max Depth Node Type Feet Feet Feet days hr : min Feet - ------ -- --------- -- -- - --- -- ---- -- -- --- - -- -- --- -------- ---- -- -- --------- -- ------- ill JUNCTION 0 . 31 1 . 98 483.0 . 98 0 12 : 17 1 . 96 J2 JUNCTION 0 . 11 1 . 34 4940 . 34 0 12 : 15 1 . 34 J3 JUNCTION 0 . 06 0 . 86 4890 . 86 0 12 : 23 0 . 86 J38 JUNCTION 0 . 00 0 . 00 4821 . 00 0 00 : 00 0 . 00 J4 JUNCTION 0 . 18 1 . 39 4859 . 39 0 12 : 51 1 . 39 J46 JUNCTION 0 . 17 0 . 90 4826 . 90 0 12 : 07 0 . 88 J47 JUNCTION 0 . 14 1 . 29 4823 . 94 0 12 : 11 1 . 29 J48 JUNCTION 0 . 14 1 . 29 4822 . 02 0 12 : 12 1 . 26 J49 JUNCTION 0 . 10 0 . 63 4825 . 63 0 12 : 08 0 . 63 J61 JUNCTION 0 . 00 0 . 00 4838 . 60 0 00 : 00 0 . 00 Cl JUNCTION 0 . 30 2 . 32 4858 . 32 0 12 : 35 2 . 32 JE1 JUNCTION 0 . 11 1 . 53 4961 . 53 0 12 : 06 1 . 46 JF2 JUNCTION 0 . 01 0 . 12 4823 . 82 0 12 : 06 0 . 12 JH2 JUNCTION 0 . 04 1 . 00 4919 . 00 0 12 : 06 0 . 94 JH3 JUNCTION 0 . 31 2 . 45 4860 . 45 0 12 : 06 2 . 39 JH4 JUNCTION 0 . 12 2 . 78 4936 . 78 0 12 : 06 2 . 65 JN1 JUNCTION 0 . 20 0 . 96 4839 . 86 0 12 : 06 0 . 94 JN2 JUNCTION 0 . 12 0 . 63 4845 . 13 0 12 : 06 0 . 62 JN2 . 2 JUNCTION 0 . 20 0 . 95 4838 . 95 0 12 : 07 0 . 95 JN3 JUNCTION 0 . 12 0 . 58 4851 . 58 0 12 : 00 0 . 57 JN3 . 2 JUNCTION 0 . 12 0 . 57 4841 . 57 0 12 : 04 0 . 57 JN4 JUNCTION 0 . 25 1 . 19 4839 . 39 0 12 : 01 1 . 18 JN5 JUNCTION 0 . 14 0 . 68 4855 . 68 0 12 : 06 0 . 67 JN5 . 1 JUNCTION 0 . 13 0 . 68 4844 . 68 0 12 : 07 0 . 67 JN5 . 2 JUNCTION 0 . 25 1 . 19 4831 . 19 0 12 : 07 1 . 19 JN6 JUNCTION 0 . 17 0 . 86 4818 . 86 0 12 : 09 0 . 86 JN7 JUNCTION 0 . 01 0 . 12 4832 . 02 0 12 : 00 0 . 12 JS1 JUNCTION 0 . 13 1 . 28 4830 . 78 0 12 : 06 1 . 26 JS2 JUNCTION 0 . 17 0 . 90 4847 . 90 0 12 : 06 0 . 89 JS3 JUNCTION 0 . 10 0 . 65 4827 . 65 0 12 : 00 0 . 65 NJ8 . 1 JUNCTION 0 . 01 0 . 12 4815 . 32 0 12 : 08 0 . 12 OUTFALL E2 OUTFALL 0 . 00 0 . 00 4814 . 00 0 00 : 00 0 . 00 POND 9 STORAGE 2 . 47 5 . 74 4834 . 74 1 00 : 00 5 . 74 POND E1 STORAGE 2 . 39 4 . 87 4819 . 87 1 00 : 00 4 . 87 POND_E2 STORAGE 2 . 03 4 . 08 4807 . 58 1 00 : 00 4 . 08 J :\kkkP\kCkPkPP\Paaigo\Cata\Praioaga\PWMM\katiaao La kes_EastArea_Results_100. rpt.docx 1/k7/1I15 I. TERRA FORMA SOLUTIONS 100-Year Results * ** * * * * ** * * ** * * ** * * Node Inflow Summary - ---- -- ---- ---- --- ---- - --- -- ------ ----- ----- --------- -- ------ ----------- -------- -- ------ ----- ---- Maximum Maximum Lateral Total Flow Lateral Total Time of Max Inflow Inflow Balance Inflow Inflow Occurrence Volume Volume Error Node Type CFS CFS days hr : min 10 ^ 6 gal 10 ^ 6 gal Percent - -- ---- ------ -- --- ----- --- -- -- ---- ----- - -- -- ------- -- -- -- ---- ------ ----- ------ -- -- -- ---- --- -- - -- - J11 JUNCTION 0 . 00 11 . 37 0 12 : 17 0 0 . 29 0 . 000 J2 JUNCTION 0 . 00 41 . 31 0 12 : 15 0 0 . 656 0 . 000 J3 JUNCTION 0 . 00 47 . 48 0 12 : 23 0 1 . 02 0 . 000 J38 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J4 JUNCTION 0 . 00 55 . 93 0 12 : 51 0 2 . 46 0 . 000 J46 JUNCTION 0 . 00 18 . 00 0 12 : 07 0 0 . 294 0 . 000 O47 JUNCTION 0 . 00 64 . 50 0 12 : 11 0 1 . 37 0 . 000 J48 JUNCTION 0 . 00 64 . 41 0 12 : 12 0 1 . 36 0 . 000 J49 JUNCTION 0 . 00 34 . 53 0 12 : 08 0 0 . 77 0 . 000 J61 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J9 JUNCTION 0 . 00 211 . 73 0 12 : 35 0 9 . 19 0 . 000 JEl JUNCTION 56 . 78 56 . 78 0 12 : 06 0 . 639 0 . 639 0 . 000 JF2 JUNCTION 12 . 25 12 . 25 0 12 : 06 0 . 164 0 . 164 0 . 000 JH2 JUNCTION 92 . 90 92 . 90 0 12 : 06 0 . 767 0 . 767 0 . 000 002 JUNCTION 19 . 09 19 . 09 0 12 : 06 0 . 281 0 . 281 0 . 000 JH4 JUNCTION 418 . 67 418 . 67 0 12 : 06 3 . 28 3 . 28 0 . 000 JN1 JUNCTION 6 . 58 6 . 58 0 12 : 06 0 . 122 0 . 122 0 . 000 052 JUNCTION 4 . 29 4 . 29 0 12 : 06 0 . 07 0 . 07 0 . 000 JN2 . 2 JUNCTION 0 . 00 10 . 77 0 12 : 07 0 0 . 192 0 . 000 000 JUNCTION 3 . 40 3 . 40 0 12 : 00 0 . 0665 0 . 0665 0 . 000 JN3 . 2 JUNCTION 0 . 00 3 . 25 0 12 : 04 0 0 . 0664 0 . 000 JN4 JUNCTION 17 . 47 20 . 32 0 12 : 01 0 . 335 0 . 401 0 . 000 JN5 JUNCTION 7 . 23 7 . 23 0 12 : 06 0 . 124 0 . 124 0 . 000 JN5 . 1 JUNCTION 0 . 00 7 . 17 0 12 : 07 0 0 . 124 0 . 000 JN5 . 2 JUNCTION 0 . 00 27 . 39 0 12 : 07 0 0 . 525 0 . 000 JN6 JUNCTION 19 . 43 55 . 29 0 12 : 06 0 . 374 1 . 09 0 . 000 JN7 JUNCTION 29 . 48 29 . 48 0 12 : 00 0 . 563 0 . 563 0 . 000 051 JUNCTION 43. . 39 43 . 3.9 0 12 : 06 0 . 789 0 . 789 0 . 000 052 JUNCTION 18 . 16 18 . 16 0 12 : 06 0 . 294 0 . 294 0 . 000 O50 JUNCTION 37 . 52 37 . 52 0 12 : 00 0 . 774 0 . 774 0 . 000 NJ8 . 1 JUNCTION 0 . 00 82 . 22 0 12 : 07 0 1 . 65 0 . 000 JUTFALLE2 OUTFALL 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal PONDS STORAGE 0 . 00 210 . 52 0 12 : 38 0 9 . 22 0 . 000 POND E1 STORAGE 0 . 00 101 . 85 0 12 : 11 0 2 . 3 -0 . 000 POND_E2 STORAGE 0 . 00 82 . 22 0 12 : 07 0 1 . 65 -0 . 000 * ** * * * * * * * * ** * * * * * * * * Node Flooding Summary * * * * * * * ** * * * * * * ** * ** * Na nodes were flooded . * ** * * * * ** * * ** * * ** * ** * * Storage Volume Summary - ---- -- ---- ---- --- ----- --- -- ------ ----- --- -- --------- -- ------ ----------- -------- -- ------ --- -- --- -- Average Avg Evap Exfil Maximum Max Time of Max Maximum Volume Pont Pont Pcnt Volume Pont Occurrence Outflow Storage Unit 1000 ft3 Full Loss Loss 1000 ft3 Full days hr : min CFS - -- -- -- -- -- -- -- --- -- -- - --- -- -- -- -- -- --- - -- -- --- -- -- -- -- -- -- -- -- -- -- --- -- -- -- -- -- -- -- -- -- --- -- - -- -- POND9 524 . 729 22 0 0 1232 . 065 51 1 00 : 00 0 . 00 PONDE1 147 . 112 20 0 0 306 . 896 41 1 00 : 00 0 . 00 POND_E2 107 . 834 23 0 0 220 . 537 48 1 00 : 00 0 . 00 * ** * * * * ** * * * * * * ** * ** * * * Outfall Loading Summary * * * * * * * * * * * * * * * * * * * * * * * - -- -- -- -- -- -- -- --- -- --- --- -- -- -- -- -- --- - -- -- --- ---- -- -- -- -- Flow Avg Max Total Freq Flow Flow Volume outfall Node Pont CFS CFS 10 ^ 6 gal - -- -- -- ------ ----- ----- --- -- -- ---- ----- - -- -- ----------- -- -- OUTFALL_E2 0 . 00 0 . 00 0 . 00 0 . 000 System 0 . 00 0 . 00 0 . 00 0 . 000 J :\0000\0000000\005ig0\COIC\0r0i00g0\OWMM\0atiCao La kes_EastArea_Results_100. rpt.docx 1 /27/2025 I. TERRA FORMA - SOLUTIONS 100-Year Results * * * * * * * * * * * * * * * * * * * * Link Flow Summary * * * * * * * ** * * * * * * ** * ** - -- -- ---- -- -- ------- -- ------ -- -- ---- --- - ---- --- -- -- ---- -- -- ---- -- ----- ---- -- - Maximum Time of Max Maximum Max! Max ! IFlowl Occurrence IVelocl Full Full Link Type CFS days hr : min ft/ sec Flow Depth - -- ---- ------ -- --- ----- --- -- -- ---- ----- - -- -- ------- -- -- -- ---- ------ ----- ----- Cl CONDUIT 22 . 97 0 13 : 02 1 . 43 0 . 01 0 . 10 C10 CONDUIT 11 . 83 0 12 : 08 1 . 59 0 . 01 0 . 06 Cl CONDUIT 34 . 87 0 12 : 48 1 . 14 0 . 02 0 . 14 C3 CONDUIT 54 . 16 0 13 : 04 0 . 68 0 . 06 0 . 27 C4 CONDUIT 210 . 52 0 12 : 38 5 . 33 0 . 31 0 . 58 C5 CONDUIT 41 . 24 0 12 : 10 3 . 20 0 . 09 0 . 30 C6 CONDUIT 11 . 33 0 12 : 18 2 . 72 0 . 01 0 . 09 C68 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C7 CONDUIT 17 . 81 0 12 : 08 2 . 36 0 . 03 0 . 16 C74 CONDUIT 34 . 53 0 12 : 08 25 . 30 0 . 00 0 . 03 C8 CONDUIT 64 . 41 0 12 : 12 3 . 33 0 . 10 0 . 32 C9 CONDUIT 63 . 77 0 12 : 13 4 . 06 0 . 08 0 . 28 CEl CONDUIT 41 . 31 0 12 : 15 1 . 69 0 . 04 0 . 26 CH2 CONDUIT 47 . 48 0 12 : 23 1 . 64 0 . 01 0 . 13 CH3 CONDUIT 11 . 37 0 12 : 17 0 . 95 0 . 10 0 . 38 CH4 CONDUIT 207 . 78 0 12 : 29 3 . 42 0 . 13 0 . 34 CN1 CONDUIT 6 . 54 0 12 : 07 1 . 86 0 . 14 0 . 48 CN2 CONDUIT 4 . 24 0 12 : 07 2 . 82 0 . 05 0 . 31 CN2 . 1 CONDUIT 10 . 64 0 12 : 09 4 . 20 0 . 11 0 . 43 CN3 CONDUIT 3 . 25 0 12 : 04 2 . 77 0 . 03 0 . 28 CN3 . 1 DUMMY 3 . 25 0 12 : 04 CN4 CONDUIT 20 . 26 0 12 : 07 3 . 77 0 . 25 0 . 59 CN5 CONDUIT 7 . 17 0 12 : 07 4 . 00 0 . 06 0 . 34 CN5 . 1 DUMMY 7 . 17 0 12 : 07 CN5 . 2 DUMMY 27 . 39 0 12 : 07 CN6 DUMMY 55 . 29 0 12 : 06 CN7 CONDUIT 28 . 90 0 12 : 08 1 . 80 0 . 00 0 . 04 CN8 . 2 DUMMY 82 . 22 0 12 : 07 CS2 CONDUIT 18 . 00 0 12 : 07 5 . 74 0 . 07 0 . 36 CS3 CONDUIT 34 . 53 0 12 : 08 1 . 58 0 . 01 0 . 15 WEIR9 WEIR 0 . 00 0 00 : 00 0 . 00 WEIR El WEIR 0 . 00 0 00 : 00 0 . 00 WEIR_E2 WEIR 0 . 00 0 00 : 00 0 . 00 * ** * * * * ** * * * * * * ** * ** * * * ** Conduit Surcharge Summary * * * * * * * * * * * * * * * * * * * * * * * * * No conduits were surcharged . Analysis begun on : Mon Jan 27 14 : 27 : 31 2025 Analysis ended on : Mon Jan 27 14 : 27 : 31 2025 Total elapsed time : < 1 sec J :\2023\ldOdOdd\oaoigo\Cata\oraioaga\OWMM\oatiaao La kes_EastArea_Results_100. rpt.docx 1 /23/2025 Pelican Lakes PUD - West Area - Developed 100 Yr FI PONDII EIR_11 J75 F1 - 11 J76 F1 -3 FIPOND2 AlWW::::IIC 83 J74 I/ C84 C30 J77 WEIR_ W14 2 FIPOND3 020 F1 -2 0102 C82 r C86 J24 JE2 CE2 J21 WEIR 3 J91 FIPONDI OW2 022 JW14 J79 J23 Gage100 021 + C85 WEIR_1 Gage 10 /JO C87 046 CH18 J78 W11 JH18 F1 1 J80 J22 0W3 H18 J67 CE3 C88 714 WEIR-4 JE3 FIPOND8 W12 POND_4 F1 -8 JW11 JW13 C 89 81 82 080 25 J E4 CE4 J83 JW4 W4 WEIR_8 C66 J62 C94 JPOND2 C73 C25 C91 J47 JW6a J84 C92 022 0W4 JW6b .1 067 JW 15 J39 or C48 CW6aC1JW6b C90 C57 W2a W15 CH9 •' 0W66.1 J41 042 W2 JW2 JW2a J4 or C27 W6b C68 W2a J2 JW12 CW2a JW6 W6 J29 E5 C79 C98 POND_W1 C54 C64 J89 C97 J44 056 JW10 JH15 C65 J4& 47 C96 WEIR_W1 J42 J52 J53 W10 H15 CES J26 023 CWIb 041 042 J88 OW5 CWI r CH 10 / JW14 C53 C55 JW1 JWIa CW3a J123 ii 021 J50 W3a WIb W3a 133 W2a 078 W1 J49 C99 JW2a J5 OUT9 • Wia C50 JW552 J70 C76 JW3 CW3b JW3b JW8 C60 C 147 J 136 POND_W3 022 W34 C146 OUT10 J68 69 074 WEIR_W3 S21 W16 W5 W3 Si W8 S12 S11 OS1 UI /::;;J1 OW2 JE6 JS1 JW16 JS72 JS21 J32 CE6 S11 JS112 JS8 CS11 CS21 C69 C7CCWI6 J21 POND S1 WEIR S1 J87 54 53 CS112 CS12 S14 095 C1 JS2 JS4 S3 JS122 S10 S8 JS8.1 S9 J021 .1 S22 r S12 JS14 S2 C77 C103 C1 4 S13 !2 .1 JS9 1 JS22 JS15 J92 JS10 [ __0 $6 105 S5 CS122 CS CS21 . CS22 S 19 a J SS J P2.1 S23 S1a JS6 C1IECSJ S12 • JS222 C138 JS1a JS19a J122 0109 106 JS13 4114 J 127 C107 POND PP CS1a S1 J122 0123 C134 J113 JS23 S16 JS1614L C 125 CS22.2 J S16 0139 J131 PON D_S3 97 C140 C137 S18 WEIR_S2 C120 J125 0145 C141 r C143 C111 J126 POND S4 1S19 .1 - S1g JS199 0122 C102 JS192 CS20 .1 C136 C 127 1112 JS20 .1 WEIR S4 JS17 0112 S17 WEIR S3 C113 CS20 J S20 J100 20 t ::I::: !!EI1 SWMM 5. 2 Page 1 I. TERRA FORMA ___e SOLUTIONS Input [ TITLE ] ; ; Project Title /Notes Pelican Lakes PUD - West Area - Developed 100 Yr [ OPTIONS ] ; ; Option Value FLOW UNITS CFS INFILTRATION HORTON FLOW_ROUTING KINWAVE LINK_OFFSETS DEPTH MIN_SLOPE 0 ALLOWPONDING NO SKI P_STEADY_S TATE NO START_DATE 06/ 24 /2023 START TIME 00 : 00 : 00 REPORT START DATE 06/ 24 /2023 REPORT START-TIME 00 : 00 : 00 END_DATE 06/ 25 /2023 END TIME 00 : 00 : 00 SWEEP START 01 / 01 SWEEP END 12 / 31 DRY_DAYS 0 REPORT_STEP 00 : 05 : 00 WET STEP 00 : 05 : 00 DRY STEP 01 : 00 : 00 ROUTING_STEP 0 : 00 : 30 INERTIAL DAMPING PARTIAL NORMAL_FLOW LIMITED BOTH FORCE MAIN_EQUATION H-W VARIABLE STEP 0 . 75 LENGTHENING STEP 0 MINSURFAREA 12 . 566 MAX_TRIALS 12 HEAD TOLERANCE 0 . 005 TOP FLOWTNT 5 PAT_PLOW TOL 5 MINIMUM STEP 0 . 5 THREADS 1 [ EVAPORATION] ; ; Data Source Parameters . . - ---- -- ------- --- ---- - --- -- --- CONSTANT 0 . 0 TNT TROT NO [ RAINGAGES ] ; ; Name Format Interval SCP Source -- - --- ----- - - -- -- - -- ---- - -- -- ----- Gagel00 CUMULATIVE 0 : 06 1 . 0 TIMESERIES TYPE2 GagelO CUMULATIVE 0 : 06 1 . 0 TIMESERIES Type2 - 10yr [ SUBCATCHMENTS ] ; ; Name Rain Gage Outlet Area oImpery Width %Slope CurbLen SnowPack - -- -- -- -- -- -- - --- -- -- - --- -- -- - -- -- --- - -- -- --- - ---- -- -- - -- -- -- - --- -- -- - -- -- -- -- - -- --- -- -- --- -- -- -- -- F1 - 1 GagelOl J78 103 . 3 12 . 1 4630 3 . 3 0 F1- 11 Gage100 J74 56 . 1 12 . 1 2855 1 . 6 0 Fl -2 GagelOO J76 76 . 4 12 . 1 4835 2 . 5 0 Fl- 3 Gage100 FIPOND3 9 . 6 12 . 1 975 7 0 F1 - 8 Gage100 J81 41 . 6 12 . 1 3354 2 . 7 0 H15 Gage100 JH15 524 . 47 2 45060 6 . 9 0 H18 GagelOO JH18 45 12 . 1 3814 1 . 4 0 001 GagelOO J68 187 2 18683 2 . 7 0 OW2 Gage100 JE2 182 2 9294 2 . 3 0 OW3 Gage100 JE3 66 2 3917 3 0 OW4 GagelOO JE4 80 . 7 2 5462 2 . 3 0 001 Gage100 JE5 590 . 74 2 38083 2 . 2 0 OW6 Gage100 JE6 173 . 92 2 10556 4 . 6 0 11 GagelOO 021 27 . 67 20 380 2 . 8 0 S10 GagelOO JS10 12 . 93 20 250 7 . 9 0 S11 Gage100 JS11 11 . 22 20 428 9 . 2 0 S12 Gage100 JS12 18 . 24 20 348 8 . 7 0 S13 GagelOO JS13 72 . 83 20 715 5 . 5 0 S14 Gage100 0201 22 . 83 20 960 0 . 9 0 S15 Gage100 JS15 23 . 29 20 720 1 . 7 0 S16 Gage100 JS16 2 . 85 20 200 3 . 9 0 S17 GagelOO 0211 29 . 19 20 580 4 . 7 0 S18 GagelOO JS18 12 . 17 20 534 4 . 8 0 S19 Gagel00 JS19 67 . 45 20 980 6 . 7 0 1 :\2024\2404044\Design\Ca [c\Drainage\SWMM\Pelican Lakes_WestArea_Input.docx 1 /27/2025 TERRA FORMA SOLUTIONS Input S19a Gagel00 JS19a 2 . 21 20 195 0 . 5 0 Sla Gagel00 JSla 3 . 70 20 244 0 . 5 0 S2 Gage100 JS2 21 . 99 20 235 4 . 6 0 520 Gagel-00 JS20 60 . 16 20 730 2 . 3 0 S21 Gage100 0121 7 . 12 20 388 6 . 3 0 S22 Gage100 JS22 17 . 11 20 404 10 . 1 0 S23 Gage100 JS23 7 . 02 20 283 6 . 3 0 33 Gage100 000 6 . 31 20 450 3 . 7 0 S4 Gagel00 004 21 . 13 20 460 3 . 7 0 55 Gage100 005 9 . 16 20 300 6 . 8 0 56 Gage100 JS6 26 . 22 20 560 6 . 5 0 S8 Gage100 010 1 . 93 20 20 4 . 4 0 S9 Gage100 001 10 . 40 20 377 4 . 4 0 El Gage100 JW1 11 . 26 20 365 3 . 5 0 W10 Gagel00 0015 18 . 22 20 720 3 . 3 0 W11 Gagell5 TEll 1 . 44 12 . 1 176 2 0 W12 Gagel00 0E12 8 . 06 19 . 44 256 3 . 2 0 W13 Gage100 JW13 13 . 69 10 . 35 490 6 . 2 0 W14 Gage100 0054 179 . 18 9 . 22 1477 6 . 4 0 W15 Gagel00 0015 4 . 66 2 173 7 . 3 0 W16 Gage100 0E16 2 . 35 20 677 0 . 5 0 Wla Gagel00 JWla 10 . 26 20 160 0 . 5 0 Wlb Gage100 JWlb 8 . 61 20 359 0 . 5 0 W2 Gagel00 0E2 32 . 15 7 . 34 990 2 . 5 0 02e Gage100 JW2a 4 . 4 13 . 76 217 0 . 5 0 W3 Gagel00 JW3 15 . 56 20 758 2 . 0 0 W3a Gage100 JW3a 26 . 56 20 850 0 . 5 0 W3b Gagel00 0030 0 . 9 20 125 0 . 5 0 W4 Gage100 0E4 46 . 79 9 . 51 811 2 . 9 0 W5 Gagel00 JW5 36 . 46 14 . 35 635 4 . 9 0 W6 Gage100 JW6 9 . 70 20 465 2 . 4 0 W6a Gagel00 JW6a 23 . 24 10 . 49 376 0 . 5 0 000 Gage100 JW6b 6 . 46 20 382 0 . 5 0 W8 Gage100 LEO 23 . 25 20 500 8 . 7 0 W8a GageTSO JWBa 1 . 11 20 85 4 . 6 0 [ SUBAREAS] ; ; Subcatchment N- Impery N- Peru S- Impery S -Pery PctZero RouteTo PctRouted -- ------- --- ----- -- -- -- ---- -- -- ----- --- --- ---- -- - -- ------ -- -- ------ -- - -- -- -- --- Fl - 1 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET Fl - 11 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET F1 - 2 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET Fl- 3 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET Fl - 8 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET H15 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET H18 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET 001 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET 0E2 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET OW3 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET 0E4 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET OW5 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET OW6 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET Si . 011 0 . 13 0 . 05 0 . 2 90 OUTLET 510 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET 511 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S12 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET 513 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET 514 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S15 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S16 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S17 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET 318 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S19 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S19a . 011 0 . 13 0 . 05 0 . 2 90 OUTLET Sla . 011 0 . 13 0 . 05 0 . 2 90 OUTLET 52 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S20 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S21 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S22 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S23 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET 53 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S4 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET 55 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET $ 6 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET S8 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET 59 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET El . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W10 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W11 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W12 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W13 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET 1 :\2024\2404044\Design\Ca [c\Drainage\SWMM\Pelican Lakes_WestArea_Input.docx 1 /27/2025 TERRA FORMA ie SOLUTIONS Input W14 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W15 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W16 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET Wla . 011 0 . 13 0 . 05 0 . 2 90 OUTLET Wlb . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W2 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W2a . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W3 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W3a . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W3b . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W4 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W5 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W6 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W6a . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W6b . 011 0 . 13 0 . 05 0 . 2 90 OUTLET W8 . 011 0 . 13 0 . 05 0 . 2 90 OUTLET WSa . 011 0 . 13 0 . 05 0 . 2 90 OUTLET [ INFILTRATION ] ; ; Subcatchment MaxRate MinRate Decay DryTime MaxInfil . . - ------ ------- --- ----- -- -- ------ -- -- --- -- --- ----- -- --- -- -------- Fl- 1 5 1 2 . 52 1 0 Fl - 11 5 1 2 . 52 1 0 Fl - 2 5 1 2 . 52 1 0 Fl - 3 5 1 2 . 52 1 0 Fl- 8 5 1 2 . 52 1 0 H15 5 1 2 . 52 1 0 H18 5 1 2 . 52 1 0 021 4 . 97 0 . 97 2 . 77 1 0 002 4 . 93 . 95 3 . 06 1 0 OW3 4 . 93 0 . 94 3 . 09 1 0 004 4 . 94 0 . 98 2 . 74 1 0 OW5 4 . 98 0 . 98 2 . 69 1 0 006 5 1 2 . 52 1 0 Si 5 1 2 . 52 1 0 El0 5 1 2 . 52 1 0 311 5 1 2 . 52 1 0 S12 5 1 2 . 52 1 0 S13 5 1 2 . 52 1 0 S14 5 1 2 . 52 1 0 S15 5 1 2 . 52 1 0 S16 5 1 2 . 52 1 0 Si? 5 1 2 . 52 1 0 S18 5 1 2 . 52 1 0 S19 5 1 2 . 52 1 0 S19a 5 1 2 . 52 1 0 Sla 5 1 2 . 52 1 0 S2 5 1 2 . 52 1 0 S20 5 1 2 . 52 1 0 S21 5 1 2 . 52 1 0 S22 5 1 2 . 52 1 0 S23 5 1 2 . 52 1 0 S3 5 1 2 . 52 1 0 S4 5 1 2 . 52 1 0 S5 5 1 2 . 52 1 0 $ 6 5 1 2 . 52 1 0 S8 5 1 2 . 52 1 0 S9 5 1 2 . 52 1 0 Wl 5 1 2 . 52 1 0 W10 5 1 2 . 52 1 0 W11 S 1 2 . 52 1 0 W12 5 1 2 . 52 1 0 W13 5 1 2 . 52 1 0 W14 5 1 2 . 52 1 0 W15 5 1 2 . 52 1 0 W16 5 1 2 . 52 1 0 Wla 5 1 2 . 52 1 0 Wlb 5 1 2 . 52 1 0 W2 S 1 2 . 52 1 0 W2a 5 1 2 . 52 1 0 W3 5 1 2 . 52 1 0 W3a 5 1 2 . 52 1 0 W3b 5 1 2 . 52 1 0 W4 5 1 2 . 52 1 0 W5 5 1 2 . 52 1 0 W6 S 1 2 . 52 1 0 W6a 5 1 2 . 52 1 0 W6b 5 1 2 . 52 1 0 W8 5 1 2 . 52 1 0 W8a 5 1 2 . 52 1 0 1 :\2024\2404044\Design\Ca [c\Drainage\SWMM\Pelican Lakes_WestArea_Input.docx 1 /27/2025 TERRA FORMA ___e SOLUTIONS Input [ JUNCTIONS ] ; ; Name Elevation MaxDepth InitDepth SurDepth Aponded . . - -- -- -- -- ---- - --- -- --- -- -- -- -- -- -- -- - -- -- --- --- -- -- -- - -- -- ---- -- J126 4862 . 0 0 0 0 0 J100 4896 0 0 0 0 JS19 . 2 4874 . 5 0 0 0 0 J113 4873 . 5 0 0 0 0 J114 4878 0 0 0 0 JS19 . 1 4874 . 7 0 0 0 0 J119 4858 0 0 0 0 J123 4903 0 0 0 0 J125 4862 . 8 0 0 0 0 J127 4898 0 0 0 0 J130 4912 0 0 0 0 J131 4906 0 0 0 0 J133 4927 0 0 0 0 J136 4894 0 0 0 0 J14 4837 0 0 0 0 J2 4900 . 4 0 0 0 0 J21 4936 0 0 0 0 J22 4938 0 0 0 0 J23 4917 0 0 0 0 J24 4913 0 0 0 0 J25 4936 0 0 0 0 J26 4924 0 0 0 0 J29 4880 . 1 0 0 0 0 J32 4931 0 0 0 0 J39 4835 0 0 0 0 J4 4901 0 0 0 0 J41 4879 . 4 0 0 0 0 J42 4883 . 7 0 0 0 0 J44 4886 . 5 0 0 0 0 J46 4912 . 5 0 0 0 0 J47 4914 . 6 0 0 0 0 J49 4898 . 75 0 0 0 0 J5 4890 0 0 0 0 J50 4887 . 6 0 0 0 0 J52 4881 . 7 0 0 0 0 J53 4881 . 0 0 0 0 0 J62 4894 0 0 0 0 J67 4839 . 0 0 0 0 0 J68 4900 0 0 0 0 J69 4824 0 0 0 0 J70 4807 0 0 0 0 J71 4915 . 6 0 0 0 0 J74 4923 . 5 0 0 0 0 J75 4904 . 50 0 0 0 0 J76 4894 . 5 0 0 0 0 J77 4887 . 2 0 0 0 0 J78 4925 0 0 0 0 J79 4899 . 8 0 0 0 0 J80 4856 0 0 0 0 J81 4910 0 0 0 0 J82 4892 . 5 0 0 0 0 J83 4921 0 0 0 0 J84 4877 . 84 0 0 0 0 J87 4921 0 0 0 0 J88 4890 . 3 0 0 0 0 J89 4890 . 7 0 0 0 0 J91 4887 . 5 0 0 0 0 J92 4889 . 1 0 0 0 0 J97 4894 . 5 0 0 0 0 JE2 5015 0 0 0 0 JE3 5010 0 0 0 0 JE4 5020 0 0 0 0 JE5 5020 0 0 0 0 JE6 5030 0 0 0 0 JH15 4877 0 0 0 0 JH18 4942 0 0 0 0 JPOND2 4836 . 37 0 0 0 0 ill 4949 . 3 0 0 0 0 P316 4917 . 6 0 0 0 0 P346 . 1 4894 0 0 0 0 toll 4902 . 5 0 0 0 0 JS11 . 2 4902 . 1 0 0 0 0 JS12 4915 . 9 0 0 0 0 JS12 . 2 4886 . 5 0 0 0 0 JS13 4907 . 5 0 0 0 0 JS14 4930 . 5 0 0 0 0 JS15 4954 0 0 0 0 JS16 4923 . 4 0 0 0 0 1 :\2024\2404044\Design\Ca [c\Drainage\SWMM\Pelican Lakes_WestArea_Input.docx 1 /27/2025 TERRA FORMA __ e SOLUTIONS Input JS17 4912 . 9 0 0 0 0 JS18 4946 0 0 0 0 JS19 4927 0 0 0 0 JS19a 4930 . 8 0 0 0 0 JSla 4933 . 2 0 0 0 0 JS2 4939 0 0 0 0 JS20 4904 . 6 0 0 0 0 JS21 4903 . 3 0 0 0 0 JS21 . 1 4902 . 9 0 0 0 0 JS22 4898 . 5 0 0 0 0 JS22 . 2 4860 0 0 0 0 JS23 4899 . 7 0 0 0 0 JS3 4907 . 8 0 0 0 0 JS4 4923 0 0 0 0 JS5 4905 . 7 0 0 0 0 JS6 4937 . 6 0 0 0 0 JS8 4913 . 5 0 0 0 0 JS8 . 1 4912 0 0 0 0 JS9 4902 . 7 0 0 0 0 JS9 . 1 4902 . 3 0 0 0 0 JW1 4918 0 0 0 0 JW10 4900 . 7 0 0 0 0 JWll 4894 . 5 0 0 0 0 JW12 4898 . 6 0 0 0 0 JW13 4884 . 1 0 0 0 0 JW14 4891 . 2 0 0 0 0 JW15 4898 . 7 0 0 0 0 Jw16 4920 . 4 0 0 0 0 Jwla 4927 . 3 0 0 0 0 JWlb 4930 . 9 0 0 0 0 JW2 4937 0 0 0 0 JW2a 4923 . 1 0 0 0 0 JW3 4923 0 0 0 0 Jw3a 4908 . 7 0 0 0 0 JW3b 4923 . 3 0 0 0 0 JW4 4921 . 4 0 0 0 0 JW5 4910 0 0 0 0 JW6 4887 . 9 0 0 0 0 JW6a 4911 . 6 0 0 0 0 JW6b 4907 . 3 0 0 0 0 JW6b . l 4895 0 0 0 0 JW8 4909 . 8 0 0 0 0 JwSa 4895 . 3 0 0 0 0 7020 . 1 4866 0 0 0 0 [ OUTFALLS ] ; ; Name Elevation Type Stage Data Gated Route To --- -- -- - -- -- -- -- -- -- -- - -- -- --- - - -- -- - -- -- -- - -- -- --- -- -- -- -- - OUT - 4803 FREE NO OUT10 4897 FREE NO [ STORAGE ] ; ; Name Elev . MaxDepth InitDepth Shape Curve Name /Params N/A Fevap Psi Ksat IMD -- ------ - --- -- - - - - - -- -- -- -- ---- - -- -- -- ---- -- -- -- - -- -- ---- --- -- -- ---- -- -- -- -- - --- -- - - --- ----- F1POND1 4892 . 5 7 . 5 0 TABULAR FIPOND1 0 0 FlPOND11 4894 11 0 TABULAR FlPOND11 0 0 FIPOND2 4881 6 . 4 0 TABULAR FIPOND2 0 0 FIPOND3 4884 4 0 TABULAR FIPOND3 0 0 FIPOND8 4886 7 0 TABULAR FIPONDO 0 0 POND 4 4831 . 0 9 0 TABULAR Pond4 Storage 0 0 POND 01 4915 6 0 TABULAR PondSiStorage 0 0 POND 02 4887 8 0 TABULAR PondS2 Storage 0 0 POND S3 4889 7 0 TABULAR PondS3 Storage 0 0 POND 04 4854 7 0 TABULAR PondS4 Storage 0 0 POND NO 4884 . 5 9 . 5 0 TABULAR PondWlStorage 0 0 POND_W3 4891 6 0 TABULAR PondW3 Storage 0 0 [ CONDUITS ] ; ; Name From Node To Node Length Roughness InOffset OutOffset InitFlow MaxFlow . . - -- ---- -- - - -- - - - - - - - - - --- -- -- - -- -- --- - -- -- --- - L130 J126 POND 04 5 0 . 01 0 0 0 0 C100 714 POND 4 96 . 3 0 . 035 0 0 0 0 C102 777 FIPOND3 306 0 . 13 0 0 0 0 C103 JS4 J92 2121 0 . 035 0 0 0 0 C104 JS3 792 480 0 . 035 0 0 0 0 C105 JS5 J92 385 0 . 035 0 0 0 0 C106 J92 POND_S2 15 . 035 0 0 0 0 1 :\2024\2404044\Design\Ca [c\Drainage\SWMM\Pelican Lakes_WestArea_Input.docx 1 /27/2025 TERRA FORMA SOLUTIONS Input C107 066 POND S2 1766 0 . 035 0 0 0 0 C108 Oslo POND 63 1594 0 . 13 0 0 0 0 C109 3314 0107 2027 0 . 035 0 0 0 0 0014 JS2 POND Sl 1161 0 . 035 0 0 0 0 0711 J97 0125 4563 0 . 035 0 0 0 0 C112 JS19 . 2 0133 . 1 1524 0 . 033 0 0 0 0 C113 0100 JS19 . 2 3580 0 . 035 0 0 0 0 C119 0617 0110 . 1 1240 0 . 035 0 0 0 0 C120 0113 J125 1483 0 . 035 0 0 0 0 C123 0613 0114 2684 0 . 13 0 0 0 0 C125 J114 J113 686 0 . 035 0 0 0 0 C127 0S11 . 1 0519 . 2 56 . 013 0 0 0 0 C133 0123 J50 1100 0 . 035 0 0 0 0 C134 0010 . 1 0113 871 0 . 035 0 0 0 0 C135 J125 J126 71 . 013 0 0 0 0 0137 J127 PONDS3 131 0 . 013 0 0 0 0 C138 0615 J130 1439 0 . 035 0 0 0 0 C139 J130 J131 648 0 . 035 0 0 0 0 C140 0516 J131 1023 0 . 035 0 0 0 0 C141 J131 PONDS3 868 0 . 035 0 0 0 0 C142 0113 J133 590 0 . 035 0 0 0 0 C143 J133 0005 . 1 3595 0 . 035 0 0 0 0 C145 0656 5000 51 1344 0 . 13 0 0 0 0 C146 J136 POND W3 288 0 . 035 0 0 0 0 C147 JWSa J136 83 0 . 035 0 0 0 0 C20 021 074 1103 0 . 13 0 0 0 0 C21 J22 024 1904 0 . 13 0 0 0 0 C22 J23 024 250 0 . 13 0 0 0 0 C23 J26 J46 435 . 035 0 0 0 0 C25 J25 J83 947 0 . 13 0 0 0 0 C27 J29 041 163 . 9 . 013 0 0 0 0 C30 J24 01800011 617 0 . 13 0 0 0 0 C41 044 J42 1283 . 035 0 0 0 0 C42 042 J52 967 0 . 035 0 0 0 0 C46 0014 080 2103 0 . 13 0 0 0 0 C47 046 J89 972 . 035 0 0 0 0 C48 002 J83 1960 0 . 13 0 0 0 0 C49 047 J2 760 . 035 0 0 0 0 050 004 J49 738 0 . 035 0 0 0 0 051 J49 J68 1073 . 035 0 0 0 0 C52 004 J5 930 0 . 13 0 0 0 0 C53 J50 J42 421 . 035 0 0 0 0 C54 006 J29 671 . 035 0 0 0 0 C55 052 J53 142 . 013 0 0 0 0 C56 J53 J29 586 . 4 0 . 035 0 0 0 0 C57 041 J84 467 . 035 0 0 0 0 C60 JW8 0136 529 0 . 13 0 0 0 0 C64 0016 J29 1587 . 035 0 0 0 0 C65 J39 070 6221 0 . 13 0 0 0 0 C66 0011 J62 20 0 . 035 0 0 0 0 C67 J62 J41 371 0 . 035 0 0 0 0 C68 0015 041 1280 0 . 035 0 0 0 0 C69 J32 071 670 0 . 035 0 0 0 0 074 061 071 1981 0 . 035 0 0 0 0 070 067 J39 35 0 . 13 0 0 0 0 074 J68 J69 6617 0 . 13 0 0 0 0 075 J69 074 1870 0 . 13 0 0 0 0 076 070 OUTS 367 0 . 13 0 0 0 0 077 J87 J92 1482 0 . 035 0 0 0 0 076 JH15 J70 6234 0 . 13 0 0 0 0 C79 02 POND_Wl 175 . 035 0 0 0 0 C80 JPOND2 POND 4 63 . 035 0 0 0 0 C82 014 J24 1313 0 . 13 0 0 0 0 C83 074 076 135 0 . 13 0 0 0 0 064 016 0180002 400 0 . 13 0 0 0 0 C85 076 0180001 2483 0 . 13 0 0 0 0 C86 J79 0180002 965 0 . 13 0 0 0 0 C87 J91 080 1901 0 . 13 0 0 0 0 C88 J80 014 1905 0 . 13 0 0 0 0 C89 041 0180008 1546 0 . 13 0 0 0 0 C90 J82 041 1598 0 . 035 0 0 0 0 C91 J83 047 634 . 5 . 035 0 0 0 0 C92 J84 JPOND2 1283 . 035 0 0 0 0 C93 0015 JPOND2 1176 0 . 13 0 0 0 0 C94 0015 000002 1540 . 035 0 0 0 0 C95 071 PONDS1 2 0 . 035 0 0 0 0 C96 J88 5000 04 74 . 035 0 0 0 0 C97 J89 POND_Ni 98 . 2 . 035 0 0 0 0 C98 04 8000 04 71 . 4 0 . 13 0 0 0 0 C99 05 J50 550 . 035 0 0 0 0 CE2 JE2 J21 3409 0 . 13 0 0 0 0 J :\2024\2404044\Design\Ca lc\Drain age\SW M M\Pelican La kes_WestArea_I n put.docx 1 /27/2025 I. TERRA FORMA SOLUTIONS Input CE3 JE3 J22 2101 0 . 13 0 0 0 0 CE4 JE4 J25 2875 0 . 13 0 0 0 0 CES JE5 J26 5293 0 . 13 0 0 0 0 CE6 JE6 J32 3909 0 . 13 0 0 0 0 CH10 JW1 J46 735 . 035 0 0 0 0 CH18 JH18 323 1402 0 . 13 0 0 0 0 CH9 JW4 J4 1363 0 . 13 0 0 0 0 3311 Coil JS11 . 2 CO . 013 0 0 0 0 1311 . 2 JS11 . 2 JS12 . 2 903 0 . 035 0 0 0 0 1010 3310 JS12 . 2 912 0 . 035 0 0 0 0 3000 . 0 JS12 . 2 3114 737 0 . 035 0 0 0 0 CS19 3010 3010 . 1 3710 0 . 035 0 0 0 0 CS19a JS19a J133 200 0 . 01 0 0 0 0 CSla JSla J133 389 0 . 035 0 0 0 0 CS20 JS20 JS20 . 1 3213 0 . 035 0 0 0 0 CS20 . 1 JS20 . 1 J126 5 0 . 01 0 0 0 0 CS21 JS21 JS21 . 1 57 . 013 0 0 0 0 1021 . 1 JS21 . 1 JS22 . 2 1620 0 . 035 0 0 0 0 CS22 JS22 JS22 . 2 1283 0 . 035 0 0 0 0 1331 . 1 JS22 . 2 POND S4 5 0 . 01 0 0 0 0 CS8 JS8 JS8 . 1 250 0 . 035 0 0 0 0 CS8 . 1 JS8 . 1 JS9 353 0 . 035 0 0 0 0 133 JS9 JS9 . 1 78 . 013 0 0 0 0 133 . 3 JS9 . 1 0333 . 1 726 0 . 035 0 0 0 0 CW16 JW16 J71 218 0 . 035 0 0 0 0 Calla JWla J89 1357 0 . 035 0 0 0 0 CWlb JW1b J89 1298 0 . 035 0 0 0 0 CW2a JW2a Cl 1335 . 035 0 0 0 0 CW3a JW3a J88 1418 0 . 035 0 0 0 0 CW3b JW3b JW3 66 0 . 035 0 0 0 0 CW6a JW6a JW6b . 1 875 . 13 0 0 0 0 CW6b JW6b JW6b . 1 776 0 . 035 0 0 0 0 CW6b . l JW6b . 1 J41 1590 . 013 0 0 0 0 [WEIRS ] ; ; Name From Node To Node Type CrestHt Qcoeff Gated EndCon EndCoeff Surcharge RoadWidth RoadSurf . . - ------ -- ---- - --- -- --- ----- --- -- -- --- ----- --- - -- -- -- ---- -- - - - - - --- -- - - - ---- -- - -- -- -- - - - - - - - - - - - - - - - - - -- --- ------ - --- ----- -- -- -- -- -- -- WEIR1 FIPONDI J79 TRANSVERSE 7 . 3 3 . 33 NO 0 0 YES WEIR11 FlPOND11 J75 TRANSVERSE 10 . 8 3 . 33 NO 0 0 YES WEIR2 FIPOND2 J77 TRANSVERSE 6 . 2 3 . 33 NO 0 0 YES WEIR 3 FIPOND3 J91 TRANSVERSE 3 . 5 3 . 33 NO 0 0 YES WEIR_4 POND_4 J67 TRANSVERSE 9 . 0 3 . 33 NO 0 0 YES WEIR8 FIPOND8 J82 TRANSVERSE 6 . 5 3 . 33 NO 0 0 YES WEIR_S1 POND_Sl J87 TRANSVERSE 6 3 . 33 NO 0 0 YES WEIR S2 POND_S2 J97 TRANSVERSE 8 . 0 3 . 33 NO 0 0 YES WEIR_53 POND_S3 O333 TRANSVERSE 7 3 . 33 NO 0 0 YES WEIR_S4 POND_S4 J119 TRANSVERSE 7 3 . 33 NO 0 0 YES WEIR_W3 POND_W3 OUT10 TRANSVERSE 6 3 . 33 NO 0 0 YES WEIR_W1 POND_W1 J44 TRANSVERSE 9 . 5 3 . 33 NO 0 0 YES [.XSECTIONS ] ; ; Link Shape Geoml Geom2 Geom3 Geom4 Barrels Culvert . . - -- -- -- -- -- -- - --- -- --- --- - -- -- -- -- --- - -- -- -- ---- -- -- - -- -- - - - - - --- - - -- --- -- -- -- -- -- -- -- - -- --- C136 DUMMY 0 0 0 0 1 C333 TRAPEZOIDAL 2 . 5 97 4 4 1 O102 TRAPEZOIDAL 1 33. 50 50 1 C103 TRAPEZOIDAL 4 10 4 4 1 0104 TRIANGULAR 2 . 25 20 0 0 1 C105 TRIANGULAR 2 . 25 20 0 0 1 C106 TRAPEZOIDAL 5 20 4 4 1 C107 TRIANGULAR 2 . 25 20 0 0 1 C108 TRAPEZOIDAL 2 40 75 45 1 C109 TRIANGULAR 2 . 5 20 0 0 1 O110 TRAPEZOIDAL 3 2 4 4 1 C333 TRIANGULAR 2 . 25 20 0 0 1 O112 TRAPEZOIDAL 5 16 4 4 1 C113 TRIANGULAR 2 . 25 20 0 0 1 1 :\2024\2404044\Design\Ca [c\Drainage\SWMM\Pelican Lakes_WestArea_Input.docx 1 /27/2025 TERRA FORMA 1e SOLUTIONS Input C119 TRAPEZOIDAL 3 8 4 4 1 C120 TRAPEZOIDAL 3 . 5 16 4 4 1 C123 TRAPEZOIDAL 2 . 5 45 50 50 1 C125 TRAPEZOIDAL 4 16 4 4 1 C127 CIRCULAR 3 0 0 0 3 C133 TRIANGULAR 3 24 0 0 1 C134 TRAPEZOIDAL 2 8 4 4 1 C135 CIRCULAR 3 0 0 0 3 C137 CIRCULAR 3 0 0 0 1 C138 TRIANGULAR 2 . 5 20 0 0 1 C139 TRIANGULAR 2 . 5 20 0 0 1 C140 TRIANGULAR 2 . 5 20 0 0 1 C141 TRIANGULAR 2 . 5 20 0 0 1 C142 TRIANGULAR 2 . 5 20 0 0 1 C143 TRAPEZOIDAL 4 8 4 4 1 C145 TRAPEZOIDAL 1 30 25 35 1 C146 TRAPEZOIDAL 2 8 4 4 1 C147 TRAPEZOIDAL 3 8 4 4 1 C20 TRAPEZOIDAL 4 100 25 35 1 C21 TRAPEZOIDAL 4 30 40 50 1 C22 TRAPEZOIDAL 3 100 22 25 1 C23 TRAPEZOIDAL 5 8 4 4 1 C25 TRAPEZOIDAL 1 60 50 50 1 C27 CIRCULAR 5 0 0 0 1 C30 TRAPEZOIDAL 3 35 35 30 1 C41 TRAPEZOIDAL 4 12 4 4 1 C42 TRAPEZOIDAL 4 12 4 4 1 C46 TRAPEZOIDAL 3 50 50 50 1 C47 TRAPEZOIDAL 4 . 5 8 4 4 1 C48 TRAPEZOIDAL 1 60 50 50 1 C49 TRAPEZOIDAL 4 8 4 4 1 C50 TRAPEZOIDAL 2 35 24 130 1 C51 TRAPEZOIDAL 3 8 4 4 1 C52 TRAPEZOIDAL 2 18 8 26 1 C53 TRAPEZOIDAL 3 6 4 4 1 C54 TRAPEZOIDAL 4 12 4 4 1 C55 CIRCULAR 4 0 0 0 1 C56 TRAPEZOIDAL 4 12 4 4 1 C57 TRAPEZOIDAL 4 12 4 4 1 C60 TRAPEZOIDAL 1 10 100 100 1 C64 TRAPEZOIDAL 3 6 4 4 1 C65 TRAPEZOIDAL 2 45 30 65 1 C66 TRIANGULAR 2 . 5 20 0 0 1 C67 TRIANGULAR 2 . 5 20 0 0 1 C68 TRIANGULAR 2 . 5 20 0 0 1 C69 TRAPEZOIDAL 4 10 4 4 1 C70 TRAPEZOIDAL 4 10 4 4 1 C73 TRAPEZOIDAL 1 300 4 4 1 C74 TRAPEZOIDAL 2 . 5 10 11 50 1 C75 TRAPEZOIDAL 1 104 170 50 1 C76 TRAPEZOIDAL 2 115 130 32 1 C77 TRAPEZOIDAL 4 100 4 4 1 C78 TRAPEZOIDAL 4 50 30 70 1 C79 TRAPEZOIDAL 3 8 4 4 1 C80 TRAPEZOIDAL 1 12 4 4 1 C82 TRAPEZOIDAL 3 32 75 56 1 C83 TRAPEZOIDAL 1 100 100 100 1 C84 TRAPEZOIDAL 1 100 50 50 1 C85 TRAPEZOIDAL 4 2 4 4 1 C86 TRIANGULAR 3 24 0 0 1 C87 TRAPEZOIDAL 2 30 30 30 1 C88 TRAPEZOIDAL 2 . 2 12 100 80 1 C89 TRAPEZOIDAL 2 35 20 20 1 C90 TRIANGULAR 3 24 0 0 1 C91 TRIANGULAR 2 . 5 20 0 0 1 C92 TRAPEZOIDAL 4 12 4 4 1 C93 TRAPEZOIDAL 2 20 50 50 1 C94 TRAPEZOIDAL 2 . 5 12 4 4 1 C95 TRAPEZOIDAL 2 10 4 4 1 C96 TRAPEZOIDAL 2 8 4 4 1 C97 TRAPEZOIDAL 2 8 4 4 1 C98 TRAPEZOIDAL 1 20 5A 50 1 C99 TRAPEZOIDAL 3 2 4 4 1 CE2 TRAPEZOIDAL 1 100 60 30 1 CE3 TRAPEZOIDAL 4 100 60 60 1 CE4 TRAPEZOIDAL 4 100 100 100 1 CE5 TRAPEZOIDAL 4 100 19 47 1 CE6 TRAPEZOIDAL 3 100 50 50 1 CH10 TRAPEZOIDAL 4 8 4 4 1 CH18 TRAPEZOIDAL 3 10 25 25 1 CH9 TRAPEZOIDAL 2 35 26 48 1 1 :\2024\2404044\Design\CaIc\Drainage\SWMM\Pelican Lakes_WestArea_Input.docx 1 /27/2025 TERRA FORMA ___e SOLUTIONS Input CSll CIRCULAR 2 . 5 0 0 0 1 2211 . 2 TRIANGULAR 2 . 5 20 0 0 1 CS12 TRAPEZOIDAL 4 16 4 4 1 2212 . 4 TRAPEZOIDAL 4 16 4 4 1• 2212 TRAPEZOIDAL 4 10 4 4 1 CS19a TRIANGULAR 2 16 0 0 1 CSla TRIANGULAR 2 16 0 0 1 1220 TRAPEZOIDAL 4 16 4 4 1 1000 . 1 DUMMY 0 0 0 0 1 1121 CIRCULAR 3 0 0 0 1 1001 . 1 TRIANGULAR 2 . 25 20 0 0 1 1222 TRAPEZOIDAL 1 100 50 50 1 CS22 . 2 DUMMY 0 0 0 0 1 CS8 TRIANGULAR 2 16 0 0 1 CS8 . 1 TRIANGULAR 2 . 5 20 0 0 1 CS9 CIRCULAR 2 . 5 0 0 0 1 120 . 1 TRAPEZOIDAL 3 8 4 4 1 CW16 TRIANGULAR 2 16 0 0 1 Calla TRIANGULAR 2 16 0 0 1 CWlb TRIANGULAR 2 16 0 0 1 CW2a TRAPEZOIDAL 2 8 4 4 1 CW3a TRAPEZOIDAL 2 8 4 4 1 CW3b TRIANGULAR 2 16 0 0 1 CW6a TRAPEZOIDAL 2 35 10 10 1 CW6b TRIANGULAR 2 16 0 0 1 CW6b . 1 CIRCULAR 6 0 0 0 1 WEIR1 RECTOPEN . 2 70 4 4 WEIRll RECTOPEN . 5 125 4 4 WEIR2 RECTOPEN . 2 29 4 4 WEIR3 RECTOPEN . 5 70 4 4 WEIR_4 RECT_OPEN . 5 265 4 4 WEIRS RECTOPEN 1 15 4 4 WEIRS1 RECTOPEN . 5 100 4 4 WEIR 22 RECTOPEN 1 20 4 4 WEIRS3 RECTOPEN 1 50 4 4 WEIR_S4 RECTOPEN 1 100 4 4 WEIR W3 ANTI GLEE . 5 40 4 4 RESETS RECT_OPEN 2 50 0 0 [ CURVES ] ; ; Name Type X-Value Y-Value -- - --- ----- -- -- -- ---- -- -- - -- -- --- PondWl Rating . 5 . 40 PondWl 1 . 5 . 89 PondWl 2 . 5 1 . 19 PondWl 3 . 5 1 . 43 PondWl 4 . 2 1 . 58 PondWl 4 . 5 389 EPOND2 Storage 0 8744 EPOND2 1 10535 EPOND2 2 12438 EPOND2 3 14451 EPOND2 4 16570 EPOND2 5 18796 EPOND2 6 21130 EPOND2 7 23571 EPOND2 8 26118 EPOND2 9 27000 FIPONDI Storage 0 0 FIPONDI . 5 85489 FIPONDI 1 . 5 108209 FIPONDI 2 . 5 142827 FIPONDI 3 . 5 158945 FIPONDI 4 . 5 172098 FIPONDI 5 . 5 186871 FIPONDI 6 . 5 199551 FIPONDI 7 . 5 212512 FlPOND11 Storage 0 0 FlPOND11 1 23434 FlPOND11 2 26894 FlPOND11 3 30662 FlPOND11 4 34557 FlPOND11 5 38675 FlPOND11 6 42973 FlPOND11 7 47448 FIPOND11 8 52093 FlPOND11 9 56902 FlPOND11 10 61874 1 :\2024\2404044\Design\Ca [c\Drainage\SWMM\Pelican Lakes_WestArea_Input.docx 1 /27/2025 I. TERRA FORMA ___e SOLUTIONS Input FlPOND11 11 67008 tlPOND2 Storage 0 0 tlPOND2 1 36544 FIPOND2 2 132623 FIPOND2 3 187416 FIPOND2 4 227154 FIPOND2 5 253353 FlPOND2 6 279482 FIPOND2 6 . 4 291703 FIPOND3 Storage 0 9050 FlPOND3 1 36997 FlPOND3 2 49234 FIPOND3 3 60152 FIPOND3 4 86537 FIPONDB Storage 0 33742 FIPOND9 1 50213 FlPOND8 2 55518 FIPOND9 3 59955 FIPONDS 4 64077 FIPOND8 5 68253 FlPOND8 6 72557 FIPONDB 7 77191 ; Pond 4 Pond4 Storage Storage 0 13487 Pond4 Storage 0 . 5 140180 Pond4 Storage 1 173989 Pond4 Storage 2 187525 Pond4 Storage 3 202421 Pond4 Storage 4 218163 Pond4 Storage 5 233364 Pond4 Storage 6 249376 Pond4 Storage 7 273996 Pond4 Storage 8 314779 Pond4_Storage 9 368203 ; Pond Sl PondSl Storage Storage 0 162881 PondSlStorage 1 171960 PondSlStorage 2 181375 PondSlStorage 3 191097 PondSlStorage 4 201041 PondSlStorage 5 211390 PondSl Storage 6 221938 ; Pond S2 PondS2 Storage Storage 0 35524 PondS2 Storage 1 40993 PondS2 Storage 2 46562 PondS2 Storage 3 .52233 PondS2 Storage 4 58003 PondS2 Storage 5 63874 PondS2 Storage 6 69846 PondS2 Storage 7 75916 PondS2 Storage 8 82366 ; Pond 53. PondS3 Storage Storage 0 65988 PondS3 Storage 1 72782 PondS3 Storage 2 79678 PondS3 Storage 3 86744 PondS3 Storage 4 93925 PondS3 Storage 5 101222 PondS3 Storage 6 108634 PondS3 Storage 7 123110 ; Pond 94 PondS4 Storage Storage 0 280687 PondS4 Storage 1 291408 PondS4 Storage 2 302233 PondS4 Storage 3 313163 PondS4 Storage 4 324954 PondS4Storage 5 338352 PondS4 Storage 6 353176 PondS4 Storage 7 371355 ; Pond Wl Stage- Storage PondWl Storage Storage 0 293654 1 :\2024\2404044\Design\Calc\Drainage\SWMM\Pelican Lakes_WestArea_Input.docx 1 /27/2025 TERRA FORMA ___e SOLUTIONS Input PondWl Storage 0 . 5 298156 PondWl Storage 1 . 5 307208 PondWl Storage 2 . 5 316367 PondWl Storage 3 . 5 325631 PondWl Storage 4 . 5 334997 PondWl Storage 5 . 5 344464 PondWl Storage 6 . 5 354035 PondWl Storage 7 . 5 363710 PondWl Storage 8 . 5 374696 PondWl Storage 9 . 5 389149 ; Pond W3 Stage- Storage PondW3 Storage Storage 0 25510 PondW3 Storage 1 29800 PondW3 Storage 2 34193 PondW3 Storage 3 38685 PondW3 Storage 4 43277 PondW3 Storage 5 47971 PondW3 Storage 6 43029 [ REPORT ] ; ; Reporting Options INPUT NO CONTROLS NO SUBCATCBMENTS ALL NODES ALL LINKS ALL [ SYMBOLS ] ; ; Gage X-Coord Y-Coord . . - ------ -- ----- --- -- --- ----- ----- -- --- ----- --- ----- Gage100 4570 . 845 6689 . 373 GagelS 5415 . 531 6634 . 877 1 :\2024\2404044\Design\Ca [c\Drainage\SWMM\Pelican Lakes_WestArea_Input.docx 1 /27/2025 I. TERRA FORMA SOLUTIONS 100-Year Results EPA STORM WATER MANAGEMENT MODEL - VERSION 5 . 1 (Build 5 . 1 . 012 ) - -- -- -- -- ---- -- --- -- --- --- -- -- -- -- -- --- - -- -- --- ---- -- -- -- -- -- - Pelican Lakes PUD - West Area - Developed 100 Yr WARNING 08 : elevation drop exceeds length for Conduit C136 WARNING 08 : elevation drop exceeds length for Conduit CS22 . 2 NOTE : The summary statistics displayed in this report are based on results found at every computational time step , not just on results from each reporting time step . * * * ** * * * * * * * * * * * Analysis Options Flow Units . . . . . . . . . . . . . . . CFS Process Models : Rainfall/Runoff . . . . . . . . YES RDII . . . . . . . . . . . . . . . . . . . NO Snowmelt . . . . . . . . . . . . . . . NO Groundwater . . . . . . . . . . . . NO Flow Routing . . . . . . . . . . . YES Ponding Allowed . . . . . . . . NO Water Quality . . . . . . . . . . NO Infiltration Method . . . . . . HORTON Flow Routing Method . . . . . . KINWAVE Starting Date . . . . . . . . . . . . 06/ 24 /2023 00 : 00 : 00 Ending Date . . . . . . . . . . . . . . 06/ 25 /2023 00 : 00 : 00 Antecedent Dry Days . . . . . . 0 . 0 Report Time Step . . . . . . . . . 00 : 05 : 00 Wet Time Step . . . . . . . . . . . . 00 : 05 : 00 Dry Time Step . . . . . . . . . . . . 01 : 00 : 00 Routing Time Step . . . . . . . . 30 . 00 sec * ** * * ** ** * * * * * * ** * ** * * * ** * Volume Depth Runoff Quantity Continuity acre- feet inches Total Precipitation . . . . . . 1203 . 632 4 . 635 Evaporation Loss . . . . . . . . . 0 . 000 0 . 000 Infiltration Loss . . . . . . . . 1045 . 366 4 . 025 Surface Runoff . . . . . . . . . . . 159 . 031 0 . 612 Final Storage . . . . . . . . . . . . 0 . 376 0 . 001 Continuity Error ( % ) . . . . . -0 . 095 * ** * * * * * * * * * * ** * * * * * * * * * ** Volume Volume Flow Routing Continuity acre- feet 10 ^ 6 gal -------- - Dry Weather Inflow . . . . . . . 0 . 000 0 . 000 Wet Weather Inflow . . . . . . . 159 . 642 52 . 022 Groundwater Inflow . . . . . . . 0 . 000 0 . 000 RDII Inflow . . . . . . . . . . . . . . 0 . 000 0 . 000 External Inflow . . . . . . . . . . 0 . 000 0 . 000 External Outflow . . . . . . . . . 57 . 676 18 . 795 Flooding Loss . . . . . . . . . . . . 1 . 904 0 . 620 Evaporation Loss . . . . . . . . . 0 . 000 0 . 000 Exfiltration Loss . . . . . . . . 0 . 000 0 . 000 Initial Stored Volume . . . . 0 . 000 0 . 000 Final Stored Volume . . . . . . 148 . 540 48 . 404 Continuity Error ( o ) . . . . . - 30 . 366 Highest Flow Instability Indexes Link C78 ( 4 ) Link CE5 ( 4 ) Link C85 ( 3 ) Link C23 ( 2 ) Link C74 ( 2 ) * * * ** * * ** * * * * * * * * * * * * * * ** Routing Time Step Summary Minimum Time Step 30 . 00 sec Average Time Step 30 . 00 sec 1 :\2024\2404044\Design\Calc\Drainage\SWMM\Pelican Lakes_WestArea_Results_100 . rpt.docx 1 /27/2025 TERRA FORMA __ e SOLUTIONS 100-Year Results Maximum Time Step 30 . 00 sec Percent in Steady State 0 . 00 Average Iterations per Step ; 1 . 03 Percent Not Converging 0 . 00 Subcatchment Runoff Summary - -- ---- -- ---- -- --- -- --- --- -- -- ---- ----- - -- -- ------- -- -- -- ---- ------ ----- ------ -- -- -- ---- --- -- - -- --- ----- Total Total Total Total Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Coeff Subcatchment in in in in in 10 ^ 6 gal CFS - -- ------ -- -- ------- -- ------ -- -- ---- --- ----- --- -------- -- ------ -- ----- ---- -- ------ -- --------- -------- -- - Fl- 1 4 . 63 0 . 00 0 . 00 3 . 86 0 . 77 2 . 17 126 . 06 0 . 167 Fl- 11 4 . 63 0 . 00 0 . 00 3 . 89 0 . 75 1 . 14 61 . 56 0 . 161 Fl-2 4 . 63 0 . 00 0 . 00 3 . 84 0 . 80 1 . 66 102 . 78 0 . 173 F1- 3 4 . 63 0 . 00 0 . 00 3 . 72 0 . 93 0 . 24 20 . 52 0 . 200 Fl- 8 4 . 63 0 . 00 0 . 00 3 . 80 0 . 84 0 . 94 64 . 12 0 . 180 H15 4 . 63 0 . 00 0 . 00 4 . 18 0 . 46 6 . 57 834 . 95 0 . 100 H18 4 . 63 0 . 00 0 . 00 3 . 84 0 . 80 0 . 98 60 . 60 0 . 173 021 4 . 63 0 . 00 0 . 00 4 . 14 0 . 50 2 . 52 276 . 68 0 . 107 002 4 . 63 0 . 00 0 . 00 4 . 19 0 . 45 2 . 23 179 . 15 0 . 097 0W3 4 . 63 0 . 00 0 . 00 4 . 12 0 . 51 0 . 92 81 . 33 0 . 111 0W4 4 . 63 0 . 00 0 . 00 4 . 22 0 . 41 0 . 91 85 . 15 0 . 089 TWO 4 . 63 0 . 00 0 . 00 4 . 25 0 . 39 6 . 19 572 . 23 0 . 083 0W6 4 . 63 0 . 00 0 . 00 4 . 26 0 . 38 1 . 80 192 . 11 0 . 082 Si 4 . 63 0 . 00 0 . 00 3 . 62 1 . 01 0 . 76 36 . 12 0 . 218 212 4 . 63 0 . 00 0 . 00 3 . 55 1 . 09 0 . 38 19 . 26 0 . 235 Sil 4 . 63 0 . 00 0 . 00 3 . 47 1 . 17 0 . 36 19 . 93 0 . 253 S12 4 . 63 0 . 00 0 . 00 3 . 54 1 . 09 0 . 54 27 . 33 0 . 235 S13 4 . 63 0 . 00 0 . 00 3 . 62 1 . 01 2 . 00 95 . 10 0 . 218 S14 4 . 63 0 . 00 0 . 00 3 . 58 1 . 06 0 . 66 32 . 40 0 . 228 S15 4 . 63 0 . 00 0 . 00 3 . 58 1 . 06 0 . 67 33 . 10 0 . 228 S16 4 . 63 0 . 00 0 . 00 3 . 45 1 . 19 0 . 09 5 . 42 0 . 257 S17 4 . 63 0 . 00 0 . 00 3 . 57 1 . 06 0 . 84 41 . 91 0 . 230 S18 4 . 63 0 . 00 0 . 00 3 . 49 1 . 15 0 . 38 20 . 19 0 . 248 S19 4 . 63 0 . 00 0 . 00 3 . 58 1 . 05 1 . 93 94 . 88 0 . 227 2120 4 . 63 0 . 00 0 . 00 3 . 53 1 . 10 0 . 07 3 . 37 0 . 238 Sla 4 . 63 0 . 00 0 . 00 3 . 56 1 . 07 0 . 11 5 . 38 0 . 231 S2 4 . 63 0 . 00 0 . 00 3 . 62 1 . 01 0 . 60 28 . 69 0 . 218 S20 4 . 63 0 . 00 0 . 00 3 . 64 1 . 00 1 . 63 75 . 69 0 . 215 S21 4 . 63 0 . 00 0 . 00 3 . 45 1 . 19 0 . 23 13 . 47 0 . 257 S22 4 . 63 0 . 00 0 . 00 3 . 51 1 . 12 0 . 52 26 . 98 0 . 242 S23 4 . 63 0 . 00 0 . 00 3 . 48 1 . 16 0 . 22 11 . 87 0 . 250 S3 4 . 63 0 . 00 0 . 00 3 . 45 1 . 19 0 . 20 11 . 95 0 . 257 S4 4 . 63 0 . 00 0 . 00 3 . 57 1 . 06 0 . 61 30 . 21 0 . 229 S5 4 . 63 0 . 00 0 . 00 3 . 50 1 . 14 0 . 28 14 . 82 0 . 245 22 4 . 63 0 . 00 0 . 00 3 . 55 1 . 09 0 . 77 39 . 07 0 . 235 S8 4 . 63 0 . 00 0 . 00 3 . 63 1 . 01 0 . 05 2 . 50 0 . 217 S9 4 . 63 0 . 00 0 . 00 3 . 51 1 . 12 0 . 32 16 . 44 0 . 242 dl 4 . 63 0 . 00 0 . 00 3 . 54 1 . 10 0 . 34 17 . 08 0 . 237 w10 4 . 63 0 . 00 0 . 00 3 . 52 1 . 12 0 . 55 28 . 49 0 . 241 522 4 . 63 0 . 00 0 . 00 3 . 77 0 . 87 0 . 03 2 . 52 0 . 188 W12 4 . 63 0 . 00 0 . 00 3 . 57 1 . 07 0 . 23 11 . 81 0 . 230 W13 4 . 63 0 . 00 0 . 00 3 . 93 0 . 71 0 . 26 16 . 39 0 . 152 W14 4 . 63 0 . 00 0 . 00 4 . 13 0 . 51 2 . 48 119 . 78 0 . 110 W15 4 . 63 0 . 00 0 . 00 4 . 29 0 . 34 0 . 04 4 . 26 0 . 074 W16 4 . 63 0 . 00 0 . 00 3 . 40 1 . 24 0 . 08 5 . 16 0 . 267 wla 4 . 63 0 . 00 0 . 00 3 . 66 0 . 97 0 . 27 11 . 66 0 . 209 wlb 4 . 63 0 . 00 0 . 00 3 . 60 1 . 03 0 . 24 11 . 68 0 . 222 W2 4 . 63 0 . 00 0 . 00 4 . 14 0 . 50 0 . 43 24 . 60 0 . 107 W2a 4 . 63 0 . 00 0 . 00 3 . 88 0 . 76 0 . 09 4 . 47 0 . 164 P2 4 . 63 0 . 00 0 . 00 3 . 52 1 . 11 0 . 47 24 . 15 0 . 240 W3a 4 . 63 0 . 00 0 . 00 3 . 62 1 . 01 0 . 73 34 . 59 0 . 218 w3b 4 . 63 0 . 00 0 . 00 3 . 48 1 . 15 0 . 03 1 . 50 0 . 249 W4 4 . 63 0 . 00 0 . 00 4 . 09 0 . 55 0 . 70 34 . 03 0 . 119 w5 4 . 63 0 . 00 0 . 00 3 . 84 0 . 80 0 . 79 38 . 96 0 . 172 w6 4 . 63 0 . 00 0 . 00 3 . 52 1 . 12 0 . 30 15 . 26 0 . 242 w6a 4 . 63 0 . 00 0 . 00 4 . 10 0 . 53 0 . 34 15 . 79 0 . 115 w6b 4 . 63 0 . 00 0 . 00 3 . 57 1 . 06 0 . 19 9 . 23 0 . 229 W8 4 . 63 0 . 00 0 . 00 3 . 53 1 . 10 0 . 70 35 . 55 0 . 238 w8a 4 . 63 0 . 00 0 . 00 3 . 43 1 . 21 0 . 04 2 . 25 0 . 262 1 :\2024\2404044\Design\Calc\Drainage\SWMM\Pelican Lakes_WestArea_Results_100 . rpt.docx 1 /27/2025 TERRA FORMA ie SOLUTIONS 100-Year Results Node Depth Summary - -- -- -- -- ---- -- --- -- --- --- -- -- -- -- -- --- - -- -- --- ---- -- -- -- -- -- -- ---- --- -- -- ---- -- - Average Maximum Maximum Time of Max Reported Depth Depth HGL Occurrence Max Depth Node Type Feet Feet Feet days hr : min Feet - -- -- -- ------ -- --- -- --- --- -- -- -- -- ----- - -- -- --- ---- -- -- -- -- -- ------ ----- ------ -- - J126 JUNCTION 0 . 26 1 . 50 4863 . 50 0 12 : 17 1 . 47 J100 JUNCTION 0 . 00 0 . 00 4896 . 00 0 00 : 00 0 . 00 0113 . 2 JUNCTION 0 . 29 2 . 21 4876 . 71 0 12 : 11 2 . 16 J113 JUNCTION 0 . 19 1 . 38 4874 . 88 0 12 : 13 1 . 35 J114 JUNCTION 0 . 17 1 . 21 4879 . 21 0 12 : 12 1 . 16 0010 . 1 JUNCTION 0 . 29 2 . 22 4876 . 92 0 12 : 11 2 . 17 J119 JUNCTION 0 . 00 0 . 00 4858 . 00 0 00 : 00 0 . 00 J123 JUNCTION 0 . 00 0 . 00 4903 . 00 0 00 : 00 0 . 00 J125 JUNCTION 0 . 26 1 . 50 4864 . 30 0 12 : 17 1 . 47 J127 JUNCTION 0 . 30 1 . 36 4899 . 36 0 12 : 09 1 . 35 J130 JUNCTION 0 . 34 1 . 52 4913 . 52 0 12 : 07 1 . 52 J131 JUNCTION 0 . 34 1 . 52 4907 . 52 0 12 : 09 1 . 51 J133 JUNCTION 0 . 21 1 . 02 4928 . 02 0 12 : 07 1 . 02 J136 JUNCTION 0 . 10 0 . 90 4894 . 90 0 12 : 09 0 . 90 J14 JUNCTION 0 . 21 0 . 84 4837 . 84 0 12 : 50 0 . 84 J2 JUNCTION 0 . 11 0 . 93 4901 . 33 0 12 : 52 0 . 93 J21 JUNCTION 0 . 07 0 . 80 4936 . 80 0 12 : 34 0 . 80 J22 JUNCTION 0 . 07 0 . 80 4938 . 80 0 12 : 26 0 . 80 J23 JUNCTION 0 . 15 1 . 06 4918 . 06 0 12 : 12 1 . 05 J24 JUNCTION 0 . 20 1 . 07 4914 . 07 0 13 : 05 1 . 07 J25 JUNCTION 0 . 05 0 . 57 4936 . 57 0 12 : 33 0 . 57 J26 JUNCTION 0 . 21 2 . 07 4926 . 07 0 12 : 35 2 . 07 J29 JUNCTION 0 . 33 1 . 72 4881 . 82 0 12 : 08 1 . 67 J32 JUNCTION 0 . 10 1 . 12 4932 . 12 0 12 : 29 1 . 12 J39 JUNCTION 0 . 00 0 . 00 4835 . 00 0 00 : 00 0 . 00 J4 JUNCTION 0 . 07 0 . 53 4901 . 53 0 12 : 12 0 . 53 J41 JUNCTION 0 . 33 1 . 71 4881 . 11 0 12 : 08 1 . 67 J42 JUNCTION 0 . 13 1 . 16 4884 . 86 0 12 : 14 1 . 16 J44 JUNCTION 0 . 00 0 . 00 4886 . 50 0 00 : 00 0 . 00 J46 JUNCTION 0 . 24 2 . 17 4914 . 67 0 12 : 3.4 2 . 17 J47 JUNCTION 0 . 37 1 . 79 4916 . 39 0 12 : 48 1 . 79 J49 JUNCTION 0 . 08 0 . 81 4899 . 56 0 12 : 08 0 . 79 J5 JUNCTION 0 . 25 1 . 61 4891 . 61 0 12 : 11 1 . 60 J50 JUNCTION 0 . 25 1 . 60 4889 . 20 0 12 : 13 1 . 56 J52 JUNCTION 0 . 23 1 . 49 4883 . 19 0 12 : 21 1 . 49 J53 JUNCTION 0 . 23 1 . 49 4882 . 49 0 12 : 21 1 . 48 J62 JUNCTION 0 . 08 0 . 49 4894 . 49 0 12 : 06 0 . 48 J67 JUNCTION 0 . 00 0 . 00 4839 . 00 0 00 : 00 0 . 00 J68 JUNCTION 0 . 16 2 . 36 4902 . 36 0 12 : 06 2 . 26 J69 JUNCTION 0 . 27 1 . 80 4825 . 80 0 12 : 35 1 . 79 J70 JUNCTION 0 . 23 2 . 02 4809 . 02 0 12 : 29 2 . 01 J71 JUNCTION 0 . 17 1 . 12 4916 . 72 0 12 : 31 1 . 12 J74 JUNCTION 0 . 20 1 . 11 4924 . 61 0 12 : 49 1 . 11 J75 JUNCTION 0 . 04 0 . 26 4904 . 76 0 13 : 42 0 . 26 J76 JUNCTION 0 . 09 0 . 60 4895 . 10 0 12 : 06 0 . 58 J77 JUNCTION 0 . 00 0 . 00 4887 . 20 0 00 : 00 0 . 00 J78 JUNCTION 0 . 58 3 . 71 4928 . 71 0 12 : 06 3 . 63 J79 JUNCTION 0 . 00 0 . 00 4899 . 80 0 00 : 00 0 . 00 J80 JUNCTION 0 . 21 0 . 97 4856 . 97 0 12 : 14 0 . 97 J81 JUNCTION 0 . 08 1 . 00 4911 . 00 0 12 : 06 0 . 97 J82 JUNCTION 0 . 00 0 . 00 4892 . 50 0 00 : 00 0 . 00 J83 JUNCTION 0 . 37 1 . 79 4922 . 79 0 12 : 46 1 . 79 J84 JUNCTION 0 . 21 1 . 52 4879 . 36 0 12 : 11 1 . 52 J87 JUNCTION 0 . 00 0 . 00 4921 . 00 0 00 : 00 0 . 00 J88 JUNCTION 0 . 09 0 . 81 4891 . 11 0 12 : 08 0 . 80 J89 JUNCTION 0 . 31 2 . 17 4892 . 87 0 12 : 36 2 . 17 J91 JUNCTION 0 . 00 0 . 00 4887 . 50 0 00 : 00 0 . 00 J92 JUNCTION 0 . 17 0 . 83 4889 . 93 0 12 : 02 0 . 82 J97 JUNCTION 0 . 00 0 . 00 4894 . 50 0 00 : 00 0 . 00 JE2 JUNCTION 0 . 05 0 . 92 5015 . 92 0 12 : 06 0 . 86 JE3 JUNCTION 0 . 02 0 . 52 5010 . 52 0 12 : 06 0 . 49 JE4 JUNCTION 0 . 03 0 . 53 5020 . 53 0 12 : 06 0 . 50 JE5 JUNCTION 0 . 09 1 . 87 5021 . 87 0 12 : 06 1 . 76 JE6 JUNCTION 0 . 04 0 . 92 5030 . 92 0 12 : 06 0 . 86 0015 JUNCTION 0 . 13 2 . 73 4879 . 73 0 12 : 06 2 . 61 JH18 JUNCTION 0 . 15 1 . 23 4943 . 23 0 12 : 06 1 . 20 JPOND2 JUNCTION 0 . 11 0 . 82 4837 . 19 0 12 : 13 0 . 80 OTT JUNCTION 0 . 08 0 . 72 4950 . 02 0 12 : 00 0 . 71 JS10 JUNCTION 0 . 06 0 . 55 4918 . 15 0 12 : 00 0 . 54 0010 . 1 JUNCTION 0 . 08 0 . 74 4894 . 74 0 12 : 08 0 . 73 JS11 JUNCTION 0 . 18 1 . 45 4903 . 95 0 12 : 06 1 . 41 JS11 . 2 JUNCTION 0 . 24 1 . 44 4903 . 54 0 12 : 06 1 . 41 1 :\2024\2404044\Design\Calc\Drainage\SWMM\Pelican Lakes_WestArea_Results_100 . rpt.docx 1 /27/2025 TERRA FORMA ___e SOLUTIONS 100-Year Results JS12 JUNCTION 0 . 04 0 . 40 4916 . 30 0 12 : 00 0 . 39 JS12 . 2 JUNCTION 0 . 23 1 . 15 4887 . 65 0 12 : 08 1 . 12 O913 JUNCTION 0 . 13 1 . 05 4908 . 55 0 12 : 00 1 . 04 JS14 JUNCTION 0 . 31 1 . 40 4931 . 90 0 12 : 00 1 . 38 JS15 JUNCTION 0 . 28 1 . 26 4955 . 26 0 12 : 00 1 . 25 JS16 JUNCTION 0 . 14 0 . 71 4924 . 11 0 12 : 06 0 . 70 JS17 JUNCTION 0 . 08 0 . 65 4913 . 55 0 12 : 00 0 . 65 JS18 JUNCTION 0 . 21 1 . 03 4947 . 03 0 12 : 06 1 . 01 JS19 JUNCTION 0 . 14 1 . 29 4928 . 29 0 12 : 00 1 . 27 JS19a JUNCTION 0 . 08 0 . 36 4931 . 16 0 12 : 00 0 . 36 JSla JUNCTION 0 . 15 0 . 71 4933 . 91 0 12 : 00 0 . 71 O12 JUNCTION 0 . 15 1 . 05 4940 . 05 0 12 : 00 1 . 04 O020 JUNCTION 0 . 10 0 . 96 4905 . 56 0 12 : 00 0 . 94 O021 JUNCTION 0 . 13 1 . 00 4904 . 30 0 12 : 06 0 . 98 0021 . 1 JUNCTION 0 . 18 1 . 00 4903 . 90 0 12 : 06 0 . 98 JS22 JUNCTION 0 . 01 0 . 14 4898 . 64 0 12 : 00 0 . 13 0021 . 1 JUNCTION 0 . 17 0 . 87 4860 . 87 0 12 : 09 0 . 87 JS23 JUNCTION 0 . 03 0 . 34 4900 . 04 0 12 : 06 0 . 33 JS3 JUNCTION 0 . 15 0 . 78 4908 . 58 0 12 : 06 0 . 77 JS4 JUNCTION 0 . 07 0 . 67 4923 . 67 0 12 : 00 0 . 66 O01 JUNCTION 0 . 17 0 . 83 4906 . 53 0 12 : 00 0 . 82 O16 JUNCTION 0 . 28 1 . 29 4938 . 89 0 12 : 00 1 . 28 J98 JUNCTION 0 . 14 0 . 64 4914 . 14 0 12 : 00 0 . 64 006 . 1 JUNCTION 0 . 14 0 . 63 4912 . 63 0 12 : 03 0 . 63 JS9 JUNCTION 0 . 19 1 . 43 4904 . 13 0 12 : 06 1 . 41 000 . 1 JUNCTION 0 . 19 1 . 42 4903 . 72 0 12 : 02 1 . 41 OO1 JUNCTION 0 . 07 0 . 67 4918 . 67 0 12 : 00 0 . 66 OO10 JUNCTION 0 . 09 0 . 86 4901 . 56 0 12 : 00 0 . 85 JW1l JUNCTION 0 . 08 0 . 49 4894 . 99 0 12 : 06 0 . 48 JW12 JUNCTION 0 . 21 0 . 97 4899 . 57 0 12 : 00 0 . 96 JW13 JUNCTION 0 . 03 0 . 35 4884 . 45 0 12 : 06 0 . 34 0011 JUNCTION 0 . 12 1 . 03 4892 . 23 0 12 : 00 1 . 02 OO10 JUNCTION 0 . 01 0 . 20 4898 . 90 0 12 : 06 0 . 18 OO10 JUNCTION 0 . 12 0 . 66 4921 . 06 0 12 : 06 0 . 65 JWla JUNCTION 0 . 20 0 . 86 4928 . 16 0 12 : 00 0 . 85 JWlb JUNCTION 0 . 19 0 . 84 4931 . 74 0 12 : 00 0 . 83 JW2 JUNCTION 0 . 05 0 . 52 4937 . 52 0 12 : 06 0 . 50 JW2a JUNCTION 0 . 02 0 . 25 4923 . 35 0 12 : 00 0 . 24 JW3 JUNCTION 0 . 12 0 . 56 4923 . 56 0 12 : 07 0 . 55 JW3a JUNCTION 0 . 09 0 . 84 4909 . 54 0 12 : 00 0 . 83 OO1O JUNCTION 0 . 12 0 . 56 4923 . 86 0 12 : 06 0 . 55 OO1 JUNCTION 0 . 07 0 . 67 4922 . 07 0 12 : 00 0 . 66 JW5 JUNCTION 0 . 11 0 . 93 4910 . 93 0 12 : 00 0 . 92 OO6 JUNCTION 0 . 04 0 . 45 4888 . 35 0 12 : 00 0 . 44 JW6a JUNCTION 0 . 05 0 . 46 4912 . 06 0 12 : 00 0 . 45 0060 JUNCTION 0 . 19 0 . 87 4908 . 17 0 12 : 00 0 . 87 0060 . 1 JUNCTION 0 . 19 0 . 90 4895 . 90 0 12 : 10 0 . 90 JW8 JUNCTION 0 . 10 0 . 58 4910 . 38 0 12 : 00 0 . 57 JW8a JUNCTION 0 . 01 0 . 17 4895 . 47 0 12 : 06 0 . 16 JS20 . 1 JUNCTION 0 . 16 1 . 37 4867 . 37 0 12 : 15 1 . 36 OUTS OUTFALL 0 . 20 1 . 54 4804 . 54 0 12 : 38 1 . 53 00010 OUTFALL 0 . 00 0 . 00 4897 . 00 0 00 : 00 0 . 00 FIPOND1 STORAGE 1 . 48 2 . 81 4895 . 31 1 00 : 00 2 . 81 FlPOND11 STORAGE 5 . 57 11 . 00 4905 . 00 0 13: 46 11 . 00 FIPOND2 STORAGE 2 . 24 4 . 30 4885 . 30 1 00 : 00 4 . 30 F1PONO3 STORAGE 0 . 67 1 . 25 4885 . 25 1 00 : 00 1 . 25 FIPOND8 STORAGE 1 . 22 2 . 54 4888 . 54 1 00 : 00 2 . 54 POND 4 STORAGE 1 . 97 4 . 09 4835 . 09 1 00 : 00 4 . 09 POND 91 STORAGE 1 . 42 3 . 07 4918 . 07 1 00 : 00 3 . 07 POND 92 STORAGE 2 . 55 5 . 03 4892 . 03 1 00 : 00 5 . 03 POND S3 STORAGE 1 . 85 3 . 81 4892 . 81 1 00 : 00 3 . 81 POND 94 STORAGE 1 . 82 3 . 90 4857 . 90 1 00 : 00 3 . 90 POND W1 STORAGE 2 . 53 5 . 59 4890 . 09 1 00 : 00 5 . 59 POND_W3 STORAGE 1 . 51 3 . 04 4894 . 04 1 00 : 00 3 . 04 1 :\2024\2404044\Design\Calc\Drainage\SWMM\Pelican Lakes_WestArea_Results_100 . rpt.docx 1 /27/2025 I. TERRA FORMA SOLUTIONS 100-Year Results * ** * * * * ** * * ** * * ** * * Node Inflow Summary - ---- -- ---- ---- --- ---- - --- -- ------ ----- ----- --------- -- ------ ----------- -------- -- ------ ----- ---- Maximum Maximum Lateral Total Flow Lateral Total Time of Max Inflow Inflow Balance Inflow Inflow Occurrence Volume Volume Error Node Type CFS CFS days hr : min 10 ^ 6 gal 10 ^ 6 gal Percent - -- ---- ------ -- --- ----- --- -- -- ---- ----- - -- -- ------- -- -- -- ---- ------ ----- ------ -- -- -- ---- --- -- - -- - J126 JUNCTION 0 . 00 253 . 00 0 12 : 16 0 7 . 83 0 . 000 J100 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal JS19 . 2 JUNCTION 0 . 00 106 . 90 0 12 : 11 0 2 . 46 0 . 000 J113 JUNCTION 0 . 00 113 . 68 0 12 : 13 0 3 . 8 0 . 000 J114 JUNCTION 0 . 00 85 . 63 0 12 : 12 0 3 . 06 0 . 000 0012 . 1 JUNCTION 0 . 00 107 . 04 0 12 : 11 0 2 . 46 0 . 000 J119 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J123 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J125 JUNCTION 0 . 00 106 . 56 0 12 : 17 0 3 . 78 0 . 000 J127 JUNCTION 0 . 00 29 . 97 0 12 : 09 0 0 . 653 0 . 000 J130 JUNCTION 0 . 00 30 . 82 0 12 : 07 0 0 . 668 0 . 000 J131 JUNCTION 0 . 00 36 . 00 0 12 : 09 0 0 . 759 0 . 000 J133 JUNCTION 0 . 00 28 . 26 0 12 : 03 0 0 . 554 0 . 000 J136 JUNCTION 0 . 00 34 . 92 0 12 : 09 0 0 . 731 -0 . 000 J14 JUNCTION 0 . 00 49 . 52 0 12 : 50 0 2 . 71 0 . 000 J2 JUNCTION 0 . 00 50 . 23 0 12 : 51 0 1 . 92 0 . 000 J21 JUNCTION 0 . 00 92 . 85 0 12 : 34 0 2 . 84 0 . 000 J22 JUNCTION 0 . 00 44 . 81 0 12 : 26 0 1 . 1 0 . 000 J23 JUNCTION 0 . 00 42 . 19 0 12 : 12 0 0 . 972 0 . 000 J24 JUNCTION 0 . 00 119 . 15 0 13 : 05 0 6 . 29 0 . 000 J25 JUNCTION 0 . 00 41 . 96 0 12 : 33 0 1 . 27 0 . 000 J26 JUNCTION 0 . 00 283 . 83 0 12 : 35 0 8 . 68 0 . 000 J29 JUNCTION 0 . 00 43 . 12 0 12 : 08 0 1 . 61 0 . 000 J32 JUNCTION 0 . 00 92 . 93 0 12 : 29 0 2 . 62 0 . 000 J39 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J4 JUNCTION 0 . 00 21 . 82 0 12 : 12 0 0 . 688 0 . 000 J41 JUNCTION 0 . 00 73 . 95 0 12 : 08 0 2 . 39 0 . 000 J42 JUNCTION 0 . 00 34 . 24 0 12 : 14 0 0 . 779 -0 . 000 J44 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J46 JUNCTION 0 . 00 286 . 67 0 12 : 34 0 9 . 02 0 . 000 J47 JUNCTION 0 . 00 49 . 70 0 12 : 48 0 1 . 83 0 . 000 J49 JUNCTION 0 . 00 24 . 88 0 12 : 08 0 0 . 497 0 . 000 J5 JUNCTION 0 . 00 35 . 34 0 12 : 11 0 0 . 782 0 . 000 LOU JUNCTION 0 . 00 34 . 68 0 12 : 13 0 0 . 78 0 . 000 J52 JUNCTION 0 . 00 29 . 79 0 12 : 21 0 0 . 774 0 . 000 J53 JUNCTION 0 . 00 29 . 79 0 12 : 21 0 0 . 773 0 . 000 J62 JUNCTION 0 . 00 2 . 51 0 12 : 06 0 0 . 0342 0 . 000 J67 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J68 JUNCTION 276 . 68 276 . 68 0 12 : 06 2 . 54 2 . 54 0 . 000 J69 JUNCTION 0 . 00 139 . 80 0 12 : 35 0 5 . 32 0 . 000 J70 JUNCTION 0 . 00 446 . 68 0 12 : 35 0 18 . 8 0 . 000 J71 JUNCTION 0 . 00 101 . 70 0 12 : 30 0 3 . 46 0 . 000 J74 JUNCTION 61 . 56 88 . 98 0 12 : 49 1 . 14 4 . 08 0 . 000 J75 JUNCTION 0 . 00 37 . 23 0 13 : 42 0 2 . 38 0 . 000 J76 JUNCTION 102 . 78 102 . 78 0 12 : 06 1 . 66 4 . 05 0 . 000 J77 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J78 JUNCTION 126 . 06 126 . 06 0 12 : 06 2 . 18 2 . 18 -0 . 000 J79 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J80 JUNCTION 0 . 00 70 . 51 0 12 : 14 0 2 . 46 -0 . 000 J81 JUNCTION 64 . 12 64 . 12 0 12 : 06 0 . 947 0 . 947 0 . 000 J82 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal LOU JUNCTION 0 . 00 49 . 80 0 12 : 46 0 1 . 83 0 . 000 J84 JUNCTION 0 . 00 73 . 09 0 12 : 11 0 2 . 39 0 . 000 J87 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J88 JUNCTION 0 . 00 53 . 84 0 12 : 09 0 1 . 22 0 . 000 J89 JUNCTION 0 . 00 290 . 77 0 12 : 35 0 9 . 52 0 . 000 J91 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal J92 JUNCTION 0 . 00 52 . 46 0 12 : 07 0 1 . 09 0 . 000 J97 JUNCTION 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal JE2 JUNCTION 179 . 15 179 . 15 0 12 : 06 2 . 24 2 . 24 0 . 000 O51 JUNCTION 81 . 33 81 . 33 0 12 : 06 0 . 924 0 . 924 0 . 000 JE4 JUNCTION 85 . 15 85 . 15 0 12 : 06 0 . 913 0 . 913 0 . 000 JE5 JUNCTION 572 . 23 572 . 23 0 12 : 06 6 . 23 6 . 23 0 . 000 JE6 JUNCTION 192 . 11 192 . 11 0 12 : 06 1 . 82 1 . 82 0 . 000 O510 JUNCTION 834 . 95 834 . 95 0 12 : 06 6 . 64 6 . 64 0 . 000 O512 JUNCTION 60 . 60 60 . 60 0 12 : 06 0 . 98 0 . 98 0 . 000 JPOND2 JUNCTION 0 . 00 86 . 30 0 12 : 13 0 2 . 69 0 . 000 101 JUNCTION 36 . 12 36 . 12 0 12 : 00 0 . 76 0 . 76 0 . 000 0010 JUNCTION 19 . 26 19 . 26 0 12 : 00 0 . 382 0 . 382 0 . 000 JS10 . 1 JUNCTION 0 . 00 36 . 59 0 12 : 08 0 0 . 749 0 . 000 1 :\2024\2404044\Design\Calc\Drainage\SWMM\Pelican Lakes_WestArea_Results_100 . rpt.docx 1 /27/2025 TERRA FORMA ___e SOLUTIONS 100-Year Results JS11 JUNCTION 19 . 93 19 . 93 0 12 : 06 0 . 358 0 . 358 0 . 000 JS11 . 2 JUNCTION 0 . 00 19 . 81 0 12 : 06 0 0 . 358 0 . 000 JS12 JUNCTION 27 . 33 27 . 33 0 12 : 00 0 . 541 0 . 541 0 . 000 JS12 . 2 JUNCTION 0 . 00 45 . 58 0 12 : 07 0 0 . 896 -0 . 000 O111 JUNCTION 95 . 10 95 . 10 0 12 : 00 2 2 0 . 000 O314 JUNCTION 32 . 40 32 . 40 0 12 : 00 0 . 656 0 . 656 0 . 000 JS15 JUNCTION 33 . 10 33 . 10 0 12 : 00 0 . 67 0 . 67 0 . 000 JS16 JUNCTION 5 . 42 5 . 42 0 12 : 06 0 . 0926 0 . 0926 0 . 000 O017 JUNCTION 41 . 91 41 . 91 0 12 : 00 0 . 844 0 . 844 0 . 000 0210 JUNCTION 20 . 19 20 . 19 0 12 : 06 0 . 381 0 . 381 0 . 000 JS19 JUNCTION 94 . 88 94 . 88 0 12 : 00 1 . 93 1 . 93 0 . 000 JS19a JUNCTION 3 . 37 3 . 37 0 12 : 00 0 . 0662 0 . 0662 0 . 000 Jsla JUNCTION 5 . 38 5 . 38 0 12 : 00 0 . 108 0 . 108 0 . 000 JS2 JUNCTION 28 . 69 28 . 69 0 12 : 00 0 . 604 0 . 604 0 . 000 O333 JUNCTION 75 . 69 75 . 69 0 12 : 00 1 . 63 1 . 63 0 . 000 O031 JUNCTION 13 . 47 13 . 47 0 12 : 06 0 . 231 0 . 231 0 . 000 0001 . 1 JUNCTION 0 . 00 13 . 40 0 12 : 06 0 0 . 231 0 . 000 JS22 JUNCTION 26 . 98 26 . 98 0 12 : 00 0 . 522 0 . 522 0 . 000 0000 . 2 JUNCTION 0 . 00 38 . 23 0 12 : 09 0 0 . 747 0 . 000 JS23 JUNCTION 11 . 87 11 . 87 0 12 : 06 0 . 221 0 . 221 0 . 000 O00 JUNCTION 11 . 95 11 . 95 0 12 : 06 0 . 205 0 . 205 0 . 000 O04 JUNCTION 30 . 21 30 . 21 0 12 : 00 0 . 61 0 . 61 0 . 000 O10 JUNCTION 14 . 82 14 . 82 0 12 : 00 0 . 283 0 . 283 0 . 000 O00 JUNCTION 39 . 07 39 . 07 0 12 : 00 0 . 775 0 . 775 0 . 000 002 JUNCTION 2 . 50 2 . 50 0 12 : 00 0 . 0528 0 . 0528 0 . 000 000 . 1 JUNCTION 0 . 00 2 . 40 0 12 : 03 0 0 . 0527 0 . 000 O00 JUNCTION 16 . 44 18 . 22 0 12 : 06 0 . 318 0 . 37 0 . 000 000 . 1 JUNCTION 0 . 00 18 . 19 0 12 : 02 0 0 . 37 0 . 000 OO1 JUNCTION 17 . 08 17 . 08 0 12 : 00 0 . 336 0 . 336 -0 . 000 OO10 JUNCTION 28 . 49 28 . 49 0 12 : 00 0 . 553 0 . 553 0 . 000 JW1l JUNCTION 2 . 52 2 . 52 0 12 : 06 0 . 0342 0 . 0342 0 . 000 0012 JUNCTION 11 . 81 11 . 81 0 12 : 00 0 . 234 0 . 234 0 . 000 JW13 JUNCTION 16 . 39 16 . 39 0 12 : 06 0 . 263 0 . 263 0 . 000 JW14 JUNCTION 119 . 78 119 . 78 0 12 : 00 2 . 48 2 . 48 0 . 000 JW15 JUNCTION 4 . 26 4 . 26 0 12 : 06 0 . 044 0 . 044 0 . 000 22110 JUNCTION 5 . 16 5 . 16 0 12 : 06 0 . 0793 0 . 0793 0 . 000 JWla JUNCTION 11 .66 11 . 66 0 12 : 00 0 . 27 0 . 27 -0 . 000 JWlb JUNCTION 11 . 68 11 . 68 0 12 : 00 0 . 241 0 . 241 0 . 000 002 JUNCTION 24 . 60 24 . 60 0 12 : 06 0 . 436 0 . 436 0 . 000 JW2a JUNCTION 4 . 47 4 . 47 0 12 : 00 0 . 0908 0 . 0908 0 . 000 JW3 JUNCTION 24 . 15 25 . 57 0 12 : 00 0 . 471 0 . 499 0 . 000 JW3a JUNCTION 34 . 59 34 . 59 0 12 : 00 0 . 729 0 . 729 0 . 000 JW3b JUNCTION 1 . 50 1 . 50 0 12 : 06 0 . 0282 0 . 0282 0 . 000 JW4 JUNCTION 34 . 03 34 . 03 0 12 : 00 0 . 699 0 . 699 0 . 000 JW5 JUNCTION 38 . 96 38 . 96 0 12 : 00 0 . 788 0 . 788 -0 . 000 JW6 JUNCTION 15 . 26 15 . 26 0 12 : 00 0 . 296 0 . 296 0 . 000 JW6a JUNCTION 15 . 79 15 . 79 0 12 : 00 0 . 337 0 . 337 0 . 000 JW6b JUNCTION 9 . 23 9 . 23 0 12 : 00 0 . 186 0 . 186 -0 . 000 JW6b . 1 JUNCTION 0 . 00 20 . 37 0 12 : 10 0 0 . 518 0 . 000 JW8 JUNCTION 35 . 55 35 . 55 0 12 : 00 0 . 698 0 . 698 0 . 000 JW8a JUNCTION 2 . 25 2 . 25 0 12 : 06 0 . 0367 0 . 0367 0 . 000 JS20 . 1 JUNCTION 0 . 00 151 . 91 0 12 : 14 0 4 . 05 0 . 000 OUTS OUTFACE 0 . 00 444 . 78 0 12 : 38 0 18 . 8 0 . 000 OUT10 OUTFALL 0 . 00 0 . 00 0 00 : 00 0 0 0 . 000 gal FIPOND1 STORAGE 0 . 00 87 . 44 0 12 : 12 0 2 . 16 -0 . 000 FlPOND11 STORAGE 0 . 00 118 . 84 0 13 : 10 0 6 . 28 0 . 056 FIPOND2 STORAGE 0 . 00 99 . 07 0 12 : 08 0 4 . 04 -0 . 000 FIPOND3 STORAGE 20 . 52 20 . 52 0 12 : 06 0 . 243 0 . 243 0 . 000 FIPOND8 STORAGE 0 . 00 39 . 63 0 12 : 15 0 0 . 938 0 . 000 POND 4 STORAGE 0 . 00 96 . 52 0 12 : 32 0 5 . 4 0 . 000 POND 01 STORAGE 0 . 00 107 . 38 0 12 : 30 0 4 . 06 0 . 000 POND 02 STORAGE 0 . 00 89 . 46 0 12 : 07 0 1 . 87 -0 . 000 POND S3 STORAGE 0 . 00 87 . 21 0 12 : 11 0 2 . 26 -0 . 000 POND 04 STORAGE 0 . 00 286 . 88 0 12 : 15 0 8 . 8 0 . 000 POND 01 STORAGE 0 . 00 355 . 07 0 12 : 37 0 13 . 3 0 . 000 POND_W3 STORAGE 0 . 00 34 . 79 0 12 : 10 0 0 . 73 -0 . 000 1 :\2024\2404044\Design\Calc\Drainage\SWMM\Pelican Lakes_WestArea_Results_100 . rpt.docx 1 /27/2025 TERRA FORMA ie SOLUTIONS 100-Year Results Node Flooding Summary Flooding refers to all water that overflows a node , whether it ponds or not . - ------ -------- --- ----- ----- ------ ----- ----- --------- -- ------ ----------- -- Total Maximum Maximum Time of Max Flood Ponded Hours Rate Occurrence Volume Volume Node Flooded CFS days hr : min 10 ^ 6 gal 1000 ft3 - -- ---- ------ -- --- ----- --- -- -- ---- ----- - -- -- ------- -- -- -- ---- ------ ----- -- FIPOND11 0 . 84 63 . 97 0 13 : 29 0 . 620 0 . 000 Storage Volume Summary * ** * * * * * * * * * * * * ** * ** * * - -- -- -- -- ---- -- --- -- --- --- -- -- -- -- -- --- - -- -- --- ---- -- -- -- ---- -- ---- ----- ------ -- -- -- ---- --- -- - -- -- Average Avg Evap Exfil Maximum Max Time of Max Maximum Volume Pcnt Pcnt Pont Volume Pcnt Occurrence Outflow Storage Unit 1000 ft3 Full Loss Loss 1000 ft3 Full days hr : min CFS - ------ -- --------- -- --- ----- ---- -- -- --- ----- --- -------- ------ -- --------- -- -------- ------ ----- ----- FIPONDI 136 . 663 12 0 0 288 . 513 25 1 00 : 00 0 . 00 FlPOND11 210 . 846 47 0 0 449 . 016 100 0 13 : 28 37 . 23 FIPOND2 218 . 193 20 0 0 539 . 808 49 1 00 : 00 0 . 00 FIPOND3 16 . 112 8 0 0 32 . 483 17 1 00 : 00 0 . 00 FIPOND8 58 . 615 14 0 0 125 . 338 29 1 00 : 00 0 . 00 POND 4 322 . 290 16 0 0 721 . 848 35 1 00 : 00 0 . 00 POND_S1 249 . 502 22 0 0 542 . 839 47 1 00 : 00 0 . 00 POND 52 121 . 436 26 0 0 249 . 376 53 1 00 : 00 0 . 00 POND S3 142 . 899 22 0 0 301 . 716 47 1 00 : 00 0 . 00 POND 34 543 . 327 24 0 0 1175 . 830 52 1 00 : 00 0 . 00 POND_wl 801 . 836 25 0 0 1784 . 345 56 1 00 : 00 0 . 00 POND_W3 47 . 117 21 0 0 97 . 595 43 1 00 : 00 0 . 00 * * * ** * * ** * * * * * * * * * * * * * * Outfall Loading Summary - -- -- -- -- ---- -- --- -- --- --- -- -- ---- ----- - -- -- ------- -- -- -- -- Flow Avg Max Total Freq Flow Flow Volume Outfall Node Pcnt CFS CFS 10 ^ 6 gal - ------ -- --------- -- --- --- -- ------ -- --- ----- --- -------- ---- OUT9 90 . 69 32 . 06 444 . 78 18 . 793 OUT10 0 . 00 0 . 00 0 . 00 0 . 000 - -- -- -- -- ---- -- --- -- --- --- -- -- -- -- -- --- - -- -- ------- -- -- -- -- System 45 . 35 32 . 06 444 . 78 18 . 793 Link Flow Summary Maximum Time of Max Maximum Max! Max ! IFlowl Occurrence. IVeloci Full Full Link Type CFS days hr : min ft / sec Flow Depth - -- ------ -- -- ------- -- ------ -- -- ---- --- ----- --- -- ------ -- -- ---- -- ----- ---- --- C136 DUMMY 253 . 00 0 12 : 16 C100 CONDUIT 49 . 52 0 12 : 50 3 . 13 0 . 01 0 . 06 C102 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C103 CONDUIT 27 . 72 0 12 : 09 4 . 32 0 . 03 0 . 15 C104 CONDUIT 11 . 83 0 12 : 07 4 . 58 0 . 06 0 . 34 C105 CONDUIT 14 . 63 0 12 : 02 4 . 94 0 . 07 0 . 37 C106 CONDUIT 52 . 49 0 12 : 07 7 . 36 0 . 01 0 . 07 C107 CONDUIT 37 . 15 0 12 : 08 6 . 27 0 . 22 0 . 55 C108 CONDUIT 24 . 13 0 12 : 15 0 . 92 0 . 05 0 . 24 C109 CONDUIT 29 . 97 0 12 : 09 5 . 18 0 . 20 0 . 53 C110 CONDUIT 26 . 78 0 12 : 04 4 . 90 0 . 08 0 . 34 Cill CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 O112 CONDUIT 97 . 55 0 12 : 15 3 . 53 0 . 08 0 . 27 C113 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C119 CONDUIT 18 . 30 0 12 : 08 3 . 89 0 . 03 0 . 17 C120 CONDUIT 106 . 56 0 12 : 17 3 . 86 0 . 16 0 . 38 C123 CONDUIT 49 . 38 0 12 : 17 1 . 10 0 . 08 0 . 29 C125 CONDUIT 83 . 30 0 12 : 14 3 . 40 0 . 10 0 . 30 C127 CONDUIT 106 . 90 0 12 : 11 6 . 38 0 . 89 0 . 74 C133 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 1 :\2024\2404044\Design\Calc\Drainage\SWMM\Pelican Lakes_WestArea_Results_100 . rpt.docx 1 /27/2025 TERRA FORMA ___e SOLUTIONS 100-Year Results C134 CONDUIT 36 . 24 0 12 : 09 4 . 72 0 . 15 0 . 37 C135 CONDUIT 106 . 55 0 12 : 17 10 . 02 0 . 50 0 . 50 C137 CONDUIT 29 . 97 0 12 : 09 18 . 50 0 . 17 0 . 28 C138 CONDUIT 30 . 82 0 12 : 07 5 . 97 0 . 15 0 . 49 C139 CONDUIT 30 . 71 0 12 : 09 3 . 58 0 . 26 0 . 61 C140 CONDUIT 5 . 31 0 12 : 08 3 . 32 0 . 03 0 . 28 O141 CONDUIT 35 . 69 0 12 : 11 4 . 84 0 . 21 0 . 56 C142 CONDUIT 20 . 06 0 12 : 07 5 . 00 0 . 09 0 . 41 C143 CONDUIT 24 . 15 0 12 : 13 4 . 07 0 . 03 0 . 16 C145 CONDUIT 7 . 91 0 12 : 12 0 . 97 0 . 08 0 . 25 C146 CONDUIT 34 . 79 0 12 : 10 3 . 40 0 . 21 0 . 45 C147 CONDUIT 2 . 23 0 12 : 07 1 . 55 0 . 00 0 . 06 C20 CONDUIT 86 . 35 0 12 : 49 0 . 98 0 . 04 0 . 19 C21 CONDUIT 34 . 61 0 12 : 56 1 . 04 0 . 02 0 . 17 C22 CONDUIT 40 . 60 0 12 : 18 0 . 82 0 . 03 0 . 15 C23 CONDUIT 283 . 82 0 12 : 35 8 . 42 0 . 15 0 . 41 C25 CONDUIT 39 . 27 0 12 : 50 0 . 89 0 . 32 0 . 55 C27 CONDUIT 43 . 04 0 12 : 08 7 . 24 0 . 25 0 . 34 C30 CONDUIT 118 . 84 0 13 : 10 1 . 61 0 . 10 0 . 36 C41 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C42 CONDUIT 29 . 79 0 12 : 21 1 . 83 0 . 08 0 . 26 C46 CONDUIT 70 . 51 0 12 : 14 1 . 25 0 . 06 0 . 25 C47 CONDUIT 286 . 75 0 12 : 36 7 . 96 0 . 20 0 . 48 C48 CONDUIT 11 . 86 0 12 : 35 0 . 73 0 . 13 0 . 31 C49 CONDUIT 49 . 67 0 12 : 52 4 . 57 0 . 05 0 . 23 C50 CONDUIT 24 . 88 0 12 : 08 2 . 62 0 . 01 0 . 10 C51 CONDUIT 24 . 29 0 12 : 12 3 . 04 0 . 07 0 . 26 C52 CONDUIT 35 . 34 0 12 : 11 1 . 53 0 . 18 0 . 42 C53 CONDUIT 34 . 24 0 12 : 14 3 . 33 0 . 11 0 . 34 C54 CONDUIT 14 . 87 0 12 : 07 2 . 64 0 . 02 0 . 11 C55 CONDUIT 29 . 79 0 12 : 21 6 . 98 0 . 30 0 . 37 C56 CONDUIT 28 . 24 0 12 : 26 1 . 58 0 . 08 0 . 28 C57 CONDUIT 73 . 09 0 12 : 11 2 . 74 0 . 14 0 . 38 C60 CONDUIT 33 . 29 0 12 : 10 1 . 15 0 . 24 0 . 55 C64 CONDUIT 27 . 48 0 12 : 08 4 . 25 0 . 07 0 . 27 C65 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C66 CONDUIT 2 . 51 0 12 : 06 2 . 58 0 . 01 0 . 20 C67 CONDUIT 2 . 47 0 12 : 07 3 . 18 0 . 01 0 . 18 C68 CONDUIT 11 . 26 0 12 : 08 3 . 85 0 . 08 0 . 37 C69 CONDUIT 92 .73 0 12 : 31 5 . 74 0 . 08 0 . 28 C70 CONDUIT 33 . 14 0 12 : 08 4 . 56 0 . 03 0 . 17 C73 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C74 CONDUIT 139 . 80 0 12 : 35 3 . 25 0 . 44 0 . 64 C75 CONDUIT 112 . 57 0 13 : 03 0 . 83 0 . 62 0 . 77 C76 CONDUIT 444 . 78 0 12 : 38 1 . 22 0 . 58 0 . 77 C77 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C78 CONDUIT 417 . 65 0 12 : 29 3 . 43 0 . 20 0 . 44 C79 CONDUIT 50 . 23 0 12 : 51 7 . 93 0 . 04 0 . 20 C80 CONDUIT 86 . 28 0 12 : 13 8 . 55 0 . 51 0 . 68 C82 CONDUIT 82 . 04 0 13 : 11 0 . 86 0 . 09 0 . 35 C83 CONDUIT 37 . 24 0 14 : 19 1 . 13 0 . 08 0 . 26 C84 CONDUIT 99 . 07 0 12 : 08 1 . 43 0 . 38 0 . 58 C85 CONDUIT 87 . 44 0 12 : 12 2 . 50 0 . 57 0 . 77 C86 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C87 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C88 CONDUIT 49 . 52 0 12 : 50 1 . 12 0 . 09 0 . 37 C89 CONDUIT 39 . 63 0 12 : 15 1 . 35 0 . 16 0 . 37 C90 CONDUIT 0 . 00 0 00 : 00 0 . 00 0 . 00 0 . 00 C91 CONDUIT 49 . 70 0 12 : 48 3 . 90 0 . 41 0 . 72 C92 CONDUIT 72 . 46 0 12 : 13 6 . 02 0 . 05 0 . 20 C93 CONDUIT 2 . 34 0 12 : 23 0 . 98 0 . 00 0 . 07 C94 CONDUIT 15 . 31 0 12 : 09 3 . 85 0 . 03 0 . 13 C95 CONDUIT 101 .70 0 12 : 30 14 . 52 0 . 10 0 . 29 C96 CONDUIT 53 . 85 0 12 : 09 7 . 71 0 . 12 0 . 33 C97 CONDUIT 290 . 77 0 12 : 35 11 . 64 0 . 71 0 . 85 C98 CONDUIT 21 . 81 0 12 : 13 2 . 00 0 . 08 0 . 31 C99 CONDUIT 34 . 68 0 12 : 13 2 . 69 0 . 22 0 . 53 O50 CONDUIT 92 . 85 0 12 : 34 1 . 93 0 . 44 0 . 59 CE3 CONDUIT 44 . 81 0 12 : 26 1 . 46 0 . 01 0 . 09 CE4 CONDUIT 41 . 96 0 12 : 33 1 . 57 0 . 01 0 . 08 CEO CONDUIT 283 . 83 0 12 : 35 2 . 90 0 . 11 0 . 29 O20 CONDUIT 92 . 93 0 12 : 29 2 . 22 0 . 04 0 . 18 CH10 CONDUIT 16 . 34 0 12 : 08 2 . 67 0 . 03 0 . 16 0018 CONDUIT 42 . 19 0 12 : 12 1 . 48 0 . 08 0 . 34 CH9 CONDUIT 21 . 82 0 12 : 12 0 . 91 0 . 06 0 . 25 O011 CONDUIT 19 . 81 0 12 : 06 6 . 78 0 . 63 0 .58 0811 . 0 CONDUIT 19 . 83 0 12 : 08 4 . 28 0 . 12 0 . 45 O012 CONDUIT 26 . 04 0 12 : 04 4 . 04 0 . 01 0 . 10 0812 . 2 CONDUIT 45 . 23 0 12 : 09 3 . 50 0 . 04 0 . 18 0010 CONDUIT 84 . 31 0 12 : 11 6 . 01 0 . 09 0 . 29 CS19a CONDUIT 3 . 36 0 12 : 01 6 . 43 0 . 01 0 . 18 1 :\2024\2404044\Design\Calc\Drainage\SWMM\Pelican Lakes_WestArea_Results_100 . rpt.docx 1 /27/2025 TERRA FORMA ___e SOLUTIONS 100-Year Results CSla CONDUIT 5 . 19 0 12 : 02 2 . 74 0 . 06 0 . 35 CS20 CONDUIT 66 . 41 0 12 : 11 4 . 74 0 . 06 0 . 21 CS20 . 1 DUMMY 151 . 91 0 12 : 14 CS21 CONDUIT 13 . 40 0 12 : 06 6 . 48 0 . 24 0 . 33 CS21 . 1 CONDUIT 13 . 10 0 12 : 09 4 . 82 0 . 08 0 . 38 CS22 CONDUIT 25 . 28 0 12 : 10 2 . 22 0 . 03 0 . 12 O122 . 1 DUMMY 38 . 23 0 12 : 09 CS8 CONDUIT 2 . 40 0 12 : 03 1 . 57 0 . 05 0 . 32 CS8 . 1 CONDUIT 2 . 37 0 12 : 05 2 . 66 0 . 01 0 . 19 CS9 CONDUIT 18 . 19 0 12 : 02 6 . 31 0 . 62 0 . 57 CS9 . 1 CONDUIT 18 . 32 0 12 : 07 3 . 05 0 . 04 0 . 20 CW16 CONDUIT 5 . 12 0 12 : 07 3 . 03 0 . 05 0 . 33 CWla CONDUIT 11 . 15 0 12 : 08 4 . 48 0 . 10 0 . 42 CWlb CONDUIT 10 . 80 0 12 : 07 4 . 79 0 . 09 0 . 41 CW2a CONDUIT 4 . 11 0 12 : 10 2 . 40 0 . 02 0 . 11 CW3a CONDUIT 32 . 01 0 12 : 08 4 . 14 0 . 17 0 . 40 CW3b CONDUIT 1 . 49 0 12 : 07 1 . 22 0 . 03 0 . 28 CW6a CONDUIT 13 . 26 0 12 : 11 1 . 00 0 . 06 0 . 19 CW6b CONDUIT 8 . 64 0 12 : 04 3 . 41 0 . 10 0 . 43 CW6b . 1 CONDUIT 20 . 03 0 12 : 12 7 . 94 0 . 05 0 . 15 WEIR 1 WEIR 0 . 00 0 00 : 00 0 . 00 WEIR11 WEIR 37 . 23 0 13 : 42 0 . 00 WEIR2 WEIR 0 . 00 0 00 : 00 0 . 00 WEIR 3 WEIR 0 . 00 0 00 : 00 0 . 00 WEIR4 WEIR 0 . 00 0 00 : 00 0 . 00 WEIR8 WEIR 0 . 00 0 00 : 00 0 . 00 WEIRS1 WEIR 0 . 00 0 00 : 00 0 . 00 WEIR S2 WEIR 0 . 00 0 00 : 00 0 . 00 WEIR S3 WEIR 0 . 00 0 00 : 00 0 . 00 WEIRS4 WEIR 0 . 00 0 00 : 00 0 . 00 WEIR W3 WEIR 0 . 00 0 00 : 00 0 . 00 WEIR W1 WEIR 0 . 00 0 00 : 00 0 . 00 Conduit Surcharge Summary No conduits were surcharged . Analysis begun on : Mon Jan 27 16 : 32 : 14 2025 Analysis ended on : Mon Jan 27 16 : 32 : 15 2025 Total elapsed time : 00 : 00 : 01 1 :\2024\2404044\Design\Calc\Drainage\SWMM\Pelican Lakes_WestArea_Results_100 . rpt.docx 1 /27/2025 APPENDIXE - DRAINAGE PLANS - WATER' . 1 •' TYPE " '� • • i I TYPE 'A' L SOIL _ II1STORICDRAINA GEl I .TYPE 'B' O N 1 , ♦♦ ) 4111 OOSOIL � ` LLo . TYPE A SOIL CD RD 3 & 4 , CO RED 38 fl < -J-J i' LU SOIL - - - - - - - - - - - - - - - - - - - - - j ' ' S P-ON1 TYPE "B♦ � TYPE 'A' SOIL 1 I F" SOIL - - - - =*. - - -. - - - - - - - ; - - - - - .. ,. poi ' ` �•` O 48 s 1 �� �+ X_ W 6 �► 5 ` T3 N R 5W '. : EXISTING CONDITIONS ♦♦/ '♦♦SDP1 ` DESIGN SUBBASIN BASIN 10yr BASIN i OOyr TOTAL TOTAL ♦ ♦♦ .� ,,, SUBBASIN RUNOFF RUNOFF TRIBUTARY RUN If ,♦ TYPE 'A' SOIL •. , H19 ` � POINT AREA ( AC ) ( CFS ) ( CFS ) AREA ( AC ) ( CF S ♦• TYPE 'A' SOIL • W a TYPE 'A' SOIL ; \ 0 N 1 D P 0 N 1 307 2 4, 2 23 4 182 ♦� �� \ ` \ owl DP O W1 48 2 . 9 41 �� �•�- , ♦ H1 OW2 DP OW2 182 5 . 9 93 r DP- OW � •� [ OW3 DP OW3 66 2 . 3 45 TYPE ♦ - �, t �� — — — — _ OW4 DP OW4 81 2 . 6 42 z — — — ,, — OW5 DP OW5 591 19 . 0 284 — — — — — OW5 DP 0W6 174 5 . 4 93 0 TYPE 'A' L t + `` � P - H19 S . OS1 DP OS1 187 6 , 6 140 ♦1 (� E A • SOIL �,� A H2 A S01r.1, ' 3 OS2 DP OS2 23 1 . 0 8 0 �.� �,• �, 63 DP-H2 BEEBE DR4 H1 DP H1 666 19 . 2 521 1107 24 0 WFq � , � P-O .• "� O X15 PKWYLU H 2 D P H 2 6 3 2 . 2 47 H3 H3 DP H3 35 1 . 1 43 35 H4 DP H4 258 7 . 9 210 z • E 'B" OW ` .• r�u - ,, L H5 DP H5 30 2 . 0 33 > < < < < < < < < L i 66 H18 i DP- H18 L+ � _ w ♦+ [ 45 1 x � H6 DP H6 39 1 . 3 47 it U• , - - . . H7 DP H7 5 0 . 2 5 +0•0 , . ` TYPE A SOIL , P_ �� �_ H8 DP H8 272 7 . 9 128 750 7 , ♦� •+ % r ; ' `' . .� KH:.. H9 DP H9 99 3 . 0 42 861 15 1110 DP H10 90 3 . 2 98 681 15 • •♦• . "A" SOIL I '� \I'' , .S ~ , ♦ `' H 11 OP H 11 39 1 . 1 33 900 14 "K H12 DP H12 81 2 . 4 23 981 12 10'• ` -� v 41 I W* P- H DP- H1 H13 DP H13 26 1 . 1 37 4800 1 H 14 D P H 14 51 1 . 5 2 9 ♦♦• Z FSSF ,�♦ V 1\ `� f•�� Vic . H15 DP H15 1475 49 . 7 625 2127 51 • � 7 `` 81 �` _ , -� j , ..� 30 ; "`� H 16 DR H16 28 1 . 1 16 ■ � P-O 4 • . .�' H17 DP H17 22 1 . 0 28 W •� • � ti H19 DP H19 134 4 . 1 122 591 S` - � WEr.. ,, $� 4♦ SO + ; t r I:` t.` ROh,�EY. cT ♦•ice H6 �'� '� H9 r 9 DP- H6 - - / DP - H16 Z �-� Hs LEGEND a DP -OW5 � I P- H7 �� + / r 272 - - - - - - - - - - - - - - - - ,. . . . . . . - s . . . - - - BASIN BOUT TYPE 'A' SOL J O H 10 � D5 1 w- ' o , l 90 � ° DP- 17 .-:Ll . . D - _ 1 SUBBASIN NAME BASIN LABE D TYPE "A" SOIL - . SUBBASIN AREA i ,'1 i H111 ; - DP- H8 (IN ACRfS) ■ . wow I ` 4, XDP -2 DESIGN POE � n Z '1 DP- H9 DPL 12 2 . . H11 81 � W V M 'A' SOIL FLOW DIREC Z 39 .� V % ~ � � ' 174 / ,e DPM-11 $ ♦ • ?� — — o o Tc PATH 0 — JO F • H14 U • [ H 3 ♦ z CJ 51 LOry •., : 25 \... � •, DP- H1 - 0 a z li z TYPE 'A' SOIL •t 15 r , O 0 ♦ `J g 0 • en 17 - - . : 1 H _ _________ TYPE "A" SOIL 1- _ ' TYPE "A" SOS H 15 6. DP- H15 1475 C 50 I - • t DP- OS1 PL - CO RD 32 co _- 0 500 1000 1500• ♦♦ TYPE A SOIL sat , .' .: . . s •♦�` ••r ■ ■ ■ r►r#• r * *** lo ■ ■ ' •. �, . OS2 C CHK :: •♦♦ OS 1 •'•�• 23 _ g :_ � a DATE 10/ 18/2024 3 6 �♦ 187 ��L emu. ♦♦� �# � * * * �*��� T3 N Rb 5W SHEET NUMBER # ■ �. .�, H D R I 1 \I , \ -' \ TTc - - - 1 �� - - - _ . S 1 `� 1 , `, ,� \ ) I I LEGEND ' If HI BASIN _ \ 1I III , - \ ) I I I / _ _ 1 I DESIGNATION � D � � ' / \ '• /'. ' - r \ 11 ' 11 ( lip _ % K ` . /;4 ' JJ , - `` - _ . \ r\ I I ` \ = - 0 . 62 C5 S 2 \� / / / // - ` � � / `\ \ \ / ��/1 { 1111 `�\♦ \` ` \\\ \ ' � � / \ \ I 1 / 1 I \\ _ / \ \\ \ \ , / \\ _ \ I 1 / ! ) / _ \ ` J / - _� .�- \ � \ \\\ \ \` \ . \ \ � ,� \ BASIN AREA \ ' r ' C. _ '/ \ - - : ; '\ ` ` \ \ \ 11 ( a \ \ \ .\ _ I ' j \ I (ACRES ) 1 \ \ \ \ 1 1 11 Il \ _ \ \ .. I r ' ♦ 1 M_ v► , \ \ 1\ t \ \ • J / 11 ) 1 �.I 1 / - • !! \ \ \ , i r _ l , 1 \ \ \ %C' \\ \ ♦ \ \ \ \ \ \ / \ ` 11 - � 1 ` - \ ' ♦ 1 III / III , \ \ _ . \ \ / / / / 1 \ -I ' 1. 1 „ \ 1 ` \ / I \ \ 1 ` �'\ \ ♦ / , 1 \ \ \ * 1 / 11 \ \ III , . , \ ' ' r WZ l / l \ L 1_ \ \ ♦ / \ \ . ♦ / ♦ ` \ ( \ ' ' / \ \ \ 1 1 I I �• 'tI I - ` ' / / /_ � / iI ( 201 \ - / \ ` - /f � \ \ \ \ \ \ \ � \ \ \ / \ / / / \ ` \ \ I 1j \ 1111 1 \ '�' /' 32. 15 0. 12 \ \ \ [ % j` � , II \ / \ III\ \ \\ 1 ♦ r ♦ \ \ \ � \ \ \ \ \ \ \\ \\ 1 \ / _ \ \ \ , DESIGN POINT 1■1� / / CULVERT 2 1 \ tl \I \` \II I \ \ l \ \` \ , _ II r� \ � - - ; \ \ ; \ 1 1 \` \` • ��\\\ _ /t - \ \ \ \\ 1- - ' � \ I � \ / 1 \ \\ , fl - ' \ _\ \ \ \ - / I ' • • `. \ \ \ \ l \ `\ \�J 1q® - - � •' _ 1 1 \ \ \ \\\ \ \ \ vim \ � / � � \ / . ) ` ` \ \ ` / \ \ l . \\ \ \ \ ly y �. 1 , 1 ! \ \ +11� � \ \`\ .. .. �;�� \; � \ ' \ / ` _ \ \ 1 DRAINAGE BASIN BOUNDARY} X11 / / \ \ '. ` � � � / / ' ' 1 \� \ \ \ t - ■ \ 1 ( / `1111 \ \\ � . - ._ : \ .. \ �' \ ` I ( III , \ ; .� ♦ \ l \\ . \\ \ ; \ \\ �0� 11 ', f1 / J \ \� � � � � \`\ \ \,' \ W2 / / %. / w2a6 ` . - _ / / / 1♦ \ `. \ \ \ \ ' ` J 111 111'1111 ` 11 \ ` `\\ � 1\ \ < Yom -- _ / \ � \\ / 11111 \ ` \ ' \ \ ` \ _ _ \ \ , \\` \\ \ \ \ ` \ (11 f ' ! �/ �, � Iti / 2, 7 / 4.40 _ _ " - ' ♦ ' \ �' \ � � \- '<, � \ ♦ . ._ - \ N r ' \� _ r_ \ ♦ \ J I 1 1 _ \ 1 _ \1 \ ` : \ 1 r \ \ \ \ PROPOSED STORM SEWER/CULVERT ' ,/ \ ; � .. . , \ 1 \\\ � 1 / � ) ���\I1\\\ )\ \ � _•f FILING I , I\ l f � � \ \ \ .-. i\ \ \♦ \ \ \ ` \ \ � ` �// , / "� -•' _ \ \\ \ \ \ ' ! / 1 � _ - � i - \ \ \ � � _ \ • �� : may 1 1 I 1 \ \ � 1 ` \ \ � _ � \ / I , � \ \ \ \ I \ \ , 1\ \\ \ � ` \ \ \ ' � I \ J 11 .26 020 - / s l \ \\ � \ ,^ �� -•z `\ ♦ - \ ! I ( 1 / ! \ t ` _ \\ \ \ ` \ 1 ' \ \ I ' 1 1 \ \ \ ` \ \ 1 /" Q _= - __ 0., 3 \_/ \ \ ✓ , , u4t I „ � , \ _ _ �� `F � . i +tom.` . _ : - \ \ ` ) 1 \ \ \ ) 1 J \ \ ' 1 ' 1 ' \ \ ` \\ O EXISTING MAJOR CONTOUR � ' 46.79 \ \ ♦ r / '\ ' . i% / ,• 9. I I ♦ r _ J I \ r EXISTING MINOR CONTOUR I \\ CULVERT 1A B ,� \ wia - 027 \ 1 �/ - 1 ` J � \ • < ) 1 \ , , \ ' I :v+ w1a (' ✓ � -r . � � / \ / / W11 n I !• ) \ \ \— / / — \ \\ \ \ \\ < \ r ;., \\ \ \ ' t I I / / QQ , 1 t vx / }�\ wa .r \\ ��!►i 1 r/ / ' ' 1 r ♦ . \ \\ ,\\ ) ♦ ` \ ` \ \ ` / ! r \ — \ \ S CULVERT 1B 0.20 T f / \ . / J �J J ! � J \ 1 \ \h J rr ✓ J \" r _ \ ), `\\ 1 `\ d r 227 Wt f\t l f ♦ / ' \ I 10.26 1 .44 1 I \ ♦ � - 033 — \ \ \` / / J J I1 . r _ // J 1 // \ ' 0. 13 \ \ - - - — 11 t . j\ ) \ FLOW DIRECTION -_ —_ . . W3a ` � � � / 1 ' \ / — / ` � \ ! 027 , .. � ` \ � I / / J I i ' \ \ i INITIAL OVERLAND FLOW PATH ` � \ . . \\ , � � )` r , —� C� � f - _ � \ c I\ I, . \ . \ \ \ \ ` \ ` �\ !1 � - - ., \\ \♦ \ ` I I �1 f � \ \ \ ` /��i�� CHANNELIZED FLOW PATH > I / ' - / 221 1 ` J \ `, • 229 '^ I �- t ` ` \\ \ f \ / 1 \ \`\\ `\ \ ' �+ lit /__ ) I ' � 1 1 ) \ llj I � \ >!I-�� t. _ I � 1 t `' � I jj POND 4 \ \ � � I I�i \ .._ \ ,- ., _ -..._ \ , i 1 ) \ ♦ \ \ \ \ 1 1 I �I `i 1 t ` ` Vo I �r W� a 11 \, V�� - • 239 =-10 1. r ' 240` \\ \ � � j ( J •�•/�`r�i / - 243 ' ik ' { 1 r•� I� 4 f \ t \ , ,1 t / / , . , \ \ • \ \ rd 1 _ -\ . .\ $.61 0,20 \l \ ( t. \, ... . ...... .240 \'\ \ 1 J \) _ \ + 222 ) 0.33 �� \' 230 ` \ \ � \ _ >✓ _ ' / , ° \ � \ `\\l — - - - _ - - - - - - J T=- - I `. `` \ ' \I I 1• � �\1� ^ \ \ ` ` .. \;\\; \�\,_ ` . w6a W6a 1 1 _ \ _ / \� - '� is - \V \ / / ! — J _ \ ♦ \ 0.20 .. ` 0.14 —� — S-_' 'W1 ; H I \ \ tf�• `\ J ) J / \ \ ` \-\ ~ 26.56 23.24 K W13 \ \ y \ 1 ` ♦ 0.33 \ �I� 0.28 c W6b w6 1 ( ;\_ . ' . U3 \ � „ ' / " - � \ `\ \ - 1 \ \ ♦ ♦ ` \ \ / , `X 1 ' �, , _ \ J 0. 14 \ ! \ ) ) \ I \ \ \ \ , ,. .Ji"� ♦ ` \ ` \\\\\ \ CULVERT 3 _ \� `\ \ 249 ��. \ 6.46 ;; \ \ G _ I 1 I \\ \ \ - \ { I , /yx 6 \ , I 1 1 \ \ 1 \ l `\ / � 1 \ \ \ \ \ \ \ - �'ft 14/ \` \ / ' \ \ �� 0.33 245 x, 142 � \ \ \ \ \� \\ 1 I ♦l\t\\\ ■, r \ \ \ \ \ - _ � \ \ l ♦ I 1 • \ \ LLI , - 0.07 1 \ \ \ ` � ll '- ` ♦ ' .: ' \ ` \ \ CULVERT 11 4.66 \ \ \ t / \ � � ` _ 1 \ 1 v 1 \ ` \ 209 \ I W3 �'- . - \ \ \ \\ \\\ \ WS \♦ \ - s ♦ \ \ \ � •f � l l l \ \ \ 0.22 \ 1 a \ 1 \ \ S o ♦ \ 210 1 1 z, 3 as \\ ,\ \o \ \\ 1 CULVERT 5 \ \ , I1 a.za , \\ \ \ \. \\\ ♦ \ \ \ \ \ \ 1 t \\ \ \ \ \ \ I t J , > .=' \ , Z 1 ) \\\. \ / '\ \ ) \ \ 18.22 _ / 11 \ P \ \ \ �\ \ ltl t \ \I `, / \ \ - \ _ \ W16 l \ \. \ ' ,� \\ \\ °\ \•\ 11 . 214 / 2 S , II 216 �PSt.) 1 I \ \ \ , \ 0.33 \ \ ' I1 / /_ \ , 1 \ CULVERT 20A . 1 , \ \ 211 \ \ `. 212 \\` W3b J rJ II , an �^•� 1 \` , 53 ,52� lt ; / / CULVERT 20B � 2.35 0.33 \,\ \. ♦ / / \ \\\\ \\ ��\ . 0.97 z 0.30 / / I , 1 \ \ �/ / / —_ / . 1 I \ \ ' '— ` . \ \ \ l I 1I 11 c 7 1 \ \ ♦ / \ \ \` \ 0.33 \ ' S3 1 � / � / \ ^ J \ _ , 11. , 1111757 . , ^ \ � � �\ . r. . ,,. ` \� \ \ ;\1` 11j / r4 •• I LJJ 6.31 020 1 • ` ` ` 111 + 1111111 / r / r \ \ \ \\ \ _ / , ', \ r _ - \ _ / ♦ J . -" \ \ 1 0.20 � . (, ��_ _ _ ' 0.33 'I \ � / - \ ` _ • .\ r .. 1 . 1 ) \ \ \ \ 0.20 / I \ I r / ' I 8.06 ) 1 lI\ 1111111 / 11 / 15.56 - \ / .. ' I 0.33 . ) \ 1 1111 I I f / Ow6 \ / ' 0.33 \ \ / ; \ 173 . 170 / ` I I \ \ / I / 111` I !1 / /30 , \ .. � \ 171 \ _ \ \ \ /cam. -+ ♦ \ / . 145 \ / \ \ \ / , I / / / owa i►• 1 \ ' �\ \ � \ \ l \ ` \ f � ' \ r J IIIIII . . - 51 , , ., S7 ♦ `�• \ , 1U \ `' / � \ ` \ ; \\ ` � ' _ Jr �-.- ` \' J - .. ' - ` � / 1 :. 136 i• \ \\ t I / 1 / 111 , , / 173.9 0.22 � :L ` . "� \Y� ; \ \ _ / '` /�•.-..1�,..1\ \ \' \` ' � / ' / ' tJ\\ \ s,� . .� . \ _ J . 169 : � � 1)11 \ �` � � \ J �� ..�^ \ \ ) \. \t I ( i 'r/I111111 r \ I \ \ ,_ \ 172 ,\��\ ) / / \ \ 1 , \ / I I 1 / / ■ - _ I r- \ .. - , \ � ' _ _ ,• �, / � 11 \\ 1 \ r '\. °L \ ` �\ _ — � � + 1 /r \x", 149 _ / � / � � \ , '", ,Y`` \ \ \1l \',III 1fIU/I(� !/ r rt r \ ' \ / \ \ \\ \ ` ` � \` \ / � � \ 11.1 \\ J \ \ / �- WSa / �/ / � .\ _ = . ' . �\ \ ` \ ) 1711 �I ' ■ - - • - • - r - « ■ , ■ a . 29 ' \ 1 � \ t ( I \ \ \ \ , 0.20 \ \\ \` ` N166 \\ \ ) \1 I /i jj zt"&\ /i; / \ _ �J l ,\1\�\\\\IlIII1j - OW4 OW4 80. 70 2100% __ on 6.53 39. 60 To Pand Wl _ � \ 21 . 13 \. .\ 67 r \ ) \ \ \ \ \` J I ) fl f rl \ \ \\\\11 / 11 0.33 s3 � J �� OW5 OW5 590. 74 2.0W/o 0-/7 0.22 572. 20 To Pond W1 / \ S2 1 '. I. \\\ \ I ULVERT 28 c' '4 : 1 \ \ \ 1 K`_ J �1t \ \ 1aa 1 J. �. \ \ 75 Z C P �„— ' , \ — ■ CULVERTB ' ( 111 ' )"` / OW6 OW6 173.92 2170% 0-07 032 192. 10 TaPand51 020 1 — y , , ) , ! ,, , , \ , r•1.1„ �,�, 160 ' 159 1■ , ` f ' � ! / ` • ` 1 21 .99 , / 1651 S5 I, ' 76a / / / \\ ` Y" / r `�' + ` Wi Wi 11. 26 20.00% 0.20 0.33 - 286. 70 To Pond Wl 033 \ \ - / + � / 11 , \ \ ^ // , 1 \ \ \ \ \ \ \ 111 28 9. 16 0.20 \ ��1 / \ ` '� - 1541 , \ / r— \ 135r \ Wla Wla 10.26 20.00% 0.20 0.33 - 290.77 To Pond W1 liii � 1U I I 176 sa / \ 0.33 A. -1.-� 1 \ 1 13a t^ \ \ \ ' I % \ �\\ \ �\\\)\\'�l ` Wlb Wlb 8. 61 20.00% 0.20 0.33 4. 96 15. 69 To Pond Wi f / 161 ' ' ' \ t ` \ ' / + i .\ \ W2 W2 32. 15 7-34fo 0. 12 0.26 9.70 52. 01 To Pond W1 r \ 1 1 : CULVERT 27 ,/� ss 164 S8 t . i... c \ \\ \ `, 27 ) \ / ' �, _ \ \ rC v 186 �%% . /I ' \ \\ \ \ ) 158 \ /\ ` ' W2a W2a 4.40 13 .76% 0. 16 0.30 10. 01 52. 37 To Pond W1 0.20 \ \ \ 1 �` C \ \ 177 ' \ 1 .93 . ✓ S 9 155 1 - - +\ \ / a \ .33 � J V," /UlilrNl Q ' 1 \ - _ \ , f \ \ , 0.20 \ w ,. _ / /// / / 10.40 \ \ \ 0.20 / U1 W3a W3a 26. 56 20.00% 0-20 0.33 19. 65 62. 14 To Pond W1 \ .I ) 1 I I / / . 185 ./' 1 I / \I _ �' 1 23.25 I _ \\\ ry, 0.33 /UI /ri/ J fj W3b W3b 0.97 20-00% 0.20 0.33 0. 69 2. 19 To Pond Wl / � 0.33 / ♦ 0.20 1 " / / , - � N. \ \ 188 / _ \. / • ' , WSa W8a 1. 11 20-(HI% D.20 0.33 0. 78 2.47 TnPonrf W3 27.67 1 / \ \ a _ It132 W3 \ I I , i ',_1t / /. 0.33 I / ' / / r - / $6 \ 1 \ . \ ( , / WS WS 23. 25 20.00% 0.20 0.33 14. 05 44.45 To Pond W3 f \ \ \ S19a 784e y , � - ., IN ( , 0.20 . \ \ • \ - � \ _.. ` o- 0.20 779 26.22 \ \ 190 \ \ \ , !1111 I1 \♦ \ ♦`• ` WS W5 36.46 14-35/ 0. ]J 0.30 17. 23 60. 13 TaPond4 \ 1 1 ) 33 i 0.33 \\ \ ♦ , ' \ \ + \ \1 / � W6a W6a 23. 24 1Q-49% 0. 14 0.28 9. 81 37. 75 To Pond 4 \ 111 2.21 \ . \ POND - / / IJ \ , 1 I \ \ 1 1 24 ` _ _ 1 • 0.33 r 1 y��\�//\ \ \ \ .QJZ ... \\\ 191 , \ 192 193 /J . ;i1' 1 / F: I ` 127 _ I ;! 1 , 1 \ / 1 � 1 / \ \ � , ' I I o 75 \� rl / 1 1 / I \ \ IJ 1 / ^ \ `/ \ . \I W6b W6b 6.45 20-D0°�f� 0-20 0.33 26.59 94. 65 To Pond4 •� \ •� \ � ` `\ - '1 . 231 • ••. ''- v°' � , lIr / 18 // . \ \ . CULVERT 29 . 1 _ _ /� 1 ' - - / ` 1 / t ,,;� W6 W6 9. 70 20,00/ 0,2D 0.33 6. 19 19.59 To Pond4 1 ) \ Sla f ' 34 1180 / 1 / I ^arjl 1 ' �\ ss \ /. , ' 0.20 /( III / 11 ' \ \ \ , r W10 W11 18.22 20-00% 0-20 0.33 13. 86 43.82 To Pond4 Sij \ \ 76 12.93 I ♦ _ / J \ \ f \ ` \\ / 1 \I 0.20 \ ii , ,, / \\ � 74 ` 1 )\ \ ' 1 1 0.33 I ` — ' s \ ` \ \ r /� Wll W11 1.44 1110% 0. 15 0.29 0. 78 2. 88 To Pond 4 y� , . . 3.70 1. 1 r\ 1 \ / 1 / I / // -. /'/ , ... \\ 1� _ , � . . r , :. i ■ . � � J . ` \ ( f r — \ \ \ ' I t , / \ \ f�i . W12 W12 8.06 19.44% 0-2D 0.33 5. 14 16. 69 To Pond4 --� s ,' , - \ \ ,'.;L+% i ' ` \ \\ I ! r y, `kr'�`••\ ( � " / \ �` 194 W13 W13 13. 69 10-35% 0. 14 0.28 32. 66 112. 63 To Pond 4 1 / 1 O ` / 1 1/ /J / ti ��� y ` \ / 1 821 28 Ut ,J / o - I / ' \ \ / , r / / 1. / '\ ` I 200 1 `` / \ \ 198 197 196 1 � L � \ / Wl4 Wl4 179- ]8 9-226 D13 037ll9-80 To Pond4 I f- \ � / / 1 ` S1Z 1 ` . r`\ \ ` \ — j \ ' I 7. 12 „ ^ ` ` — I r wis W15 4. 66 2.00'6 Q.Q7 0.22 0. 93 5. 63 To Pond4 ) CULVERT 25. 1 t 3s\' �- \ - // // \ S11 73 _ /' 0.20 \' \ _ ,1 195 020 \ _ _ / ( ) \ \ \ / \ \ \ \ 129 033 - 125 1 I \ \ \ \ ) 81 18.24 ` / Jj W16 W16 2. 35 20-DO% 0.20 0.33 1. 66 5. 25 To Pond Si 7 \ \ \ V A -_-__ ./ / / , - / r 77 0-33 —� _ V A o L CULVERT 25 ` it 11 .22 /'I st2 ` r AVA ( / 51 Si 27. 67 20.00% 0.20 0.33 - 101.70 To Pond Sl �' / , . _ I .. a 810 821 \ \ / : S18 20 `\i ` `\ \ 1 ' , , 2 \. \ _ lI \ \\ ) \11 ) / \ 21. 99 20.00% 0.20 0.33 - 107.40 To Pond Si 0.20 \\ / / �\ = `\ 1 \ ` �/ \ \ 53 S3 6. 3 20.00% 0.20 0.33 4. 11 12. 98 To Pond S2 I \ strt I t ' \ \ / M _ o ' t •,n' S23 \ \ \ % \ I I 1 CULVERT 34 \ \ - / 1 \ , J / , 54 54 21. 13 20:00% D-2D 0.33 10. 75 34.00 To Pond 52 Z o \` _ '� � � ` � 71 ^ I I \ ! � /'; �\ ,� 1 101 \ � ' � ♦ \` \ � � \ \\ 7 .02 / � � \ \ \ 69 _ s11 / /x17 J I \ 96 \ 95_ 123 \\ = 1 y J ' ♦ ( S / 19 37 / I \ � / - \ \\ 0.33 � 1 / � / \\ / 55 SS 9. 16 20.06% 0.20 0.33 8. 87 28. 05 To Pond 52 LLI Q \ 1 / \ Ll \ � / / CULVERT 35 > \ \ i ` \�\ ', / , // /✓ \\ . oW ` \ , 1 I \ _ / / // J JxT \ 56 56 26. 22 2Q-DD/a 0.20 0.33 29.23 9145 To Pond 52 r� /� , I ) \ ) 1 ' I / 1 .•/•• '� — , � _ � - _ \��� � 78 \ , \ � � _ � _/,/, /�j//�\_; S14 S14 22. 83 20.00% 0.20 0.33 11. SD 37. 31 To Pond 53 `\ ` yi 1�'y T. F .. -�. • 18 _ \ 38 �� =__ , / J ' 1 1 I I `tk�� \ �' 100 \ tt 1\ ♦ \ - - \ J i��'/r _ 515 515 23.29 20-00% 0-20 0.33 12.97 41.02 To Pond 53 U^) N \ \ «•� 11 \ 1 ) , ♦ -- \ I t \ V \\\\\\` � _ - J. _ - / /J / I I 11 r r / • r \ - - ., i7 ` � _- \ ` ' J _ / / / / //I / r�✓ � u I / O • \ , \ \ I 1 \ \ / - / I � \ � � ,._ _ � _ _ " / / I 11 \ \ : \ \ \ f \ \ _ � / 122 ' 1121 {. _ �` ^ - ' _ / /// / i _. _ � `C , UNCC ♦ �► \ I \ \ n / 39 ` 68 - = � � ,/ / . . 1 1 / \ \ \ \ \ - / / = , 119 , - CALL BEFORE Z O // i / / / ✓ _ '/ _ -', Sla Sla 3. 70 20-00% 0.20 0.33 2.45 7. 74 To Pond 53 \ I J \ \ : 9i : : U3 ! - YOU DIG O ' / — � �r_ _ / / = � / / / ' / ' ' ' • 58 58 1.93 20-00% 1.20 0.33 1. 34 4. 23 TO Pond 54 Z ll•NA' / ' // d ;6 / , , ',' _ — I / �i� , ' \ � \, �� 1 — _ : ..9$/ ' / \ " 1 _ J / j \ \\ \ , ' " ' ' / ' _ N, / / 098 _ T: _ f I p0.33 7. 88 24.91 To Pond 54 6 , \ . _ / / J '( / ,/ ,/ / / 63 80 \ 59 59 10.40 20.00% 0.20 U f 1 / , 40 \ / ' / _ 1 1 / ! , ' 810 510 12 93 21.DOfo 0.20 0.33 13.00 41.11 To Pond 54 a 8 1 1 l \ \ / / J — \ \ \ -_ _ _ _ _ , ,, -_ _ _ S22 1 f 511 511 11. 22 20.0010 0.20 0.33 6. 93 21. 91 To Pond 54 U O ^ \ ♦ ` � / / is f ,�1' _\ - /'/' � • J / - ` ' 1 1 \ \ v / \ , - - / 114 � -1 - 1 \ \ / / / 0.20 � J 1 ! ) 512 S12 18. 24 20.00% 0.20 0.33 14. 92 47. 19 To Pond S4 U f I I I ! � I 52 ` \ ` ` . `�� _ -'" � � � -y- 17. 11 118 \I � 1 OR ~ \ \ 0.33 115 1 • 20.00% f ', ' I / I 41 , ( \ I .- GJ\ M I 1 // 62 _ - 81 J l \ I 1 \ ) 513 513 72. 83 0.20 0.33 38. 11 120. 53 To Pond 54 (n \ / ` -." "/; ,' / \ \ 53 e 71k % '1 1 ,' /- - / \ � / J I ' t I 1 518 818 12.17 2QOD% 0.20 0.33 9.47 29.95 To Pond 54 Z w ce I ' u J 14 ' J -\ f)ll a ' p � r / \ ` � " i '•' \ �� \ I , / \ , ., / ' / 1 I 519a 519a 2. 21 20.00% 0.20 0.33 1. 52 4. 81 To Pond 55 ® LLI - 1 " / 1 - 800 - 922 - 1987 1^, 1 r I . 117 \ \ / — _ _ — / / \ \ 1 t� 1 1 1 / ) \ i / I 519 519 67.45 zD-00% Q.zD 0.33 27.07 85. 61 To Pond 54 1 ) 11 1/ — � j� J / — ',_ i { r \ � \ , \ 51 t\ 1 54 1 r ' I I � I / )1 \\ /' � � 61 _ ' \\ 82 1\ ` \\ 1 � 113 I / ' � ; � S20 S20 6D. 16 20.00% 0.20 0.33 - 253. 00 To Pond 54 , ;,� , _ _ — , ,) \\ , , , II , 1 , ' )\ \ 1 ' _ ' ` .. - jf Y ` ° . , \ ` \ 521 521 7. 12 20.00% 0.20 0.33 4. 61 14. 58. To Pond S4 TI LITY N TI FI ATI N ) I _ UTILITY I I ! \ 1 1 55 ` I \ \ ' \ � _ 92 \ 1 / 116 \ — J - `\ ® ® o V O C O _ ^ / - _ 43 \) \ / / r , / • I I \ \ \ ! — r f \ / \ 1\ ` 522 S22 17. 11 20.00% 0.20 0.33 11. 29 35. 69 To Pond S4 / J / 1 I r ` I \ ' \ / i I S23 523 7.02 20.00% 0-20 0.33 4.07 12.87 To Pond S4`\ \ ` _ -� \ ) , CENTER OF COLORADO I / , ♦ / 1 / / / � v \ \ 1 60 \ I \ // \ , \ I , I , , _ \ / \ T' \ 1 U1 U1 5.44 2.111 0.07 0.22 1. 32 8. 02 FlowsOffsite 1 1 \ III ` t f I \ RR `I 49 J ' , , / / 156 / r `1 \ \ ^ - - � � / l � 1 \ N 112 / 1 U2 U2 2. 75 20.00% 1-20 0.33 1. 93 6. 09 FlowsOffsite S14 J / r S19 \ \ 1 \ \ S13 ` ' ` s - _ ' I t " , ' li / ! r ' \ - / _ _ _ ' U3 U3 2. 59 2 . OQ% 0.07 0.22 0. 66 4. 02 Flows. Off site f 111 I / \ \ I \ ` � 44 \ \\ JJ / / / FJ45TAREA - - \\ S15 1 , \ . \ ` � — ' D.zo f / / a.zo \ ss \ I — \ 72.83 CULVERT 37A ' / / + \ . `� ` : . 45 _ _ 22.83 0.33 48 / 67.45 D.33 \ ` — ` \ ' \ \ 0.33 1 I 1 Fl F1 12. 34 12.10% D. 15 0.29 5.46 20. 07 To Pond El _ , � \ ` \ / / CULVERT 37B 111 I \ \ r' 0 \ _ , 23.29 10 , ♦ \ \ ` � _ _ --- / 1' 57 \ — ♦ 1 0 ' ' _ � \ / \ i 90 1 1 — J F2 F2 6, 86 12.10% 0. 15 0.29 3. 62 13.31 To Pond El 0.33 1 \ � ` '_ .- • /. t 1 I \` \ \ CULVERT 39A ' / i\ I -� \ \ E9 E9 8. 26 21,00% 0.20 0.33 5. 98 18. 91 To Pond 9 r 513 ! EN1 EN1 3. 89 20.00% 0.20 0.33 2.74 8. 66 To Pond E2 / \ 39r4 - 1 \ \ ) f CULVERT 24A \ CULVERT ' ., $15 6 -,. � / / 1 + / \ \ � I 819 � + \ , ,. ,.. ... � / o- 47 , ' \ \ t t CULVERT 24B ' CULVERT 37C 110 \ 1 \` EN2 EN2 2. 12 20.00% 0.20 0.33 1.47 4. 64 To Pond E2 `\ ` \ ' / t / r _ ` CULVERT 23 ) 1 \ , ) ' \ / 9 / \ ; i 1 , I \ / \ \ \ \ . POND 1 \ ! EN3 EN3 2. 21 20.00% 0120 0.33 1. 68 5. 31 To Pond E2 1 I 1 \ S14 , \ \ _ _ `, j 891 P / v \ o 1 / \ .` \ � � \ , Sts -�--� . - , - � ` \ \ � 87 , I ` _ , CULVERT 40A 1 ) ` I ` TAJ `\ \\ POND .�,.'� ` 1 1 . \ > \ \ 1 �. \ \ I , \ I \ ` � ) � j \ EN7 EN7 18. 20 20.D0% D.20 0.33 22.74 71.92 To Pond E2 \ S16 \ \ \ \ \ \ 86 I \ \ 88 520 \ \ ° ) `\ \ ) \ CULVERT 406 S3 .•li. t / ♦ ` , ' t S20 I \ a _ E51 E51 24. 86 20.00/ 0.20 0.33 18. 53 61. 20 To Pond El .R5 0.33 �� r / 60. 16 0.20 I ' \\ \ ES2 ESz 8. 88 zOLD% 0.20 0.33 5. 86 18. 54 To Pond E1 ( ••\\ `7 �5t..t } \ ��� 6 ' ' \\ \ �J 3 J , ' 817 l.(. . \ _ 1 , 1 \ \ \ \ --= 1 0.33 `\ \ o 11 \ \ 1 \ \ \ ES3 ES3 27. 58 20.00% 0.20 0.33 29. 59 96. 50 To Pond E1 / ' ,° \ r f I 1\., S17 / ' 1 ' / : \ ,: \ i �'� LVERT A )\ 11 \ \ , .— _ _ _-r \ I \\ \\ EU1 EU1 14. 77 z.0(PY 0-07 0.22 3. 19 19.36 FlowsOffsite 1 /28/2025 U2 • \ 1 \ I 1 , v v v � 2.75 a2o \ 1 1 � / o.zo �•/ \ `. ( I � — _CU . . , 38 , ' 1 - = \ � 1 � \ \ � I f / IN 108 1 1 U2 / , ,�� CULVERT 38B ' ) '\ �I \ \ ` t / I f \ �\ 1 \ \ 0.33 \ ` r f 1 r 29. 19 0.33 l \'\ I \ ; I \ \ . \ 104 I 105 \ _ 106 , \ 107 1 1 � ` , �' \ NOTAPAI� \ y` ` 1 ( 1 / ��• 1 \ � / \ - 1 \ ( \ `I + - t I \ \ \ \_ - - --- __- - - - 0 400 I r �/ ( I A l ♦ r \ . I 800I 1 '-�=� / COUNTY ROAD 32 + 'I J ' ` � 1 " 400 ' ( HORIZONTAL) D R 1 1 \ \, \ ` - \ \ \ \ \ \ . \ \ i 1 .'\. 1 \ 1 \ \ 1 . r 113 OF 141 , . . \ -_ I - r � M , f �_ LEGEND at' I1 . \ I OW4 I OW4 80. 70 2.005/0 0. 07 0.22 6.53 39 .60 OWS OWS 590.74 2.00°/ 0. 07 0.22 572.20 _____To Pond W1 - - . t— \ `, ' \ \ I I ' / \ l ' ,. / , / I\ \\ \\ 1YIgt `I BASIN _ � \ \ 1 1 I I ♦ 11 Cl) OW6 OW6 173.92 2.00°/m 0. 07 0.22 192. 10 To Pond 51 / r , /� . 1 \ I, \ \\ \ DESIGNATION D 1 W1 W1 11. 26 20.00% 0. 20 0.33 286.70 To Pond W1 \ \ \ ` J ' ! ! \$\ S ` `\ ` ` \ \ \ \ \ , 1 , \ 11 I / \ J` / _ / \ Z W1a W1a 10. 26 20.00%m 4. 20 0.33 290. 77 To Pond W1 ` \ \ \ \ ` � — f \ \ ` \ \ \ \ t \ 1 / — — — - J - `- - - ' �y14 \ \ \ , I 1 ^' \ \ .. \ \ \ 1 1 ` y I 1 .\� 1 1 1 ( 1 I ' I ' \ \ \ _ - _ / i / '// /, - ' - - - - - - - - \ l• � I +NII J C5 fill, O m \ \ \ \ _ _ _ - - ,. ` \ \\ \ ' 1 I `\ `\ +I + l \ 1 1 I I 111 \ . / \ 0 . 62 W1b W1b 8.61 20.00% 0. 20 0.33 4.96 15 .69 To Pond W1 \ \ \ r f I f I \ , 1 \ \ \ \ \ \ \ \ I \ — — \ / \ I \ i 1 \ / I , 100 W2 W2 32. 15 7.34% 0. 12 0.26 9.70 52.01 To Pond W1 " '\" ' '— ! f I I r l \ 1 \ \ \ \\ \ \ I ` \ 1 — — ' ` \ t\ \\ I I I j \ t � \ \ \ 1 1 1 1 r r \mot _ \ ` � � 0 . 78/ I 1 \ \ \ I \ \ \ . 'Iii ! 111 1 \ \ \ BASIN AREA W2a W2a 4.40 13.76% 0. 16 030 10.01 52 .37 To Pond Wi \ \ \ \ — _ / / I t \ \ \. t \ I ` / ` ' / \ \ ` \ C100 \ ` ' ` \I ` \ \ f \ t \ t ` � - ' / / / , / I ' / _ ` \ ,\ _ •.1 J � (ACRES ) W3 W3 15. 56 20.00°/m 0. 20 0.33 9.68 30.61 To Pond Wl \ \ r I l f , \ r \ , \ \ \ , , _ \ \ \ \ \ \ / / 7// 1 W3a W3a 26. 56 20.00°/m 0. 20 0.33 19.65 62 .14 To Pond W1 ` \ I . ' I r \ C \ \ \ J I \ \ \ \ J \ / ' J / J � — _— _— v — ` \ \ \ . EN1 , 1 1 1 CULVERT E1 \ \ \ ` \ ' � - - - - - _ \ \ I \ \ / I t . - . _ _ _- \ \ \ , ^_ I1 / 1 W3b W3b 0.97 20.00% 0. 20 0.33 0..69 2. 19 To Pond W1 \ / / t t ) - '' \ \ \ ` \ — \ i \ \ \ I t , ` ` � / / / / ` \ \ _ . - - - - \ — _\ \ • \ ' � '' // / 0.20 / / t I \ \ 1 I \ \ / / W4 W4 46. 79 9.51% 0. 13 0.27 17.56 69,72 To Pond W1 1 \ 3 .89 / ' ' — > r - / —� , � \ /\ \ \ \ \ 1 / \ ,c t ) \ _ W8a W8a 1. 11 20.00°/ 0. 20 0.33 0.78 2.47 To Pond W3 0. 33 / I s_,. I \ 1 \ \ / - W8 W8 23. 25 20.00% 0. 20 0.33 14.05 44 .45 To Pond W3 \ \ i + l \ ` \ ` \ `\ _" � ' - ' / i I / � - - ' � , 't ` , \ \ `\ �� DESIGN POINT WS WS 36.46 14.35% 0. 17 0.30 17.23 60.13 ToPond4 \ / : 1 \ \ - ' ~ EN6 - _- i r�� \ \ I I . 255 0.20 �_ X 0.28 9.81 37 .75 ToPond4 \ 1 , \ ��- - —� , _ ` — —� _ LiJ W6a W6a 23. 24 10.49/m 0. 14 \ \ \ \ , \ ` _. 12 .20 p 256 EN6 _ �_ _ / 1 ' %_ \\ _ ^ \ ,'� , ,/ '� , / - DRAINAGE BASIN BOUNDARY \ . \ , \ \ \ ' 0.33 \ / ^ / / 1 / \ W6b W6b 6.46 20.00% 0. 20' 0.33 26.59 94.65 ToPond4 \ ` _ \ \ \ �. \ ` ` - - / - - ! ' ° \ \ \ ,� \ 257 \\ - _______________________' R \ \ / - - - . - " /, / r W6 W6 9.70 20.00% 0. 20 0.33 6. 19 19 .59 ToPond4 r,. _ _ _ I\ \ � / / Q \ ` \ \ _ I / / / J / / W10 W10 18. 22 20.00% 0. 20 0.33 13.86 43 .82 ToPond4 EXISTING TRIPLE CULVERT - - _ ;` % EN1 ' � 25a _ ` / N I POND ST- - t t� - _ , _ � �- -� '% - :i `r" \ ' % ' \ / W12 W12 8.06 19.44%m 0. 20 0.33 5. 14 16,69 To Pond 4 ' ` \` 1\ \ \\ \\ ` � PROPOSED STORM SEWER/CULVERT \ \ \ \ \ \ I , 253 CULVERT E3 \ Ew \ _� , , \ I \ \ ♦ . \ W13 W13 13. 69 10.35% 0. 14 0.28 32.66 112.6. 3 ToPond4 `� ` 1 \ ` `\ \, , 1 283 EN2 \ \ \ �— /`` \ \ � ♦ ` W14 W14 179.18 9.2Z%m 0. 13 0.27 - 119.80 ToPond4 \ ` ` \ /� � ` \\ J - 4\ t\ /tf_ ] EN4 \ � \- � , .� \ \ \ \ \ PROPOSED MAJOR CONTOUR � / - - \ �� \ •3 1 / 0.20 / _ h '. _ \ \ / \ \ , / / - / \ `\ \ \ \\ W15 W15 4.66 2.00% 0. 07 0.22 0.93 5.63 ToPond4 \\ ` \ \ / /.L ... . EN2 278 2 . 12 j ` - - - • \\ \ ` \` \ \\\ / / \ , / -�\\ \ \ \ , f W16 W16 2.35 20.00% 0. 20 0.33 1.66 5.25 To Pond 51 \ ,� \ \ / , i J 0. 33 282, ,. . ` \ ) �J 259 EN7 t\\ _ \� \ ` \ ,/ \\ l ,t �0 �� PROPOSED MINOR CONTOUR ❑ 1 r / /L I 1Y� d 1 \ \ \ \ \/ ♦ \ \ \ \ \ Si Si 27. 67 20.00% 0. 20 0.33 101. 70 To Pond S1 I „ I . ' 277 s \ e \ 1 \ \ / \ \ \\ ♦ \ \ \ S2 S2 21. 99 20.00% 0. 20 0.33 107.40 To Pond S1 , 1 \ // // l , 1 , J r ` \. ' \ \' 0.20 \ , \ \ \ / /OO EXISTING MAJOR CONTOUR /, + _ J 18 .20 4 / vv v ♦ S3 S3 6.31 20.00% 0. 20 0.33 4. 11 12 .98 To Pond S2 11 ' #4' / 1 , { 0.33 _ / \ I I // 1 1 ' ' 279 ; 1\ \ , • ` • ` ` \ EXISTING MINOR CONTOUR S4 S4 21. 13 20.00° 0. 20 0.33 10.75 34.00 To Pond S2 ( \ t / / , ` \ I \ \ \ ` �( EN4 i I ` \ ' ' 1` 1 , \ \ \ \\ \ ; / /O / SS S5 9. 16 20.00°% 0. 20 0.33 8.87 28 .05 Ta Pand 52 I I ' � \ \ ` �, _ / ! 260 - \ / \ \ \ \\ \ \ ! I , / // / / 1 117,1✓ t. � \ \ , �1 \ - . - f + $6 $6 26. 22 20.00°/m 0. 20 0.33 29.23 92.45 To Pond S2 / -ii��i ' /t \ / 1 _T \\ \ ♦ , \ 0.20 \ \ . ♦ , \ \ - - - - - - / \ FLOW DIRECTION• \ \ .:� i � l \ \ \ \\1\;\�\ • , , \ \ \ may \. : • ' - " /%m ' \ \ \ \ !/ j_ _ , S16 S16 2.85 20.00% 0. 20 0.33 12.85 40 .65 To Pond S3 , - \ \ �� \ " \ ,\t \ \ \ \ / , \ \ t \ \ ' t , \ \ \ \� / / '/ \ \\ - ` \ l ` \ 1 \\` \\ \ E9 M1 ' \ I // 281 �r , I t } ! / 1 \ / 1 \ O _„ ;� S17 517 29. 19 20.00°/m O. ZD 0.33 23.30 73 .68 To Pand 53 ; , ' / �/ , - - \\` 1 t1 ` \ \\\\\\\`\ \ + I 2611 / � \ ` ` _ ' . ' N. ` \ ' - - - - - - 6 CHANNELIZED FLOW PATH Sla Sla 3.70 20.00% 0. 20 0.33 2.45 7.74 To Pond S3 0.20 \ \ , CULVERT E4t '\ \ ` I ' t \ \ ` \ ` , � _ 1 \\ \\ \\ \t 8 .26 • CULVERT E5 �` \ , \ \ \ i �` \ II . ' \ 1 \ \ ' 58 58 1.93 20.00% 0. 20 0.33 1.34 4.23 To Pond S4 - - 1 \ \ ` \\\ t $ ' 275 ° { \ \ 1 \ ' \ \ , \ , / 1 _ \ r - , � \ \ 0. 33 - � _ �I , � \ / \ \ S9 S9 10.40 20.00°fm 0. 20 0.33 7.88 24.91 To Pond 54 /� \ ( f \ ` \\\ \ \\`\\t p \ \ \ \ 510 510 12. 93 20.00% 0. 20 0,33 13.00 41.11 To Pond S4 / \ - � / , ./ \ +� \ I t �� / \ \\ \ " \ a ,/, � / - EN3 ♦ EN3 - - \ f \ \ \ \ l\ z 511 511 11. 22 20.00% 0. 20 0.33 6.93 21 .91 To Pond 54 I / / \ \\ t 1 ,\��h \\ > EN5 ` ♦ \ ♦ ` - ' `- \ r/ J / / - \ \\ \ \ `\\ 0.20 \ \ � s \ ' . �' `\ \ `\ ��1 ` �:. ` \ \ `` 1 \ �1 O S12 S12 18. 24 20.00% 0. 20 0.33 14.92 47 .19 To Pand 54 , / \ %\ '\ \Nt\\ _ / / yt \ \ \ ! \ \ \ ` - - - - - l \ \\\\ \ 2 .21 1 zsz \ \ \ \ , S18 518 12. 17 20.00°OA 0. 20 0.33 9.47 29 .95 To Pond S4 / / I \\\\\`\ \ . . 1 / \ \ t s , \ ` I - / / I / � '\ \ t\ \\ \ \ \ \ �} ♦ / ` \ t l ' f \ S19 519 67.45 20.00% 0. 20 0.33 27.07 85 .61 To Pond S4 ' ' ` � � � � I \ , 520 S20 60. 16 20.00% 0. 20 0.33 253.00 To Pond 54 f ; \ \\\ tfl \ \ ` , /'f J 1 1 \ \ \ \ \ ` \ ' , 1 \tl \11t \\ C`� ® _ ^ 253 / I \ \ \ \ t � , I \ ' t \ \ \ ❑ 521 S21 7. 12 20.00% 0. 20 0.33 4.61 14.58 To Pond 54 ( , 0.20 \ , ` - , ^ /"� \ \ ` EN5 \ ` _ �' \ \t \ ' ' r I , , ` \ \ \ S22 S22 17. 11 20.00% 0. 20 0.33 11.29 35 .69 To Pond S4 \ i NP \,\, ♦ \ \ ; V 24 .86 t / , \ \ , . I \ \ \ , 1 t , \ ' , a� * Il 1\O \\ \ \ \ \ \ 1 0.33 ... \ 1 l / . � 523 S23 7.02 20.00°/m 0. 20 0.33 4.07 12 .87 To Pond 54 s� ° \ \ 1 I \ 0.20 \ \ \ 1 >� ,111 \ ,\I\ � \ \ \ 1 \ 272 \ \ \ 1 I � � \� 3 ,83 / } I I \ O Ul Ui 5.44 2.00% 0. 07 0.22 1.32 8.02 FlowsOffsite I ! I` 1I 11 ' 11 I t _ N 271 \ \ � \ +\ � ` \ \ \ III � \ 0. 33 ♦ ,- - \ _ \ \ / \ ' I 1 \ t \ \ \ \ \ 284 ` \ - F l \ \ ` t 1 1 U2 U2 2.75 20.00% 0. 20 0.33 1.93 6.09 FlowsOffsite I ,, C. \ � /' ', \ \ \ 1 t ; �\ \ ` \ \ , �� ti \ _ • 1t 1 / 1 / I I 1 > aaaaaaaa / f , A l - 11 v V 1 I I U3 U3 2.59 2.00% 0.. 07 0.22 0.66 4.02 FlowsOffsite I , \ t �\ 1, \� / ` \\ _ / + 1 LIJ EASTAREA I \ \ \ \ \ ,, r , \ \ /, / I .v v ,, . F1 . .. V, , AV - - _ _ . v �VV - 1 111 1 � \ VA \ ` - - - - I 1 \ F1 F1 1234 12. 10 0. 15 0.29 5.46 20 .07 To Pond E1 . . . 1 \ , \ \ • \ \' \ \ III , 11111 ` / \ \� \ \\ \ \ 5 � - ' \ / / \ \ \ . \ . 0. 15 � \ \1t �, \ \ / � \ \ t \ , \ / / / m - %,�. \. . nQ \ / / / - .. !' , I + 1 11 r l : \.-.' \\ \ \ \ \ \ \ / I I J '. ., \ F2 F2 6.86 12. 101 0. 15 0.29 3.62 13.31 To Pond El \ � \ _ 11. 12 , 34 \ \ 1 \ � \ \ \ 265 I l 1 I ! t \ \ \ \ F E9 E9 8.26 20.00% 0. 20 033 5.98 18 .91 To Pond 9 II l I '\ •F1 270 267 \ \ \ I 1 / I ( r r \ \ \ \ / \ o.z9 � \ , I ES2 \ \\ \ \ \ . \ \ \\ ,/ / / ;\> / ' EN1 EN1 3.89 20.00% 0. 20 0.33 2.74 8.66 To Pond E2 \ ` \ J I tII lt� - t / / r \\ \� \ \ \ \ \ _ - / \ _ I , n \\ \,y \ - 0.20 1 1 f , y \ \ \ \\\\ \ ` \ \ / / ; \ \ \ ^ - II Il \ '\ \ • \ \ 1 8 .88 \ �►- � L , mss/ \ \ \\ \ \ EN2 EN2 2. 12 20.00°% 0. 20 0.33 1.47 4.64 To Pond E2 I 1 tl \ \ t t �1�1- -� I ,+-I-\4\`\ t ' / � " t \ \ \ \ ` , \ _ / 0. 33 \ \ EN3 EN3 2.21 20.00% 0. 20 0.33 1.68 531 To Pond E2 / , \ \ \ 1 , \ \ , \ \ , g '� / J _ \� \ \ \ EN4 EN4 10. 86 20.00%m 0. 20 0.33 7.08 22 .39 TaPondE2 \ ` \� l \ ' \ ^ ' `'f, > . �� ` �� • I \ \\ \ r \ \ / \\ \`\ �\ 1 \ , \\ \ . \ � \ '\ `\ zss \ \ -�' ` \ ENS ENS 3.83 20.00% 0. 20 0.33 2.60 8.22 To Pond E2 \ \ \ \ \ \ , . f�{ \ \ \ � _ ,� - t 41 , , 1 , , ♦ \ Ill \ \ \ ! , \ \ \ \ \ 288 \ \ \ - - - \ - �� I , I 1 t , \ ° \ \ \ � � \ 1, r \\ .. \ \ - 269 \\ \ \ \ \/\ ' N _ _ / - / \ Il 1111 111 \ \ \ ` I Jut EN6 EN6 12. 20 20.00/ 0'. 20 0.33 15.55 52 .34 To Pond E2 \ \ \ \ II \ , I \ � I , - _ t / f I , , \ I EN7 EN7 18, 20 20.00°% 0. 20 0.33 22.74 71,92 To \ \ ES1 ESi 24. 86 20.00°) 0. 20 033 18.53 61 .20 To Pond El � \ , \ \ \ '�' \ \' \ � '\ a \ , I I I \ _ _ _ ES2 ES2 20.00% 0. 20 0.33 5.86 18,54 To Pond E1 ' \\ \- ` \ \ \ \ / \ - , , `, ' ES1 / _ ` \ \ t ` \ ,` \" \ , - / , ' ✓ ! + 11 \ \ \ ♦ \ \ ` 1 1 \ ` ` ES3 ES3 27. 58 20.00°fm 0. 20 0.33 29.59 96 .50 To Pond El \, \ \ \ \ \ \ \ , \ \ \ EU1 EU1 14. 77 2.00% 0. 07 0.22 3. 19 19 .36 Flows Offsite * \ \ \ ♦ \ / 1 \� , , + } \ \ \ \ 1 \ I / , \ \ t \ \:1..- t1 \ \\ \ \� ♦ \\ I r '�� - / F2 \ _ / ni \ I ` \ \ \ \ `\ ` \ w ♦/ / % /' J ` t 1 \ // / �' 0. 15 ..� \ ` \ ♦ ` , \ / r J I I + \ . v ♦ \\�;��\ t ` ( ```:�\ \ `\ �\\ \\ \\ \\ \` 'N, \\ I ♦ 6 .86 0.29 _ `\ _ \\ \ \ `\ ` \` ` w . r 11 1 / I 1 /' / 1 \t � ' a_ . / \ \ \ \ \ \ 1 "'i♦ I ✓ \ is j ,/ / I I / 1 �' r / \ \ 1 I Ill I �L� ES3 \ ` . \ \ / / / J \ ' t\ t / - - / J/ ;,. \\�\\ \ \ \ '1 'II \ '1 1 \ \ , I F2 / ���J I s.. ..\..� •Fir ` \ \ ` ` '\ - ' ' \ , \ \\ . , \ . , / / a \ C7 J \ \ \ �\ \ \ �.�_ u_uf�*.. POND \ \ _ _ _ _ _ _ _ \ \\ \ / // - \ \ \ . \ \ 1 = \ \ \ ' ;\\ \ \ 11 `, ` \ 1 �, - \ \ �" 0.20 �; S ♦ , i "\ \\ ^� � J % 1 1 1 1 -�, \� ' -- / ' ///i � �/ ' ' �- 1 \ \ •\ � „" ' II " j ! / / / J ' I � � � \ 9 I f/ \ \ \ \ ` \ 1 \ 1 I \, \ ` \ \ I ,! t 1 x \ - ' - ' 1 � \ \ I 111 / l 1 1 ' _'�-9 I \ \ \ ; \ \ \ \ t , � _1 \ 1 1 , l ♦ \ \ - _ ^ � ,, � ; O • � � \ \1 1 r - I / � ,\ _ ,142Y I I 1 1 /' EU1 - F w w \ \ \ / ' <� - -�/ 1 \ \ \ \\\ \\\ ` \ 0. 07 / �I \I I ��`-- - r --_ - � �\ !;� ^ ' \ \\ \ \ \ \ ( \ \ t / / c \ \ \ \ \ \ \ 14 . 7 \ // , \ / \ _ 1 - . 1 / 0.22 ' 1 \ _/ O J \ ` \ \ \ \ \ \ \ \ \ \ I I , \\ \ ♦ \ \ \ I I / 1 \ / , \ � \ , \ � \ \ \ / 1 \ \ , 1 , 1 I 1 f f / \ \ \ \ \ I I • .: O I t \- / I \ \ - UNCC ❑ \ � \ \`� ` \ - . I t \ \ 11 I 1 \ \ ` \ 1 _ I I I I \ I I 1 \. ` \ J \ - /� i 1 CALL BEFORE Z O \ \ _ / / I 1 \ / I I / I I \ \ \ \ \ - \ _ I I I I I I \ \ `� \ ., I I ` 1 •� \ •� _ � ♦ \ \ \ t s �I , I , 81 1 U V Z ❑ \ , \ J / \ - - / J J I II \ \ \ \ 1 I 1 1 I I 1 I , \ \ � _ � , I \ \ , / • \ \\ \ \ ` ' I \ 1 I 1 ♦ \ \\ \\ f \ \ \ ; \ \ _ / / , / r'\ � \ \ \ \ \ \ \\ I\ , 1\ \ II i i , �- \ s\ J•- \ \ \ \ I , \1 \ \ _ rV U O / / / N > ' N - , 1 , \ \ \ , \ \ \ \ \ \ _ / / I I l\\ '\ , OR I- �f U \- ' s / '* ' LLD I , II , \ \ . ;\ ;\� \` \ \ � , , I ; r ` ' , ' , ' \ \� UTILITY N TIFICATION \ I t I \ \ \ \ J / ,- \ \ , I I I I � _ _ J \ J 1 .. t \ ♦ ( \ \ \ \ { 1111 1 ,:.5 '\ ,\, \\ \\ ` \ \ \ - _ _ \ / I f/ 1 II1 / \ . \_r - - - `\ `� \ t \ 1 \ ♦` \\ -. 3 \ \ \ \ \II S . .1 Y / \ / \ 1 \ V , I 'Ill �/ \ + / I 1 l/HKL / / \ \ ' I ,� • • �, I 1 "` �\\ . / _ ` , \ \ ♦; J ,,l` I \ ` \ ; / 1 1 ! I \\ \ \ ,. I , j , I I .f \\ `\ `\ l t\ 1 \ \ \._ . '\ `•• ` ,\\ ; \ \ _ ` \ \ mot IV �\ l ` \ ; \ \ \ \;`_:`--•r , \ � � \ — _ i � I , ^ \ \ \ \ ,R.� \ \ n I k I � I I ♦ ` \ \ I 1 , `� � \ .\ \ ... \ ` � ` , \ \ ^ / J , � / \ \ _ \ \ \ \ 1 I 1 \ / \ \ , \ \ \ \ it / l 1 I \ ' ,, , \ \ ( I /` � � \ \\ -• \ ♦ \ \ / � SHEET NUMBER \ \ . / I \ r . t ' 0 0 300 ' 600 1 — � JI I \ �y N. `I, / ♦ . \� `I \\ `\ I ll \I\ \ \ ,. n — ! i ' ► ` ` \ !�- \ ' I / \ 1 = 300 ( HORIZONTAL) D R2 114 141 RETENTION POND WI Q100 IN 355 .07 CFS RETENTION POND W 1 DETAIL / Q100 OUT 0 CFS � BOTTOM 4884 . 5 WQCV 2 . 16 AC-FT ' O z WQCV ELEVATION 4884 .82 0 / . I Li.. 100 YR VOLUME 40 .96 AC-FT 100 YR ELEVATION 4890 .09 . .__ < J 1 .5 X 100 YR VOLUME 61 .44 AC-FT 1 . 5X 100 YR ELEVATION 4892 .58 SPILLWAY ELEVATION 4894 - - - - - - - - - - - - - - - - - - - 1 : : : - \ '\ \ \ \ W N \ ` \ ` ` ice / \ ` —• \ \ \\ \ \ \\ \ - \- - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - /I 100 .00 SPOT ELEVATION - - - - - - - - - - - - - - - - - - - - - - - - - PROPOSED MAJOR CONTOUR 05 _ - - _ N \ PROPOSED MINOR CONTOUR _ - - - - - - - - `\\ \ / \ \ ; ``\ \\ \ � \\`�;�; � \ �/Oo` EXISTING MAJOR CONTOUR / / _ _ _ _ _ - - - - ._ __ _- - - _ _ _ - - -c _ / �. _ - / ' J W � i \ _ _ _ , i O i EXISTING MINOR CONTOUR r __ _ _ / � t 1 DRAINA EFL W ARR W- 0 - - _ ' _ � __.___ - r - - - - \ I \ / / / \\ 1 1 r - _ EXISTING EASEMENT 4900 \ ` I i . \ r / / / 1 // -- --- - - � / - \ - \ 111 ' 1 \ - / / - ' / ,/ 1! I 1 ♦ 1 / W i ^ l ± \ l II _ G / / _ G- - - - - _ - 4890 1 \ \ - G - \ G / / / ♦ V A \ , \ 1 I � PROPOSED EASEMENT G1� G �' ' ' `\ / 1 \ \ A \ ' ' \\ `\ � - - PROPOSED SWALE/ROADSIDE DITCH / \ ` `\ \ \ \ N N ' ` ,' \ PROPOSED CULVERT/STORM SEWER , ' / (SEE SHEETS 128 - 130 FOR CULVERT '/ \ ao \ N .. . `` \ \ \ ` \ ` , ` \\ `\ I ; ; PROFILES AND DETAILS ) r o \ co I \ \ \ r \ o o / \ ' ^ I \ 1 I EXISTING GAS LINE , / � , - ^ - 0OO � / /\ / ` \ \ - _ - \ U' ` ♦ ` \ ♦ \ ` \ ` \ , � � � '\ 1 1 � 1 / � / / / OOO "J / � v v - _ v , \ \ \ \ / / \. \ — s, \ t \ , , FO — EXISTING COMMUNICATIONS LINE r / W EXISTING WATER LINE / - -.. .. . - . N . / . - - , , - 1 : N OH ! EXISTING OVERHEAD ELECTRIC LINES _ / , _ _ _ _ / �' ; `, '\ � J\� \ \�\� , / / - E- EXISTING UNDERGROUND ELECTRIC LINE 4 _ \ \ - ` / / ; �> \ \ - _ , - - \ X EXISTING FENCE / / , / W & / 1 � ` '` - �� � `' ` / ` � ° - �� � � � ° - ° NORTH AMERICAN GREEN •J_ A / I I \ V o0o0n000o00000000 \ / bF p`b 4� \ \ 1 _ \\ \ , 1 f I ♦\ \ o o SHOREMAT (SEE PLANS ) _ _ __ \ RETENTION POND W1 1 ` �` G �` _ ' - ` ` \ / I , NORTH AMERICAN GREEN EROSION / ' A / - - - v ` � vv v i , v V CONTROL MAT (SEE PLANS ) Z \ . — \ \ I I \ RIPRAP \ , O UNCC ® U , \ \ \ \ ` \' CALL BEFORE Z O N \ `\ \ \ \ `\ `\ ♦ \ ` \\ YOU DIG Z Z OR H Z \ ` t 1 ` UTILITY NOTIFICATION ' ,\ t\\ � \ ,; a ,, � 000 � `, , \ \ �/, ` ` \,1 ` CENTER OF COLORADO 0 / � oq TYPE M BURIED RIPRAP - \ / 1 \ C o ' o \ 489 / \ I D50= 12" \ \ \ 1\ I \ \ / _ _ \ \ � `\ ` \\ \ \ / / N . • . N N 1 1 , N A\ \ 1 ` / ` \ ` , / \ ` , ` 4895 \ \ \ ` \ \ `\ / / O ` \ / ` ` \ ' I \ / I \ \ \ ` \ \ \ / \ \ \ Sr' \ ♦ \ PL / \ .. \ \ \ \ G� — — _ _ \ CONCRETE WEIR SPILLWAY , \ \ \ ` \ ` ` ' - TOTAL LENGTH OF WEIR = 365 FT PLUS 9' WINGS ON EACH SIDE \ �, ' \ 1 \ t / WEIR ELEV = 4894 .00 � ` , - / - _ _ \ � ` ` ` \ _ 1 /28/2025 �\ \\ `\ `\ Q \ \\ \ . 1 \ \\ \ \ ` \ \- - \\ \ \ ``\\ ♦ `\\ , LET NUMBER 115 141 RETENTION POND 4 Q100 IN 96 . 52 CFS RETENTION POND 4 D ETA I L Q100 OUT 0 CFS BOTTOM 4831 N VI WQCV 1 .88 AC-FT WQCV ELEVATION 4831 .78 100 YR VOLUME 16 . 57 AC-FT 100 YR ELEVATION 4835 .08 < -J 1 .5 X 100 YR VOLUME 24 .86 AC-FT i 1 . 5 X 100 YR ELEVATION 4836 .64 SPILLWAY ELEVATION 4839 .08 W [_ w 0 KEYMAP ` ! ` - - - - - - - ` \ . 1 1 1 i ' \ ,� LEGEND _ / / I I 100 .00 SPOT ELEVATION \ \ \ \ \ \ ` \ \ \ // ' / 1 li li ' I Itl \ \`\ �� �p `� PROPOSED MAJOR CONTOUR O ` - - - - - - - - - - - - - / / • I I , 1 ` \ \ ` \ \ I i ' ' PROPOSED MINOR CONTOUR H G 1 I \\ \ \ \ 1 l I ' / / I 1 ' ' \\ \ LL 1 I I I \ \ / 1 I / / , ; ( \ \ '> \ \ \ \ \ \ \ \ , , - - ' / I 1 1 �` ' EXISTING MAJOR CONTOUR - i Oo i EXISTING MINOR CONTOUR C , , \ \ - 1 • \ \ S _ f - \ DRAINAGE FLOW ARROW > J - / I ' EXISTING EASEMENT Z Cl ` ` \ " T \ - - - - - - - - - - - - - - - S. OIL & GAS SETBACK S. = -- - - - -- - -- '- _ / _ _ _ - _ _ _ _ - __ _ _ - .35_ _ - - ! __ - _' _ - _ - _ - - 1 \\ \♦ \ \ PROPOSED EASEMENT 5.- \ \\ \ \ - - PROPOSED SWALE/ROADSIDE DITCH - - _ _ \ \ \ \ \ \ ' / I i PROPOSED CULVERT/STORM SEWER ; ` ` ^ - _ � - \ ` ^+ \ 11 ' i \ \ (SEE SHEETS 128 - 130 FOR CULVERT \ f ' _ _ _ _ - _ _ _ _ _ _ , // ` _ _ _ PROFILES AND DETAILS ) S. I / 4 : 1 ' 1i it I t --\ _ _ - - - - - - - ^ _ , - _ ; \ \ \ ` - \ _ ` _ \. \ ` \ - EXISTING WELL S. i I / I I i may. ^ \ 1 / - \ - 5- - -\ \ \ _ \ \ I I - \ ` _ \ ` - \ \ \z' " ^ � �� \ 1 EXISTING GAS LINE f FO - EXISTING COMMUNICATIONS LINE , 1 I I \ 1 , , \ - - - - 4831 > - - - \ , _ - _ _ \ \ S. ( M ' ' , ( I I - \ ` ' _ W EXISTING WATER LINE IcoJ \ RETENTION POND 4 - - - - 5- - - - _ _ = - - - - - - - - \ \ \ \ \ \ _ _ 1 i ;�; ; \ - - - - - - _ _ OH EXISTING OVERHEAD ELECTRIC LINES I 4 1H : uji ` \ ` \ E- EXISTING UNDERGROUND ELECTRIC LINE O oo ° O I I 1 G ° ° O �0,� , I 1 I ;\ \ - \ \ \ ' \ - \ - - X EXISTING FENCE _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I- , a I - - _ _ __ __ __ _ __ __ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - 5- NORTH — oo - o o - o n o o - o _ _ _ ` —\ \ \ o O O O ` o c o - - _ _ _ _ _ _ _ — _ _ _ _ _ _ _ _ _ �.... _ _ _ - - _ \ r u O O n o C ° — - - - - - - - - - - - - - - - - - - - - - - - - - - - — — - - — — — — — / . OOOOOOOOOOOOOOOOO \ I — - - - _ - - - - - - - — — — — _ _ — - - - - _ - 48 35 - — - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - — - - - - - ° ° ° n o SHOREMAT (SEE PLANS ) q / o - o o0 O O - o - _ _ _ _ _ - - f - - - - - - - - - - - - - - - - - - - _ - _ __ _ _� - _ _ _ _ _ r xxXx x x NORTH AMERICAN GREEN EROSION - - �_ G CONTROL MAT (SEE PLANS )- - - - - - - - - - - - G - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -_- -- - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - ��'` v G G , y, ��uv � x S S. a a S. 1 - -\ 1 \ V 1• vv / ` ` U G = G G G G G G \G--= G G GT G G -►- UNCC ❑ U G \\ G G G � G - EXISTING CONCRETE WEIR SPILLWAY �- \ ` - - / O O U `\ ` \ \ - \ \ \ / f/ CALL BEFORE zz Z \ \ \ TOTAL LENGTH OF WEIR = 128 FT PLUS 9 WINGS ON EACH SIDE Z ` \ \ - i f YOU DIG H EXISTING WEIR ELEV = 4839 . 08 it a 811 �..J z ` v - 1 O \ I \ \ \ \ \ \ OR - - _ \ \ ` \ \ \ _ - - - - - _ \ - 1 __ __ 22 - 1987 _______ \ S. \ \ 1 \ \ \ S. _ - - - - \S. - UTILITY NOTIFICATION 1 ' \ ` \ ` ; , _ - - - CENTER OF COLORADO / _ _ _ _ _ _ � ' " \ ��, f - -. / I PL S. 1 \ S. S. \I \\ \ `\ \ \\ \ \ \ \ 1 \ \ S. N 'N \ \ / 1 /28/2025 TI St. \ \ 1 \ \ , \ \ `\ i \\ \ \ I ; LET NUMBER 'S \\ ` \ N. \\ \ \\ I \ \ / - `\ ` / r ` \ 0 60 ' 120 ' I`. 11 I \ 1� \ \ \ \ `. \` \ TIN. \ \ ' ` ` 1 " = 60 ' ( HORIZONTAL) PND2 116 141 RETENTION POND W3 Q100 IN 34 . 79 CFS Q100 OUT O CFS RETENTION POND W3 DETAIL li BOTTOM 4891 (I) WQCV 0 .23 AC-FT O Z WQCV ELEVATION 4891 .37 I ®_ 100 YR VOLUME 2 . 24 AC-FT 100 YR ELEVATION 4894 .04 I J 1 .5 X 100 YR VOLUME 3 .36 AC-FT 1 . 5 X 100 YR ELEVATION 4895 .20 SPILLWAY ELEVATION N/A W _ ___ __ H_ H ___ _ _ _ _ _ _ _ •C / - I + \ I 1 w ` v \ V . - A v v v . A / / A ♦ A ` - . \ A \ \ 1 \ 1 w \ \ \ \ w \ \ / i / Y ` \ / �/ r - . I I 1 I I ' I 1 I 1 wwww \ \ \ ` w \ ` \ \ \� \ \ `\ �\ S. ` \ -% ` ` \ \. ` \ I ! / / / / � ` 1 \ \ \ ` \ \ \ \ \ \ \ \ \ `\ \ \ ` \ ` ` \ \ \ \ \ \ \\ _ - _ _ _ _ A w 1 1 i- w w v v . v _ _ v w v / / : . c: . . . .:.i.:: .A .` �� / / / t I ; _ — wvw wv v v v V A \ V vv v v \ v v \ V I / ( / / ' , , _ \ \ \ \ \ \ ` V A v ` vv v� vV A \ \ \ \ \ \ W S. I , , 1 1 134 S. ` ` I KEYMAP I , , / . / l� /// ( 1 \ \: 1 11 \ \ \\ \ \, \ `\ \ ` ♦ \ `\ \ \ \ \ \\ \ \ ` \\ \ \\ \ \ 1 t I I \ \ I / / ` \ \ \ / / \\ \ \ \ \ \ \ t ` LEGEND - ( - / I I \ 1 `\ 1 \ \ 1 \ ' \\ \` \ \ \ \ \ \\ \ \ \ \ \ \ \ \ . \ \ + ` ` \ 1 1 1 l 1 / ` , 1 ♦ \'S 1 ` -' / ` \ \ \ \ \ t I . I I I I 1 t I \ ` ` \ \ \ \ \ \ \ \ ` \ \ \ \ \ ' ` ` ` `\ `\ `\ `\ ` r/ i i ` i \ ` \ ` \ \\ \\ \ \ 100 .00 SPOT ELEVATION ' I , I t I 1 I I 1 \ \ \ \ \ \ \ \ ♦ \ \ \ ` \ / t \ CS \ \ \ ` Q- \ \ \ \ C ". 1 \ , , U1 I I I I \ , , I \ \ \ \ \ \ \ \ \ \ \ / ' I I I I \ I ` \ \ \ \ ` \ \ � , + I I , / ` ' ,' , ` ` \ PROPOSED MAJOR CONTOUR I \ \ ` • \ \ \ \ I 1 1 / \ I 1 I I I 1 I \ \ \ \ \ \ I I 11 I I 1 t \ \ , \ \\ \\ \ \\ \ \ u \ ! \ 1 \ , ` `� `\ `\ \ \ \ \ ` \ \ \ \ I / � ; i -( . / \ \ ` \ \ �� 1p0`�' PROPOSED MINOR CONTOUR d / / \ 1 i . I I .. I . .( \ ` tl +\ 1 w S. 1 \ \ \ 1 I , I I \ \ \ \ \ \ \ \ c \ , \ \ \ ` \ \ 1 , \ I \ ( , \ \ oo� / EXISTING MAJOR CONTOUR U / \ ' I I I I I 1 `\ \ \ \ \ w ` \ / , \ \ ' \ `\ \ \ , \ \ , \ / \ w _ I ' ♦ �_ U) I ' \ ` ` - - - - - - - - - - - i ��Oo EXISTING MINOR CONTOUR W `\ I i i I \\ \ \ \` ` \ 1 \ \\ \ - - -- - - - � _ - - - \ _ \ DRAINAGE FLOW ARROW \ \ \ I t I \ 1 \ \ \ \ \ \ \ \ / 1 1 t \ \ \ \ \ \ \ \ ` - \ ) ` I , ' , / , \ , '\ \ ` ` \ \ 1 t 1 t, '\ ' \ \ \ ` ` \ - - - - - - - - - - - - - - - - --- - - - - - - - - - - - - - - _ _ w _ - \ EXISTING EASEMENT , 1 1 \ \ \ \ \ \ii I w \ \ \ \ \ 4 \ r --- - - - - - - - - - - - -'4 H - - - - - - - - - - - - - - \ \ OIL & GAS SETBACK S. \ \ \ \ \ \ \ \ \ \ / 1 \ \ \ \ CS\ \ / \ \ 1 \ \\ \ '` � `\ � • \ \ \ , \ \\ \ `\ '4 . .. .. S.\ `\ �� N . / , / \ , `'4 `, \ S. / / 1 1 - - - - - - - PROPOSED EASEMENT 133 V '¼ w .� , • \ ` w ` \ I I I 1 `\ ` \ S. ` \ \ \ \ ` \ ` \ ` \ \ \ \ \ \ \ www \ - / I 1 ` \ Q \ \ � ` \ \ ` w 1 , f I PROPOSED SWALE/ROADSIDE DITCH \ ` ` ' _ _ _- - - \ ` PROPOSED CULVERT/STORM SEWER \ \ \\ \\ \ \ ' \ 1 / , i : iIn 1 ` \ \ \ w `\ _ - - - - - - - ' - (SEE SHEETS 128 - 130 FOR CULVERT t I I \ O , , + 4912c N - - ' PROFILES AND DETAILS ) \ \ S. 1 \ �. \ \ ` \ s ` \\ \\ \ ` �\ / - - - - - f - " ` ` I \ ` \ �k' \ ` 'S w / - - - _ - _ _ - 1 ' EXISTING WELL ` \ \ \ \ \ ` \ , \ !\ \ I I \ \ \ \ w ` w ` - ` ` _ , ( EXISTING GAS LINE ` \ \ ` ' / / ° ' w \ ` I FO i EXISTING COMMUNICATIONS LINE \ \ f / W EXISTING WATER LINE \ \ \ www \ w ` \ \ \ \ \ \ \ \ \ \ \ \ \ 1 . I \ I / t \ ` \ ` w ` \ w \ ` \ www \ \ ` - ` w ww \ - - - -.f` \ w - - \ \ \ \ `\ \ \ � \ \ \ , \ \ , I / �`J 1 ; 1 ' 9w w _ \ w ` , _ _ - - - - - - OH ! EXISTING OVERHEAD ELECTRIC LINES \ \ \ ` ww ` `\ ` \\ \ \ \ \ \ `, ; I I I ; \ I O \ - \ ` w _ \ \ ` \ \ \ \ \ \ ` _ ` S. � 7t ? - , _ - _ \ \ \ \ `\ 1 , I t ` w _ - - - E- EXISTING UNDERGROUND ELECTRIC LINE \ I I I , \ / I , w _ _ \ \ \ ` \ ` \ X I / \ \ \ \ \ \ , , \ \ - \ ' \ : H , , , \ . I ` • ` w - - - - - - - - - - - - - - - - - EXISTING FENCE \ \ \ \ I - - - - ( \ - \ ` ` `\ \ \ \ \ \ \ \\ \ \\ - - I \ ' / ; 9Q - - — — ' - - - - - - - - - - c ,, c c NORTH AMERICAN GREEN ` w - - - - - o �% n o o o / �- - \ `\ `\ `\ \ ' ` \ ' tl I - — 0 0 0 0 0 0 0 SHOREMAT (SEE PLANS ) \ \ \ _ — _ 0 0 00 0 c _ o - o c V A A \ 1 V 1 v A v w o 0 0 0 0 0 r o 1 w \ \ \ \ 1 1 \ \ \ 1 I \ \ \ 1 / / / \ \ \ \ \ ` — ♦ v _ _ w o 0 0 0 0 o c o u 1 \ \ \ , \ \ , ' \ , ` , RETENTION _ _ _ _ _ _ _ _ _ - - - T 1 \ \ \ \ \ \ \ \\ t \\ \\ 1 ` \ ` \ w ` w www i \ // ` , \ \ \ \ \ \ 1 \ � ' POND W3 \ \ \ \ w - - w - - - NORTH AMERICAN GREEN EROSION _ - _ - - 7 ` - - - - - -S.,' ; ' \ ` 132 \ I , t 1 1 1, 1 \ \ , \ ` , \ , `\ `\ \ \ \ , ` ' ' - \ r ` ` ' \ \ \ \ - _ _ _ w - \ , t \ \ \ \ \ \ \ \ \ \ , - - CONTROL MAT (SEE PLANS ) 1 I I \ \ \ / / \ \ ' - - - - - - - - - - - - - - - - \ , ` \ , I I I 1 \ ' '¼ \ ; I I \ i i i \ w ` - - - - - - - - - - - RIPRAP Z O \ I / l 1 `\ \ \ \4 : 1 o \ \ \ + \ . `\ \ `\ 1 1 i —. —. — O - w \ I . / / / CC ` \ ` \. I l iii/ I I `\ ' \ ` ` '� ` ` ` \ ` 1 \ \ x. 1 I 1 ` ` \ ` ` w / 'S. ' ' I / - ^ - ' G ` \ \ \ I 1 I 1 \ \ \ \ \ \ \ 1 1 \ / - \ I 1 I I I ♦ \ ` \ ` cn \ \ \ \ / 1 I . / \ `\ ` \ ' I \ I ' 1 1 `\ \ ` O \ \ ' \ ` ` ' \ 1 ' t ` ` ` \ - ' / 1 ' ' UNCC O 1 \ I / , / CALL BEFORE Z `\ \\ \ �\ \ \ `\ `\ ` \ \\ \ , , , \ \ t \ \ • \ �\ \ \ ; \ \ \ \ i \ ` \ \ / - ' ,' YOU DIG O Z Z F- ` . , \ . \ I 1 -.--- 'S - _ - w - _ - - - - - z 811 z - W S. \` \ \\ \ ` \\ \ ` ` \ - / ' ' I I 1 I I 1 , \ \ \ \ \ \ \ \ \ \\ \ \ `\ \ \ ` \ ` \ ` \ w / ' I 1 1 \\ 1 \ ` / ' ` \ ` \ / / ' _ _ - ` \ \ ` ` 1 LLI S. I \ \ \ '� \ I I 1 \ \ / \ \ w \ \ ` \ ` \ / I ! 1 I I I 1 I ' ' I 1 1 \ \ \ `\ \ \ \ \ \ \ \ ` \ \ \ 1 ', I \ `\ / / S. w - / ' ` ` \ ` 1 1 \ / I I I I I 1 \ \ \ \ \ S \ / / \ \ 1 S 4- 1 /. 1 I I I 1 \ , \ . . . ` , '¼ " , \ I I I 1 I , \ , 1 26 1 I 1 w \ , , / 18009221987 \ , 1 \ \\ \ ` \ ` - I \\ \\ \, \ I 1 I I f - - - - -' `\ 1 UTILITY NOTIFICATION \ / , ; I 1 ,I I I \ \ , i 1 1 I 1 CENTER OF COLORADO w \ \ . I \ \ \ \ \ \ \ I 1 , \ \ I \ 1 + \ \ \ \ / I , , I I 1 1 , 1 \ `\ \ \ \\ \ \ \ \ \ \ 1 I I I + 1 l \ \ / I \ N. / I f I 1 , I 1 . \ • \ \ \ \ \ w I I , ` \ 1 1 I ` \ N. \ \ / / I I I / / 1. I / / \ \ \ \ \ \ \ \ \ \ \ w ( / I I \ 1 ` I \ 11 I \ _ w \ / I I I ` - - / I / / , / 1 f I / \ \ `\ \ \ \ ♦ ♦ `\ \ ` \ I I / ' 1 + 1 1 1 It 1 S. (' _ \ / I \ / \ / I / I , ! I I f 1 I w ` \ N. \ \ \ ` \ ` \ `\ ` \ \ `\ \ / I 1 1 1 I / \ I / ` \ w - ^ - - !/ 1 ` \ 1 131 / ! 1 / ; l I r 1 / I ; 1 + S. ` . , ♦ \ . . \ \ . ` ` - � . ( , / I I I I I I , \ _ / I / S. , / I I / I / I 1 I ! / l I I I \ `\ `� `` \ ` \ % 1 1 I I I / I / \ \ // ` / / ' I 1 ! 1 I I 1 `\ ` 127 '¼4" \ "\' N\ " \ \ \ \ � \ \ / / / , I I I I / / 1 ` \ 5. l ( l I j CC'S 1 1 I I ' \` ` \ \ \ N. .� \ S. \ ,f J� J , / \ / / I 1 _ ` ♦ / TAJ / / , / / / / 1 \ , \ \ \ \ \ / I 1 / \ _ _ ( , \ . . . . . . . . . . . . . . . . . . . . .1 /28/2025 / ( , I I \ l . ` \ \ `\ \ ♦ \ ♦ ` \ \ ` I 1 1 `\ /' \ 11 + www N. / / / I 1 1 \ \ \ \ \ \ . I 1 \ \ / \ \ / / C) ET NUMBER + - - ' \ - \ \ 0 50 100 ' I 1 1 / 1 1 \ \ - - - ' - - 1 "` \ , `, `, `\ \ `\ \` `\ ` www 1 .. = 50 ' HORIZONTAL ( ) P 111 D3 117 141 RETENTION POND S1 Q100 IN 107 . 38 CFS RETENTION POND S DETAIL Q100 OUT 0 CFS BOTTOM 4915 WQCV 0 .82 AC-FT i O Z WQCV ELEVATION 4915 . 21 \ 'N N \\ ` `\ \� `\ ' . `` \ '\ , \\ \ \ \ \\ / N/ /\\ . I 0 ` 100 YR VOLUME 12 .46 AC FT ` \ \ ` \ \ ` \ \ \ \ \ \ \ � � ` ` \\` `` ` \ , � `` \�\ \\` \ \�` 100 YR ELEVATION 4918 .06 \ `\ \\ ` . \ \ \ ` \ ` \ , , '` \ ` ` \ J 1 .5 X 100 YR VOLUME 18 . 69 AC-FT \ \ \ \ \ ` \ \ \\ ` ` \ \ \ \ \\ \\ \\ \\ \\ \ \` `\ \ \\ 1 . 5 X 100 YR ELEVATION 4919 .43 \ `\ `\ H . \ ` ` `\ ` ♦. \ ` ` \` " \ \ � tt vv vvv ` �' vvv vv , v vv �� , v vvv vv vvv � Ov `vv vv vv \v v vv `vim SPILLWAY ELEVATION 4921 7.1,E � \ \ \ \ \ � \ \ \ \ \ \ \ \ \ \ \ \ ` _ _ _ - - - - / ♦ b AI � v � \ / ' �*'- � ' � � \ ` � ` ♦ . ` v ` v ` \ ♦ ` , \ ` \v ` \ ` \ A V ' V `♦ \\ � y � /' / ' / vvv \ \` � I T ______________ ___ / 1 N 1 / . . . / N • • t . ... .. N N N Ny I ' ', , ' ' ' . - / N ' N \ _ _ _ _ _ \\ \ 2 I KEYMAP \ \ LEGEND 30 CULVERT 20A � \ � \l \ ♦ C \ \ \ � \ \ \ \ \ � \\\ \\ � ` \ \`\ `♦ \ ` \ \ ,/ \ \ ` \ ` ` \ \ `` `\ \` 1 \\ \` � � \ ` \ _ � , 100 .00 SPOT ELEVATION 36" FES I \ \\ ' \\ ` ` `\ \ `\ \ _ / ' i z PROPOSED MAJOR CONTOUR INV: 4917 . 00 J c� ` N \ \ N \ I- ' " \ o \\ ` \ • `` \ `\ `\ \ \ `` \ \ \ \ \ ` \ \ �' , '� / , '/ / � 1p0 PROPOSED MINOR CONTOUR d 36 FES \ r \ \ \\ / INV: 4917 .00 \ \ \\ ` \ ` / — \\ \ \ \ \\ \ \ •\N N \ \ N. \\ \ \ \ _ _ �, o EXISTING MAJOR CONTOUR U � ' v v ' v` P v � . � \ v . vvv - - - - , / �, /OO i EXISTING MINOR CONTOUR W o v �? v v ` v v , s .x 4915 is vv , ` v A / / ; ❑ I \ \ \ \ � ` �` N N / / — DRAINAGE FLOW ARROW CULVERT 20B < \ I `\ \ ` ` `9� N H . ` / I O 4924 \ \ _ — �' ` \ ` � \ / EXISTING EASEMENT z 36 FES \ \ \ \ \ ` - - - / \ (Y N INV: 4915 . 00 � ` \ \` ' \ i `\ \` \ \` H \\ `\ ` \ \ `\ \ \ / / / - ' ` - /' OIL & GAS SETBACK 36" FES . \ ` \ \ `\ ` . \ \ \ _ _ - ' ' / INV: 4915 . 00 N O \ \\ \\ `\ \ `,\ ` \ \\ J \ \ \ \ \ RETENTION POND S1 ` \ ♦ \ \ ♦ - PROPOSED EASEMENT \ 9 ' I \ ' H. . ` N PROPOSED SWALE/ROADSIDE DITCH J - - - - ` _ � ' ` ` \ ` \ \ ` \\ PROPOSED CULVERT/STORM SEWER - - - - - I \ \ ` \ \\ �` ' \ � ` \` i \ ` \ \` \\ / + (SEE SHEETS 128 - 130 FOR CULVERT N .. \. ., ' N - - - . . \ .. \. -�� , I + PROFILES AND DETAILS ) \ \ \ EXISTING WELL \ \\ ` - `\ ` `\ \� ` / ` \\ i EXISTING GAS LINE 31 \ \ \\ \ - / \ FO i EXISTING COMMUNICATIONS LINE ` \ H H / , \ ` \ \ , / W EXISTING WATER LINE \ \ / \ \ \ \\ / - - - `\ , + OH - EXISTING OVERHEAD ELECTRIC LINES \ \ \ \ \ \ \� \ ' 1 \ \\ \ ` ` ' E- EXISTING UNDERGROUND ELECTRIC LINE 29 \ - - \ \ , \ \ ` i X EXISTING FENCE ` 1 ' \ ` \ \ \ ° ° NORTH AMERICAN GREEN\ , o 0 O ` o O o v A V A A V V A A V � � � V A / . 000 °r, 00 ° 000 ° 000 ° o \ ` ` \ SHOREMAT (SEE PLANS ) \ , . v v V A V G7 1 \ A \ A � o ° o ° o ° o ° ° o ° o ° 000 1 ` \ / \ 1 \ _ \ I � - _ - / ' xxx` x x NORTH AMERICAN GREEN ER \ -x CONTROL MAT (SEE PLANS ) Z , Iii - N N - \ I 'I / I N I W 2 t YOU DIG - z Z H, 1 - - - - 811 c`, z \ I ZW O \ \ I ZWJW \ _ ;� 1 - 800 - 922 - 1987 ° 0. LL I 4925 _ _ _ UTILITY NOTIFICATION \\ \ - ` \ \ \ - ♦\ OJT 1 N . \ Nx I \ \ \ \ \ , A TYPE M BURIED RIPRAP 2o ,-\ \ - / \ I I \ \ /N ! L _ �-. _ _ " \ \\ \ \ V ' CONCRETE WEIR SPILLWAY \ � \ TOTAL LENGTH OF WEIR = 105 PLUS 9 WINGS ON EACH SIDE � _ ___ \ \ 1 WEIR ELEV = 4921 . 00 _ _ , , / - - v \ 1 1 I \ / ' SET NUMBER 0 50 ' 100 ' 1 � _ ill = 50 ' ( HORIZONTAL) PND4 118 141 RETENTION POND S2 Th Q100 IN 89 .46 CFS Q100 OUT 0 CFS RETENT I O N P O N D S2 ____ETA I L li BOTTOM 4887 • In WQCV 0 .61 AC-FT O Z WQCV ELEVATION 4887 .69 I ®_ 100 YR VOLUME 5 .72 AC-FT 100 YR ELEVATION 4892 .03 I J 1 .5X100 YR VOLUME 8 .59 AC-FT 1 . 5X 100 YR ELEVATION 4893 .82 . .•. • . ... .. .H.y . SPILLWAY ELEVATION 4895 // I / II N \\ ' \ \ I ____ _______ ___ ___ ___ ___ ___ ___ ___ (I N _______________ \ 185 \ ' \ \ \ \\ \ \ \ \ \ \ \ \ I / ( r , , 1 ` \ r 100 .00 SPOT ELEVATION \ \\\ \\ N \\\\ \ \\\ \ \ - / \ \ \ ` \ ' \ \ i i I 1 / \\ `� \/ - ` _ ,r ., \1 , - - - \ \ .� ` `� PROPOSED MAJOR CONTOUR ` ` \ . ` , J \ , f \ \ 10 PROPOSED MINOR CONTOUR \ \ ♦ \ \ \ ` ' I EXISTING MAJOR CONTOUR \ \ \ \ \ \ \ , \ \ \ \ \ \ i OO EXISTING MINOR CONTOUR \ ` \ \ ` ` \ N \ N \ ` g89H .. \ , \ \ \ \ \ N . / / - - - _ DRAINAGE FLOW ARROW OIL & GAS SETBACK \ \ , . \ \ \ \ g8 S ` 1 ` \ \ \ \ \\ \ \ \ \ ✓ - \ `` ` \ ` \ \ � . - - - - - - PROPOSED EASEMENT H \ \ \ \ \ \ \ ` ` ` - \ \ : . ` \ \ _ - - - - - - - - - - \ \` \ . \ - PROPOSED SWALE/ROADSIDE DITCH \ \ , ` ` `` \` \ \\ + \\ \ . \ _ _ _ - _ � - - - - - - - - - - - - - ' 'N \ .\\ \\\ ` \ `\\ \ ` ` \\ \ PROPOSED CULVERT/STORM SEWER / \ \ \ \ \ \ ` \ �\\\ \\\ ` - - - , (SEE SHEETS 128 - 130 FOR CULVERT \ `\ \\ \\ \ `\ \\ `\ ` \ \ '\ `\ `\ `\ \ '\ `\ \ `\ \ \\ ` 4 \ \ \ \ \ ` ` ' ' ' _ _ _ _ _ _ _ _ \ ` � \ \ \ ` \ \ \ ` \\ \ \ \ \ , `, \ , ) � , _ , \ \ PROFILES AND DETAILS ) \ - - - - - - - - - - - - - - - - 189 \ \ \ I EXISTING WELL \ \ \ ` ` \ \\ ` \ \ \ \ \ \ \ \ _ EXISTING GAS LINE \\N \\ FO i EXISTING COMMUNICATIONS LINE \\ \ , \\\\ \ \ , \ \ \ \ \ \ \ \ \I \\ \ \\ \ \\ \ \ ` \\ \ , I \\ \ \\ \ \ w EXISTING WATER LINE \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ c) ` / RETENTION ` \ `\ ` \ OH ! EXISTING OVERHEAD ELECTRIC LINES \ \\ \\ \ \ \ \` \ \` \ \ \ \ \ \` � `` \' \ `\ `\ `\ ` o � ` \ r / _ - N. \ \ � \` \ \ \\ \ 190 \ \ � \ E- EXISTING UNDERGROUND ELECTRIC LINE 4 \ \\ \ \ `\ \ POND S2 - - - - - - - - - - - - - - - \ \ \ ` \ ` `\ \ ` \ \ \ \\ `\ \ \ \ \ \ \` I \ \\ \ \ `\ / I , \ \` ` \ N ` \ \` \ \ ` \ X EXISTING FENCE I H, 49 - - - - - - - - ` \ \ ' � \ \ \ NORTH AMERICAN GREEN W \ \ ` v A o O 0o0 O 0 - 0 - 0 O \ \ \ \ \ \ ' p / = SHOREMAT (SEE PLANS ) v , v 5 \ v vv v 1 v v v v v v \ v v , 19 X. , NORTH AMERICAN GREEN EROSION + `\ ' 1 p TOTAL LENGTH OF WEIR = 81 ' PLUS 9 ' WINGS ON EACH SIDE WEIR ELEV = 4895 . 00 ` • Z `\ ` \ ` \ \ - - / , , \ \ ` \ \ ` ` ` - \ \ � \ \ r RIPRAP Z \ \ 1 \\ \ \ \ / I ` W W \ \ \ `\ ` \` \ ` - - _ - - - - - - - I / TYPE .. M .. BURIED RIPRAP O \\ \, \ \ \` \` \ ,\ \ `\ \ \ \ - - - - - \ p , ,' D50 - 12 " \ \ \if; / N. - - - - - \ N. • UNCC o .__.J O 1 \ \ I \ I ` \ ` ` + \ `\ \ \\ \ _ S \ \\ . \ \ ' � ` CALL BEFORE Z O V I i 1 I 1 \ ` \\ \ ` \ 1 \\ \\ \ 0�' , - - - - - - - - \ \ YOU DIG O Z 1 I ; `\ , `, 1 1 \\ \ \\ `,\ ` \ ` `\ \ `\ \ - N. 811 c) Q Z / - - _ ' ,/ � ' \ \ `\ \ \ \` '` \` \\ \` \'\ \`\ \'\ \ / '/ / ~ i OR Z W , , �� 1 UTILITY NOTIFICATION J 1 (ii \ \ \ \ \ 7,ii /1 1 1 \ \\ '\ � I I \ \ \`\ +` \`\ ` 1 \ 4 . 1H . / !' ' I 11 1 `\ - \` \ \ ` \ � \ ` ` \ ` ` \ I TAJ ` \ ` ` \ \ ' 1 \,/ r I 1 II I II ', \ \ \I \ \ \ ` \ \ ; \ \ \\ \ \ \ • \ ` ` \ 198, ' ` \ �: 7C_ ET NUMBER \ / 1 I \ \ \ \ \ \ \ \ ` \ ` \ \ \ \ \ , / / \ 1 ' \ ` \ \ \ \ ` \ `\ \ \ I '1 0 50 ' 100 ' \ \ ` \\ 1 % ; I 1 \ \ ', \ ` `I \ 1 \ \ \ \ ` � � \ ` � - 199 � \ ♦\ `\ ` ` \ `\ \' / / I I \ `\ \1 ,\ i I \I 1\ \\ \\ \ `\ \ `\ \ \ \ \ ` ' \, \ \ 1 " = 50 ' ( HORIZONTAL) P N D 5 119 141 RETENTION POND S3 Q100 IN 87 . 21 CFS Q100OUT 0CFS RE TE N T I O N PON D S3 DETAIL li BOTTOM 4889 ✓ N vi WQCV 0 .75 AC-FT O Z WQCV ELEVATION 4889 .90 / 1 LJ .._ I 0 100 YR VOLUME 6 .93 AC-FT 100 YR ELEVATION 4893 .60 I J 1 .5 X 100 YR VOLUME 10 . 39 AC-FT 1 . 5 X 100 YR ELEVATION 4895 .06 SPILLWAY ELEVATION 4896 .25 W- - - - - - - - - - - � INV' 489725 - , � `\ ' ` \ ` - - - - - - __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __I \ 1 l w ` CGS 3O" FES \ INV: 4891 . 00 + \ \ KEYMAP LEGEND / � 489p N . - TYPE " M " BURIED RIPRAP TYPE "VL" RIPRAP ' D5O= 12" 100 .00 SPOT ELEVATION f Lp =B' , W=4' , D = 1 . 5' ' `\ ` �- , ' ' \ �� 1op PROPOSED MAJOR CONTOUR 0 I,, - - \ , CONCRETE WEIR SPILLWAY , ��°I I \\ `� N TOTAL LENGTH OF WEIR = 55'55' PLUS 9' WINGS ON EACH SIDE N 1op . PROPOSED MINOR CONTOUR ' I I \ N \ , I ` WEIR ELEV = 4896 . 25 /'� I / I vv �` � vI 1 ` v `v �OO j EXISTING MAJOR CONTOUR of 1 36 FES ' \ � EXISTING MINOR CONTOUR W` ` I v \ \ X1O/1 1 INV: 4889 .00 i` \\ ' � I 1 o- / , ' i/ ;' �, ` � , DRAINAGE FLOW ARROW / TYPE " L" RIPRAP ` `\ \ \\ '\/ ( / O i i / ' - - / D5O =9" `\ `\ / u EXISTING EASEMENT / / / ! I L -3O' W= 16' D= 1 . 5' - 1 I ` \ ` ` \ / i ` � 1 1 `\ I OIL & GAS SETBACK L ' f ' -. \ \ \\ \ `\ \I `, i 102 - - - - - PROPOSED EASEMENT / II , tl\ 3� _ _ \ ` ` �\\ \ \ItI I , '' - - PROPOSED SWALE/ROADSIDE DITCH / ' - - � 1 �1 \� 36" FES i / \ro I ' I . �\ 1 I i f ; 1 , 3 \ ` \ ' 1 .' PROPOSED CULVERT/STORM SEWER , . / I G � _ • INV: 4889 .00 / i I I ; \ / \ i \ `\` `\ I I i i (SEE SHEETS 128 - 13O FOR CULVERT f i - _ _ _ - - ' / ' / i `\ i ., ._. ,' `\ 1 i PROFILES AND DETAILS ) ' ' ' i \ 1 \ ` �\ / EXISTING WELL I 1 ' I - - 36" FES , ' . \ N n / , \ \ 1 1\ \ ` , 1 I / I I / INV: 4893 . 64 J / EXISTING GAS LINE 1 ' o I \\ \ `� ` \ ` ; i FO i EXISTING COMMUNICATIONS LINE - - - i / ' 36" FES t , - \ '/ / �\ �II 1 ' � �� �`\ �`� \1 '\\ W EXISTING WATER LINE INV: 4893 .64 ; ` ' ; RETENTION � _ � f 1 I , `, \ ` \ ' ' - ` - - -_I 1 \ \ `� \ `\ OH ! EXISTING OVERHEAD ELECTRIC LINES I ; '1 \ / ` \\ \ `\ 1 ` E- EXISTING UNDERGROUND ELECTRIC LINE ` \i -' I \ \ '1 ' ' k - \ \ `\ `\ X EXISTING FENCE 1 l 1 / 1 ' ♦ 1 V `V A ♦ V A ♦ V A 1 o r o n o 0 0 O ` 1 1 f I , v r ` V A 1 , A + � o NORTH AMERICAN GREEN I / / \ V o O O O O O O o u o O O O ` O O O ♦ � I I V A \ o o n o o n o I 1 \ . I - - - SHOREMAT (SEE PLANS ) I o O O O o _ o o c \ \ o o _ c o o _ u c _ o \ \ ' tl ' I I '' ` ` \` \ \ ` \' ' N \` NORTH AMERICAN GREEN EROSION ` v ' I vt ' vv ` ` . \ ` ` ' vv \ - v v x y x CONTROL MAT SEE PLANS Z \ \ \ \ Q , , , `\ `\ `\ i , 1 i it , ' ' ,' ' ' / � '� ``` \ ` �` \\\ `` \` \` 11 \ `� I / 4:1 \\ " , #/ N / 8 ct C\ I __ S • % � . , ' / 1 \ \ , \\ \ \ `\ \\ CALL BEFORE Z ` ` \ i I \ I f � \ / / ,' / `` \ \\ I\ \ . \\ `\ `\ `I / \\ YOU DIG 0 Z Z U � \ \ ` \ \ \ , I , - i \\ \` \ \ � \ \ \ OR 1 Z O ' ` 1 I UTILITY NOTIFICATION • . , - , ', i CENTER OF COLORADO I � � a _ I I� ` / 1 I I I I I I I I 1 / 1 ♦ \ \ ` . _ I . / \ \ 1 I I I I I I -III � � - C � `\ \ 1 I 1 \ j / I I � � 1 \ I\ \ \ / I I I I t I I I J ' ' 49O5 - N ,N ` ` ` � � � ` __ — � ' / ' \ I j I `\ \ \ \ 1 I � _ - - ii \` i i i ' i i i w TAJ p � ' ' , - 'o �. � \ \ ` ` ` • - i . I , _ _•H �� . 1 /20/2025 _ Y - _ _ - - - - - - - - - - - - - - - ET NUMBER - ' - - _ _ _ _ _ _ _ _ _ _ _ - - - - - - COUNTYOAD 32 R O 5O ' 1OO ' - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - _ _ - - - - " - - - ' _ - - ' - - _ - - - _ _ - - - - -- - - - - - - - 1 " - 50 ' ( HORIZONTAL) P N D 6 12O 141 RETENTION POND S4 Q100 OU 286 . 88 CFS RETENTION POND S ____4 DETAIL Q100 OUT 0 CFS BOTTOM 4854 WQCV 2 . 94 AC-FT llWQCV ELEVATION 4854 .45 1kb 0 100 YR VOLUME 26 .99 AC-FT 100 YR ELEVATION 4857 .89 I J 1 .5 X 100 YR VOLUME 40 .49 AC-FT 1 . 5 X 100 YR ELEVATION 4859 .64 SPILLWAY ELEVATION 4861 __ ET /K1i > . ... . ... . W_ _ _ - - _ o ≥ - ./ Al /� / AA / 112 , / .ma - - - _ \ a 0/ ' - _ _ 4`� V �e � v v ` vvvvvvvhIIIIIII IIIIII�/IIIIIII/ ,, // // ' / / / / - - - - - - _ 109 � , � \ ` 110 � x � ` KEYMAP I 111 . / / ' ` ' - - - /.1I i T ' ' • ( ` ` . 4865 I I ` ` .. /108 LEGEND / 'i - . V - , ': / N . . . .... . . .. . . . . . . 100 .00 SPOT ELEVATION // - 1j PROPOSED MAJOR CONTOUR 2 ( / / , ' ' - ' - ` \ _ _ j 1 • 7oo PROPOSED MINOR CONTOUR /' , , ' , ' / - - - - - - � 'I ` \ - - - - \ \ ` \\ �` EXISTING MAJOR CONTOUR (( 1 ; ,' \ � \ / \/OO_ i EXISTING MINOR CONTOUR LJJ ( / 1 / \ ❑ % i / % ;' ' `\ ' N6S ' - DRAINAGE FLOW ARROW \ `. I '\ - _ EXISTING EASEMENT Z•/ - - - - - - - - - a OIL & GAS SETBACK \ I \ / f i �' 4860 4860 - .' - - • '/ '� / ' ; '� % `# \ ` / - ' - - - - - PROPOSED EASEMENT � / / % .' ,' 4855 4855 ( _ \ PROPOSED SWALE/ROADSIDE DITCH \ � ,' �.' _ - - - ` , ` . - - - , ` � PROPOSED CULVERT/STORM SEWER ' - - - (SEE SHEETS 128 - 130 FOR CULVERT // � ' / 7 / _ 60 � H. PROFILES AND DETAILS ) EXISTING WELL / , / , / - - -' \ \ EXISTING GAS LINE / - 1 ' / / " FO i EXISTING COMMUNICATIONS LINE / j ' j :� w EXISTING WATER LINE , _ _ _ _ _ RETENTION POND S4 s Q Q - - _ \` OH ! EXISTING OVERHEAD ELECTRIC LINES ' ,t E- EXISTING UNDERGROUND ELECTRIC LINE , �' : X EXISTING FENCE - - WvV I / / - - v o n o 0 0 �� o n - , I _ _ _ _ _ _ _ _ _ _ _ - - - �aoo° o ° 00000 � a ° oo NORTH AMERICAN GREEN / " ou000000u000fl _ a / 1 ____ o____ SHOREMAT (SEE PLANS ) ' 1 I ' 1 x NORTH AMERICAN GREEN EROSION 1 / / / I I CONTROL MAT (SEE PLANS ) CONCRETE WEIR SPILLWAY \ ` _ - ' - RIPRAP U) TOTAL LENGTH OF WEIR = 275' PLUS 9' WINGS ON EACH SIDE / _ Z O Ofl ' ' WEIR ELEV - 4861 . 00 - - .- - ---- ------._ `�` W O ❑ ' - 4855 - - \ \\ 0. _ _ r - - 4860 • / - - - I - - - - - \ - UNCC p O �) I , - - - _ - \ CALL BEFORE Z 4860 YOU DIG z z - - - - - Q Z / - N , a 8 11 5 , TYPE " M " BURIED RIPRAP __ . - � ,- \ U O -- G D50 = 12" _. .. G G G � _ -- - - ' \ ' � �\ \ �\ ® OR H G G G Qi -x . . . . . . ...... .............. 0 w / ` \\ ` ` 1 800 � � � 198 ■ ® LL ^ x <, UTILITY NOTIFICATION CENTER OF COLORADO - - - - - - - ' it , � - / _ , � � , 1 . ' 1- � / ` 1 ( ' ' / ' ' In vVA '1 I 1 v ` - L_. G - ---------- --..., . . ...... .---- ----.---- - --._-) -. - - / -- i PL --, - - _ _ _ _ - \ I TAJ-- -/ / I\I\ . 4B5 - _ 1 /28/2025\< / ... .' ' ` I \\ / /1 I ` \ \ \ / ; SET NUMBER / I ' H 4Z_ \ 0 60 120 - / ` 1 " = 60 ' ( HORIZONTAL) PND7 121 141 RETENTION POND 9 Q100 IN 210 . 52 CFS RETENTION POND 9 DETAIL Q100 OUT 0 CFS BOTTOM 4829 V1 WQCV 0 .46 AC-FT O Z WQCV ELEVATION 4829 . 11 0 100 YR VOLUME 28 .28 AC-FT ____ . . L.L. 100 YR ELEVATION 4834 .73 1 .5X100 YR VOLUME 42 .43 AC-FT Ii 1 . 5X 100 YR ELEVATION 4837 .05 " :Itfli:ii±tI SPILLWAY ELEVATION 4838 .66 \ W \ ' \ Y / \\ / / 2 / 2/71</ ' N /1 7)' _ , �, \ . � � \ 1 t I I\' " \ \ \ `\ `\ ` \\ \ \\ `\ \ 11 1 ' / .- ' ' i \ 1 ` ` \ ` _ _ _ t` a\ ` \ - / � / 1 1 l 1 / / \\ 1 1 11 I I ' j I\ \ / I II\` \ ` 1 / / � i I / / / - \ l \ I / ❑ ` ` \ ` \ `\ \ \ ` 1 j i�/ : / / ` - - _ 1 \ \ \ 1 / `` \ , \ I I I 1 I 1 1 1 1 I 1 1 1 \ l 1 I 1 I I I 1 1 / _ - \ \ / \ 1 \ / I \ \ I I I I I I i I 1 I f \ EXISTING TRIPLE CULVERT / \ 1 1 v , , ' r / \ S \ ; 1 I K14 KEYMAP / / /J� LEGEND 1 I I I I t % / / /� I / / / / / / ' / / ' / �..\ � ' ,' 1 I I \ I l I / I I I I I I I I 1 \ � / / / � / \ \ \ , \ , , , ` // , , ' I I 1 i � 100 .00 SPOT ELEVATION / / /,' ,j ,, / / // , V - \ ' / / / / / / i ' PROPOSED MAJOR CONTOUR /f/ ` \\ ` \ 1 i // ' 1 / ' i i ' ° 11 / �DO PROPOSED MINOR CONTOUR d - ` v / ' / / / /.: � I I I i I / ♦ vv v -. \ ♦ A \ v vv , / \ � / / /' / ° I I I I I ` I ' I I I 1 / \ \ ` ` \ ` \ ` 1 1 \ \ ` ` \ I // * , \.. ' / , \ I I I I I { \ �/ t , , \ o EXISTING MAJOR CONTOUR U , r 1 I t, .. ' ' I I \ \ ` S. \ \ I y \ / / ' / I 1 I I I I I ° / /' i I / A . v A` '� 1 ` / �O EXISTING MINOR CONTOUR ii / I ' 1 I 1 • ♦ ` \ \ ` \ ` \ ` \ � ` v / C - - - / / , - \ / , \ II 1 ; \ {\ ❑ _ \ 1 , \ - DRAINAGE FLOW ARROW ,i,1 / , , , ' ' '+ ', II 1 1 031. OI p / \ ♦ ,< ♦ \ ` \ \ - _ _ / ' / ! \ / N / / �` \ \ \ ` , \\ \ \ \ \ - W / / / , ' ° \ 1 \ , I \ '� \ \ \ \ \ \ OIL & GAS SETBACK / ' / I / ' ' 1 1 1 1 \ 1 t \ \ 1 { \ I I / \ \ � \ ` +• \ ` \ I \ I I I / / \ , / ' \ \ \ \ \ , \ \ ` . / �/ / , I \ l % \ -\ t \ \ , 1 ) - 1\ I, I i/ \ \ \ \ + 1 \ \ , \ , ` \ ` \ \ \ \ - - - - - PROPOSED EASEMENT 1 \ \ \ + \ \ \ tl `, , { ' , / - • • \ \ ` ; , / 1 \ \ ` ' 1 1 1 \ ' { 1 . 1 � \ \ ` \ 1 1 I I / / `\ \ \ \ cp \ \ \ 1 , \ \ \ \ \ PROPOSED CULVERT/STORM SEWER / \ \ / \ \ \ \ { \ \ \ \ (SEE SHEETS 128 - 130 FOR CULVERT / I i i i i {t ° \ + \ \ + \ \ , 1 \ /. \ \ \ , \ \ \ \ \ \ \ \ \ \ PROFILES AND DETAILS ) I � ` H. 1 ` \ { \ EXISTING GAS LINE t ` \ ♦ \ - ♦` . .. \ \ ` \ \ I 1 / / / / \ Y \ \ 1 \ \ I\ \\ \` \ \ \ I \ \ \ { \ + \ \ \ N. ` \ \ 1 / \ \ {{ \ + ` \ ` \ \ \ FO i EXISTING COMMUNICATIONS LINE \ ` rr \ ` I \ EXISTING WATER LINE \ \ 1 \ \ \ \ \ \ . . \ \ 1 \ \ \ . ... .. . .... . . ... . . .. \ RETENTION POND 9 I 1 I , \ \ \ \ , �, � , I \ � , OH ! EXISTING OVERHEAD ELECTRIC LINES \ \ \ \ \ `� :` \ `\ \\ {\ \\ `\ ` ', \ `\ \ '+ \, `� `, , I \ \, \ O \ `\ ` ' \ `� `\ ` \ `\ \ ,\ ; 1 , 1 I 1 \ ' E- EXISTING UNDERGROUND ELECTRIC LINE ItttJ \ 1 \ '\ I / / . \ \ . \ \ \ `, \ \ ♦ \ \` \ \ � � I I I 1 I X EXISTING FENCE Q \ ' \ SHOREMAT (SEE PLANS ) 1 I I \ ♦ \ \ \ \ \ \ \ \ \ `\ \ \ \ \ \ \ '` \\ + \ \ `\ \ \ \ \ 1 ` 3' \ \ \ \ \ \ \ \ \ \ \ \ \ \ \" ` \ \ 1 \ , 1 1 1 / / c o _ o o ' o _ u c _ o . . / \ , \ \ \ \ \ � \ \ \ \ \ \ \ \ \ \ \ . . \ \ \ ,. ♦ ` \ ` . \ �, , 1 I 1 CONTROL MAT (SEE PLANS ) Z `\ \\ \ \1 ,\ \ \ \ \ \ \ \ \ \ \ ♦ \ \, \ ♦ \ \ \ 1 ` V O \ v v v � � CALL BEFORE Z / / / ' ` \ , ' , / , I \ 1 \ \\ \\ \\ \ `: `\ \ \ . ` ' ` , \ \ \ \ ` \ . \ \ F/ YOU DIG \ \ H. 811 0 < I _ - _ _ - _ \ / - \ \ \ \ \ ♦ ♦ \ \ \ \ \ \\\ \ \ \ ` \ \ \ ` \ \ \ \� \ W / \ 1 , / / / / / ' / ` ` ` \ ` / ' ` ` ` S \ \ \ / / 1 800 922 1987 ' \ \ \ ' ; EXISTING SPILLWAY TO REMAIN \ \ \ ` \ / \ \ \ \ \ / ELEV = 4838 .66 - - - - N N N 1 /28/2025 / / / / \ \ \ \ \ \\ \\\ \ \\ \ \ \ \ _ - , 7 , ', ' \.x' c N ♦ \ \ \ \ - ' ( ♦\ ♦ \ \ \ \ ` \ `\ \ -z „ I / / I - - _ _ - - \ \ ` ` � , � � ` ` \ � � 1EET NUMBER / i I ` \ \ \ `\ ` ` ` \\ ` `\ ` \ / / I I \ ! .. 1 / /1 I \ \ / / / , ( 1 1 I 1 `\ ` \ \ \ ` ` \ \ ` ` \ \ \ \ ♦`` `\` \`` \ \ 0 60 ' 120 ' I \ \ \ \ . + , , \ \ . i . \ \ 1 = 60 ( HORIZONTAL) 122 141 TEMPORARY RETENTION Q100IN POND El 101 . 85CFS TEMPORARY RETENTION POND E1 DETAIL Q100 OUT 0 CFS BOTTOM 4815 WQCV 0 .72 AC-FT ' O Q WQCV ELEVATION 4815 .57 100 YR VOLUME 7 .05 AC-FT J _ < 100 YR ELEVATION 4819 .87 1 .5 X 100 YR VOLUME 10 . 57 AC-FT 1 . 5X 100 YR ELEVATION 4821 .65 SPILLWAY ELEVATION 4825N. \ \ \ \ \ �\ \ \ \ \ \ \ \ \ � � 1 \ \ _ _ - - vv I KEYMAP ` \ \ \ \ ` \ `\ ` \ `\ \\ \\ \ \ \ ` r \ / 1 _ �, \ LEGEND S. I 100 .00 SPOT ELEVATION \ \ \ \ \\ \ \\ \ \ \ \ / � 7pp`/ PROPOSED MAJOR CONTOUR \ `\\ \ \ \ \ \ \\\` \\\ \`\ \ \\ \ \\\\ \\` \\` \ \\ \ \ \ \ i . I �� lpp PROPOSED MINOR CONTOUR d \ \\ \` \\ �\ \ \ \ \\ \ ` \ ' `� EXISTING MAJOR CONTOUR �1 ` \ ' - i /O / EXISTING MINOR CONTOUR W I , \ \ \ \ \ \ \ \ \\ \ ` ` \ \ ` \ \ O , \ \\\ \ \ \\ ` \ \ \ ` \ ' � i / - DRAINAGE FLOW ARROW HO \ 1 / /' S. \ ` \ � - . ` \ . � ` - \ \ , - ' - _ EXISTING EASEMENT z S. _ . \ \ \ \ I \ - OIL & GAS SETBACK � \ : I I I I \\ \\ \ `\ \ ` , \ - - - - - PROPOSED EASEMENT \ PROPOSED SWALE/ROADSIDE DITCH PROPOSED CULVERT/STORM SEWER ' I ' �' I I � °DS. `� `, ` �\ ` ` - - \ ' - - _ _ _ _ (SEE SHEETS 128 - 130 FOR CULVERT ' ' I I \ PROFILES AND DETAILS ) W X U \/ ; X I ` `\ �\ \ \ � EXISTING WELL O ! i �// II I I \� ``\ \\ \ \ \\ ` � \ UJ - - - EXISTING GAS LINE FO - EXISTING COMMUNICATIONS LINE - - - w EXISTING WATER LINE ' \ TEMPORARY N X ' I X RETENTION � - - - - ` ` \ - - - - 1 - - z 0 ' I ( POND E1 / ` \ \ \ \ _ _ _ _ _ - - - OH ! EXISTING OVERHEAD ELECTRIC LINES II I \ \ \\ `\ E- EXISTING UNDERGROUND ELECTRIC LINE _ _ EXISTING FENCE 1 X Z - - - - - � - - ' I X I __ / \ \\ c - _ \ NORTH AMERICAN GREEN \ \\ / - - I I d , \\ \ \ - — \ \ c \ f, \ " SHOREMAT (SEE PLANS ) , o - o c o o o - o © , 1 v _ �� X x _ NORTH AMERICAN GREEN EROSION (3 Z v cN / vv 1 I ; /I ,� CONTROL MAT (SEE PLANS ) Z W\ I I X c� RIPRAP ~ W 1 I I 4 : 1 _ CC I I _ \ ' ' \ \ ` ' ` G O CC 7 O 1 I // I ; , CALL BEFORE z �Q I ( I /' i /' ` . ` • r YOU DIG 0 L Z li I I - a 811 � _ c� °L o II / - IIOR I- I / I z J - - 'S h I - - . / / I 8 ( () 922 1 987 0 S. \ I '' I UTILITY NOTIFICATION 1 " \` I � ' I ` \\ \` t' CENTER OF COLORADO S. S. I I S. 1& t _ ` \ I \\ \ ` \ \ - - PL ' F _ ________________ / vv G7 ` � v vv I l/ i vv vvv v� vv vv vv 1� 1 /28/2025. . . . . . . . . . . ... . . . . . . . . . . .•✓ `\\ ` ` \ /,� \ � \ \i / / I / i I /' ' \`\ \�\ \ \ ,`\\ \\\ \ \ \ ` a , = ET NUMBER � , I I / - - - - `\ . \ \ S. ` . 0 50 ' 100 ' 1VA ] 1 , I - - A � � _ _ - - _____________________________ V V A V 4 I 4',' i I / /' - - - -' '. \ \` ` . 1 " = 50 ' ( HORIZONTAL) S. PND9 123 141 TEMPORARY RETENTION Q100IN POND E2 8222CFS TEMPORARY RETENTION POND E2 DETAIL Q100 OUT 0 CFS BOTTOM 4803 . 5 WQCV 0 .51 AC-FT ' O Q WQCV ELEVATION 4803 .98 100 YR VOLUME 5 .06 AC-FT J 100 YR ELEVATION 4807 . 19 0 1 .5 X 100 YR VOLUME 7 .59 AC-FT 1 . 5 X 100 YR ELEVATION 4808 .90 N SPILLWAY ELEVATION 4811 I HiI III \\\ I It \` \ \ ` \ \ `\ \\ \ \\\ S. ciJ \ / \ t II I I � I I I ,t ) i -, I` KEYMAP 1 \ t1 I II I \ \ ` \ \\ \ \ LEGEND I ► I ' \ I \ o - � \ \ 100 .00 SPOT ELEVATION \ L II It I` \ I \ X I ` N. i -. \ Z i `\ �` \ i I `t ' \ \ \ _ PROPOSED MAJOR CONTOUR : f - - " -! Z ._. - - _ _ \ \ \\ � \\ \ I \ I 1 I II EN, It\ _ \ \ \ \ \ / , \ � \ \ �� l PROPOSED MINOR CONTOUR d - - - _ _ ' I O U I I 1 I III \ \ \ // Ij / \ / _ \ \ EXISTING MAJOR CONTOUR - - _ \ 'N 1 I t I I \ . 6 ' \ — — — — � N ; I �? ` ' / ' I 7 \ — i Oo i EXISTING MINOR CONTOUR W- \ - - - - - _ ___ 111 ` - - \ I \I t \ // \\ ❑ - .. - 1 1 ' ifl I - DRAINAGE FLOW ARROW H - N - ` _ I - � II - - ' " - ' f - I\ \ / - - EXISTING EASEMENT Z 1 > ® CI �J <I �J <I �J <I \` ` � _ -__ - - - ♦ \ - - - OIL & GAS SETBACK - . - _ - - - - - PROPOSED EASEMENT V - 1 _ DSIDE DITCH - i I\ \` n , I i --- -- -- - ---- --- - - -- - -------------- - S R \ - _ ' �\ I. - - PROPOSED SWALE/ROA f St \ Z _ _ _� \J [ t\ \ \ \ _ - - , PROPOSED CULVERT/STORM SEWER Q - - - - - - - FOR CULVERT/ SEE SHEETS 128 130 - - PROFILES AND DETAIL S \ _ _ _ EXISTING WELL \ 1 EXISTING GAS LINE N \ _ _ . _ r\ - - _ _ _ _ - W \ ` ' EXISTING COMMUNICATIONS LINE \ \ \ \ / / , , \ \ - \ _-� � - 1/V EXISTING WATER LINE ` ` \ \ \ ` \ c7 XI ' / ; I. \ 4810 ! — _ _ _ _ _ _ _ \ \ \ OH — EXISTING OVERHEAD ELECTRIC LINES \ \ \ \ \ \ I \ / + III 480 - - - - - - O \ \ \ \ , I / il I , 4 : 1 \ _ I / - E- EXISTING UNDERGROUND ELECTRIC LINE a / \ ' I r ` > - - .__- - --. X EXISTING FENCE Z ry.\` \V I 1 I \\/ I \ \V A \ \ VA , /t I — 1 — _ _ _ C "O 'J O C ` C C O \ V — —_ C O - �:. O - C n C 0 - O \ \ \ I I I / , , I — -CI) _-_ --Y..._a CO C O CJ OO C O C C CO C OO `\ \\ \ \ \ \ 1 X \ \ / '"" �" \ \ \ �. / \ \ \ ` _ \ _ _ \ _ — _ — - - ^ _ _ CC CCCOOC 000CCCOOC. \ \ \ \ ► I TEMPORARY \ — o o - C SHOREMAT (SEE PLANS ) \ `\ \ I - - -- - - - ----4- ` _ _ - ` _ \ _ _V V \ A V A _ _ - � _ - �+ A / AI - - - NORTH AMERICAN GREEN EROSION` v ` v II II S. _ _ _ _ -oT _ - CONTROL MA EE PLAN- - - - - _ - - - - - - - - ` - W\` \\ \ I II - - - - - - - =__ T (s s ) Z\ \ \ ` \ \ ` ' 1 - - - RIPRAP.. . . . . ... ... . . . . . .4' S. ¼ I iI1 \ t \ ` \ \ I 1 I �/ 480N. \ I - - . w _ , I I , 1N , \ U UNCC ❑ \\ \ �\ \ \ \ \\ \\ \ \\ \ ` _\ \ \ \ \ \ 1 I • \\ I i I \ \ \ \ ` \ ! \ � CALL BEFORE Z O Q U 4 YOU DIG Z Z li H C \ \ 1 , I ' \ \ \ N Jar I 811 0 ` - _ \ \ \ \ \ \ \ \ \ \ \ \ \ I N. I \ \ - r -.-.-- ¼ \ / (D L o II \ \ \ `\ `\ ` \ \ \ \ t - ® OR U / \ \ 1\ o \ I \ _ t\ \ I 800 9 987 \ \ S. ` I � \ r, , \ \ UTILITY NOTIFICATION \ \` \ I I - - - - \ - - - - CENTER OF COLORADO S. I \` \\ ` \ \ \ ` ` `\ 1\ \ ` \ I \\\ I '1 ` \ ` \ / te - ' - - ^ ` \ \ \ \ \ '' , , ` ` \ \\ \\\ \\ \' � (�� PL TAJ 1 /28/2025 S. \ \ \ `\ ` \ 1\ \ I , ` \ / EET NUMBER \ \ ` \ \ \ \ \ \ \ \\ \ `` ,, \ \ \ \ \ \ / `\ / ✓ I} \\ / J , V 0 50 ' 100 ' \ \\ . ` � \ \ \ \ \ G PNDI0 \\ `. \ `. ` \ \\ `\ \' 4% \ N. _ i ' ti 1 " = 50 ' ( HORIZONTAL) 124 141 _ _ __ __ _____ _ ___ O \ \\ \ \ \ \ \\ ( / / / � , / / , , / , / f 1 I i , \ \ _ f / _ < -J S. II /v 1 / 242 v ` ♦ � � � v 1 , 241 I / i S. i - - - / W ' 240 S.I \ \ / - - 243 N. = - N W \ \ A \ V A ♦ vv / - ' ` \ 40 . 85LFOF54" RCP@0 . 28 % � r _ /' / . T Hii ± . STMH -4 i '\ KEYMAP -� _ � _ STMH -3 \ i ' W / , 424 . 08 LF OF 54 RCP @ 0 . 28 /° 458 . 90 LF OF 54" RCP @0 . 28% ( \ i \ \ — _ __ _ _ — — — � +�o — ,T — } 0 — � .5+nn 14 +n0 13 +0n — 120 — —u+ \ — 10 +nn i STORM SEWER NOTES : \ \ / \ I z 1 . PIPE LENGTHS ARE CALCULATED FROM THE CENTER OF \ 1 \ - - . \ / \ \ \ , - _ _ \ \ , / ' _ MANHOLES OR THE INSIDE FACE OF INLET BOX S. - / ` ' I _ _ ` t I J STRUCTURES . SPECIFIED LENGTH OF PIPE INCLUDES \ \ /� \` I / I - _ _ _ _ _ - - - ' - - f `\ ` 1 1 / THE LAYING LENGTH OF FLARED END SECTIONS . 1- ' / I 54" FES \ 1 , _ _ \ ` \ �\ `\ \ '\ `, I 2 . PIPES CONSTRUCTED UNDER THE TRAVEL LANES OF 0 / I NV: 4885 .35 ` ` \� I ' - , - ' i \ . \\ ` \ ` \ I / \ \ \ U NEW PUBLIC ROADWAY SHALL BE RCP OR AN APPROVED (j / / I I \\ \ 1 � � \ \ \ \ \ \ \ �\ \ \ \\\ \ tt I ' EQUAL . CO �/ / -1 © I \\ \ `\ \ \ i / ' / . - ' " � ` � \ }\ \\ \` `\ \ `\\ I\ 1`\ 3 . PIPES CONSTRUCTED IN RIGHT OF WAY FOR PRIVATE a) — , - - `I 244 CC ` G DRIVEWAY ACCESS SHALL BE AT LEAST CMP OR AN - - - " - c / cc cc c I , I ' , , - - ' ' - - _ , , - ' J i \ `\ ` '1 APPROVED EQUAL . O 248 _ I I r / _ - - " ' i I \\ 1 1 4 . CUTOFF WALLS SHALL BE INSTALLED BELOW ALL - _ _ / - ' \ \\ ` r 1 , ' / i , f OUTLET FLARED END SECTIONS AND SHALL BE 4 , 500 PSI W `\ \ , ( , , / / CONCRETE WITH EPDXY COATED #5 REBAR 12" ON \ ` ` ` J // i I\ `\ \ i ' 't \\ 1 ' CENTER EACH WAY, 3" CLEAR FROM ALL EARTHEN \ \ I I ' \` ` \ \ \ ` ' ' ' 1 I t \ \ EDGES 8" WIDE X 3' DEEP AND 2' BEYOND EACH OUTSIDE 247 O 246 , , I •\ , \G� ; S. \ ` 1 ` , ; S. \ ` \ \ EDGE OF THE END SECTIONS . \ \ , / \ \ \ 5 . SAFETY GRATES SHALL BE PROVIDED AT ALL INLET ' - `\ S. \ \ \ \ ` 1 \ \ , _ - - _ . ` ` \ � , FLARED END SECTIONS BUT SHALL NOT BE PLACED AT Q \ \ \ ANY OUTLET FLARED END SECTIONS . S.S. ,\ S. , , / , - `, ` \ `t , \ .1 `\ \ \ \ ', '\ / ` LEGEND 1 \ , \ \ \ \ L ` ' \ f PROPOSED MAJOR CONTOUR \\\\ `� \ \ S. - I S. \ \ , S. ` ` `, ` \ �` 1245 \\\ \I II '1 \ \', S. \`, \ \ ' ` /!--`.` '0o S. " - - \ . . . . \ \ ` _ I I ! \` \\. \ � . . , \ `, i ', i '. ' A e / PROPOSED MINOR CONTOUR fin___ LU STORM MAIN - PLAN VIEW EXISTING MAJOR CONTOUR EXISTING MINOR CONTOUR PROPOSED SWALE/ROADSIDE DITCH o O EXISTING EASEMENT 19 PROPOSED EASEMENT no 4915 4915 PROPOSED CULVERT/STORM SEWER Z 4910 4910 z IIII I Inw w -- o o W C o d � 00 +I W W o N mm 4905 o .- oo CD r oN 4905 +1 = � O11 U N � o cC - , UNCC 0 W � rn ~ r EXISTING GRADE ALONG co — O _ wi z D U) � z z U U o rn _ p ®_ CALL BEFORE Z cc -> , YOU DIG O Z Z ~+ H CL', z 4900 te ? ? ' � ` 4900 wM � 0 811 j � O � 7 °+o > ` `� ® OR Z o In — Z 'J J IO 4895 _ . ______ 4895 1 - 800 - 922 - 1987 ® LL.II .cu- u- c 100-YR HGL • PROPOSED GRADE ALONG ci UTILITY NOTIFICATION 4890 - 4890 CENTER OF COLORADO 4885 4885 L=40 . 85' -- -- -- - - - - - - - - - -- -- -- =424 . 08' -- -- -- -- -- S =0 . 28 % - - - - PL S =0 . 28 % L=458 . 90' 54" RCP 54" RCP S =0 . 28 % 4880 4880 TAJ 4875 4875 1 /28/2025 19 + 00 18 + 00 17 + 00 16 + 00 15 + 00 14 + 00 13 + 00 12 + 00 11 + 00 10 + 00 9 + 50 C ' ; EET NUMBER .. HH ' 120 ' RIZONTAL) ST I STORM MAIN PROFILE VIEW ERTICAL) 125 141 \ N \\ % % I \ \\\ \ ( \ \ ) I , , / / I / `\ \ / / e.` I ` ` — — - ` . JC' — — 1 1 1 ' \ \ , • \ ` \ / \ \ 1 r 1 O ` \ r ` ` ` ' 7 1\ 1 1 1 1\ 1\ 1` \ 1\ \ \�\ 1 I 1 \ \ , ' A\ -\ 'r�� —� \V , 1 \ V V A v / / - VA✓/ O K I N, C'<:' \\\ I I \ \ N _ _ ` , 1 1 \ •: \ ` \ \ \ — `.— , / / , / --may �` — � -f -- - / / / i i I ' r i i ` \ \ \ , 1 4$�5 _ l \ \ W \ 1 \ \\ \ ` \ _ - Imo , . , \ \ ,/ \ /' / ' - - - \ - \ ` _ .. '._. - \ \ `\ `♦ ` ` \ \ ` \ ` . � . / ,` 4Vv - ' \ 48 _ _ _ _ �o KEYMAP 5 .85 LF OF RCP�� @ 0 54 0 /0 / \.28 1 — 1 f \ _ ._ - 19 � 339 . 37 LF OF 54" RCP @o4 %0 . 84 % - • �r \ f STORM SEWER NOTES : W \ J I . . H:vv �\ • - - - - - r \ \ 4880 \ / ; ` \ 1 . PIPE LENGTHS ARE CALCULATED FROM THE CENTER OF _ _ MANHOLES OR THE INSIDE FACE OF INLET BOX Z 1 STMH -5 4885 J \ STRUCTURES . SPECIFIED LENGTH OF PIPE INCLUDES ' � \ _ _ - - - „ ' ' NI I I I ' THE LAYING LENGTH OF FLARED END SECTIONS . H \ - _ _ _ _ - - , , \ \ \ , 1 \ ' \ ` . \ ` . _ \ _ \ ; ` ` \1 \ \ 4890 \ \ \ ` \ \ ��� g \ \ \ , \ / 2 . PIPES CONSTRUCTED UNDER THE TRAVEL LANES OF 0, ` \ O X89 \ I ` ` \ \ \ \ ` \ ` ' ' / - - ` NEW PUBLIC ROADWAY SHALL BE RCP OR AN APPROVED U - - - - - - - - ` \ - - - - - - _ - _ _ \ , \ , 1 \N I 4895 \ \ \ \ \ \ \ 1 , / / EQUAL . W ` \ \ \ \ \ \ \ ` , , `\ \ \ `\ \ \ \ \ `\ `\ \\ ` \ \ , _ _ \ \ � � _ 4gp , , , \ \ \ 3 . PIPES CONSTRUCTED IN RIGHT OF WAY FOR PRIVATE \\\� ` \ \ - - \\\ • O 8478 LF OF 24 RCP 5 . 11 % \\ � . " \` . - \\ ` \ ' \\ \` \` �` \\` \ ` \\ DRIVEWAY ACCESS SHALL BE AT LEAST CMP OR AN I / - - _ _ ` - \ \ \`\ \\ \ \\ `\ \\ `\ \\ ' `\ `\ \\ \ \ \ APPROVED EQUAL . I NH STORM LINE A / ' ♦ \ \ ` \ ` 4 . CUTOFF WALLS SHALL BE INSTALLED BELOW ALL f \ ♦ - \ Q / \ 1 \ \ 1 \ I , / / \ \ \ ; \ ` 1 1 1 \1 C ` \\ ` \ ` \ - - - - ' / > aaaaaaaa ' I ` ` ` ` \ ' ` ' ` ` OUTLET FLARED END SECTIONS AND SHALL BE 4 , 500 500 PSI \ I / h , ` \ \ ` ` / ! ' I I \ / ' I , , - - , , ' I ' ` . 139 ` \ \ \ \ \ - \ \ \ ` \ ` . ` \ ' ` '� CONCRETE WITH EPDXY COATED #5 REBAR 12 ON ' / \ \ f f • / ', l , ' , , \ III - \\ \ `, \ \ \ \` `\ `I \\ ca \ \ \ `, `, `I CENTER EACH WAY, 3" CLEAR FROM ALL EARTHEN ' i 1 / `\ `\ `\ `\ 1 /• q,°b I ', 24" FES - I ' ` \ ' ` ` ` ` EDGES , 8" WIDE X 3' DEEP AND 2' BEYOND EACH OUTSIDE iN\ 141 � I � - . - 1 - ` \ \ , I ' \ � \ \ \ I \ , 1 , 1 1 1 \ \ \ \ \ \ 5. SAFETY GRATES SHALL BE PROVIDED AT ALL INLET \ \ \ � ' \ \ \ a \ \ \ ' 1 ' \ \ \ \\ \ \ ` ` � `Ii N \ N FLARED` ANY OUTLEDT F AREDNEND S C ONSOT BE PLACED AT \ - - - - \ / f \ \\ �, � I \ \ \ 138 - - - - - - - �� N / / ' / � `, \\ \ `\ \ \ N � ` � \ PROPOSED MAJOR CONTOUR \ I - - - / , ! ' \ . . \ `. �. O i \ \, `\ \ \ \ \ \ PROPOSED MINOR CONTOUR ��oo / EXISTING MAJOR CONTOUR W STORM MAIN - PLAN VIEW J � EXISTING MINOR CONTOUR PROPOSED SWALE/ROADSIDE DITCH O O EXISTING EASEMENT ce PROPOSED EASEMENT a 4915 4915 4915 4915 PROPOSED CULVERT/STORM SEWER = � a 4910 1 4910 4910 w 4910 O o W W N Z L O W W C 4905 o +' PROPOSED GRADE ALONG N EXISTING GRADE ALONG r (O(ON-. N WI . . W o N M M 4905 4905 -- J M M 4905 U N p = N c4 Dr 0�0 0rCflcQ o rco +� 0 00 00 +I O O , O _ O co 00 UNCC C C o � > > � EXISTING GRADE b0) m _ orn4 � Lo O W U + — M O O O Q In D CALL BEFORE - - - - _ � ? ? O n - - — ALONGri = z � z L v/4900 _ — � � \ c � » > � � w + � > O w 2 w ' YOU DIG 0 M EE z z z U _4900 4900 w co 00 C0 z O w z z U 0 O z z z U 4900 U Q z _ Z PROPOSED + z - 811 o GRADE ALONG �i D _ U OR Z O Z W J W 4895 4895 4895 100-YRHGL UTILITY NOTIFICATION 4890 Lo 4890 4890 . . ..... . . . . .I 4890 CENTER OF COLORADO . _L_ . - . . . . �__ co O+4885 - — — — — 4885 4885 S�s 4885 4880 \ L=519 . 85' 4880 4880 ] . . 4880 TAJ S =0 . 28 % - - - - - . L 58 .90' 54" RCP L=339 L=2606' T\ L - - ` - S =0 . 28% S =0. 84 ° S =3 .44% CHKL 54" RCP 54 " RCP 30" RCP 4875 4875 4875 4875 DATE 1 /28/2025 9 +50 9 + 00 8 +00 7+ 00 6 +00 5+ 00 4 + 00 3 + 00 2 +00 1 +00 0+00 2 +00 1 + 00 0+00 -0+ 50 SHEET NUMBER 0 60 ' 120 ' STORM LINE A - PROFILE VIEW 1 " = 60 ' ( HORIZONTAL) ST2 STORM MAIN - PROFILE VIEW 1 " = 6 ' (VERTICAL) 126 1 . 141 Q CHANNEL SECTIONS 0 5 ' 10 ' V) oz 1 " = 5 ' ( HORIZONTAL) ' 0 L < -J O 1■1� U) 3 . 33' 100-YEAR MAX FLOW DEPTH 1 ' MIN . FREEBOARD 1 .97' 100-YEAR MAX FLOW DEPTH 1 .96' 100-YEAR MAX FLOW DEPTH LLI1 ' MIN . FREEBOARD 1 ' MIN . FREEBOARD 1I I1 1I I1 1I I1 4 8' 4 4 12' 4 4 8' 4 Q ❑ CHANNELA CHANNEL H CHANNEL O 2 . 62' 100-YEAR MAX FLOW DEPTH 2 . 68' 100-YEAR MAX FLOW DEPTH 1 ' MIN . FREEBOARD 1 .67' 100-YEAR MAX FLOW DEPTH 1 ' MIN . FREEBOARD 1 ' MIN . FREEBOARD 1 I1 1 � � 1 1 � � 1 4 4 4 4 4 4 Z 8' - 10' - 16' - O H d CHANNEL B CHANNEL I CHANNEL P U w 1 .23' 100-YEAR MAX FLOW DEPTH 1 .06' 100-YEAR MAX FLOW DEPTH z 1 ' MIN . FREEBOARD 0 . 67' 100-YEAR MAX FLOW DEPTH 1 ' MIN . FREEBOARD > 44444444 1 MIN . FREEBOARD wu 4 8' 4 4 - 10' 4 4 8' 4 CHANNEL C CHANNELJ CHANNEL Q 2 . 07' 100-YEAR MAX FLOW DEPTH 1 .68' 100-YEAR MAX FLOW DEPTH 1 .81 ' 100-YEAR MAX FLOW DEPTH 1 ' MIN . FREEBOARD 1 ' MIN . FREEBOARD 1 ' MIN . FREEBOARD•1 � f� 1 1 � � 1 1I I1 4 4 4 4 4 4 8' H - 10' • 12' CHANNELD CHANNEL K CHANNELR I 1 . 3' 100-YEAR MAX FLOW DEPTH 1 .09' 100-YEAR MAX FLOW DEPTH U (1) 1 ' MIN . FREEBOARD 1 ' MIN . FREEBOARD z Z 4 8v � 4 4 'u. 81 4 w W N J CHANNELE CHANNELL o0 - ZZ 2 . 23' 100-YEAR MAX FLOW DEPTH Q n Z Z 1 ' MIN . FREEBOARD 1 .09' 100-YEAR MAX FLOW DEPTH U VZ Z O 1 ' MIN . FREEBOARD Q ❑ o w l = w 4 4 4 4 I- 6' 16' CHANNEL F CHANNEL M 1 .63' 100-YEAR MAX FLOW DEPTH 1 .81 ' 100-YEAR MAX FLOW DEPTH . FREEBOARD 1 ' MIN . FREEBOARD 1 ' MIN ± 1 � 1 TAJ I 4 4 4 6' 16' CHKL' . DATE 1 /28/2025 CHANNEL G CHANNEL N SHEET NUMBER CHI 127 141 STORM SEWER NOTES : 1 . PIPE LENGTHS ARE CALCULATED FROM THE CENTER OF MANHOLES OR THE INSIDE FACE OF CULVERT PROFILES INLET BOX STRUCTURES . SPECIFIED LENGTH OF PIPE INCLUDES THE LAYING LENGTH OF FLARED END SECTIONS . 2 . PIPES CONSTRUCTED UNDER THE TRAVEL LANES OF NEW PUBLIC ROADWAY SHALL BE RCP OR 0 50 ' 100 ' CM AN APPROVED EQUAL. ' O 3 . PIPES CONSTRUCTED IN RIGHT OF WAY FOR PRIVATE DRIVEWAY ACCESS SHALL BE AT LEAST 1 " = 50 ' ( HORIZONTAL) 1 L CMP OR AN APPROVED EQUAL . 1 " = 10 ' (VERTICAL) li o 4 . CUTOFF WALLS SHALL BE INSTALLED BELOW ALL OUTLET FLARED END SECTIONS AND SHALL BE I J 4 ,500 PSI CONCRETE WITH EPDXY COATED #5 REBAR 12" ON CENTER EACH WAY, 3" CLEAR FROM O ALL EARTHEN EDGES , 8" WIDE X 3' DEEP AND 2' BEYOND EACH OUTSIDE EDGE OF THE END SECTIONS . 5 . SAFETY GRATES SHALL BE PROVIDED AT ALL INLET FLARED END SECTIONS BUT SHALL NOT BE CULVERT 3 PLACED AT ANY OUTLET FLARED END SECTIONS . 4920 4920 W CULVERT 1A CULVERT 1 B CULVERT 2 4930 4930 4930 4930 4930 4930 4915 N (V 4915 L6 LL O C 0 > o > W • CO M Z M Z a 4925 00 4925 4925 w 0 4925 4925 4925 4910 4910 LCL 0 CO (n r ❑ O O cnr > rn CO � Z wCO CO w LL CO� CO Ll > W Z W 0) w 0) 4920 F 4920 4920 CO _ 4920 4920 z z 4920 4905 4905 LL M - co _ L=83. 1 Tr S= 1 . 15% 30" RCP 4915 4915 4915 4915 4915 4915 4900 CUTOFF 4900 WALL L=85.47 L=85.47' - Ya L=62. 01 ' y TYPE "L" RIPRAP S= 1 . 17% CUTOFF 70t i S= 1 . 17% .' 491O 4s° RCP WALL 4910 4910 4s" RCP CUTOFF 4910 4910 s=0. 81 % t 4910 4895 D -9" , Lp= 16' , W=7' , D= 1 . 5' 4895 36 RCP 50 / TYPE "H" RIPRAP WALL CUTOFF WALL 055= 1F" , Lp=40' , W=22', D=3' TYPE "H " RIPRAP Z D50= 18" , Lp=4o', W=22' , D=3' TYPE "L" RIPRAP O 4905 4905 4905 4905 4905 Dsa=F" , Lp=24' , W=9' , D= 1 . 5' 4905 4890 4890 1- W 0+00 1 +00 1 +35 0+00 1 +00 1 +35 0+00 1 +001 + 12 0 +00 1 +00 1 +33 0_ W W W CULVERTS CULVERT 6 CULVERT 8 4900 4900 4905 4905 4920 4920 W Z > dd ® < 4clo l <I CULVERT 4 O W CO CO 4925 4925 4895 w v 00 4895 4900 N 5 4900 4915 4915 LL V Cn .CO r- w 00 CO CO CO COZ > LLB W CO O CO M — coZ : O CO CO CO L6 CO N Z oT w5 Z w 5 w 0 4920 F 0 4920 4890 - -_ - 4890 4895 N CO . . COCO 4895 4910 > LL > 4910 rn CO Z CO CO . . CO ? CO Z -4915 - 4915 4885 L=61 . 75' 4885 4890 L=54. 05' - , t 4890 4905 4905 S=0. 77% S=0.33% L=61 .26' 36" RCP 24" RCP S=0 .52% L=51 . 86' S=0. 77% 15" RCP 15" RCP CUTOFF WALL CUTOFF WALL 4910 4910 4880 4880 4885 4885 4900 CUTOFFWALL 4900 CUTOFF WALL TYPE "VL" RIPRAP TYPE " M" RIPRAP TYPE "VL" RIPRAP D50=6" , Lp=4', W=2', D= 1 ' D50= 12" , Lp=26', W= 11 ' , D=2' D50=6", Lp= 12' , W=6', D= 1 ' D50=6",L3E4,.',W RIPRD= 1' 4905 4905 4875 4875 4880 4880 4895 4895 0+00 1 +00 1 + 15 0+00 1 +00 1 +25 0+00 1 +00 1 + 15 0+00 1 +00 1 +20 CULVERT 11 CULVERT 20A CULVERT 20B CULVERT 22 4935 4935 4930 4930 4930 4930 4940 4940 CO CO I U 0 4930 0 N 04930 4925 0 4925 4925 CO CO 4925 4935 4935 CO . . LL , . W V cn 0) P . CO � Z rZ � > LLB � � w N (n .CO N MZ co > (SZ � > u- V W U) — 4925 4925 4920 ") Z 4920 4920 co (�" z 4920 4930 o z Co 4930 Z `" o W O ❑ SC. a OL=51 .86' _ - - � 4920 S= 1 . 13% 4920 4915 _ 4915 4915 4915 4925 4925 J 15" RCP L=84. 56 L=84:35' "v f � S=2. 37% _ S=2. 37% L=63. 66' ❑ CUTOFF WALL 36" RCP 33 , 000 ° S= 1 .22 /° 7 4915 TYPE "CL" RIPRAP 4915 4910 CUTOFF WALL 4910 4910 CUTOFF WALL 4910 4920 30" OCT 4920 OW Z Z c z D50=6", LP=4' , W=3' , D= 1 ' r uj ❑ CUTOFF WALL V TYPE "L" RIPRAP TYPE "L" RIPRAP J U D50=9" , Lp=30' , W= 13' , D= 1 .5' D 0 TYPE "L" RIPRAP 50=9", Lp=30', W= 13' , D= 1 . 5' D50=9", Lp= 16', W=7', D= 1 .5' Z U Q 491O 491O 49O5 49O5 49O5 49O5 4915 4915 ZW J J 0+00 1 +00 1 + 15 0+00 1 +00 1 +50 0+00 1 +00 1 +50 0 +00 1 +00 1 +30 O W0... LLO T CULVERT 23 4910 4910 CULVERT 24A CULVERT 24B CULVERT 25 4890 4890 4890 4890 4940 4940 4905 CO 4905 ui co 4885 CO 4885 4885 4885 4935 CO CO 4935 CO CO CO Z CO U CO N O W m c5 4900 M - 0 4900 LWLs cn0 UCO w � � U- . .. W � v LL . . 00Z : > w 00 4880 CO G z > 4880 4880 CO o z 4880 4930 r _ 4930 LL oz ch — PL O Z 4895 co 4895 L=57. 08' TAJ 4875 4875 4875 4875 4925 S= 1 . 24% 4925 L110.23, ` - - - - 18" RCP CENT . 3 42/ L=62. 77' 51Y L=62. 77' 'ms ` 489O 30;5.RCP 4890 S=0.38% / S=0. 38% CUTOFF WALL 30" OCT 30" OCT DATE 1 /28/2025 CUTOFF WALL 4870 4870 4870 / 4870 4920 TYPE "CL" RIPRAP 4920 CUTOFF WALL CUTOFF WALL D50=6", Lp=5' , W=3' , D= 1 ' li Lp= 19' , W=8', D= 1 .5' 4885 TYPE "L" RIPRAP 4885 TYPE "L" RIPRAP TYPE "L" RIPRAP D50=9", HEET NUMBER 4883 4883 4865 Dsa=9", Lp=25', W= 13' , D= 1 . 5' 4865 4865 D50=9 Lp=25', W= 13' , D= 1 . 5' 4865 4915 4915 0+00 1 +00 1 +65 0+00 1 +00 1 +25 0+00 1 +00 1 +25 0+00 1 +00 1 + 15 C LV I 128 141 STORM SEWER NOTES : 1 . PIPE LENGTHS ARE CALCULATED FROM THE CENTER OF MANHOLES OR THE INSIDE FACE OF CULVERT PROFILES INLET BOX STRUCTURES . SPECIFIED LENGTH OF PIPE INCLUDES THE LAYING LENGTH OF FLARED END SECTIONS . 2 . PIPES CONSTRUCTED UNDER THE TRAVEL LANES OF NEW PUBLIC ROADWAY SHALL BE RCP OR 0 50 ' 100 ' O M AN APPROVED EQUAL. ' O 3 . PIPES CONSTRUCTED IN RIGHT OF WAY FOR PRIVATE DRIVEWAY ACCESS SHALL BE AT LEAST 1 " = 50 ' ( HORIZONTAL) 1 L CMP OR AN APPROVED EQUAL . 1 " = 10 ' (VERTICAL) li o 4 . CUTOFF WALLS SHALL BE INSTALLED BELOW ALL OUTLET FLARED END SECTIONS AND SHALL BE I J 4 ,500 PSI CONCRETE WITH EPDXY COATED #5 REBAR 12" ON CENTER EACH WAY, 3" CLEAR FROM O ALL EARTHEN EDGES , 8" WIDE X 3' DEEP AND 2' BEYOND EACH OUTSIDE EDGE OF THE END SECTIONS . 5 . SAFETY GRATES SHALL BE PROVIDED AT ALL INLET FLARED END SECTIONS BUT SHALL NOT BE PLACED AT ANY OUTLET FLARED END SECTIONS . W CULVERT 25 . 1 CULVERT 27 CULVERT 28 CULVERT 29 4940 4940 4910 4910 4915 4915 4910 4910 r U' W `r' O C W 4935 A co 4935 4905 cn 4905 4910 NT N 4910 4905 cn 4905 Q cnN N- LLLL � o coM Lu � ❑ w cnC o > o > coC + O LLC LL � CON- MZ CF LLT LLU OO OZ 4930 z 4930 4900 4900 4905 z Z 4905 4900VTYPE "VL" RIPRAP 4900 L=51 .86' 4925 S= 1 . 10% 4925 4895 S=0438% _ l 4895 4900 4900 4895 4895 L=64.50' L=51 .86' 18" RCP 30" RCP S=0. 80% CUTOFF WALL CUTOFF WALL ` 18" RCP 4920 4920 4890 4890 4895 CUTOFF WALL 4895 4890 4890 TYPE "L" RIPRAP TYPE "VL" RIPRAP D =E" , Lp= 18' , W=8' , D= 1 . 5' DSo=6" , Lp=6', W=3', D= 1 ' 50 TYPE "CL" RIPRAP D50=6", Lp= 15', W=6', D= 1 ' W D,,=6" , Lp=8', W=5' , D= 1 ' O 4915 4915 4885 4885 4890 4890 4885 4885 W W 0+00 1 +00 1 + 15 0+00 1 +00 1 + 15 0+00 1 +00 1 + 15 0 +00 1 +00 1 +30 0_ W W W CULVERT 29 . 1 CULVERT 30 CULVERT 31 CULVERT 32 O 4925 4925 4915 4915 4900 4900 4905 4905 W Z 0 rn r U O 0 N- co LL. 4920 CON w N 4920 4910 0C o w rn 4910 4895 0 cn co 4895 4900 co CD cn rn 4900 � � LL . . > LL �AN- - > o > OOZ Z NZ NF : A MZ M ? MZ co _ 4915 4915 4905 4905 4890 4890 4895 4895 L=51 . 86' - - - - - L=65. 73' � 1RCP 4900 L=77. 7x' 4900 4885 4885 4890 30'0RCP 4890 4910 4910 S=0.50% L=56 .46' 24 RCP S=0 .29% j CUTOFF WALL CUTOFF WALL CUTOFF WALL 36 RCP 4905 JI 4905 4895 4895 4880 CUTOFF WALL 4880 4885 TYPE "L" RIPRAP 4885 TYPE "VL" RIPRAP TYPE "L" RIPRAP = 950=6", Lp=5' , W=3' , D= 1 ' U =9", Lp= 13' , W=7', D= 1 .5' TYPE "L" RIPRAP D,,-O" , Lp=20' , W=9' , D= 1 . 5' Dso=9" , Lp=22' , W=9' , D= 1 . 5' 4900 4900 4890 4890 4875 4875 4880 4880 0+00 1 +00 1 + 15 0+00 1 +00 1 +35 0+00 1 +00 1 +25 0+00 1 +00 1 +30 CULVERT 34 CULVERT 35 CULVERT 37A CULVERT 37B 4915 4915 4920 4920 4880 4880 4880 4880 U N U O r 4910 w v N 4910 4915 0 oN 4915 4875 cn co 4875 4875 L 0 4875 v _ LL U Z W LL COG O O LL t} V C N Z LL > LLJ N- LLJ 5 O Z O > > LL . . LL M _ MZ COLLJ r ^ N Z > - > > O > U) - 4905 _ 4905 4910 N Z N Z 4910 4870 4870 4870 M Z "' Z 4870 Z O � W O O L=57. 92' O o 4900 s=0.83% 4900 4905 - 4905 4865 _ _ 4865 4865 4865 W N O 24 RCP L=62. 73' L=67.50' - '5 ' � L=67. 50' P ❑ U S= 1 . 12% S=0 . 67% S=0.67% � CUTOFF WALL 24" RCP 30" RCP 30" RCP O Z 4895 CAFE "CL" RIPRAP 4895 4900 4900 4860 4860 4860 4860 ` W 1■ F- D,°=6", Lp=9', W=4' , D= 1 ' CUTOFF WALL CUTOFF WALL z CUTOFF WALL C� Q / n W ❑ TYPE "L" RIPRAP TYPE "L" RIPRAP W C, =9", Lp= 13' , W=6', D= 1 .5' TYPE "L" RIPRAP D50=9" , LP=25' , W= 19', D= 1 .5' 0 ____ 7 DSo=9" Lp=25', W= 19' D= 1 . 5' H Z W O 4890 4890 4895 4895 4855 4855 4855 4855 J ❑ Z W J 0+00 1 +00 1 + 15 0+00 1 +00 1 + 15 0+00 1 +00 1 +25 0 +00 1 +00 1 +25 O WOLLV 3 CULVERT 37C CULVERT 38A CULVERT 38B 4880 4880 4905 4905 4905 4905 U' U' 4875 U' 0 4875 4900 w 00 4900 4900 w 4900 m cnL LL coo LLv LL � LL � Co � 00 5 + U' Co> O C 4870 C Z 4870 4895 > 4895 4895 4895 E co Z FL TAJ 4865 4865 4890 L= 194. 87 4890 4890 L= 199. 78' - - - 4890 WOO F0 CHKL' . S=2. 38% - 32 /° v L=67. 50' - 36" RCP }l b� ` S=0.67% �� 36" RCP / / 30" RCP DATE 1 /28/2025 4860 CUTOFF WALL 4860 4885 CUTOFF WALL 4885 4885 CUTOFF WALL 4885 TYPE "L" RIPRAP 000 TYPE " RIPRAP DSo=9" , Lp = 1=30' , W6' , D= 1 .5' 0U'=0' Lp=30', W= 16' , 0= 1 . "L SHEET NUMBER DSo=9 , Lp=25' , W= 19 , D= 1 . 5 4855 4855 4880 4880 4880 4880 0+00 1 +00 1 +25 0+00 1 +00 2+00 2+60 0 +00 1 +00 2+00 2+65 C LV2 129 141 STORM SEWER NOTES : 1 . PIPE LENGTHS ARE CALCULATED FROM THE CENTER OF MANHOLES OR THE INSIDE FACE OF CULVERT PROFILES INLET BOX STRUCTURES . SPECIFIED LENGTH OF PIPE INCLUDES THE LAYING LENGTH OF FLARED END SECTIONS . 2 . PIPES CONSTRUCTED UNDER THE TRAVEL LANES OF NEW PUBLIC ROADWAY SHALL BE RCP OR 0 50 ' 100 ' CM AN APPROVED EQUAL. fill, O 3 . PIPES CONSTRUCTED IN RIGHT OF WAY FOR PRIVATE DRIVEWAY ACCESS SHALL BE AT LEAST 1 " 50 ' ( HORIZONTAL) 1CMP OR AN APPROVED EQUAL . 1 " = 10 ' (VERTICAL) li 4 . CUTOFF WALLS SHALL BE INSTALLED BELOW ALL OUTLET FLARED END SECTIONS AND SHALL BE J 4 ,500 PSI CONCRETE WITH EPDXY COATED #5 REBAR 12" ON CENTER EACH WAY, 3" CLEAR FROM O ALL EARTHEN EDGES , 8" WIDE X 3' DEEP AND 2' BEYOND EACH OUTSIDE EDGE OF THE END SECTIONS . 5 . SAFETY GRATES SHALL BE PROVIDED AT ALL INLET FLARED END SECTIONS BUT SHALL NOT BE PLACED AT ANY OUTLET FLARED END SECTIONS . W CULVERT 39A CULVERT 39B CULVERT 40A CULVERT 40B 4925 4925 4925 4925 4915 4915 4915 4915 O N 0 W 4920 4920 4920 0 4920 4910 v A 4910 4910 coo 4910 W v o or OS). O cn LL w LL V Z CT NC N Z u- N Z LL 5 + N Co 5z N Z 4915 4915 4915 4915 4905 4905 4905 4905 ziiiii• i . . .L=67. 62' 4900 L=57.33' 4900 4900 S= 1 . 81% 4900 4910 4910 4910 . 4910 s= 1 . 7o% L=51 . 63' 24" RCP L=64.73' 24" RCP S= 1 . 08%o S= 1 . 12"/0 24" RCP 24" RCP CUTOFF WALL CUTOFF WALL — 4905 CUTOFF WALL 4905 4905 CUTOFF WALL 4905 4895 4895 4895 4895 TYPE "L" RIPRAP TYPE "L" RIPRAP TYPE "L" RIPRAP TYPE "L" RIPRAP D50=9", Lp=25', W= 11 ' , D= 1 . 5' „ „ DSo=9", Lp=25', W= 111 ' , D= 1 .5' Z 050=F" , Lp=25 , W= 11 ' , D= 1 .5 D50=9 , Lp=25 , W= 11 ', D= 1 .5 4900 4900 4900 4900 4890 4890 4890 4890 W W 0+00 1 +00 1 + 15 0+00 1 +00 1 + 15 0+00 1 +00 1 + 18 0 +00 1 +00 1 + 15 0_ W W CULVERT E1 CULVERT E2 CULVERT E3 CULVERT E4 4850 4850 4855 4855 4845 4845 4855 4855 W Z 4a4a4a4a W 4845 0 0 4845 4850 4850 4840 4840 4850 4850 N A. 0 N M O• 0 (n M o o co A V W V (n 00 O O + M M r O L.� > LL ) S 00 LwL � O 4840 z A ? 4840 4845 o Z > 4845 4835 N ? N z 4835 4845 Lo Z 4845 Z in Z L=50.25' 4835 4840 _ _ 4840 4830 L=62. 63' 4830 4840 .. ui - =48 02 4840 4835 s=0.85%" " s=0.86% 18" RCP / . L=51 .86' S=0.56 /o CUTOFF WALL S5'ORCP 24" RCP 15" RCP 4830 4830 4835 CUTOFF WALL 4835 4825 CUTOFF WALL 4825 4835 CUTOFF WALL p 4835 TYPE "AL" RIPRAP D5o=6" , Lp=6', W=3' , D= 1 ' TYPE "AL" RIPRAP TYPE "AL" RIPRAP D5o=6'% Lp=4', W=3', D= 1 ' TYPE "L" RIPRAP D50=6", Lp=4' , W=3' , D= 1 ' D50=9 , Lp= 13 , W=6 , D= 1 .5 4825 4825 4830 4830 4820 4820 4830 4830 0+00 1 +00 1 + 15 0+00 1 +00 1 + 15 0+00 1 +00 1 + 15 0+00 1 +00 1 + 15 CULVERT E5 CULVERT E6 4855 4855 4835 4835 V � W 0 , 4850 U) 4850 4830 N Crj 4830 v CO � > � T Z W w Z - > > LL r Z N CF Z _ W __ 4845 4845 4825 4825 W ❑ L=51 :83' - e a 4840 4820 � 0 S0. 99% W L=60. 39' = JO 484O 15" RCP 24'ORCP I 4820 CUTOFF WALL / I ❑ j U TYPE "AL" RIPRAP CUTOFF WALL 0110 O 4835 D50=6" , Lp=6', W=4', D= 1 ' 4835 4815 TYPE "AL" RIPRAP 4815 W z D50=6" , Lp= 11 ' , W=5' , D= 1 ' W < n ❑ 4830 4830 4810 4810 Z J W J 0+00 1 +00 1 + 15 0+00 1 +00 1 + 15 O WO... LLV T PL TAJ CHKL: DATE- 1 /28/2025 SHEET NUMBER CLV3 130 141
Hello