HomeMy WebLinkAbout20041885.tiff N;r _, .,. .;- y. T >"p t r 4E .s{ * yk "E 4i,',.:•:- -.',:r!;:•,.';';
tne^1:IL,w _ ,+ z .p t z m e
m
x
--
/1
4'; - ,.
.
, Y
z Y a 'O,i
{
m
a'. ,, N R a�( { mss' a
n, iiiiiiii#,,OPi
S -
p 55 4 h` l p ti :yp YL
N N f t 4 N9
ion #% '4k • '- ,� • on
At
en bittibi,Y Y yF?S F'. .y Y
m J.a
•M." <p fi ..44e. .� rt b $
b�y „- .
' f
o
s� t � t `fit
o s
a '' V ld'5 z& a In
O
et
et
$
4 n
{ x m n . Yi
a.
0 N O h✓
O
N
a,,, +, n4-1 .4O S y�P �. "l. '' airy' M 4�k ,.; fi'' ., 1,4
n e C. n !M
2004-1885
WELD COUNTY, COLORADO, SOUTHERN PART 25
can be drilled into a firm prepared seedbed. Plowing and Permeabilty is rapid. Available water capacity is
dialing on the contour minimize runoff and soil losses. moderate. The water table is usually about 24 to 36 inches
ing early in spring has proven most successful. below the surface. Surface runoff is slow, and the erosion
,oindbreaks and environmental plantings are generally hazard is low.
well suited to this soil. Cultivation to control competing This unit is used as rangeland and irrigated cropland.
vegetation should be continued for as many years as Cropping in irrigated areas is limited to the crops
possible following planting. Trees that are best suited and tolerant of water and salts. Light, frequent irrigations by
have good survival are Rocky Mountain juniper, eastern furrows and flooding reduce the salts accumulation.
redcedar, ponderosa pine, Siberian elm, Russian-olive, and Pasture is the best use. Tall wheatgrass, tall fescue, and
hackberry. The shrubs best suited are skunkbush sumac, annual sweetclover are some of the best suited crops.
lilac, Siberian peashrub, and American plum. Commercial fertilizers improve the amount and value of
Wildlife is an important secondary use of this soil. The forage produced.
cropland areas provide favorable habitat for ring-necked The potential native vegetation on this unit is
pheasant and mourning dove. Many nongame species can dominated by switchgrass, little bluestem, sand reedgrass,
be attracted by establishing areas for nesting and escape and western wheatgrass. Indiangrass, sand bluestem,
cover. For pheasants, undisturbed nesting cover is essen- prairie cordgrass, slender wheatgrass, alkali sacaton, salt-
tial and should be included in plans for habitat develop- grass, sedge, and rush are also present. Potential produc-
ment, especially in areas of intensive agriculture. Range- tion ranges from 4,000 pounds per acre in favorable years
land wildlife, for example, the pronghorn antelope, can be to 3,000 pounds in unfavorable years. As range condition
attracted by developing livestock watering facilities, deteriorates, the switchgrass, sand bluestem, indiangrass,
managing livestock grazing, and reseeding where needed. little bluestem, and prairie cordgrass decrease and salt-
This soil has good potential for urban and recreational grass, blue grama, sand dropseed, sedge, and rush in-
development. Increased population growth in the survey crease. Undesirable weeds and annuals invade the site as
area has resulted in increased homesite construction. The range condition becomes poorer.
chief limiting soil feature for urban development and road Management of vegetation on this unit should be based
construction is the limited capacity of this soil to support on taking half and leaving half of the total annual produc-
a load. Septic tank absorption fields function properly, but tion. Seeding is desirable if the range is in poor condition.
community sewage systems should be provided if the Switchgrass, sand bluestem, sand reedgrass, western
population density increases. Because of the permeability wheatgrass, indiangrass, pubescent wheatgrass, and inter-
- "he substratum, sewage lagoons must be sealed. mediate wheatgrass are suitable for seeding. The plants
ns, shrubs, and trees grow well. Capability subclass selected should meet the seasonal requirements of
IVe irrigated, VIe nonirrigated; Loamy Plains range site. livestock. They can be seeded into a clean, firm sorghum
35—Loup-Boel loamy sands, 0 to 3 percent slopes. stubble, or they can be drilled into a firm prepared
This level to nearly level map unit is on stream bottoms seedbed. Seeding early in spring has proven most success-
and in drainageways of the sandhills at elevations of 4,550 ful. Capability subclass IVw irrigated, VIw nonirriated;
to 4,750 feet. The Loup soil occupies the lower or depres- Sandy Meadow range site.
sional areas, which receive additional runoff. It makes up (36'Midway-Shingle complex, 5 to 20 percent slopes.
about 55 percent of the unit. The Boel soil occupies the This moderately sloping to strongly sloping map unit is on
slightly higher elevations. It makes up about 35 percent upland hills and ridges at elevations of 5,050 to 5,250 feet.
of the unit. About 10 percent of the unit is Osgood sand The Midway soil makes up about 50 percent of the unit,
and Valent sand. and the Shingle soil about 35 percent. About 15 percent is
The Loup soil is deep and poorly drained. It formed in Renohill clay loam and Tassel fine sandy loam. The Mid-
sandy alluvium. Typically the surface layer is very dark way soil differs from the Shingle soil in having more than
grayish brown, mottled loamy sand about 16 inches thick. 35 percent clay in the underlying material.
The upper 24 inches of the underlying material is light The Midway soil is shallow and well drained. It formed
brownish gray, mottled loamy sand. The lower part to a in residuum from calcareous shale. Typically the surface
depth of 60 inches is light brownish gray, mottled sandy layer is light olive brown clay about 7 inches thick. The
loam. underlying material is light brownish gray clay about 6
Permeability is rapid. Available water capacity is inches thick. Depth to calcareous clayey shale is about 13
moderate. The water table is at or near the surface in inches.
spring and about 36 inches below the surface in the fall. Permeability is slow. Available water cap.4zity is low.
Surface runoff is slow, and the erosion hazard is low. The effective rooting depth is 10 to 20 inches. Surface ru-
The Boel soil is deep and somewhat poorly drained. It noff is rapid, and the erosion hazard is moderate to high.
formed in stratified sandy alluvium. Typically the surface The Shingle soil also is shallow and well drained and
layer is grayish brown loamy sand about 14 inches thick. formed in residuum from calcareous shale. Typically the
The underlying material to a depth of 60 inches is pale surface layer is grayish brown loam about 6 inches thick.
brawn and very pale brown, stratified, mottled loamy The underlying material is light yellowish brown clay
loam about 12 inches thick. Depth to calcareous clayey
44 SOIL SURVEY
to allow moisture accumulation. Generally precipitation is Permeability is rapid. Available water capacity is low
too low to make beneficial use of fertilizer. The effective rooting depth is 60 inches or more. Surface
Stubble mulch farming, striperopping, and minimum til- runoff is medium, and the erosion hazard is moderate.
lage are needed to control soil blowing and water erosion. The potential native vegetation is dominated by little
Terracing also may be needed to control water erosion. bluestem, sideoats grama, sand reedgrass, blue grama
The potential native vegetation is dominated by hairy grama, switchgrass, and needleandthread. Potentia.
western wheatgrass and blue grama. Buffalograss is also production ranges from 700 pounds per acre in favorable
present. Potential production ranges from 1,000 pounds years to 200 pounds in unfavorable years. As range condi
per acre in favorable years to 600 pounds in unfavorable tion deteriorates, the tall and mid grasses decrease, blue
years. As range condition deteriorates, a blue grama-buf- grama and hairy grama increase, and forage productior
falograss sod forms. Undesirable weeds and annuals in- drops.
vade the site as range condition becomes poorer. Management of vegetation should be based on taking
Management of vegetation on this soil should be based half or less of the total annual production. Deferred graz-
on taking half and leaving half of the total annual produc- ing is practical in improving range condition. Seeding and
tion. Range pitting can reduce runoff. Seeding is desirable mechanical treatment are impractical.
if the range is in poor condition. Western wheatgrass, Windbreaks and environmental plantings generally are
not suited to these soils. Onsite investigation is needed tc
blue grama, sideoats grama, buffalograss, pubescent
wheatgrass, and crested wheatgrass are suitable for seed- determine if plantings are feasible.
ing. The grass selected should meet the seasonal require- Wildlife populations are limited because the necessary
ments of livestock. It can be seeded into a clean, firm habitat elements are lacking. Because most of the acreage
sorghum stubble, or it can be drilled into a firm prepared is rangeland, only rangeland wildlife, for example scaled
seedbed. Seeding early in spring has proven most quail and antelope, are typical. Extreme care is needed in
success-
ful. managing livestock grazing in order to provide suitable
Windbreaks and environmental plantings of trees and habitat on these soils.
Potential is poor for urban and recreational develop-
shrubs commonly grown in the area are generally well
ment. The chief limiting soil features are the loose, coarse
suited to this soil. Cultivation to control competing
textured soil, steep slopes, and rapid permeability. Capa-
vegetation should be continued for as many years as
possible following planting. Trees that are best suited and bility subclass VIIs irrigated, VIIs nonirrigated; Gravel
have good survival are Rocky Mountain juniper, eastern Breaks range site.
redcedar, ponderosa pine, Siberian elm, Russian-olive, and 69—Valent sand, 0 to 3 percent slopes. This is a deep,
excessively drained soil on plains at elevations of 4,650 to
hackberry. The shrubs best suited are skunkbush sumac,
5,100 feet. It formed in eolian deposits. Included in
lilac, Siberian peashrub, and American plum.
Wildlife is an important secondary use of this soil. The mapping are small areas of soils that have lime within a
cropland areas provide favorable habitat for ring-necked depth of 40 inches.
pheasant and mourning dove. Many nongame species can Typically the surface layer is brown sand about 8
be attracted by establishing areas for nesting and escape inches thick. The underlying material to a depth of 60
cover. For pheasants, undisturbed nesting cover is essen- inches is brown sand.
tial and should be included in plans for habitat develop- moderate. The effective rooting depth is 60 inches or
ment, especially in areas of intensive agriculture. Range- more. Surface runoff is slow, and the erosion hazard is
land wildlife, for example, the pronghorn antelope, can be low
attracted by developing livestock watering facilities, This soil is suited to limited cropping. Intensive
managing livestock grazing, and reseeding where needed. cropping is hazardous because of erosion. The cropping
This de This s soil
has poorpotential for urban and recreational system should be limited to such close grown crops as al-
P permeability and high shrink swell falfa, wheat, and barley. The soil also is suited to ir-
cause problems in dwelling and road construction. Capa- rigated pasture. A suitable cropping system is 3 to 4
bility subclass IIIe irrigated, IVe nonirrigated; Clayey years of alfalfa followed by 2 years of corn and small
Plains range site. grain and alfalfa seeded with a nurse crop.
68—Ustic Torriorthents, moderately steep. These are Closely spaced contour ditches or sprinkers can be used
deep, excessively drained soils on terrace breaks and in irrigating close grown crops. Contour furrows or sprin-
escarpments at elevations of 4,450 to 5,100 feet. They klers should be used for new crops. Applications of bar-
formed in gravelly alluvium and have slopes of 9 to 25 nyard manure and commercial fertilizer help to maintain
percent. Included in mapping are small areas of soils that good production.
have pockets of sandy loam and loam in the underlying The potential vegetation is dominated by sand
material. bluestem, sand reedgrass, switchg
rass, sideoats grama,
Typically the surface layer is pale brown gravelly sand needleandthread, little bluestem, and blue grama. Poten-
, about 10 inches thick. The underlying material to a depth tial production ranges from 2,500 pounds per acre in
of 60 inches is pale brown gravelly sand. favorableyears to 1,800pounds in unfavorable
years. As
WELD COUNTY, COLORADO, SOUTHERN PART 45
range condition deteriorates, the sand bluestem, The potential vegetation is dominated by sand
switchgrass, sand reedgrass, sideoats grama, and little bluestem, sand reedgrass, switchgrass, sideoats grama,
'stem decrease, forage production drops, and sand needleandthread, little bluestem, and blue grama. Poten-
.ae increases. Undesirable weeds and annuals invade tial production ranges from 2,500 pounds per acre in
and "blowout" conditions can occur as range condition favorable years to 1,800 pounds in unfavorable years. As
becomes poorer. range condition deteriorates, the sand bluestem,
Management of vegetation on this soil should be based switchgrass, sand reedgrass, sideoats grama, and little
on taking half and leaving half of the total annual produc- bluestem decrease, forage production drops, and sand
tion. Seeding is desirable if the range is in poor condition. sage increases. Undesirable weeds and annuals invade
Sand bluestem, sand reedgrass, indiangrass, switchgrass, and "blowout" conditions can occur as range condition
sideoats grama, little bluestem, and blue grama are suita- becomes poorer.
ble for seeding. Because this soil is susceptible to soil Management of vegetation on this soil should be based
blowing, it should be seeded using an interseeder, or the on taking half and leaving half of the total annual produc-
seed should be drilled into a firm, clean sorghum stubble. tion. Seeding is desirable if the range is in poor condition.
Seeding early in spring has proven most successful. Brush Sand bluestem, sand reedgrass, indiangrass, switchgrass,
management also can help in improving deteriorated side-oats grama, little bluestem, and blue grama are suita-
range. ble for seeding. Because this soil is susceptible to soil
Windbreaks and environmental plantings are fairly well blowing, it should be seeded using an interseeder or the
suited to this soil. Blowing sand and the moderate availa- seed should be drilled into a firm, clean sorghum stubble.
ble water capacity are the principal hazards in establish- Seeding early in spring has proven most successful. Brush
ing trees and shrubs. The soil is so loose that trees should management can also help in improving deteriorated
be planted in shallow furrows, maintaining vegetation range.
between the rows. Supplemental irrigation is needed to Windbreaks and environmental plantings are generally
insure survival. Trees that are best suited and have good not suited to this soil. Onsite investigation is needed to
survival are Rocky Mountain juniper, eastern redcedar, determine if plantings are feasible.
ponderosa pine, and Siberian elm. The shrubs best suited Wildlife is an important secondary use of this soil. Ran-
are skunkbush sumac, lilac, and Siberian peashrub. geland wildlife, for example, the pronghorn antelope, can
Wildlife is an important secondary use of this soil. The be attracted by developing livestock watering facilities,
cropland areas provide favorable habitat for ring-necked managing livestock grazing, and reseeding where needed.
-?asant and mourning dove. Many nongame species can This soil has fair potential for urban development. The
attracted by establishing areas for nesting and escape chief limiting soil features are the rapid permeability and
cover. For pheasants, undisturbed nesting cover is essen- the susceptibility to soil blowing. Septic tank absorption
tial and should be included in plans for habitat develop- fields function properly, but in places the sandy sub-
ment, especially in areas of intensive agriculture. Range- stratum does not properly filter the leachate. Sewage
land wildlife, for example, the pronghorn antelope, can be lagoons must be sealed. Once established, lawns, shrubs,
attracted by developing livestock watering facilities, and trees grow well. Capability subclass VIe irrigated,
managing livestock grazing, and reseeding where needed. VIe nonirrigated; Deep Sand range site.
This soil has fair potential for urban development. The 71—Valent-Loup complex, 0 to 9 percent slopes. This
primary limiting soil features are the rapid permeability level to moderately sloping map unit occupies hills, ridges,
and the susceptibility to soil blowing. Septic tank absorp- and depression or pothole-like areas in the sandhills at
tion fields function properly, but in places the sandy sub- elevations of 4,670 to 4,700 feet. The Valent soil makes up
stratum does not properly filter the leachate. Sewage about 60 percent of the unit, the Loup soil about 35 per-
lagoons must be sealed. Once established, the lawns, cent. About 5 percent is dune sand. The Valent soil occu-
shrubs, and trees grow well. Capability subclass IVe ir- pies the hills and ridges and the Loup soil the depressions
rigated, VIe nonirrigated; Deep Sand range site. or potholes.
70—Valent sand, 3 to 9 percent slopes. This is a deep, The Valent soil is deep and excessively drained. It
excessively drained soil on plains at elevations of 4,650 to formed in eolian deposits. Typically the surface layer is
5,100 feet. It formed in eolian deposits. Included in brown sand about 8 inches thick. The underlying material
mapping are small areas of soils that have lime within a to a depth of 60 inches is brown sand.
depth of 40 inches. Also included are small areas of soils Permeability is rapid. Available water capacity is
that have sandstone between 40 and 60 inches. moderate. The effective rooting depth is 60 inches or
Typically the surface layer of the Valent soil is brown more. Surface runoff is slow, and the erosion hazard is
sand about 6 inches thick. The underlying material to a low.
depth of 60 inches is brown sand. The Loup soil is deep and poorly drained. It formed in
Permeability is rapid. Available water capacity is sandy alluvium. Typically the surface layer is very dark
moderate. The effective rooting depth is 60 inches or grayish brown, mottled loamy sand about 16 inches thick.
„pore. Surface runoff is slow, and the erosion hazard is The underlying material to a depth of 60 inches is light
brownish gray, mottled loamy sand and sandy loam.
ti+
WELD COUNTY, COLORADO, SOUTHERN PART 33
more. Surface runoff is medium, and the erosion hazard is ment, especially in areas of intensive agriculture. Range-
low land wildlife, for example, the pronghorn antelope, can be
j-+ irrigated areas this soil is suited to the crops com- attracted by developing livestock watering facilities,
g grown in the area. Perennial grasses and alfalfa or managing livestock grazing, and reseeding where needed.
close grown crops should be grown at least 50 percent of Rapid expansion of Greeley and the surrounding area
the time. Contour ditches and corrugations can be used in has resulted in urbanization of much of this Olney soil.
irrigating close grown crops and pasture. Furrows, con- The soil has good potential for urban and recreational
tour furrows, and cross slope furrows are suitable for row development. The only limiting feature is the moderately
crops. Sprinkler irrigation is also desirable. Keeping til- rapid permeability in the substratum, which causes a
lage to a minimum and utilizing crop residue help to con- hazard of ground water contamination from sewage
trol erosion. Maintaining fertility is important. Crops lagoons. Lawns, shrubs, and trees grow well. Capability
respond to applications of phosphorus and nitrogen. subclass IIIe irrigated, IVe nonirrigated; Sandy Plains
In nonirrigated areas this soil is suited to winter wheat, range site.
barley, and sorghum. Most of the acreage is planted to 49—Osgood sand, 0 to 3 percent slopes. This is a deep,
winter wheat. The predicted average yield is 25 bushels well drained soil on smooth plains at elevations of 4,680 to
per acre. The soil is summer fallowed in alternate years 4,900 feet. It formed in eolian sands. Included in mapping
to allow moisture accumulation. Generally precipitation is are small areas of soils that have a subsoil within 20
too low for beneficial use of fertilizer. inches of the surface. Also included are small areas of
Stubble mulch farming, striperopping, and minimum til- soils that have a loam and sandy clay loam subsoil.
lage are needed to control soil blowing and water erosion. Typically the surface layer of this Osgood soil is gray-
Terracing also may be needed to control water erosion. ish brown sand about 22 inches thick. The subsoil is
The potential native vegetation on this range site is brown sandy loam about 12 inches thick. The substratum
dominated by sand bluestem, sand reedgrass, and blue to a depth of 60 inches is pale brown loamy sand and
grama. Needleandthread, switchgrass, sideoats grama, sand.
and western wheatgrass are also prominent. Potential Permeability is moderately rapid. Available water
production ranges from 2,200 pounds per acre in favora- capacity is moderate. The effective rooting depth is 60
ble years to 1,800 pounds in unfavorable years. As condi- inches or more. Surface runoff is very slow, and the ero-
tion deteriorates, sand bluestem, sand reedgrass, and sion hazard is low.
switchgrass decrease and blue grama, sand dropseed, and This soil is suited to limited cropping. Intensive
sand sage increase. Annual weeds and grasses invade the cropping is hazardous because of erosion. The cropping
as range condition becomes poorer. system should be limited to such close grown crops as al-
...anagement of vegetation on this soil should be based falfa, wheat, and barley. This soil also is suited to ir-
on taking half and leaving half of the total annual produc- rigated pasture. A suitable cropping system is 3 to 4
tion. Seeding is desirable if the range is in poor condition. years of alfalfa followed by 2 years of corn and small
Sand bluestem, sand reedgrass, switchgrass, sideoats grain and alfalfa seeded with a nurse crop.
grama, blue grama, pubescent wheatgrass, and crested Closely spaced contour ditches or sprinklers can be
wheatgrass are suitable for seeding. The grass selected used in irrigating close grown crops. Contour furrows or
should meet the seasonal requirements of livestock. It can sprinklers should be used for new crops. Applications of
be seeded into a clean, firm sorghum stubble, or it can be nitrogen and phosphorus help in maintaining good produc-
drilled into a firm prepared seedbed. Seeding early in tion.
spring has proven most successful. The potential vegetation on this soil is dominated by
Windbreaks and environmental plantings are generally sand bluestem, sand reedgrass, switchgrass, sideoats
suited to this soil. Soil blowing, the principal hazard in grama, needleandthread, little bluestem, and blue grama.
establishing trees and shrubs, can be controlled by cul- Potential production ranges from 2,500 pounds per acre in
tivating only in the tree row and by leaving a strip of favorable years to 1,800 pounds in unfavorable years. As
vegetation between the rows. Supplemental irrigation range condition deteriorates, the sand bluestem,
may be needed at the time of planting and during dry switchgrass, sand reedgrass, sideoats grama, and little
periods. Trees that are best suited and have good survival bluestem decrease; forage production drops; and sand
are Rocky Mountain juniper, eastern redcedar, ponderosa sage increases. Undesirable weeds and annuals invade
pine, Siberian elm, Russian-olive, and hackberry. The and "blowout" conditions can occur as range condition
shrubs best suited are skunkbush sumac, lilac, and Siberi- becomes poorer.
an peashrub. Management of vegetation on this soil should be based
Wildlife is an important secondary use of this soil. The on taking half and leaving half of the total annual produc-
cropland areas provide favorable habitat for ring-necked tion. Seeding is desirable if the range is in poor condition.
pheasant and mourning dove. Many nongame species can Sand bluestem, sand reedgrass, indiangrass, switchgrass,
be attracted by establishing areas for nesting and escape sideoats grama, little bluestem, and blue grama are suita-
cover. For pheasants, undisturbed nesting cover is essen- ble for seeding. Because this soil is susceptible to soil
-' and should be included in plans for habitat develop- blowing, the grasses should be seeded with an interseeder
34 SOIL SURVEY
or drilled into a firm, clean sorghum stubble. Seeding tivating only in the tree row and by leaving a strip of
early in spring has proven most successful. Brush vegetation between the rows. Supplemental irrigation
management can also help to improve deteriorated range. may be needed at the time of planting and during dry
Windbreaks and environmental plantings are fairly well periods. Trees that are best suited and have good survival
suited to this soil. Blowing sand and low available water are Rocky Mountain juniper, eastern redcedar, ponderosa
capacity are the principal hazards in establishing trees pine, Siberian elm, Russian-olive, and hackberry. The
and shrubs. This soil is so loose that trees should be shrubs best suited are skunkbush sumac, lilac, and Siberi-
planted in shallow furrows, and vegetation is needed an peashrub.
between the rows. Supplemental irrigation may be needed Wildlife is an important secondary use of this soil.
to insure survival. Trees that are best suited and have Ring-necked pheasant, mourning dove, and many non-
good survival are Rocky Mountain juniper, eastern game species can be attracted by establishing areas for
redcedar, ponderosa pine, and Siberian elm. The shrubs nesting and escape cover. For pheasants, undisturbed
best suited are skunkbush sumac, lilac, and Siberian nesting cover is essential and should be included in plans
peashrub. for habitat development, especially in areas of intensive
Wildlife is an important secondary use of this soil. The agriculture.
cropland areas provide favorable habitat for ring-necked Rapid expansion of Greeley and the surrounding area
pheasant and mourning dove. Many nongame species can has resulted in urbanization of much of this Otero soil.
be attracted by establishing areas for nesting and escape This soil has excellent potential for urban and recrea-
cover. For pheasants, undisturbed nesting cover is essen- tional development. The only limiting feature is the
tial and should be included in plans for habitat develop- moderately rapid permeability in the substratum, which
ment, especially in areas of intensive agriculture. Range- causes a hazard of ground water contamination from
land wildlife, for example, the pronghorn antelope, can be sewage lagoons. Lawns, shrubs, and trees grow well.
attracted by developing livestock watering facilities, Capability subclass Its irrigated.
managing livestock grazing, and reseeding where needed. 51—Otero sandy loam, 1 to 3 percent slopes. This is a
Few areas of this soil are in major growth and ur- deep, well drained soil on plains at elevations of 4,700 to
banized centers. The chief limiting feature is the rapid 5,250 feet. It formed in mixed outwash and eolian
permeability in the substratum, which causes a hazard of deposits. Included in mapping are small areas of soils that
ground water contamination from seepage. Potential for have loam and clay loam underlying material.
recreation is poor because of the sandy surface layer. Typically the surface layer is brown sandy loam about
Capability subclass IVe irrigated, VIe nonirrigated; Deep 12 inches thick. The underlying material to a depth of 60
Sand range site. inches is pale brown calcareous fine sandy loam.
50—Otero sandy loam, 0 to 1 percent slopes. This is a Permeability is rapid. Available water capacity is
deep, well drained soil on smooth plains at elevations of moderate. The effective rooting depth is 60 inches or
4,700 to 5,250 feet. It formed in mixed outwash and eolian more. Surface runoff is slow, and the erosion hazard is
deposits. Included in mapping are small areas of soils that low.
have loam and clay loam underlying material. This soil is used almost entirely for irrigated crops. It
Typically the surface layer is brown sandy loam about is suited to all crops commonly grown in the area. Land
12 inches thick. The underlying material to a depth of 60 leveling, ditch lining, and installing pipelines may be
inches is pale brown calcareous fine sandy loam. needed for proper water application.
Permeability is rapid. Available water capacity is All methods of irrigation are suitable, but furrow ir-
moderate. The effective rooting depth is 60 inches or rigation is the most common. Barnyard manure and com-
more. Surface runoff is slow, and the erosion hazard is mercial fertilizer are needed for top yields.
low. In nonirrigated areas this soil is suited to winter wheat,
This soil is used almost entirely for irrigated crops. It barley, and sorghum. Most of the acreage is planted to
is suited to all crops commonly grown in the area, includ- winter wheat. The predicted average yield is 28 bushels
ing corn, sugar beets, beans, alfalfa, small grain, potatoes, per acre. The soil is summer £allowed in alternate years
and onions. An example of a suitable cropping system is 3 to allow moisture accumulation. Generally precipitaiton is
to 4 years of alfalfa followed by corn, corn for silage, too low for beneficial use of fertilizer.
sugar beets, small grain, or beans. Generally, such charac- Stubble mulch farming, striperopping, and minimum til-
teristics as a high clay content or a rapidly permeable lage are needed to control water erosion. Terracing also
substratum slightly restrict some crops. may be needed to control water erosion.
All methods of irrigation are suitable, but furrow ir- The potential native vegetation on this range site is
rigation is the most common. Proper irrigation water dominated by sand bluestem, sand reedgrass, and blue
management is essential. Barnyard manure and commer- grama. Needleandthread, switchgrass, sideoats grama,
cial fertilizer are needed for top yields. and western wheatgrass are also prominent. Potential
Windbreaks and environmental plantings are generally production ranges from 2,200 pounds per acre in favora-
suited to this soil. Soil blowing, the principal hazard in ble years to 1,800 pounds in unfavorable years. As range
establishing trees and shrubs, can be controlled by nil- condition deteriorates, the sand bluestem, sand reedgrass,
Hello