Loading...
HomeMy WebLinkAbout801188.tiff VOLUME III WASTEWATER FACIL ITY PLAN SUMMARY AUGUST, 1980 A Professional Corporation MIXEngineers Architects Planners 2021 Clubhouse Dave Greeley,Colorado 80631 80 1186 WASTEWATER FACILITIES PLAN FOR GREELEY, COLORADO AUGUST, 1980 S UMMAR'( --Project Background --Project Approach & Schedule --Decision Making Process --The Preferred Alternative ° General Information o Design Development & Criteria o Citizens Advisory Committee Alternative (Site 4) o Cost Analysis o Project Phasing o Water Rights o Environmental Impacts o Farming Operations o Other Considerations --Appendices o 1 . Site 4 Costs 2. Project Phasing 3. Geology Studies 4. Soils Tests PROJECT BACKGROUND Initial planning for the upgrading and expansion of Greeley's Wastewater Treatment facilities was begun in 1972. The engineering firm of Wright- McLaughlin Engineers was retained to prepare a Facility Plan which would identify alternative long term solutions for the treatment and disposal of Greeley's wastewater. This study was completed in 1975. After completion of this study, the Greeley Water Board recommended that the City Council proceed with the design and construction of a new "mechanical " treatment plant located at the "Delta" site east of the city. The plan also called for the rehabilitation of the existing First Avenue Plant which would continue in operation until approximately 1990. A great'deal of controversy surrounded the adoption of this plan. Organ- ized opposition, consisting of residents and land owners living in east Greeley and the Delta site areas, aggressively opposed the plan to construct a waste- water treatment plant in that location. The Environmental Protection Agency, partially as a result of this opposition, required the City of Greeley to undertake an Environmental Impact Assessment of the proposed plant along with a complete Environmental Impact Statement. Ultimately, the locally adopted plan was accepted by the Colorado Mater Quality Control Commission and the Environmental Protection Agency. However, certain area residents continued to actively oppose the project. Complete information regarding the initial Facility Planning Process and the Environmental Impact Statement is contained within the following documents which are on file at the administrative offices of the City of Greeley, the Colorado Water Quality Control Commission, and the Environmental Protection Agency. ° Facilities Plan Report, Sanitary Sewage System for the Greeley Region Weld County, Colorado ** Part One, Basic Information and Analysis 2 ** Part Two, Alternative Plan Formulation, Master Plan Initial Program ** Part Three, Public Participation and Supplemental Information ° Final Environmental Impact Statement Greeley Region Wastewater Management Program After receiving approval to proceed with the plan to upgrade First Avenue and construct the First Phase of a new plant in the Delta area, an application for funding assistance for design of the facilities was submitted to the Water Quality Control Commission and EPA. This application was approved and the City then retained the firm of CH2M Hill , Inc. to complete the design of the project. During preliminary design, new construction cost estimates were prepared which indicated that the total construction cost of the proposed facilities would be in the range of 23 to 26 million dollars. The adoption -of the original plan was based upon estimates of construction costs in the range of eight to nine million dollars. This fact, along with a new national emphasis on land treatment and "non-mechanical " treatment systems, together with continued opposition from residents of the "Delta" plant area, caused the Greeley Staff, Water Board, and City Council to re-evaluate the desirability of proceeding with the proposed plan. As a result of this re-evaluation, the City decided to study several additional alternatives which had not been considered in the original Facility Plan. A request for grant assistance to undertake the additional studies was submitted to and approved by the Colorado Water Quality Control Commission and the Environmental Protection Agency in early 1979. This document presents information relating to the new alternatives which were evaluated and the decisions which have been made at the local level regarding the preferred alternative. PROJECT APPROACH AND SCHEDULE The planning process associated with the preparation of the original Facility Plan resulted in the resolution of many issues related to the planning 3 of future wastewater treatment facilities to serve the community. Analysis of factors such as population, land use, waste characteristics, service areas, infiltration, etc. is unaffected by the reconsideration of the method of treatment and ultimate disposal of the treated wastewater. Consequently, additional studies were limited to only an evaluation of various methods of treatment and disposal of wastewater not evaluated in the original Facility Plan. The newly developed alternatives were then compared to the originally adopted plan and a decision was made to follow a new course of action. The basic approach was to first develop a "shopping list" of potentially feasible methods of wastewater treatment and disposal , evaluate each of the potential solutions, and then select a course of action to follow in the future. The general time of completion of the final facility plan is summarized as follows: ITEM APPROX. DATES Conceptual Development of Potential Alternatives April 9 - May 1979 Selection of Those Alternatives to be Completely Evaluated May 1979 Design and Analysis of Alternatives May - August 1979 Selection of a Course of Action August 1979 - August 1980 Preparation of Final Facility Plan, Application, and Approval for Additional Funding for Design August - September 1980 In addition to those activities cited above, the Environmental Protection Agency has undertaken the revision of the original Environmental Impact Statement (EIS) to consider the environmental effects of the newly developed alternatives. To comply with this requirement, the City of Greeley retained the services of an Environmental Consulting firm, URS, which completed its work according to the following schedule: 4 ITEM APPROX. DATES Preliminary Investigation and Project Planning September - October 1979 Data Gathering October - November 1979 Analysis of Impacts October - December 1979 Draft EIS Completion December 1979 Public Hearing February 1980 Final EIS Completion September 1980 THE DECISION MAKING PROCESS The implementation of any plan will affect many individuals and interests ranging from those directly affected such as property owners to those indirectly affected such as local businessmen, environmental interests, etc. Because so many individuals and groups are affected in one way or another, it is extremely important that all parties have the opportunity to express their concerns/ opinions and that this information be made available to those individuals who must make the ultimate decision. The initial Facility Planning and Environmental Impact processes provided the opportunity for substantial input from individuals and/or affected interests through public hearings, meetings and formally organized advisory groups. In addition to the re-evaluation of the treatment aspects of the plan, every attempt was made to gather the opinions, concerns and ideas which the affected public had regarding this project. This information has been documented and considered much in the same way as other data related to the alternates under study. All such information was available prior to the time the decision was made by the various public officials responsible for the project's ultimate completion. After the various treatment alternates were identified, each was then sub- jected to a thorough technical analysis , the results of which are contained within two documents, "Wastewater Facilities Planning Report No. I , Vol . I and 5 Vol . II, 1979". Simultaneously, numerous individuals, organizations , and agencies were contacted to inform them of the present work and to receive their comments regarding the project. After adequate time had elapsed for the review of this information, additional public meetings as well as a Public Hearing were held to hear the views of all interested parties. In addition, the Environ- mental Consultant, as part of the requirements of the EIS process, held other public meetings and a formal hearing on the draft EIS amendment. After review of the technical analysis, public input, and environmental analysis, the Greeley Water Board recommended to the City Council a future course of action. Following adoption of a plan at the local level , the plan was then submitted to the Colorado Water Quality Control Commission for their approval . Finally, the Environmental Protection Agency must also approve the plan before design and construction can proceed. Throughout this process, numerous other local , state and federal agencies will be reviewing the plan and submitting comments to the agencies having decision making responsibilities. THE PREFERRED ALTERNATIVE General Information After a thorough review of all available information which included technical data, the environmental analysis, input from the public, and engineer- ing staff recommendations, the Greeley Water and Sewer Board and the City Council voted to proceed with the implementation of the Land Application Alternative. This alternative as originally developed, is fully described in Chapters III and IV of Vol . I and Vol . II. In accordance with the requirements for public participation set forth by EPA, a Citizens Advisory Committee was appointed by the City Council to assist in the development and evaluation of the project. This group strongly supports implementation of the Land Application Alternative in concept but strongly recommended that the facility be located approximately four miles southeast i 6 of the originally proposed site. The basis of this recommendation was that by changing the location, all of the expressed concerns relating to negative environmental impacts would be eliminated. Specific concerns with locating the facility at Site I (the original proposed location) are documented in the record of testimony from the EIS Public Hearing and in the Committee report to the City. . Due to the concerns expressed regarding the proposed location of the Land Application system, the Greeley City Council authorized the submission of a grant application to the Water Quality Control Commission for additional eval- uations of Site I . This application was approved by the Commission at its regular meeting on June 2nd, 1980. On June 20th, a grant offer was made by EPA for the additional evaluations of Site I. The primary purpose for the additional study was to further investigate the physical characteristics of the soil and underlying geological features in order to answer questions raised by City Council , Water Board and the Citizens Advisory Committee concerning the suitability of Site I. The underlying purpose was to increase the degree of reliability of the data used to select the site for the project. A complete description of the studies undertaken and the results of those studies is included in the appendix of this report. Following is a summary of the conclusions reached by the Project Team regarding the suitability of Site I for the proposed treatment facility: 1 . Site I is the most desirable location of the project from the standpoint of cost, management of water rights, and physical conditions of the site. 2. Underlying geology (bedrock formations) will not permit infiltration of any significant quantities of treated wastewater into lower formations. 7 3. Overburden materials (surface to bedrock) are capable of accepting applications at originally estimated rates. 4. The proposed system will not adversely affect farmlands to the west of the site by raising the groundwater table as has been suggested by property owners in the area. 5. Water passing through the crop root zone and not consumed by the crops will be recaptured by the use of interceptor drains, ditches, and wells. 6. Water rights management is greatly simplified at Site I since return flows can be discharged to Crow Creek and/or the Ogilvy Ditch Based upon the results of all studies, the Greeley City Council , on August 11 , 1980 selected the Land Application Alternative located at Site I as the pre- ferred alternative. Design Development and Criteria Four conceptual alternatives were originally selected for complete design development and analysis. These included the following: 1 . Treatment at the Delta Site using a conventional "Mechanical " treatment facility. 2. Treatment and Discharge to Crow Creek using a "non-mechanical " (aerated lagoon) treatment system. 3. Treatment and Discharge to Crow Creek during the winter months with discharge to the Ogilvy Ditch during the irrigation season. 4. Treatment utilizing a conventional Land Application System. Preliminary design development resulted in the identification of numerous ways of developing the alternative system concepts which would satisfy the basic design requirements of the project. Chapters III and IV of Vol . I contain the detailed information relative to all of the sub-alternatives which were evaluated. ms A total of eighty-seven different alternative systems were developed and evaluated. The following alternatives were studied for each of the basic components necessary to provide for a complete system: Outfall System (Alternatives No. 1 , 2, 3, 4) North Gravity Line to Delta Site South Line with pumping to Delta Site West Line with pumping to First Avenue Plant Pre-Treatment (Alternatives No. 2, 3, 4) Screening Screening with grit removal Pumping (Alternatives No. 2, 3, 4) Pumping from First Avenue Pumping from Delta Site Transmission (Alternatives No. 2, 3, 4) Single Pipeline From Delta Site From First Avenue Dual Pipeline From Delta Site From First Avenue Preliminary Treatment (Alternatives No. 2, 3, 4) 24-day Aerated Lagoon 4-day Aerated Lagoon Storage (Alternative No. 4) Single Cell Storage Reservoir Dual Cell Storage Reservoir 9 Final Treatment and Disposal (Alternatives No. 1 , 2, 3, 4) ,Mechanical Plant at Delta Pivot Sprinkler Irrigation System Chlorination Filtration Outfall to Crow Creek from 24-day Lagoons Outfall to Ogilvy Ditch from storage reservoirs from 24-day Lagoons After reviewing the various choices available with primary consideration being given to cost, service, and reliability, ARIX and the Greeley Staff recommend . the following component selections. Outfall System In all cases, it is recommended that the ravi wasL€ he conveyed to the Delta Site via the North Gravity Outfall . Pretreatment (treatment before Pumping) Screening only in the case of using two transmiss :r lines to the treatment site. Screening with grit removal if a single transmission line is constructed. Pumping and Transmission Pumping is required from the Delta site, Dual transmissicn lines are recommended if funds are available, otherwise a single line is considered acceptable. Preliminary Treatment For treatment and discharge to Crow Creek or Crow Creek and the Ogilvy Ditch, the 24-day lagoon is recommended. For the Land Application alternative. preliminary treatment is recommended to be accomplished using a 4-day 10 aerated lagoon; however, either the 4-day or 24-day is acceptable. It is proposed that the final decision be made during the design phase of the project. Storage A single cell storage reservoir is recommended for any Alternative requiring construction of winter storage facilities. Final Treatment For treatment and discharge to Crow Creek or Crow Creek and the Ogilvy Ditch, final treatment would include filtration using microstrainers followed by chlorination. For the Land Application Alternative, after storage, land application using pivot sprinklers followed by an underdrain recovery pipe network. Final treatment for the Delta Alternative is a mechanical treatment plant as defined in the earlier preliminary design completed by CH2M Hill . The design criteria which was used in the project analysis is summarized in the following material . A description of the more significant engineering features of the facilities is also provided. Complete design criteria are contained within Volume I and Volume II. OUTFALL SYSTEM NORTH LINE-GRAVITY A. Design Criteria 1 . One line from First Avenue to Delta site; one line from SE inter- ceptor present lift station to Delta site. 2. System able to handle total ultimate flow - 26 MGD North; 6 MGD South. 3. Peak Flow Factor of 2.0. 4. Maintain depth of cover of 4 feet minimum over line. 5. Flow velocities of 2.0 ft/sec minimum; 10.0 ft/sec maximum. B. Proposed Facilities 1 . North line sized 72" to 48" South line sized 42" 2. Velocity Range 3.0 to 5.0 feet per second ' 11 , . RETREATMENT-SCREENING A. Design Criteria • 1. Present Project Design Flow 12 MGD 2. Ultimate Project Design Flow 30 MGD 3. Present Low Flow 5 MGD 4. Peak Flow Factor of 2.0 5. Flow Measurement 6. Enclosed System 7. Minimum Channel Velocity 2.0 f/s . 8. Maximum Channel Velocity 3.0 f/s 9. Minimum Channel Depth .75 ft. B. Proposed Facilities 1. Two Mechanical Bar Screens able to handle 30 MGD each 2. Screenings Hopper 3. Nested Parshall Flume 3 ft. Throat inside 6 ft. 4. Velocities in Channel Range 1 .7 f/s to 3.2 f/s 5. Channel Minimum Depth .75 ft. PRETREATMENT-SCREENING WITH GRIT REMOVAL A. Design Criteria - 1. Present Project Design Flow 12 MGD 2. Ultimate Project Design Flow 30 MGD 3. Present Low Flow 5 MGD 4. Peak Flow Factor of 2.0 5. Flow Measurement 6. Enclosed System - Prevent Odor 7. Minimum Channel Velocity 2.0 f/s 8. Maximum Channel Velocity 3.0 f/s 9. Minimum Channel Depth .75 ft. B. Proposed Facilities 1. Two Mechanical Bar Screens able to handle 30 MGD each 2. Screenings and Grit Hopper 3. Nested Parshall Flume 3 ft. Throat inside 6 ft. 4. Two Grit Collectors able to handle 15 MGD each 5. Two Grit Cyclones with attached classifiers 6. Conveyor Unit 7. Air Scrubber 8. Velocities in Channel Range 1 .7 f/s to 3.2 f/s 9. Channel Minimum Depth .75 ft. PUMPING USED WITH SINGLE PIPELINE TRANSMISSION A. Design Criteria 1. Maximum detention time in wet well of 30 minutes 2. Minimum pump cycle time of 60 minutes • 3. System head a. Maximum of 159 ft. @ 24 MGD b. Minimum of 48 ft. @ present Q min of 4 MGD 1 12 • 4. Required net positive suction head of less than 24 ft. 5. Continuous operation of pump station 6. Provide surge control for force main B. Proposed Facilities • 1. Each wet well 30' x 23.5' with storage of 13,500 gallon in operation range of less than 3 feet. 2. Dual wet well system 3. 2-16" , 500 HP variable speed pumps (1 for standby) 1-16", 500 HP constant speed pump 4. 2-500 HP diesel generators located above ground for emergency standby power (or dual loop service automatic transfer) 5. Each -pump-equipped w/pump control valve — PUMPING USED WITH DUAL PIPELINE TRANSMISSION A. Design Criteria 1. Maximum detention time in wet well of 30 minutes 2. Minimum pump cycle time of 60 minutes . 3. System head . a. Maximum of 122 ft. @ 24 MGD b. Minimum of 55 ft. @ present Q min of 4 MGD 4. Required net positive suction head of less than 24 ft. - 5. Continuous operation of pump station 6. Provide surge control for force main . • B. Proposed Facilities • 1 . Each wet well 30' x 23.5' with storage of 13,500 gallon in operation range of less than 3 feet. 2. Dual wet well system 3. 2-16" , 350 HP variable speed pumps (1 for standby) 4. 2-350 HP diesel generators located above ground for emergency standby power (or dual loop service automatic transfer) 5. Each pump equipped w/pump control valve TRANSMISSION LINE-DUAL PIPELINE A. Design Criteria 1. Two pipes designed to transport grit 2. Design flows a. Q average = 12 MGD b. Q Peak = 24 MGD 3. Minimum Velocity of 2 ft/sec in one pipe at present Q ave of 6 MGD 4. Hazen-Williams coefficient of 120 used in determining head loss due to friction B. Proposed Facilities 2-30" Pipes . del • 13 TRANSMISSION LINE-SINGLE PIPELINE A. Design Criteria 1 . One pipe with grit removed prior to pumping 2. Design flows a. Q average = 12 MGD b. Q peak = 24 MGD 3. Minimum velocity of 1 .25 ft/sec at present 0 average = 6 MGD 4. Hazen-Williams coefficient of 120 used in determining head loss due to friction B. Proposed Facility 1-36" Pipe PRELIMINARY TREATMENT - 24 DAY LAGOON A. Design Criteria 1. Design Flow 12 MGD 2. Influent BOD5 250 mg/1 3. Effluent BOD5 30 mg/1 4. Percent BOD5 88% 5. Configuration Two cells i, -ies 6. Detention time 12 days eac, 11 7. Liquid depth 14 feet 8. Freeboard 3.0 feet 9. Side slopes 3 horizontal ; 1 vertical 10. First stage BOD removal rate 0.15 per day at 0.5°C 11 . lb oxygen per lb BOD5 removed 1 .5 B. Proposed Facility 1. Size a. Cell 1 1158' x 1158' bottom b. Cell 2 898' x 1438' bottom 2. Volume, (each cell ) 144 million gallons 3. Water Surface Area (each cell )34 acres 4. Cell 1 standard oxygen uptake rate 1 .23 mg/1 BOD5 removed/hr 5. Cell 2 standard oxygen uptake rate 0.42 mg/1 BOD5 removed/hr 6. Aeration System Low pressure, coarse bubble Aeration grids with baffles a. Cell 1 800 HP b. Cell 2 200 HP 7. Standard oxygenation requirement ' a. Cell 1 1472 lb/hr b. Cell 2 509 lb/hr 14 PRELIMINARY TREATMENT - 4 DAY LAGOON A. Design Criteria 1 . Design Flow 12 MGD 2. Influent BOD5 300 mg/1 3. Effluent BOD5 81 mg/1 4. Percent BOD5 removed 73% 5. Configuration TWO cells in series 6. Detention time 2 days each cell 7. Liquid depth 14 feet . 8. Freeboard 3.0 feet 9. Side slopes 3 horizontal ; 1 vertical B. Proposed Facility 1. Size (each cell ) 437 ' x 437' bottom 2. Volume, (each cell ) 24 million gallons 3. Water Surface Area (each cell ) 6.2 acres 4. Loading, Cell 1 5.2 lb BOD5/day/1000 ft3 5. Loading, Cell 2 2.8 lb BOD5/day/1000 ft3 6. Aeration System Fixed Platform Surface Aerators a. Cell 1 Four 100 HP Aerators b. Cell 2 - _ Four 60 HP Aerators 7. Mixing Power a. Cell 1 0.12 HP/1000 ft3 b. Cell 2 0.07 HP/1000 ft3 CHLORINATION A. Design Criteria 1 . Chlorine Dosage 2-6 mg/1 2. Contact detention time 30 min. at peak hour flow B. Proposed Facility 1. Maximum feed rate 600 lb/day 2. Chlorine source 1 ton containers; 4 in-service, 4 standby, 8 storage 3. Contact reactor 10,000 feet of outfall pipe, 5 fps maximum velocity at peak flow FILTRATION A. Design Criteria 1 . Peak plant effluent flow 13.5 MGD • 2. Lagoon Total Suspended Solids 50-80 mg/1 3. Plant Effluent TSS (Blended) 30 mg/1 maximum 4. Screen Effluent TSS 20-25 mg/1 5. Surface loading rate (1 micron screen) 1 .7 gpm/ft2 effective screen area 6. Blend ratio at peak flow 12.3 MGD thru screen, 1 .2 MGD bypass screen • e1 15 B. Proposed Facility 1 . Net effective screen area 5,148 ft2 2. Number of screens 18 3. Size of screens 12 ft. dia. x 16' long Citizens Advisory Committee Alternative (Site 4) As previously discussed, the Citizens Advisory Committee recommended to the Greeley City Council consideration of the development of the Land Application System approximately 3 1/2 miles southeast of the originally proposed location. As a result of this request, a preliminary engineering analysis was made of this proposal . Exhibit S-1 illustrates the location and physical layout of this alternative. A preliminary analysis of this proposal indicates that from an engineering viewpoint, the system can be successfully developed in this location. However, due to the substantially higher project costs and water rights management issues, Site I was selected as the best location for the project. Cost Analysis Cost estimates were prepared for each of the individual components which, when combined in the manner required, result in the total estimated cost for each alternative. The Cost estimates contained within Chapter IV and Volume II do not take into account certain costs which must be considered in the final analysis for the purpose of defining the most cost effective solution. Specifi- cally, the original cost analysis did not take into consideration land costs, salvage values, water rights costs, and allowable inflation factors for certain items. The following tables present the analysis of costs for each alternative with consideration given to the above factors. The estimates presented are prepared based upon development of the alternatives in the manner previously 16 described. The present worth values for operation and maintenance have been modified to reflect an interest rate of 7-1/8%. Changes have not been made to the unit prices which were used in the preliminary analysis developed earlier in the planning process except for the cost of filtration (microscreen) which was modified to reflect improved cost information. TABLE S-1 TREATMENT AT DELTA SITE PRESENT WORTH SUMMARY Present Worth Present Worth Total Capital of Operation Land of Present Cost and Maintenance Cost Salvage Value Worth North Gravity Outfall to Delta 5,740,500 118,600 -.. (869,500) 4,989,600 Site "Delta" Treatment Plant 18,091 ,800 5,781 ,000 135,000 (1 ,066,300) 22,941 ,500 TOTAL 23,832,300 5,899,600 135,000 (1 ,935,800) 27,931 ,100 • • • 17 PI TABLE S-2 TREATMENT AND DISCHARGE TO CROW CREEK PRESEN1 WORTH SUhMARY Present Worth Present Worth Total Capital of Operation Land of Present Cost and Maintenance Cost Salvage Value Worth North Gravity Outfall to Delta 5,740,500 118,600 --- (869,500) 4,989,600 Site Screening 459,500 208,600 7,000 (34,500) 640,500 Pumping 1 ,771 ,000 881 ,600 10,000 (105,100) 2,557,500 Dual Transmission Line 6,775,000 161 ,600 --- (1 ,026,200) 5,910,400 24-Day Aerated Lagoon 4,509,000 3,578,800 200,000 (518,300) 7,769,500 Filtration 5,913,400 582,000 --" (125,100) 6,370,300 Chlorination 127,000 260,200 --- (7,300) 379,90C Outfall to Crow Creek 565,000 41 ,900 --- (85,600) 521 ,300 TOTAL 25,860,300 5,833,300 217,000 (2,771 ,600) 29, 139,00C • • 18 • ' f I TABLE S-3 TREATMENT AND DISCHARGE TO THE OGILVY DITCH PRESENT WORTH SUMMARY Present Worth of Present Worth Total Capital Operation and Land of Present Cost Maintenance Cost Salvage Value Worth North Gravity 5,740,500 118,600 --- (869,500) 4,989,600 Outfall to Delta Site Screening 459,400 208,600 7,000 (34,500) 640,500 Pumping 1 ,771 ,000 881 ,600 10,000 (105,100) 2,557,500 Dual Transmission 6,775,000 161 ,600 --- (1 ,026,200) 5,910,400 Line 24-Day Aerated Lagoon 4,509,000 3,578,800 200,000 (518,300) 7,769,500 Filtration 5,913,400 582,000 --Y (125,100) 6,370,300 Chlorination 127,000 260,200 --- _ (7,300) 379,900 Outfall to Ogilvy Ditch 1 ,726,000 110,200 --- (261 ,400) 1 ,574,800 TOTAL 27,021 ,300 5,901 ,600 217,000 (2,947,400) 30,192,500 19 . 1 TABLE S-4 LAND APPLICATION WITH PIVOT SPRINKLERS . AT SITE NO. 1 PRESENT WORTH SUMMARY Present Worth Present Worth Total Capital of Operation Land of Present Cost and Maintenance Cost Salvage Value Worth 14.-rth Gravity Outfall to Delta 5,740,500 118,600 _ .___ _---__._,______ __869,500) 4,989,600 Site Screening 459,400 208,600 7,000 (34,500) 640,500 Pumping 1 ,771 ,000 881 ,600 10,000 (105,100) 2,557,50 Dual Transmission Line 6,775,000 161 ,600 --- (1 ,026,200) 5,910,40C 4-Day Aerated Lagoon 4,443,000 3,230,400 4,500 (1•196 ,200) 7,181 ,700 Storage Reservoir 4,319,000 124,900 560,000 (1 ,073,100) 3,930,800 Pivot Sprinkler lrrig. System 11 ,401 ,600 5,607,900 768,000 (2,411+,000) 15,363,501 Subtotal 34,909,500 10,333,600 1 ,349,500 (6,018,600) 40,574,00r Less Revenue (10,953,500) -(10,953,500 TOTAL (619,900) $29,620,501 20 I �\ s • TABLE S-5 LAND APPLICATION WITH PIVOT SPRINKLERS AT SITE NO. 4 PRESENT WORTH SUMMARY Present Worth Present Worth Total Capital of Operation Land of Present Cost and Maintenance Cost Salvage Value Worth ,rth Gravity �,atfall to Delta 5,740,500 118,600 --- (869,500) 4,989,600 Site creeping With "rit Removal 955,000 429,100 7,000 (71 ,700) 1 ,319,400 umping 1 ,993,000 1 ,040,100 10,000 (109,700) 2,933,400 'Ingle Transmission 7,689,000 176,300 --- (1 ,119,200) 6,746,100 ine , 4-Day Aerated agoon 4,443,000 3,230,400 4,500 (496,200) 7,181 ,700 Storage Reservoir 6,319,000 127,000 170,000 (1 ,576,£,00) 5,045,200 ivot Sprinkler irrig. System 12,945,600 5,607,900 653,800 (2,649,800) 16,557,500 ervice Road 548,000 21 ,000 --- (78,800) 490,200 Outfall to South latte 1 ,204,900 85,000 --- (182,500) 1 ,107,400 Subtotal 41 ,838,000 10,835,400 845,300 (7, 148,200) 46,370,500 .ess Revenue (10,953,500) -(10,953,500) TOTAL (118,100) $ 35,417,000 �1 i 22 The analysis does not include any costs for water rights because the City of Greeley presently owns or is in the process of developing adequate water supplies to augment the consumptive use associated with the project if augmen- tation is required. However, the present position of the City of Greeley is that augmentation is not required (see water rights section) ; consequently, no resulting costs to the project are expected. Project Phasing A complete analysis of the advantages associated with phasing the construc- tion of the project has been undertaken. Each component of the Land Application System was studied to identify any advantages to phasing construction over the twenty year planning period. The conclusion of this analysis was that phased construction of the project offered no significant advantages except for the irrigation component of the system. A summary of this evaluation can be found later in this report. The major factors leading to this conclusion are as follows : 1 . The design capacity is 12 MGD with present flows averaging 7.5 MGD. Providing for a minimum design of 10 years would require a design capacity of 9 MGD minimum for any phased component of the system. No significant savings would be realized by reducing design capacity by 3 MGD. 2. A majority of the major components of the preferred alternative, including the outfall sewers, pumping station, transmission line, and storage reservoir cannot be phased without substantially increasing the project costs. 23 3. Modular design of the pre-treatment facilities (aerated lagoon) would require initially constructing capacity for 9 MGD. Addition of three MGD at the end of ten years would result in unnecessary duplication of primary components resulting in additional costs due to economies of scale. 4. The major significant component of the preferred system which could be phased is the irrigatioi1 application system. Prior to construction of the entire land application system, it is recommended that a limited number of pivot sprinklers (6-8) and associated underdrains be constructed and operated prior to design and construction of the entire facility. The most important advantage to this approach is for the accurate definition of the design parameters for subsurface drainage. Different application schedules can be tested with frequent monitoring of the groundwater table and drain discharges. Simultaneously, the effluent quality will be sampled and tested to observe the degree of treatment being achieved. Water Rights Considerations The City of Greeley has retained legal counsel to evaluate factors relative to water rights relating to the project. The information which follows is a summary of their advice and of the position being taken by the City in their implementation of the preferred alternative. WILLIAM E. BOIILENDER • ATTONNCT AT LAW 4327 10TH AV[NUE• GREELEY. COLORADO 60631 9'ELEPHONC: (303) 386-6666 • February 12, 1980 Mr. Gary Johnson Environmental Protection Agency Region VIII 1860 Lincoln Street Denver , Colorado 80295 Dear Mr . Johnson: Re: Greeley Wastewater Facility Needs Hearing February 12 , 1980 The enclosed nine page report is delivered on behalf of the City of Greeley . We believe this will assist in informing the public as to water rights and request the E. I . S . incorporate these comments . The report does not cover a mechanical plant as has been noted a mechanical plant does not have many water rights problems . Sincerely , lliam E. Bohlender Attorney Greeley Water and Sewer Board WEB/big Enclosure: Report 24 r � 1 • COLORADO WATER RIGHTS AND ADMINISTRATION • Colorado has a complex system of water administration and use. The system evolved from a mining and agriculturally based economy in which the demand for water often exceeded the supply. Because a major portion of the state' s water is derived from melting snow high in the mountains, it is not distributed equally in either time or place. In Colorado, the use of surface water, including underground water tributary to the surface system, is administered by the State under the Appropriation Doctrine. The State Constitution protects . the right of water users to appropriate the waters of natural streams according to a "first in time, first in right" doctrine, limited only by the amount of water -physically available to those able to put it to beneficial use without waste. Colorado was admitted to the Union in 1876, and has always recognizedthe Appropriation Doctrine to be the sole basis for the allocation of state waters. Administration The responsibility for water rights in Colorado is divided between the State Engineer, under the Division of Water Resources of the State Department of Natural Resources, and the seven Water Courts. The State Engineer has jurisdiction to administer, distribute, and regulate the waters of the State. The Water Court has juris- diction over matters which are specified by statute to be heard by 25 • the water judges in the state district courts within their respective divisions. Matters decided by the Water Court include determination of amounts and priorities on applications for new water rights , and findings of diligence in the perfection of conditional water rights. Also, the responsibility of the Water Court is the determination of rights with respect to proposed changes of water rights and plans of augmentation. _ Diversions are regulated on the basis of priorities decreed by the Courts, generally in the order in which the water was first appropriated and put to beneficial use. A water right with an early appropriation date takes precedence over rights with later dates, if decreed in the same adjudication. Court decrees also specify the rate of flow for direct diversions and volume for storage rights. A senior appropriator (i. e. one with an early date, whose right is not satisfied by the flow at his headgate) may call for water that is being diverted by a junior right upstream. This system of appropriation and administration thus determines the legal availability of water at a given location on a stream. There are two categories of water rights which are defined by the time lag between diversion and use. Direct flow rights are for water diverted from the stream to a ditch and put to use more or less immediately. Storage rights are for water diverted from the flow of the stream and stored in a reservoir. This water is to be released for use at- some later time. Diversion for a storage right may be either for a reservoir off the stream channel from which it was diverted, or it may be for an on-channel reservoir. 26 • 6 • The consumptive use of a crop is defined as the sum of two things; 1) transpiration, which is water entering crop roots and used to build tissue or is passed through the leaves of the crop into the atmosphere, or 2) evaporation, which is water evaporating from adjacent soil, water surfaces or from the surfaces of leaves of the crop. Because there is not enough rainfall to meet the water requirements of most crops in the Denver area, irrigation water from surface or groundwater supplies is needed to promote full crop growth and development. Not all the water diverted is actually consumed in use, and the portion which returns to the stream and is available to down- stream appropriators is known as return flow. The amount of consumptive use varies with the type of use and method of application. For irrigation, consumptive use ranges from 40 to 80 percent of diversions. Domestic and municipal consumptive use ranges from 5 to 40 percent while power generation and placer mining can result in very little consumptive use. Shallow ground water that is hydraulically connected to the surface system is defined as "tributary" water, and is also administered under the priority system. To protect the right of tributary wells to pump, it is necessary to adjudicate their priorities in the same manner as a surface appropriation. Changes and Transfers In Colorado, water rights are treated as real property and usually may be purchased or sold separately from the land to which 27 • ,� 1 t , they may be appurtenant. Water rights may be transferred from one location to another and the use to which the water is put in some cases may be changed. Such transfers and changes have been approved by ₹.he courts in Colorado, subject to certain conditions which relate primarily to protection of other appropriators from injury due to the change. Junior appropriators have vested rights in the continu- ation of stream conditions as they existed at the time of their respective appropriation. Augmentation Plans The Water Right Determination and. Administration Act of 1969 provides a means whereby complex water use projects and proposals can be reviewed by the court and a decree of approval granted. The technique is called a Plan for Augmentation and provides for legal recognition of total water supply systems. In using water rights that have historically been used for irrigation to provide a municipal or industrial supply, special problems are sometimes encountered. These problems derive from the requirement that when a water right is changed there must be no injury to junior appro- priators, and the fact that a municipal water supply is a year round use and must be highly dependable. To protect other appro- priators on a stream, it is generally necessary to limit a change in use of a direct flow irrigation water right to the period of time that it was historically used beneficially. This means that it can provide water only during the irrigation season and not during the winter months. Water for winter use generally must be provided 28 from reservoir storage. Storing a portion of the historic irriga- tion consumptive use during the time when it is legally available for later release to the stream to cover winter depletions is one method of affecting year-round use for a municipality. Although the implementation of a land treatment system by Greeley would increase the consumptive use of water in Greeley' s system, it is the position of the Greeley Water Board and the City Council that said increases need not be replaced through any augmentation plan. Preliminary engineering estimates indicate that a maximum of about 8, 000 acre feet annually may be consumed by land treatment of a 12-million-gallon-Per-day sewage system. . However, this bhange in treating sewage is not considered to be a change of water right for which an augmentation plan would have to be submitted to court. MEASUREMENT OF WATER There are two types of units commonly used in this report to define water measurement. These are units of volume and units of flow. The unit of volume commonly employed in irrigation practice is the acre-foot. An acre-foot is defined as the quantity of water required to cover one acre of land to a depth of one foot, • or 43, 560 cubic feet. There are 325, 900 gallons in one acre-foot. The rate of flow is defined as the volume of water that passes a particular reference section in a unit of time. The units of discharge commonly used are gallons per minute (gpm) and cubic feet per second (cfs) . One cfs is equivalent to 449 gpm. 29 • 7 � The miners inch, or inch, was originally used in hydraulic mining and irrigation in the Western United States and is still commonly used in many areas. The use of this unit leads to confusion because the definition varies between states. In Colorado, one inch is the quantity of water which will flow through an orifice one inch square under a head of 5 inches, One Colorado inch is equal to about 12 gpm and 38. 4 inches equals one cubic foot per second. Many ditch companies use the term "inch" to define the proportionate share of water in the ditch to which users are entitled. In this case the value of an inch varies with the amount of water actually. in the ditch. WATER RESOURCES IN THE STUDY AREA Historically, the major use of water in the South Plate River Basin was by agriculture. While this is still the case, urbaniza- tion throughout the region has taken lands out of crop production/ agricultural use. As urbanization continues, additional lands will be taken out of production due to development pressures and the economic difficulties facing farmers in an urbanizing environment. The South Platte River and its tributaries have been labeled "overappropriated. " Water is available to junior appropriators only during periods of flood or high runoff. A new direct flow water right is not a dependable water source. Because the front range metropolitan areas continue to grow and water needs increase, it is necessary to look to various means to meet these new demands. Storage is one method of increasing water availability through more efficient use of high runoff water supplies. Any new storage 30 • • appropriation in the South Platte Basin will be junior to the proposed Narrows Project on the South Platte River in eastern Colorado, and the amount and frequency of water availability to the new facility would have to be carefully analyzed. In addition, there are many public and environmental concerns relating to storage which currently may make other alternatives more desirable in terms of economic feasibility. Transbasin water is another source of new water. This is an expensive means of water development, both in terms of facility construction and potential environmental impact on the basin of origin. Any new transbasin water project can be expected to take many years to develop. _ A third water source is nontributary groundwater. Under current state administration policy, the amount of such water available for use depends upon the amount of land owned or controlled by the applicant. This concept is now being tested in court with the argument that nontributary groundwater should be subject to the Appropriation Doctrine. Complete dependence on a nontributary ground water supply for a municipality is questionable, given the potential for limited useful life of the ground water aquifer. The final source of water for municipal development is through acquisition of existing water rights and changing them to the new use. At the present time this is generally the easiest and most economical way to develop a water supply. Since agriculture uses about 95 percent of the water available in Colorado, it is a prime source for water acquisition. When agricultural water is acquired for a municipal system the lands historically served are usually taken permanently out of production. • 31 WATER SUPPLY SOURCES FOR GREELEY While the Greeley system incorporates some water from most of the sources mentioned previously, the biggest potential impact is On agriculture in the South Platte River Basin as it provides the most convenient and economical source of water for a municipal development. Greeley' s Water Sources Greeley' s raw water supply is based upon the yield from ownership or share ownership of water rights in the following: Waters Fully or Partially Owned by Greeley Direct-Flow Diversions and Plains Reservoirs Priority 1. Cache la Foudre River 6 6-1/2 • - 35, 46, 50 & 59 Fossil Cr. Res. 21 shares in GIC South Platte River delta irrigation 2. Big Thompson River Greeley-Loveland • Seven Lakes Res. Lake Loveland Res . High Mountain Ditches (transbasin import) Bob Creek priority 85 High Mountain Reservoirs Seaman Hourglass Comanche • Twin Lake Barnes Meadow Peterson Lake Colorado-Big Thompson project water - 17, 888 units 32 • • -c • REPLACEMENT WATER It is the position of Greeley that changing its sewage treatment from conventional to land application does not require augmentation to the stream system. Further, the City has approved the taking of action by the City Attorney' s staff to seek a court decree approving said position. Said court action would probably come in the form of a declaratory judyiuent action prosecuted as soon as reasonably possible. In the event that a land treatment system is constructed and put into operation before a final court order i - obtained, counsel for the City will recommend that the City enter into a nonprejudicial agreement with the State Engineer, Division Engineer and Water Commissioner whereby an informal exchange of waters may be accomplished. Said informal arrangement would operate until a final court judgment is obtained. Similar exchanges are authorized by 37-83-104 , C.R. S. 1973. The City has adequate water rights to operate said informal exchange (or to augment, in the event of an adverse court decision) . However, of the various rights listed earlier, the City would probably not augment with waters of the No. 3 Canal which will be used on parks and other open space for the present. Other direct flow and storage waters initially would be used for any informal exchange or augmentation. 33 S 34 Environmental Impacts An Environmental Impact Statement has been prepared by the Environmental Protection Agency addressing the environmental impacts associated with each of the alternatives. Farming Operations and Management The City of Greeley proposes to own all land required for construction of the pumping stations, preliminary treatment facilities, pretreatment facilities, and the storage reservoir. Land required for the farming operation will be either purchased or leased on a long term basis. Land costs have been included in the project cost estimates based upon the assumption that the land is purchased. ff the land is leased, no significant change in the cost analysis would be apparent as lease costs are related to the actual land values. The City is not presently planning to undertake the farming operations. Operating agreements with the present landowner are presently under consideration and are being negotiated. Adequate farm management capability exists within the area to insure the continuing successful operation of the facility throughout the life of the project. Other Considerations The proposed alternatives do not all provide the same degree of treatment. Alternatives 1 , 2 and 3 are designed to meet current treatment standards. Alterna- time 4 provides a much higher degree of treatment. The City of Greeley has con- sidered this factor in reaching a decision to adopt Alternate 4, Land Application at Site I , as the preferred alternative. A cost analysis was made which assumed treatment to a level provided by the Land Application Alternative would be required by 1990. Assumed effluent require- ments are BOD5 less than 5 mg/1 , TSS less than 3 mg/1 , MH4 less than 2 mg/l . To accomplish this degree of treatment, "mechanical " treatment facilities would be 35 constructed at the Delta site while land application facilities would be added to the other alternatives. The following table summarizes the total project costs if additional facilities were constructed to meet this anticipated require- ment. t • O 6 O O 0 O O O C) O . N. .D Lo O 6J . - - - - N U G .D On CD N- E .•• 0 .D - C1 CV E fu N •O N Cl N N .0 -7 Cl O L C -a- .Zr Lin al In u 6- a u - .a N M C C O C O L N 0 co o C) s N O O O 41 u 0- .0 al 0Th N C 1 1 Fa L C) .- CA LA In 1 I IA VO Lin• o3 a- L -Zr -Zr I I 0 •o Cr,0 r` Cl) > 0 co o) O N - - •- O C L v "- - •- f .-N_ 'to I O o 0 0 1' D CD 0 CD • 4-• 0 0 • l) O co co I I C1 ON .-• C 7 f0 CD M M I I OI On CO 0 6• 4 N. LA 11-1I 1 • •- ) d CO CO 0 -( I(. 0 (0 -7 .0 .0 .- O 0 U LI L.fl4- . 0 SP C1 u tin CL 6 0 0 0 CD C O 00 N . O C: O O O 0` L (�• -7- (7'. CO -Zr 0) 0 4, C .C N LA M O P- CO bf ..7 S. -.1- C. r s L N Al LA CO M 01 E I- O U . - N -'O C C) M co N .0 ti G) N C . J .- 0 ).- 0 N aI JD O > C — O O. Y O) . O a N (0 In 0 C L L O O 0 O O .C •C L O CL — O LA 1.11 O 0 4' D.- 4-1 . .. . L C .-- U •-- 61 N co N. N L f0 Q 117 ^ 0) M on al N L • sz N (0.- .- .D in 4- O O +- O ..,:r.- (0 —4- I- O L r--- CT) CD N1 LLenL. 00 0• N CL CJ N M L`) on L L. . I- CO Cu, • (n �N O CD r. 73 t1 U 41 V O O C O O C C C 041 4.. OD .OD S .Cp CO.) CO E O 'n 0 in Q s N O U - •• N 0 C a+ ^0 C CJ) LA — h CO CX) "0 > U N I- I-- 0) .L N C: M N. -7 -7 L O •- CL G N ✓ > 0 - Cl CD (0 L ♦4 O Z O1 L .- Ol r-- Cl .. v a. 10 •-U C CC L O rJ (4 v CV .0 V C C •— •- la Cl. O tC > .... (0.- 3 4- -CI I- N U L 0 J I N ` .- (C •--- 4 (0 0 0 O O C) O C) M 0 U C 4- O C) O O O CD •'-1 Y O .O M .0 al 01 0 L IC L: - . - - 4- 4- L - O-C Cl M ^ Cl CO L 0) 1.1 CA CA L O -o E {J L ) CO 00 C) .c > O 3 0) 0) L O •) ... 1)v- ._ u 0. C: Ln Ln Lin •- N N .L 0 C N >--- 0 0 0) 0) an to c N E O CD O CD O (O G) 7 C O O O O 0 O 0 L In 0 C) C) O In M JN 0 O. N-- a-I (0 Y U1 I. I. 01 LI) Z) C C (0 on — .- - -.7 U•- •- 0 U C: .- N N M CO L. (0 L .- N co .- _ V N • N J ..... 0 0) t CL O CT•C) N N Cl • CJ U C 7 N O Co O O co L N O O O CD O C (0'U CO M M M Id1 C) 01 C 0 U C y - to O 0) O N N C) CT) co .0 •-- CL I, M .O N C) M O 4/ N N CO CO O 01 CO L r0 N 0) 0 L.) Cr: CO L (0 .0 t 0 el If% r- .-7 0 I: CJ C-, U N N N in •a til 4 (3 44 4. 4-4- C CD O O C C 0 O O C C N O O 41 t( > 0 •- • F rU (0 0 U 4.. 41 0) 0 U U L .-. 01 Al L D. 0 0 -• .- ••••• E L N O a 0) 4, N co CL CL. •- 4, U (0 N 1. O. 2 a1 N .- V C. Cu U > "� '"• ¢-3 1. N. LO.. U L. 0) a.( 3 •0 O 'V 0) :3 .- 0 0) 61 O (_ e.I C 4-/ a/ N C) Z C) L C)) co .- N .- 3 4- C t 0) Q C] LI U ... N J N U. O — 1'- c/1 36 • The following quotation is extracted from the Larimer-Weld Regional Council of Governments Water Quality Management Plan, "Waste Load Allocations and Water Quality Modeling" by Toups Corporation, December, 1977: "5.9.2.3 Greeley Delta By the year 2000, Greeley is expected to have installed a second treatment facility that discharges 11 .5 million gallons per day (17.0 cfs) into the South Platte River. llasteload allocations on the South Platte River indicate that secondary treatment will not allow attainment of water quality standards. Discharge of a 30 mg/1 DOD and 15 mg/1 ammonia (RP' 243.2) will cause the in-stream ammonia level to reach 11 .E mg/1 and remain above 1 .5 mg/1 until river mile 230,3 where return flows provide acceptable water. The DO standard is also exceeded until the confluence with the Cache la Poudre River at mile 247.7 provides sufficient oxygen to raise the in-stream DO above 5.0 mg/l . Upgrading of Greeley Delta Plant (RM 248.2) to tert'ary treatment continues to cause violations of the ammonia and dissolved oxygen standards until Cache La Poudre River water dilutes these wastes one-half mile below the _ point of discharge. The NH3 concentration is 2.3 mg/1 , and the DO concentra- tion is 4.6 mg/1 for the one-half mile stretch of the river. 5.9.3 Summary . Table 5.9.3-A summarizes the South Platte wasteload allocations. The Greeley Delta Wastewater Treatment Plant will be required to provide advanced waste treatment to avoid violation to the ammonia standard. " TABLE 5.9.3-A. WASTELOAD ALLOCATIONS FOR SOUTH PLATTE RIVER Effluent Concentration (mg/1 ) Discharger BOD DO NH3 Fort Lupton 30 2 15 Public Service Fort St. Vrain 10 2 1.0 Hill-N-Park 30 2 15 LaSalle 30 2 15 Evans 30 2 15 . Greeley Delta 10 4 1.5 The "second treatment facility" mentioned in the preceding quotation is the one presently under evaluation. 37 . • . , 1 Conclusions to be reached from this information are that nitrification should be required in the near future and that the point of discharge should be extended approximately 0.5 mile downstream to the confluence with the Cache La Poudre River. The Water Quality Standards for the South Platte River as proposed June 26, 1979, further support these conclusions. Due to public opposition, the hearing on the standards scheduled for September 13 and 14, 1979 was cancelled. Nevertheless, it is almost certainty that similar standards will apply in the near future, perhaps before completion of construction. A copy of the appropriate standards is attached as Exhibit S-3. Based on this exhibit which shows in-stream requirements of 0.02 mg/1 un-ionized NH3 and 5.0 mg/1 DO, the existing water quality of the South Platte River, Table 17, Volume I, and the projected effluent water quality of the various alternates we conclude that all alternates except land application will require nitrification. Additionally, the outfall from the Delta Site should be extended to the confluence to protect the DO in the stretch of the Platte between the Delta Site and the confluence. The following table summarizes this information: Existing River Quality Required Quality Projected Quality -NH4+NH3 (Mean Value of Parameters) (mg/1 ) Temp. pH NH3+NH4 Un-Ionized NH4+NH * Delta Crow Creek/ Land (F°) (mg/1 ) NH3-N (mg/17 Ogilvy Appl . 56.4 8.0 1 .05 (mg/1 ) 6.1 7.1 0.7 0.02 0.86 *Concentration of ammonia (NHS;+NH3) which contain an un-ionized ammonia concentration of 0.06 mg/1 NH3-N based on mean value of parameters listed. To add nitrification will require an estimated capital cost of $2,850,000 and $2,200,000 present worth of operation and maintenance. To extend the outfall from the Delta Plant an additional 0.5 mile will require an estimated 38 capital cost of $612,000. The estimated present worth of salvage value for these facilities is $261 ,000. This combined increase raises the present worth of the least cost alternative (Delta Plant) by $5,401 ,000 to a total present worth of $33,332,100. If a 115% cost preference is applied to the non-common portion of the alternatives, the amount eligible for federal participation in a land application system becomes $37,583,475. The land application system proposed for Site I falls within the specified criteria for funding. 39 • CC . -.ii° 0 77. CIS a J Z-4 n_I u • , ••--�;i I I •I o c.,- _ I - - - • o ` _ • ~ •.. •_ - " O.. - -c• �S ca - -•.. , . _ _ • o Z. .. _.1. .E.:‘..7:-1.--II •• .-. _ - _1 r.- - 1 . =.C • - - . r V I I I -I _I 0 - •I C' CI I I I C: _ o -' -, Gr -'., C, - -• 22.• ' ICI -. C - -•`1 �. Q o 'J •-• . • -• _ -. O • - - - - _ CC-,O .10 -t0 ..10 1 - Z. -C - 0 ^ • 1 rI....-C - - -'J - _ 1,_ _ • I - L . I _ ' I y -I I C C • -I C. I 1 -• 44 _ _ - J C. _ - ' _ I _ - _ _ _ _ _ S .C . I -_ _ - - _ _ _- .: . __ • � I_ -_ -_- - _ _ _ ` • __ - _ •_ - _ .:d. _ G• _ _ O I -7 .-- _ _ - - _ 7.. C _ _ _- 71- 7 - - - _ _•- -•O J' • - -7 4 I - - C - • - • - - • _ _ _ I _ y 0 0 � • I •C C O • E •,_.c•r _ r�1.. C. _• • C C • I I J �-ir .� •1 I tin I- .-. 41 G C E •I• Co C . ;O C I C -. C y I O _ ' 70 -:.• - J _ I 7 -.-,A CC __ 0 ti I I - 0 ' II J • O Z O-7 _ O • O . \ 0 • rl • .1 -- r1^^.1 • -.HO-••.. OO.n Lo P 1 _ ^ I I -• ~ l to--•, I I • cr-O E ,O-o - I I I.-. .• I IIo I • Y 7 . . J =ICI • ...• .: u• J J a • O I . I O 1 Y •) U n r, " 1 J I , 't _l ,,,,''- 41 LEO', 1CD1 - . ' 1 ic y _ U a _, 0'371 , y I 12$S7" r ....• x I • U j - I SSs�' I I - J ZS;.-.3 I , 1 - u a • ▪ C I S51-171 "SSv17 lu?S?ad I ' j-. C , Io o J IC a.- 44 fo , r.aa) y _. u 7 Y 7 'b •: It yr . .r 2 11 < Ya a — 4 hh a V .= z u-. ' II. n 1. I ri 7.` v ' Y O • —G V-O C 4 u Y -. b , 4 J 4 p U C U I Y �'_.j ...S/ , 3 Y Exhibit S-3 a I...a. ; : , r.t I Proposed Unter � - ; I �" ; a : �` B Quality Standard! "� v) : ; = I...:-J .I e , I.VI 0. C r. 40 • r 41 Implementation Schedule Assuming the ultimate approval of the Land Application to be constructed at Site I by the State and EPA, the following schedule of implementation would apply. o Initiate Design October 1980 o Complete Design of Selected System Components April 1981 o Commit Step III Funding for Selected System Components FY 1980 o Complete System Design 1981 o Step. III Funding FY 1981 , 1982 o Complete Project Construction March 1983 APPENDICES Appendix Title I Land Application at Site 4 Cost Estimate 2 Project Phasing Evaluation 3 Bedrock Geology Studies (Site I) 4 Supplemental Soils Tests (Site I) 42 APPEND)X 1 LAND 1,F'PLi CATION Al_ S1 I E 4 COST ESI IIlfl E ESTIMATED COST TRANSMISSION SINGLE PIPE LINE FROM DELTA SITE TO SITE FOUR Item No. Description Quantity Unit Unit Cost Total Cost 1. 42" Conc. Pipe 47,600 LF $ 90.00 $ 4,284 ,000 (200 psi ) 2. 36" Conc. Pipe 18,500 LF 74.00 1 ,369,000 (200 psi ) 3. 4211 Valves 4 EA 11 ,500.00 46,000 4. 36" Valt, s 2 EA 8,500.00 17,000 5. Air & Vacuum 7 EA 3,000.00 21 ,000 Relief Assemblies 6. 6" Blowoff 6 EA 2,000.00 12,000 Assembly 7. Special Crossings 2 EA 89,000.00 178,000 Include highway bores, river, stream & ditch _ crossings 8. Concrete Valve Vault 6 EA 4,500.00 27,000 9. Surface Replace- 27,000 LF 4.00 108,000 ment 10. Dewatering 1 LS 89,000.00 89,000 SUBTOTAL $ 6,151 ,000 Engineering and Contingencies 1 ,538,000 TOTAL COST $ 7,689,000 43 ' I i ESTIMAl"ED COST . SINGLE CELL STORAGE RESERVOIR - SITE FOUR Item No. Description Quantif Unit Unit Cost Total Cost I. Clearing & Grubbing 1 Is $ 10,000 .00 $ 10,000 2. Stripping 1 LS 10,000.00 10,000 3. Excavation 830,000 CY 1 .82 1 ,510,600 4. Sealing 4,8GO,O00 SF 0.18 864,000 5. Slope Protection 65,000 CY 27.00 1 ,755,000 6. Rlprap at Spillway 4,250 CY 11 .60 49,300 7., Concrete Spillways 2,300 CY 220.00 506,000 8. Outlet Structures 2 EA 30,000.00 60,000 9. Piezometers ezomete rs 20 EA 255.00 5,100 10. Lift Station 1 EA 60,000.00 60,000 11 . Borrow 100,000 CY 2.25 225,000 SUBTOTAL $ 5,055,000 Engineering & Contingencies 1 ,264,000 TOTAL $ 6,319,000 44 ESTIMATED COST • CENTER PIVOT SPRINKLER IRRIGATION SYSTEM - SITE FOUR Item No. Description Quantity Unit Unit Cost Total Cost 1 . Pump Building $ 182,875 2. Equipment 225,500 3. Reservoir Outlet Structure 385,500 (See Page 17, Wastewater Facilities Planning, Report No. 2 Evaluation of Alternatives for Greeley, Colorado, August, 1979, Volume II Appendices for breakdown of Item numbers 1 , 2 and 3) 4. Irrigation System A. Center Pivot Rigs 21 EA $ 55,000 1 ,115,000 B. Electrical Dist. System 1 LS 440,000 440,000 C. Pressure Distribution Pi ing "-Steel 4,000 LF 105 420,000 42" Steel 3,100 LF 95 294,500 36" Steel 3,200 LF 75 240,000 30" Steel 11 ,200 LF 50 560,000 24" DIP 8,400 LF 39.58 332,500 20" DIP 14,300 LF 34 486,200 16" DIP 2,800 LF 2,504 70,100 14" DIP 14,400 LF 21 .30 306,700 12" DIP 6,400 LF 16.47 138,300 D. Excavation & Backfill 136,300 CY 3.42 466, 100 E. Pressure Reducing Valves 1 LS 8,000 8,000 5. Field Underdrains A. 36" Asphalt Coated Galvanized CMP, 6,250 LF 29.30 183,100 Unperforated B. 36" Asphalt Coated Galvanized CMP, 600 LF 33.70 20,200 Perforated C. 30" Asphalt Coated - Galvanized CMP, 7,650 LF 24.70 189,000 Perforated • 45 • it • ESTIMATED COST . • CENTER PIVOT SPRINKLER IRRIGATION SYSTEM - SITE FOUR (continued) Item No. Description Quantity Unit Unit Cost Total Cost D. 24" Asphalt Gal . CMP, perforated 3,500 LF $ 20.20 $ 70,700 E. 21" Asphalt Gal . • CMP, perforated 3,300 LF 17.70 58,400 F. 18" Asphalt Gal . CUP, perforated 3,200 LF 15.30 49,000 C. 15" Asphalt Gal . CMP, perforated 11 ,900 LF 12.80 152,300 H. 12" Asphalt Gal . CMP, perforated 7,150 LF 10.30 73,600 I. 10" Asphalt Gal . CMP, perforated 20,400 LF 8.90 182,000 J. 8" Asphalt Gal . CMP, perforated 1 ,550 LF 7.20 11 ,200 K. Excavation & Back-- • fill 870,400 CY 4.20 3,655,700 SUBTOTAL ' $10,356,500 Engineering and Contingencies 2,589, 100 TOTAL 12,945,600 46 1 ESTIMATED COST OUTFALL TO SOUTH PLATTE FROM LAND APPLICATION SITE FOUR tem Ho. Description Quantity Unit Unit Cost Total Cost 1 . 42" Dia. Outfall 10,400 LF $ 55.00 $ 572,000 Pipe 2. 36" Dia. Outfall 2,550 LF 47.00 119,900 Pipe 3. 36" Dia. Outfall 6,350 LF 40.00 254,000 Pipe 4. Outfall Structure 1 - - LS 6,000.00 6,000 5. Canal Crossings 1 LS 12,000.00 12,000 SUBTOTAL $ 963,900 Engineering and Contingencies - - - - 241 ,000 "OTAL COST - _ . _ _ _. $1 ,204,900 47 • 7r APPENDIX 2 PROJECT P:,:\SI G EV/LUATION Project Phasing - Cost Effective Analysis • Each component of the project has been analyzed to determine if phasing is practical . • North Gravity Line Alternative The North Gravity Line Alternative has been sized for a staging period of 40 years rather than 20 years for the following reasons: to The interceptor sizing is consistent with the projected land use plans (Wright-McLaughlin 201 Report, 1974). 2. Construction of the interceptor lines requires some road construction leading to short-term disruption of traffic, business, and other daily activities. By staging of the interceptor lines for a 20-year period, disruption would occur twice. 3. Since 20-year staging requires parallel sewer lines, more land will be disturbed during construction, including flora and fauna causing a possible increase in erosion. 4. With parallel sewer lines, lateral connections and house connections would be more costly than connections to a single sewer line. 5. With the larger interceptor line, development of new areas will be planned, not unplanned. Pretreatment Facility The pretreatment facility consisting of screening with grit removal has been sized for a staging period of 20 years. A cost effectiveness analysis examined staging for 10, 15, and 20 years. The building was designed for a 20-year period while the screens were staged. A summary of the results appears in Table S-7 . The 20-year staging appears to be the most cost effective 48 P , although the present worths amoi:g the three staging pus sods do not vary by more than 2 percent. Transmission Line and Pumping From Delta Site to Site Four • The transmission line and pumping has been sized for a 20-year staging period with a peak capacity of 24 MGD and an average daily capacity of 12 MGD. The 20-year staging period is consistent with the pretreatment facility design and the land application design and is the minimum for which a major inter- ceptor could be sized. Some staying of pumping facilities may be determined to be cost effective during final design. Prelir1r�ry Treatment 4-Day Aerat?d Lagoon The aerated lagoon has been sized for a 20-year staging period. To • design for a 10 or 15-year period would not be cost affective due to the proposed facility layout and aeration equipment sizing. ` Upgrading in size of the lagoons requires new dike construction and increased outfall capacity. Storage Reservoir - Site Four The storage reservoir like the lagoons has been sized for a 20-year - period. The reservoir like lagoons cannot be upgraded in size cost effectively. A larger outlet structure would be needed as well as construction of new dikes. Final Treatment and Disposal - Site Four The land application system and outfall have been designed for a 20-year staging period. A cost effectiveness analysis examined staging of the sprinkler irrigation system for 10, 15 and 20 years. The pump building was designed for a 20-year period while the pumps, pivots, irrigation piping, and drains were staged for 10, 15 and 20 years. However, the irrigation and drain headers were sized for the peak application rate (20-year design). The results are 49 A shown in Table S-7. While a 10-year staging .appears to be the most cost- effective, the difference in present worths between the 10-year and 20-year staging is less than one percent which is not significant. The 20-year staging of the land application system would be consistent with the other components sizing. 50 I 0 0 0 0 a o 0 0 0 CD c'D;? L$1 C) ,/ c_ w a a a wV 4 1 M rf1 61 N O C •4• CV C- CSI O 1-- a) Cr, ('n CrCc..0LCl CO D a aa C) ,.-- .-- r•- Ul L11 LP. I- CI_ • Cs) J a dJ CID v- L CC (1) 0 O CD U CD O O Q O O CD O C) O ILL-3 N h P-- O CC) r, C) d-) -7.; r•-• a a Cr) C rl 0D sal - al O r3 CO N. Lf\ r-. -S N > N 1.11W f) W (0 L N N N Cr) a_ t_l a O 4-' - P, en CD CD .-- p CJ O O O CD O 0 0 0 0 CG U O O O O 0 i1 0 0 O CD O O • C) .-- N. a -.T 1- a Cl) . LL a a M a C N- [- N-....0•..) %D 11 rl M IU c.i N w co ul w __I LC 1 • if; ^t:) 4 • - >- • a_ c N -C z .0 - 0 L .r r O {{�� V I.- y O O CD 0 0 0 O O�C — < Ca C3 O CDoo CCC) C) co Cl) C) t) Y/ •-• •-- •— •z• M C'l O C'E' M 0l !Il f.O �- —' O 0 a a -1 -,s CG a) m al a`. .7'.-^ U\ O1 ul C ul N. o'N I L:l C[ L,'. U) C\C C') N 'D C\ N •-•100 C L.-NI-7, ' - a) -Cr - C:Y.) 4.D ^ C i c) C-,1 r•l cI cif Cl 0_b -- L%C I-7r LCl CU)I LV) CJ) • Li-7 �� ...'F.. WI-- "r`"' LL1 lC l- J Q 1- m — ‹ cL I.- 4- a- N LU 4-c .-� Lai Z O 00 •-• f= Q U ^ ^ al C', a O CL >-. • CO CD O CO 4— L CJ m n C) -J C Cr, •- N. C _. w CO Li; co > C) w )_ 0 • o ,, 0 0 • 0 a C) 1.+.. U O U1:77 LI\ O O a_ C3 C) 4- N N • Co O...... U1 • '.D 4- a Csa a Ca- a C), a Q- il) off? al'- al Lc% C N-�. Ul o W 4-' LA M -I' Ul N. O �' -I' L X •-- N Cl O CT CD Cl -? '.D Li-1 O Cl U I- Cl O O a w a 0 e Lr1 u -- — l • -1- NI • NI W Cj a E ^ a NI tC U N C) a) 4....1.• CO F- C 1.0 '.D 4. a C31 w — .- .-- Ch •- M OC v ›- a. N cCI Ill.. >Ill.. e O O CJ) E Z L Cr) -. O C'. UN O. L C)— C) O C C7 01 C C7 Ol C — 0 CI CT C O Ul C C7 4.) .- 0 O-•N •-l-0,3 ,U\ .- _ (y) 01 •- _C) C)1 •_ Q •- C) 0' -- C.C)1— Cr' L (.1,CT — ON Ol.- CJ) CT 4-, 1 ♦-, -.i y,, .- v N� y.,` i-, V) '-- V) --' V) .-I' L V) -- VI •J) ^ _ -_- L .) — _ • ..- 0 E as C- Q) a) L a) as 1_ •L Li_ 1• c) a) )-- O CJ L C)) C - N V) >. V, V) >- 0 U) ,') >- if) V) >- N •- I 0 10 I ,7 rJ P U) (I) I 1 '11 ,0 I C4 CJ I C 0 .C= _C LCl C= ..C O 1-, C) J_ O.L: LIl r _C C) .— CL a. .— a_ CL C`1 a-' .— .—(2 11. .— CL CL CV a) OO1 L > U • • • •..) • e e V) c): CO C.1 CL CJ i in CJ 0 51 AI'PENOIX 3 BEG;;ci;,'. GEOLOGY SIUDIFS (Si IT I) ESA Geotechnical Consultants DOUGLAS II HAMILTON 317 Walnut Street, Fort Collins, Colorado 8524 RICHARD L MEEHAN EUGENE A NELSON (303) 2%1-?612 RICHARD C HARDING GEOLOGY KARL VONUF R IINDFN GEOPFOSKS LEONARDO ALVAREZ SEISMOLOGY MIC HALL T DUKES ENGINEERING PATRICK O SHIRES GEOHYDROIOGY ROBERT H WRIGHT VICTOR F VIETS PHILIP A IRAME W ROGI R HAIL JULIO E VALERA NER DWIGHT HUNT August 14, 1980 C RICHARD WILI INGHAM 2189 SALLY W RILODEAU TIMOTHY MSNLAGOL Mr. Gary R. Windolph, Vice-President ARIX P.O. Box 2021 Greeley, Colorado 80631 Re: Geologic Investigation, Greeley 201 Wastewater Study Dear Gary: We are pleased to transmit the above referenced report on bedrock condi- tions at the proposed land application site east of Greeley, near Barnesville. We have provided a bound copy for your files as well as an unbound copy for reproduction. To ensure good copies of the drawings, we are transmitting the original mylars. We would, however, like to have them back after printing is completed. We at ESA are pleased to have had this opportunity to work with ARIX, the City of Greeley, and other consultants on the team. We have enjoyed both the technical aspects of the work and the association with other individuals working on the project. We look forward to future projects with ARIX. Sincerely, ESA GEOTECHNICAL CONSULTANTS 5 -12.7....c.--%._____//lei.L..9 W. Roger Hail, Principal Barbara L, Turner, Project Manager BLT:nb Palo Alto, California Oak Ha,l)or,Washington Fort Collins, Colorado • GREELEY 201 WASTEWATER STUDY BEDROCK GEOLOGY INVESTIGATION for ARIX Engineers P.O. Box 2021 Greeley, Colorado 80631 and City of Greeley Civic Center Complex Greeley, Colorado 80631 by ESA Geotechnical Consultants 317 Walnut Street Fort Collins, Colorado 80524 August 1980 ESA Geotechnical Consultants ESA Ceotechnical Consultants 317 Walnut Street, Fort Collins, Colorado 80524 DOl1C,lAS H HAMILTON RIC HARD L MI[HAN EUGENE A NIISON (303) 221-2612 GEOLOGY RI(HARD C IIARDING GE GEOLOGY KAHL VONDER I IND[N YCICS LEONARDO AIVAREZ SEISMOLOGY MIC HAIL UL11 I S ENGINI FLING PM H IT K O SHIRES GEOHYDROLOGY ROBERT II WRIGHT • VICTOR,I VIE TS PITH IPA FRAME W ROGER HAIL JULIO[ VALERA BARBARA L IUHNER August 14, 1980 DWIGHT HUNT JAMES B SCOTT 2189 C RICHARD WILLINGHAM SAID W BILODLAU TIMOTHY J MANZAGOL Mr. Gary R. Windolph, Vice-President ARIX P.O. Box 2021 Greeley, Colorado 80631 Re: Geologic Investigation, Greeley 201 Wastewater Study Dear Gary: • We are pleased to transmit the above referenced report on bedrock condi- tions at the proposed land application site east of Greeley, near Barnesville. We have provided a bound copy for your files as well as an unbound copy for reproduction. To ensure good copies of the drawings , we are transmitting the original mylars. We would, however, like to have them back after printing is completed. We at ESA are pleased to have had this opportunity to work with ARIX, the City of Greeley, and other consultants on the team. We have enjoyed both the technical aspects of the work and the association with other individuals working on the project. We look forward to future projects with ARIX. Sincerely, ESA GEOTECHNICAL CONSULTANTS ce7„."---%—/ral......9 W. Roger Hail, Principal Barbara L, Turner, Project Manager BLT:nb Palo Alto, California Oak Harbor,Washington Fort Collins, Colorado Table of Contents Page I. INTRODUCTION AND SUMMARY A. Background I-1 B. Purpose I-1 C. Scope I-2 D. Authorization and Performance I-2 E. Summary of Conclusions I-2 II. SITE GEOLOGY A. Regional Setting II-1 B. Geology of the Site II-3 • III. SITE HYDROGEOLOGY (BEDROCK) A. Hydraulic Characteristics III-1 B. Permeability Distribution III-3 C. Existing Water Levels III-4 IV. SEEPAGE ANALYSIS (BEDROCK) A. Land Application Area IV-1 B. Storage Reservoir IV-4 V. BIBLIOGRAPHY V-1 FIGURES 1. Location of Exploratory Borings 2. Location of Oil and Gas Wells and Regional Geologic Sections 3, Geologic Map 4. Water Levels in Laramie Formation and Fox Hills Sandstone, July 1980 5. Location of Seepage Zones i ESA Geotechnical Consultants PLATES 1. Geologic Section A-A' 2. Geologic Section B-B' 3. Geologic Section B'-B" 4. Geologic Section C-C' 5. Geologic Section D-D' TABLES A. Summary of Field Permeability Testing B. Summary of Seepage Estimates SUPPLEMENTS A. Field Exploration and Testing B. Boring Logs and Geophysical Logs C. Seepage Analysis Computations ii ESA Geotechnical Consultants I. INTRODUCTION A.,]) SUMMARY A. Background For the past several years, the City of Greeley has been working on a plan for wastewater treatment and disposal. After consideration of a num- ber of different alternatives, land application was selected as the preferred method, and a site was tentatively chosen principally on the basis of cost and water rights considerations. Because little bedrock information was available, members of the City Council and the Citizens Advisory Committee expressed concern about the possibility of important water losses through the bedrock. The primary reasons for their concern were: 1) that farming operations in the Crow Creek alluvium northwest of the site could be affected should the project cause ground water levels to rise; and 2) exces- sive water losses to the southeast would diminish the water available for augmentation, should it be necessary. The City requested and obtained a grant from EPA to study the bedrock formations beneath the site, and to evaluate the potential for seepage losses through the bedrock. After interviewing several consultants, the City selected ESA Geotechnical Consultants to perform this work. B. Purpose The purpose of ESA's work was to study the subsurface bedrock geology at Site 1, to determine the hydraulic properties of the rocks underlying the site, and to evaluate the effect of bedrock conditions on the feasibil- ity and operation of the proposed land application project. The present study has been conducted to determine whether seepage amounts could be significant and whether fracture zones are present in the bedrock that would concentrate seepage toward a pnit of Crow Creek Valley, or to the southeast where recovery could be difficult . 1-1 [SA Geotc'clhnical Consultants C. Scope . The scope of ESA's work included a review of published data, field studies at and near the site, data analysis and report preparation. Also, included were attendance at weekly project meetings and presentation of results to the City Council , Water Board and Citizens Advisory Committee. All of ESA's studies were limited to the bedrock formations. The unconsolidated overburden, which plays a crucial role in the feasibility and ultimate performance of the project, was investigated by ARIX Engineers of Greeley and Resource Consultants, Inc. of Ft. Collins. Some of their results have been used in developing the conclusions presented here, but no attempt was made to verify or reproduce these data during field investigations. D. , Authorization and Performance ESA's work was performed as a subcontract to ARIX Engineers in accord- ance with our proposal submitted on May 14, 1980. Authorization, to proceed was given by telephone on June 11, 1980 and verified by a letter from ARIX dated June 16, 1980. ESA's Principal Hydrogeologist Roger Hail was responsible for general supervision and review of the work. and performed some of the seepage analyses. Barbara Turner, Senior Hydrogeologist, acted as Project Manager and Principal Investigator. Supporting staff included Sally Bilodeau, Alan Isreal, Debbie Lienhart and Nancy Bartlett. E. Summary of Conclusions 1. The regional geologic studies indicate that Site 1 is as good or better than other potential sites in the project area. Site specific studies (test drilling) of bedrock conditions were not made at other sites. However, regional subsurface data from published sources and oil and gas test wells indicate relatively uniform geologic conditions throughout the project area, 1-2 ESA Geotechnical Consultants resulting in little or no significant geologic advantage of one site over another with respect to bedrock conditions. 2. Examinations of core samples collected during drilling indicated that nearly all of the fractures arc essentially budding plane partings and are sub horizontal (0-So) . No fracture zones were observed that would provide rapid seepage paths downward through confining shale layers or that would provide preferred horizontal flow paths which could concentrate ground water flow in any particular area. 3. Very conservative bedrock seepage analyses were performed for the spray irrigation area. A range of seepage estimates was developed, using both high and low permeability values from field test results. These analyses show that annual seepage losses through the bedrock at the site are estimated to be less than 1 to 4 percent of the total applied water, an amount which is insignificant in an overall water balance. Because of the conservative nature of the analyses, actual seepage rates will probably be at or below the lower part of the estimated range. 4. Seepage analyses indicate that a maximum of only 200 acre-feet per year could be transmitted through the bedrock toward agricultural areas in the vicinity of Crow Creel:. Actual seepage amounts would probably be much less and the water would be dispersed over a large area that is at least five miles long. Even if the maximum estimated amounts of seepage were lost from the land application area by bedrock seepage, it should not be large enough to substantially affect water levels in the agricultural areas to the west. These seepage losses, however small, can be recovered within the Crow Creek watershed and are not necessarily lost to the project or to landowners in the area. 1-3 ESA Geotechnir.-) I Consultants 5. There will be bedrock seepage losses in a northeasterly arj south- easterly direction that will amount to a maximum of 360 acre-feet per year. Again, the actual amount will probably be much less. Although, this amount of seepage is insignificant, most of it will be effectively lost from the Crow Creek watershed. 6. Very approximate analyses of seepage from the storage reservoir suggest that annual seepage losses through the bedrock beneath the reservoir would amount to less than 5 percent of storage capacity, assuming full storage all year round. Since full storage will not be used most of the year, annual bedrock seepage will probably be less than 2 or 3 percent of storage. Seepage conditions in the overlying alluvial deposits are much more critical to dam design and reservoir seepage control because these materials arc much more permeable. These conditions should be defined and analysed in detail to support design of the dam and reservoir. I -4 ESA Geotechnical Consultants 1 9 \ • I, 40 '7K �� i /j1 12 /� } r 4, ` k�-ti' ^p --•lid . . . =;4 t,'-,-.s ,�. ..f- \ a, ` �a '` N....,, - i ''" I I 16 �, \ 1'@ I +1 13 I w .r I I r 1/ 1 I I'r '1,1,4 1 I \ -, 1 21 `,• • ' I.22 � 23f7- 24 l 1 I r ^ x` y I / \ EXPLANATION ,� _o(?•- -. • / - --- RD-I I �•, ,:� " v • Air Rotary Boring, l• /' ESA 1980. 'p 'T" 2:A2 • Core Hole, ESA 1980° • I• '1L ° CJ, II 4. m l'r -- - -.- - '; Y • - Note: All exploratory borings were G - 1 completed as observation .yells 33 • I • 34 • i, '° .• sk, 35 ;� with 2 in. dia. casing in core i tn.*✓ d • holes and 4 or 5 in dia. Lake I , t t ''f casing in air rotary holes. F 1' - - I ,, , .. SCALE 4 } - A r' 0 5000 r 1 I r r r t i —4,7-- -I. —' ', ,- - •-3 - 2 � - feet { I r - I ' — _ _ — -.V: , ESA Geotechnical Consultants I •\\ F art Cal'ns Colorado � I : Greeley 201 Wastewater Study \ 9 `\ 410•_ -� - ,;1_ 11�_� �' ,� L0 ATION Cr EXPLORATORY BORINGS • ` 1 `` I `heckea by;haa,x-1.c.,cz a - Date F.,i, 1c,'Project No Figure No -s- •- Approved by e-1-/e-1-/ -',f 2^-} Date P /,'� ea 2189 1 1 l v i u1 11 D z ` f } nY y 1 .O,, \\ O p� e Q y 13 1 1d �l 1• le Is 13 1 �] a t Iz O 0. dt r Ii . \ \? _.....O...f___ _,,..7.47_,..,e9 �" t0 2l' l _ _7II _ -_ 0 nl� Zt 73 _ h + d - 1 4-=<` • "` ---—\ ."i ce_ , `—__ 5 _ _ t _ 1.':8 . 5 • r l� 29 28 �"'/ •] da 3: . • I23 t 8 7 4,6h '-'--r�T-1t. --� )--3�i�=--;-rte-----=r > - -- — 7 -1.-., . . - .. _ \ ., 1 I 'Ir4,. . r s .� L'",',%, I i die - d , \e ` �, �---.iy 82 1 33 34 k.•,r.,3, 0 '31 . i C. ii 1 35 y -... ` .O 31E`II � •Nx r- --� r4'+4 f _�_. I - - a� _+.� -c 'N� OI -\ t.•--=-, 4 1 4 3 it n 5 . �< 4 i , 2 .RaC= f 1` P aw C " v to 1z , 7 �, a E l u a'�'I 9 1 .4 oiw ��`esse `� ` F 'L' Alex WAldenr h No.l _ • ,.r„u� o_o r __ g'ed° r e LA( o Y: Y l '8 5 Y .F 15 14 qq,, I ] 1 3 ,_s _ lO 1 V-� L a ` t4 rl # +1Y w Z 0 - -x. �1 I - +1� f 1 19 .1 ( X _'4 0 , r. 1Y' UMI0N Alden= MOf/C 2—"+—.` \��)1-, �9 -N ai� S A Johnson ' hr>Jcclli '\iwtx3a • • ie .a.i��« )y .r. .s—t.d-` 34« -<q] i , ^ 'e '1!u 1 c- f 1 fI 7 :/' •i1 a I 1 . l \ m 7 g Star$ tsE f m-rnbT.„ h, G' •--r" • _L ���a^%—*yi-RI ,,,,,.0::.,,,, ,r,ao y 6 QO " / I I t1 day r-4'1,:,.,—)., `..' • �♦ 4 aT '` �W tom- �Jys. '�•+pg D.. The . .JJ r `_ I",1..._ �. >'x'G.y ~= ,_,; SCALE -�* � 4^�C� \----,..-'4". O 10,000 • � E 1 1 I . 16 r 15 f 1 feet 1i i ;18 d p . . i- . 0reelPo.i ESA Geotechnical Consultants ` I I Fort Cotlms Colorado 4. ereey 4, �' 1, 19 11�'� -. ` "`Za --`� Greeley 201 Wastewater Study %-Ta` yy .Pan Ame Icon Peroletm harp' LOCATION OF OIL AND GAS WELLS =,r' 4 !a' I —,,UPREI Ne, f)--l--1, c AND RFGIONAL GEOLOGIC SECTIONS Checked bv/X.:« ,. Date IL.,...___-,* Project No Figure No Approved by .. ' Dareg,3,,r° 2189 2 II . SITE GEOLOGY A. Regional Setting The proposed land application project is located about ten miles east of Greeley, in the low hills southeast of Crow Creek. Most of the study area is situated on land owned or leased by Jack Wells , and is mainly used for grazing. It is essentially rolling prairie land with sparse vegetative cover. Topographic -relief is fairly low with the maximum variation being several hundred feet. The proposed land application site comprises approximately seven square miles on the northeast side of a low ridge. Elevations of the site range from about 4,650 feet to 4 ,800 feet above mean sea level near the ridge crest. A storage reservoir will be located at the west edge of the project area, in sections 31 (T6N R63W) and 6 (T5N R63W) (See Fi gure 1) . The site area is situated on the north-western rim of the Denver Basin along a doubly plunging syncline. Typically the rocks are nearly flat- lying, dipping gently westward at one to five (1-5°) degrees . There are minor flexures and folds regionally, but these arc conspicuously absent in the study area. This absence is important from a hydrogeologic point of view, lessening the likelihood that compressive forces would have caused frac- turing and faulting in the sedimentary rocks underlying the site. A series of regional cross sections were constructed across the site area, using electric logs from oil and gas test holes, The test holes and cross section locations are shown in Figure 2. These cross sections, Plates 1 through 5, demonstrate clearly the absence of major structural features in the site region. The sections were prepared using the total length of the oil and gas logs (to depths of 6,00( to 7,000 feet) , but only the 11- 1 ESA Geotcchnical Consultants uppermost 5,000 feet are shown, as units in the lower part of the geologic section shoe the same relationship as those above. Due to the generally subdued topoc;raphy and lack of well defined stream cuts , rock outcrops in the site arca are not abundant. However, from the regional sections and from published geologic maps, it was determined that rocks underlying the area belong mainly to the Laramie Formation, of Upper Cretaceous age (about 100 million years old) . According to Romero (1976, p. 19) : "The Laramie Formation is considered by most investi- gators to consist of two parts, a lower part composed pre- dominantly of sandstone and an upper part composed largely of shale. The lower 30 to 80 meters (100 to 260 feet) of the Laramie consists of a series of thin-bedded, white to yellowish-orange and tan, quartzose sandstone interbedded with seams of lignitic shale and coal, and two generally prominent beds of y;l lo.iish-brown to tan and light-gray, medium-grained, quart2.ose sandstones. The two sandstone beds form the base of the Laramie and from the base upward are termed the A and E sandstones. An intervening thick- ness of about 2 to 6 meters (about 5 to 20 feet) of shale commonly separates the two sandstones." Most of the Laramie Formation has been eroded away from the site arca, with less than a few hundred feet remaining. The Laramie Formation is underlain by another Upper Cretaceous unit, the Fox Hills Sandstone. The Fox Hills consists of up to 400 feet (Wacinski , 1979) of sandstone and sandy shale. The lower part is pre- dominantly shaley sandstone and sandy shale while the uppermost part (Milliken Member) consists of a massive sandstone unit, characterized by hard calcareous concretionsup to several feet in diameter and small round iron concretions. The upper Fox Hills, together with the lower Laramie A and B sands, make up what is commonly referred to as the L-F aquifer. In the Denver area, where it is fully saturated, this aquifer supplies quan- tities of water adcqu :te for st(,ck and domestic wells, but well yields are generally insufficient for irrI ;aation uses . it - 2 ESA Geotechnical Consultants Beneath the Fox Hills Sandstone is a very thick (5 ,000 to 7,000 feet) marine unit, thP Pierre Shale of Upper Cretaceous age. The uppermost 2,000 feet of the Pierre is transitional to the overlying Fox Hills Sandstone, and consists of interbedded shaley sandstones and sandy shales (See electric logs on regional cross-sections) . The lower part is a massive clay shale sequence. The Pierre is nowhere exposed in the site area, but underlies it at a depth of about 150 to 500 feet. Overlying the bedrock is a thin veneer of Quaternary age, uncon- solidated dune sand and fluvial sand and gravel deposits ranging in thick- ness from a foot or two to more than 80 feet in the buried ancestral channel of Crow Creek. These units are unsaturated over much of the site, but in the Crow Creek Valley and along the northwest edge of the site, they are an important source of water for irrigation. From samples recovered during drilling, the dune sand was observed to be sub-rounded, fine-grained to medium-grained, fairly uniform, and uncemented. B. Geology of the Site As part of ESA's investigation, 13 borehol.es were drilled on and around Site 1. Details of the field exploration program are given in Supplement A and field data are contained in Supplement B. The results of this and previous work done by others show that in most of the proposed land application area, the bedrock is covered by unconsolidated deposits, a few feet to more than 85 feet thick (See Figure 3, Geologic Map) . ESA's work was not specifically concerned with the alluvial units overlying the study area, as the firm was commissioned to evaluate seepage potential through the bedrock. However, unconsolidated materials were carefully described in the logs of all borehol es drilled for this investigation. The unit `, encountered can he clasLifled as alluvial deposits , terrace deposits 11- 3 [SA Geotechnical Consultants l NJ • N EXPLANATION \ ..,- Geologic Units ' Qd Dune Sand, Quaternary age. Symbol of underlying bedrock unit in parentheses. ' I ' 0 V Valley Fill, Quaternary age Consists 12 of unconsolidated sand, gravel, r \ I �M silt and clay; locally more than 85 feet thick. Symbol of inferred r• ' K/ r` underlying bedrock in parentheses. A g 15 14,, 13f K/ Laramie Formation, Upper Cretaceous age. Consists of interbedded shale, i siltstone, claystone, and ' /_� 1 sandstone with some thin coal beds - '. ' `' " - - a - Mostly sandstone in lowermost X �2 50 to 100 feet. • 22 '')`Y 23 /�- '/' 24 I Kf Fox Hills Sandstone,Upper.Cretaceous ;'; age Consists of sandstone with ,` ` ' ,l ( I i interbedded sandy shales. 4. - '.'`;` r/� - 7-- - _Y - Symbols 1 I \ !„, RD-1S Air rotary boring, ESA 1980. I • ititi-i~2�� ;;�1Rb~f�J i6- - - - ,:5?11 c-1• Core hole, ESA 198O __ R� 1 ? . ,,i •ti y• 1 • '--7.; ,'---1,;:::-,,--- .! , �� Geologic contact, approximately I,}_ -' `\ ? pRD 2 located. .'r / •. Buried contact between Fox Hills rr':- - - - �- ?<e.• I „, , .t , ( • . ._ • • Sandstone (Kf) and Laramie 1 Formation (K/ ), approximately i4 '4 \ 35 ' i6 ,� ,. ~ ' \ located. Queried where inferred (Cnacar La. t 1 ' '' PV RS, 1 I ~` Approximate location of buried contact - - - between top of L-F aquifer zone \ '. , - .. \ t�.,, and overlying rocks Stippled on �t / \\ I t r L-F side of contact. �y y �� r \ i_ - 41 Sources: Hershey and Schneider,1972, "- — �3, \\ '`2� - Schwochow, Schroba and Wicklein, 1974, and ' \ \ Weist, 1965. �\/ ESA Geotechnical Consultants _ ���' - ♦ 4 ron Collins Colorado ' - tom;. • Greeley 201 Wastewater Study `\fir' I .. 1' ,, il_o•_ - - - 11_''__- �^1, . GEOLOGIC MAP ' Checked by-~;Y,, M ,%L..?... Date °/4 Fir Project No Figure Flo 4obroved by Or 7z3'- Date F fi ' 2189 3 • or dune sand. They typically consist of silty sand, clayey sand, sandy clay, gravelly sand, or sand. The sand is generally sub-rounded, fine- grained, poorly graded, and uncemented. Bits of organic matter, coal and shell fragments are commonly found in small amounts in the overburden. Beneath the unconsolidated material, bedrock is principally the Laramie Formation, of Upper Cretaceous age (about 100 million years) . The maximum thickness of Laramie rocks penetrated by ESA's drilling was 155 feet in Boring C-4. In this borehole, both the A and B sands in the lower Laramie were penetrated. They were found to be very dense, but largely uncemented. In this and other boreholcs the typical sandstones were fairly uniform, fine to medium grained, sub-rounded, and uncemented to weakly cemented. They range in color from light brown to bluish gray and contain thin interbeds of coal, clay or siltstone. There are occasional zones of calcareous and ferruginous concretions. Sandstone beds typically exhibit moderate weathering (iron oxide staining) , and low to moderate hardness. Bedding is typically massive, but subhorizontal bedding (0-5°) can be seen where interbeds of claystone are present. The sandstone is saturated where it is present immediately beneath the alluvium of Crow Creek and at lower elevations on the proposed irrigation site, but is unsaturated along the southeast boundary of the land application area, near the ridge crest. The claystone and siltstone units range from light olive gray to moderate yellow brown and are variegated in many cases. Some of the clay- stone shows platey cleavage and grades downward to a more fissile shale. Thin lignitic beds were encountered in most of the Laramie section drilled at the site, but coal beds were found only in RD-7 and C-4. The maximum thickness of coal was five feet in RD-7. In the five core holes drilled, the claystone and siltstone units exhibit the spectrum of fracturing ranging from closely fractured near the surface to little to no fracturing 11-4 ESA Geotechnical Consultants II at depth. In three o he five holes, fracturing and athcring decreased to little or none at 20 to 30 feet below the bedrock surface. As an example, in borehole C-2 sandstone bedrock was encountered at 24.0 feet and clay- stone was encountered at 34 .0 feet. From 34.0 feet to 36.0 feet the clay- stone was closely fractured and then became little fractured, remaining in this state to the bottom of the hole at 74.2 feet. In borehole C-4, however, the claystone, siltstone, and sandstone core was closely fractured to 76.7 feet. Bedding planc partings may be a more appropriate term for the ' fractures found in this rock, as they are aligned along the bedding planes at 0-50. There were few to no steeply dipping fractures seen in the cores , which would preclude the downward movement of irrigation water through the claystone along fractures. It was also difficult to differentiate natural fractures from mechanical breakage of the core due to drilling, when there is no iron oxide staining or other sign of weathering along the joints. In summary, no intense fracture zones were encountered that would provide rapid seepage paths downward through confining shale layers or that would provide preferred horizontal seepage paths which could concentrate ground water in any particular area. Stratigraphically below the Laramie Formation is the Fox Hills Sand- stone, also of Upper Cretaceous age. This formation is relatively thin, and attains an average estimated thickness of 135 feet in the project area. The upper part of the Fox Hills consists principally of sandstone, while the lower part contains a greater proportion of sandy shale interbeds. It is somewhat difficult to differentiate between the lower Laramie Formation and the Fox Hills Sandstone or to assign a contact to them. In the field, they were differentiated primarily on the basis of stratigraphic position and rock types. Also, the Laramie Formation contains coal while the Fox Hills Sandstone, being iirine, lacks coal and contains some obvious marine fossils. As noted above, the lower Laramie sandstones and the upper 11 -5 ESA Geotechnical Consultants Fox Hills sandstone, where they are sviurated have historically been treat- ed as a single hydraulic unit, known as the L-F aquifer. Exploratory borings drilled for this investigation did not penetrate the full thickness of the Fox Hills Sandstone. Where Fox Hills rocks were encountered, they consisted mainly of very hard cemented sandstone (RD-2 and RD-3) with some claystone and siltstone (as in the bottom of C-4) . The sandstone encountered in drilling was fine to medium grained, sub-rounded, poorly graded and well cemented. It was so hard that drilling had to be discontinued. It ranged from medium dark gray, to yellowish brown in color. Horizontal bedding was observed in some of the samples (0-S0) , but for the most part, the unit is fairly massive. Claystone and siltstone beds were gray to yellowish brown, with scattered pelecypod fragments and sand and silt lenses. The Fox Hills does not outcrop in the site area, but is present immediately beneath the alluvium in the lower part of Crow Creek Valley, and probably subcrops beneath all or part of the storage reservoir site, as shown in Figure 3, Geologic Map. Stratigraphically below the Fox Hills is the Pierre Shale, which neither outcrops nor subcrops in the site region, and was not penetrated by the exploratory drillholes. From the samples recovered during coring operations , it was determin- ed that most of the claystone encountered was relatively tight and un- weathered, except for several isolated intervals scattered about the study area. It was also determined that the majority of the sandstones encounter- ed were dense, massive, sub-rounded to rounded, little weathered, non-cemented to moderately cemented, and relatively pervious. There were localized zones of concretions, but these were rare. Much of the sandstone encountered 11-6 ESA Geotechnical Consultants was uncemented, which caused caving of the borehole walls during the drilling operations. Within the Laramic Formation are thin seams of coal varying from one-inch to five feet (1"--S' ) in thickness. These seams did not appear to be continuous for any great distances in the study area. No regional trends concerning fracturing and weathering could be determined with the exception that the uppermost few tens of feet in the bedrock (immediately beneath the overburden) are typically more fractured along bedding planes and more weathered than the underlying units. However, the excellent core recovery which was achieved is further evidence that the rocks underlying the site are relatively unfractured, as recovery is usually poor insheared or complexly fractured rocks. 11-7 ESA Geotechnical Consultants , ITT . SITE I IYDROGEOLOGY (BEDROCK) A. Hydraulic Characteristics ESA investigated the hydraulic characteristics of the bedrock units underlying the site by performing tests in the boreholes both during drilling and after installing slotted pipe. Three types of tests were performed to evaluate field permeability (hydraulic conductivity) : falling head, slug tests, and pumping-in tests. Details of these tests and analyt- ical methods are explained in Supplement A, Results of the 61 tests are presented in Table A; where more than one method was used to analyze the test, field permeabilities derived from each are given. Reliable storage coefficients could not be determined without long-term pump tests. However, published data for the L-F aquifer provides a good estimate as noted below. Claystone, siltstone and shale. The data in Table A show that the field permeability of the fine-grained rocks is very low, even in the weathered zone. The highest field permeability value recorded for the fine-grained rocks under the site is 131 ft/yr in RD-7. It should be noted that the claystone permeabilities in RD-7 decrease rapidly with depth. This is due to the combined effects of less weathering at depth, and in- creasing degree of saturation as each test is performed. As the claystone and shale are wetted, they tend to swell, closing small fractures or openings, and causing permeabilities to decrease. Under the site, most of the shale and claystone is above the saturated zone, so tests were mainly performed in unsaturated rocks. The geometric mean of all test results in the fine-grained rocks was computed from the data in Table A. Where two or more methods were used to analyze a single test, a simple arithmetic average of the resulting values from different methods was used for input 11I-1 ESA Geotechnical Consultants N >, i-) G) •H 4-) ,-i r-1 to .n• .D 4-1 •4' : i CA C < <4 < c (-) (-..) < y 1 C_.' U UUUUU <1 Q CAfL) Q Q I) .O cd O •r 4-i f-+ r-4 0 R. a) r, r-I 4, 4• ) r--i N Cn O) U) O %.D d• U) 00 Q) '--I 01 • •ri fi I • 4: 4: 4: 4c 4: 4: 4: •1: -% • O r-i >, rH I r-1 M Cr) N to H N ri M N N CA CD r-i CD Cr) N N 0) to Cr) (I) N v-4 N '.D N h7 •H \ Q) I t1) t to r '.D VD N) '. I VD N r-i .-i r-i r--4 r1 to •ri .f] 4-) ri ill N I- I N fi Cd 4i ri N O C) x fi ri U (d . a • (d Z +-) I a) • 0 CSS • ,-4O •U Cd •H CO cd O 'W Ti ¢a.'D Ti I� 'V rd Ti Ti N Ti -o b -d d Ti Ti Ti Ti Ti Ti CC)) •H 0 •ri •ri •H •ri Ti •rr •,i •ri •r- •H •ri •ri Ti •H C) 1) .N. •ri •ri -H •r-I •H •ri 4-1 .-. E .--i E. E d EEEEHE E E C E •H O "O" ) 0) p an p E E E E E E fi >- 4-) .o V) .C cd ...d N .-C .1 ,c Cd ,c U Cl) U) U) U) U) U) C/) r .0 .0 4= O . C) rt a) U U O U O D U Q. U U O O •ri O = U O C.) O O O ¢ Cd ,s• V) MC!) C/) f-+ u) U) U) co O U) U) V) 5-I U) 4i C/) V) U) C/) CO (f) 0 Z < •H 3 U a 0 a� C!) U al p 1-i C:-) • H +) Ti Ti Ti T7 Ti "d -d TS Ti Ti Ti Ti Ti Ti 0 Ti -c3 -0 Ti Ti TS Ti Ti Ti Ti 'd E to cd cJ c3 cd cJ cd cd c0 cd cd d d cd cd cd cd al co d cs cd cd cd cd cd Cd H C) a) O C) CJ 4-1 a) O C) C) •I) a) CJ 0 4-) a) U C) O O O CJ O C) C) CJ O v G a) 4-1 .—1 F. �, x to _ . .-. 7.. N w .i In .i. ..i, = .... V) H a) C) a) a) MI 4i b0 bD bO CO E-" b0 bO CO tic E— bO O4 OO H bD 00 CO CO 00 100 oo OO 00 O0 O0'O0 b0 110 00 H Q O 0 0 0 0 d d d 0 r 0 0 d d d G 0 r_ 0 d d g d d c d K < I1] •ri •r4 •H •ri b0 •H •r-4 •ri -H b0-r1 •H •H b0•H •H •H •ri •r-1 •H •H •H •ri •r) •H •H •r1 •ri •ri 00 C) •--i .--4 ri r-4 r-i ri r-i r-I I--1 r-( ,--I O r-: .--I ,--•i ,-i r-I ,--4 -I r-4 r-1 r--I ,-4 ri r-I r-I r-4 rli r-i r-i I-4 r-i r-4 r-4 r-4 r-i r-4 r- r-i r-I I--i r-i r-I r-i r-t r-I r-I r-i r-I r-I r-I r-I v I r-I ri r-I r-I r-i Is-] >, cd cd cd cd C/) cd cd cd cd U) d cd cd U) cd cd cd cd cd cd cd cd cd cd cd ct cd cd cd U) 0- E- L7. LL L7.. U. U. U., LL LL. U, LL. Li- w w w w u. L'•. L7. U. LL, w Lt. Li- U. Lt. Lt. EH a) a T.3-1 H Lt. E +) O 4i N d• d• t1) U) kD Vr LO mU, 5-I . . . VD r- Cn • • - . - O 4a n r1 r-I N I-- I---. r--I ri d- r-I r-I to N O CD \D VD 'ct %D d' CD Vr ,f CD CD ct cf CT Cn a) to d• ,...0 M to V U) I- I- I- t+ vD 'd' d- N C1) d' io ..0 0) r--I r--I ,-i I- co Cn O) I- I- >, 4= U I I I I I CD I 1 1 I I 1111 111111111 111111 124 4-.) Cd r-i ,4 %D N N or) CD O CD U) U) Cn Cn I- I- ' d d d' d• d' d' d' r-i ' d d' d- O O < ¢.4i N N N N N M M M ri r-I N1 M r--4 r--i r-I ri r-i r-I r-I ri N to to U) U) I- I- O fi ,--7 ri r-i C U) II) V) 4-) •-) 4-) +) 4-) 4, 4-) •-) to V) V) N V) a) V) V) V) i-1 i-) i-) i-) HI HI r-i r-I Hi r--1 4-) V) ri -I r1 4) •ri •r1 •H •ri •ri F. V) In U U U IT, N V) In N to Ti >- \ >, \\\\\ d ,2 r-i 4-) 4-, 4-) >, >, >, r-I 4-) 4-) 4-I 4-1 i-) 4..) (d U U V) V) V) 'd T) 'd U V) V) V) V) V) V) o >, >, >, r_ s; r~ >, >, >, >, >-. >, g in V) r-i to V) V) r-I r-I cd (d Cd V) V) N V) V) V) V) V) V) V) V) V) V) r-1 r-1 Hi H1 r-4 r-i O V) V) O V) V) V) U U V) V) V1 V) V) V) V) V) V) V) V) V) V) V1 V) V) 000000 •rI 41 4-1 a) a) a) a) a) a) a) O a) a) a) C) a) a) a) a) a) Cll a) C) a) a) O C) a) C) a) N a) a) cd d •ri •H •r-I •H •H •r9 •ri •ri •r-I .ri •H •H •r-i •H •ri •H •H .H •H •ri •ri •ri •H •r1 •H •ri •H •ri •H •r-I Es~ 5 55 555555 55 35 5555, 5555 a 555555 o E 5-i fi k fi f-/ k fi k fi fi fi f-I f-4 k fi fi fi fi 5-I 5- fi fi f-I fi k fi fi f-i fi fi Lt. O cd cd cd cd cd cd cd cd cd cd d cd al cd cd d cd 0000000 cd cd (tI a cd cd -o a ..3 , l :l ) a ..aaraa ..) a ....Daa a aa ...aa ..aaa . 1 .-a .Daa .a ) C) S-4 a i.) U) C) ° r-i CA to d d HIN V) d' LOU) r-1 N to ti) r-i N I) d Lf) \D N O) Cn ,-i N to d U) U) C) r-i • r-I ,-I r-i ,-i r-i N N N N N N 14) N) t") V) d- d d- d V` d" d d ti to ix) to If) Lf•. Lf) o % 1 1 1 1 I IIIIII IIII IIIIIIIII IIIIII ... U U U U U U U U U U U U U U U U U U U U U U U U U U U U U C.) t • Q) 4-) .-1 •H 4-) ,ID r-1 If) cd •r4 O CL y rA < < < 'Z < CO rn U U U U R7 y < Q l < <4 < CYO CO cc) U U U U O 0 -4 •H w a r-1 0 O aL� cd >, 4-) 4, O ri >. to N NO VD N U) O CO est cx) h Co c0 r-1 O r-1 CD in O 00 O Cr) VD 'c N V 00 N 07 00 I-) •r4 \ M ri V) r-1 0) '.D d• h M <7' h 0) 0) N O V 00 O %.:) VD O ,--4 N h ,-4 ,--I d• VD N N •,-{ ,O +.) N N M ,--t h N r-4 ,-4 N r-c N 'ct ri ,-4 N N N CO F-4 CJ 44 .. - ., O O CO CD N CO r-i N :1.. E r-1 N Fi 0 a n • Q) 0 0 r--t U U r-1 ri r-t r-i d 'H •r4 cd •cd a U '-0 '0 '0 N 't3 'd '0 'Ci 'd 'd '0 '0 31) ' I 'd 'O '0 'C7 'C7 e) ,-0 •rl 0 •r1 •r{ •r, 'd 'H i7 •rl `0 0 •ri •ri •r1 •r4 •ri V) •r •r+ •r-4 •r4 •H •r-1 lx 0 4J .� E E Fi E O E O E Cc r~ E E E F-4 'r4 E E E E E E F-+ CO n x CO co U >, +-) r- 0 •0 cd 0 cd 'C U) U) .0 ,0 .0 .0 .C O Q) .-C .D .0 r0 0) U) U) (J) V) U) 0 r-4 O U U 0+ o U U = U U U U U C?, ,--40 0 0 U U U P, h cd •e. CO in 0 U) U) -44 U) CO CO Cl) U) U) O U) U) U) U) U) U) o v CD 0 Z. < U - 3 U 0 u, i--4 : 0 •ri H 0 0 0 (/) Co Co rC W }. Ci 'd 'd 'd 'C3 'd "d 'C I '0i 'd 'd 'd 'd 'd Ci d 'd L) 'd 'd 'd E- to td CJ 0 cd cd cd «S ca cd CJ cd cd c� c') cd cs cJ c3 cd, rd r cd cd - H 0) 0 0 4-) O 4-) O 4--) Q) 0 0 0 0 0 O 0 4' 0 0 0 0 0 0 0 4-) _0 0 0 0 d) ..-) H •-. •._ cn .T. to • cn x X .� ._, .l. - •,_ to H • to .... X X = :.. I-4 C Co 44 b) ro H bo H bo H bo bo bo bo t.-0bo b-1) be H bo bo CD bO bD bD bD H bD bo bD bO bo bo •-I < 0 0 i; 0 0 0 r; 0 0 0 0 0 0 0 0 0 0 0 0 G 0 0 0 - a •r4 •r4 bo •r-t bp•H bo'H •ri •H •r1 •r{ •H 'H •r1 bD•H •r4 •H •r1 'H 'H •H b4 •ri 'H •r-1 •r4 •H •H C) r-•I , .3 ,--4 ,-3 r-4 r-♦ r-1 r-4 r-4 r-t r-4 r1 0, ri r-4 r--4 .-4 .-•1 r-4 0 r-4 r-t ,--1 r-{ r-1 C•1, r-4 r1 .--1 r-1 r-1 r-4 r-1 r-1 r-4 ri r-4 r-•1 r{ 1-1 r-i r-4 E r-4 r-1 r-1 r-4 r-♦ r-{ r-I r-1 r-4 r-i ri r-4 E • L:] cd cd U) cd U) cd U) cd cd cd cd cd cd cd cd U) 0 cd cd cd cd cd cd U) cd cd cd cd cd 0 - a H 0. CL W FL CL CL D. CL C:-, CL D. CL a CL D. CL CL CL P. CL D. W. CL CL Cl.. w - H W. E 4-' o 0 44 h U) U) Ni ri r r I N 't 't ' d' '.D h 0) 0) 0) CO U) 00 U) O LL. • • N N N 0 44 ,-4 ,-4 r4 1/4.0 VD ,-4 1--I Co CO 00 Co h st d- est est CO 00 CO 00 ,-4 O O Co 0) O CD O 00 O h \D \D U) In in 00 00 r•1 N M 'Cr in VD Ct 'a' 'Cr U) '.0 h CO ri r-1 ,--t ,1 N V U) VD cr >-. ,_ U I I I I I I 1 I I I I I I I I I I I I I I I I I I I I I I I CL' 4) d Cr) ,••-4 ,-t h VD VD U) U) ri r-1 r•4 ,--4 ri ri t7 est est U) U) U) U) U) d' ..zr 0) U) U) U) Lin O . • 00 • 1--- h h h • e O t4 Nt r-t ri 00 00 00 00 00 00 est 'de cr h h h CO • O (D Cn r-4 VD VD N N N NT est est c est CO CO CO 00 Cr U) O 0 U) O 0 In cd cd C) 2-4 v) to to F4 F•4 0 O [d V) to to 0 O r-i ,-i H �U) >. >. >. ' v 'g ,14 4\j rr .. .�-1 r 44 r_4-4 9 9 4-) 4, •{-, •J CO 0 N V) V) •rc •r4 •ri •rt •{ .\ . V) V) V) > > V) V) V) V) O > >; tx ,--1to V1 O 0 V) to to to to V) to V) V) to V) to to to V) V) r--1 r 4 2---1 .-4 r 44 O U V) V) tn to in '-4 ri V) In V) V) V) V) V) (1) V) to V) V) to V) V) V) 0 U 0 0 U 0 •H 4-) r-i r-1 ,-4 r-1 r1 tl) 0 0) .-1 r-4 r-4 cd d O 0 0 0 0 0 0 O 0 0 0 0 0 0 0 a) 0 0 0 0 0 0 cd cd •ri •H •H •r4 •H •ri 'H •r4 'H •H 'H •H •H •H •r4 •H •r{ •H 'H •ri •ri •r4 •ri •r1 'H •H •ri •r{ � .� X00 = = 7r, g 5 5 5 3c5dc5dt55 5555555 555555 O t,= F•4 F-4 Fi >< >< >< '0 'C7 F-4 F-4 F•4 F-4 F-4 F•4 l-4 C-4 k 'ri k F1 f-4 F-4 'r-4 Fi F•4 F-+ F-4 F-1 k F-4 fa. O cd cd c3 0 0 o r-4 r--1 cd cd cd cd td cd cd d cd td cd c3 td d d cd rd cd cd cd cd cd -Cl ,-a .-) .-) CL U•. CL 0 O .-) .-a .---) .-a ,D .-a .---) .� ..-) ..-) .-D .-a .-a .-.1 .-] ..a .-a .-.) .--) ,-D ..-) .--) O F-I a 4-) to • C) ,9 N N .-4 N N r-4 4 r-4 N CO 'd- U) 'D h h O:) r-1 N CO ..zt U) \D \D r-4 N CO 'Cr V) ,.o O ,-4 r1 ,-t cV N N N) K) c1' "Cr 'Cr est rt 'Cr st d- d• In In U) to to U) U) c0 "J 10 ,D 1/40 0 r-4 • I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 0 r� r) C' CD CD r7 C) C) CD G] rO n ro (-- CO co co co CD co C] r) 0) C] C) CD CO C Cl CD O •_ %• G: C r`.:." ccl r. CY CC CC R: ri• cl rcl CC CV rte. r4 e4 ccl c! ry r a C.: CC fY C=l Ccl CC a CC i 11 I (N C) >, a) >, +) r-1 N a) +-) K4--) •^ a. r-/ •ri +J •H k fJ $a ,r• r1 Vi C in a) N •ri a) CO Cl) UUU COL) COU C_) cam UU < CO C) OA U) 4-) .O .r, i-) .C i- O (C 4-) V) ••-1 s•. •H Lu r-1 U) 0 r-, O i-) Cd ,i; a) Cd > u •N .c I-. 4-) a) bO C) • , c +- r-S- O •H ! in •ri b v n +) 0 r-i H ,-4 V) N Cd >, -x 4: •k 4 a) a) by +-) •N d- '.O '.O Le) ? +-) g C • •ri I•-1 • •k •k 4 •k 4' do 4 •Y U •ri H O r-1 >, Ci' N r-4 r-i N- n V) O) O N- M U) CO n N 03 r1 ••• In N •r-1 \ r•i M r I N M r•-I rI N M O N- a) ca •r-" ...c 4-) r-I ri N U) In re) 1-4 '0 U • F-• 0, C} C) r--. O C) 4-) r-I a) V) •i cd U i-) • Q) 3 •ri 0 0. U Lk +) O •ri a) O C) d •.C E cd cd • a) 4-) al O C) +) U Cn •r1 +-I .s: g r-i ca •ri r--1 i-) ca U 'Cy 'O 'ri a) .s= 1.4 .-0 g V) -H O c4 c24 e4 C_`' N c4 N c4 c4 ( O ••--{ --i '0 4- •ri >~ +) .C CO CO CO CO CO CO CO 0 0 Cl) p Pn C- E k 1; v) C_) r-4 •ri >,4-) CO M CO C!) U) CO U) CO U) U) U) Cl) H-. C) cd V) •.C r-i r--I U = = = = = a = = = = = = 1) 00-. O O 4-, ca +-I Cd L U) Cl) 0 Ei '-i '-4 CI-i* 0 Z < U 3 ro In O b0 I•-C +-) r-i C N H 0 v) r-i 0 •H ••-•1 Cl-) G En U) • 4-) 0 P.s--' 0 >-. 4-) b v '0 '(J 'O '0 -0 'O ' 'C1 -0 'O -0 •0 X 0 cd ,-`, E-• v cd Cd W (d rd (d cd ai cd al cd cd Cd Ce U O F. P.._c 1--C a) C) a) a) 0 a) O 0 0 C) a) C) C) U a) 4-) +-, .X '.0 00 •-) H = = .I." = •T. .i X x X . x X Cn V) b0 Cd 1-4 1-4 a) a) E '-4 '0 r-+ CO LH 00 b0 b0 b0 b0 b0 00 bO CO 00 b0 00 b0 b0 H H •H C) a) ..-• < 0 g C .^• P g g g C C P C'. g C P V) = > r1 ? 4-) ua •H ••--1 •ri •ri •ri •H •H •H •ri •H •••4 •-H • • •ri •r•C 00 b0 cd U a) a) U) c, E U) ri r1 r 1 r-i r-1 r-4 r-i r-i r-•-1 , 4 r 1 r, r-4 U •r-1 r•i '? „„r-i r-1 „„ „, r-i r-I '-i r--I ,, r-I ,, r-1 r-i r-.4 r--I ,, .C a) Cl) W Ca cd cd cd 0 c cd as W cd 0 c CO C!) ..a 3 r1 i P. F- U. LL., U. U U. U. U. LL.• U. U. U. U. U. U. .C 0 C) .a a) O 3 +-) 3 - • CU 1-i a-) cd .- 4-4 U) U C) 3 r1 U U. E 4-) O O •. cd •.C cd 0 O LH 0) 0) r-C (N N (N O O O 3 4-4 4-) 'C7 •ri , U. I-4 • - - • • r-•1 r-i (- •H4-) 0 4-4 ^ L) LP) U) LO U) If) CO CO 0)) Ci- 'd' ri v-i r-i .-4 r--I C) C) C) a.•H -0 a) N N M ' L!) Ln 0 ,O Vr r--1 r--1 r-i 03 CO no CO Cn E 1-I cd g C) >. ,z U i I I I I I I I I 1 I I 1 1 1 1 O O C) 1•i -ri +-) 4-) Cd N- N- n I-- N- O I— O n N- CO h %..0 --i ri r-4 0 CO .C Cd Ca,LH .:t. • Cs) • N- N- N- 4-) 3 0 U 1-i C) I-4 ,D ,O ,O VD. �D �D N Q) 4-) a) CO r-1 r 1 ri 1-1 r I M r1 ,-4 M CO %--I kC) a] +) N 3 Cd Cl) cd U ) P V) O 0 '0 +i '" N r-♦ >, In U r-i In 'O •- b0 U '--C a) .X 1; •ri cd 4-) U •ri L4-i •H O C) U Cd O '0 LI-1 +, C r-4 1-4 f-1 cd •r1 1-i • H N ni N CA •H CTS (1) (1) U .-Y •-) +-) 4-) 4-) i-1 +- 1-) +) +- 4-) >, - 'U r-4 V) •I-) LN Fi 1i cd U v N N N N v) v) ) v) v) C) r U C) cd O O 0 O 7, >, }, >` >, >, }, >, >, >, >, cd C i k 0 k C r-1 r-4 r-i r--I r-I "-I r-{ r-I r-i r-i r-i 0 V) V) V) V) Cl) .. F-1 'ri O U U U U U U U U U U U U V) (/) in vi C) +-) •I-) a) U) a) •H 4-) a) C 7, v) cd .O 'D •1--) +-) t; a) U a) a) C) U C) C) C) U) 0 C) O U) C) C) U O a) O U N E i-1 cd Cd -H •ri •r( •ri •ri •ri •H 'H •H •H •ri •H •ri •H •ri •ri 0 •N >, E •ri •H cC C c03 c3 c ccd U L � r-4 d) Ir) a a) O E $-1 ,1-i S-i k 1-i ti 1-i I'-1 i-i k 1-1 !-I 1-1 I-+ 1-1 T-i O r,r-1 U .0 •ri P +-) X) cd U O rd Cd (d cd cd cd cd cd cd Cd cd cd cd cd cJ cd +-) cd -H 4-) •ri U v) "C .-a r-] ..a ..1 a a ..-a r-7 r-7 r-7 I-7 r-a .-a ra „a .-O C) in ri N 11 'O N U U .) ,—I T) U >, C) 7,•H Cd 1-4 rd C II N r-I +-) r-1 U U GI. .C Cd H In r-1 In r-1 •ri r-s r", r-'-.. r'Th V) C1) 4-' cd C) 0 Lj-4 i; •ri 1/) V) V) V) 4-) V) >, 1-1 4-, .C LI-1 0 4-) i-1 1~i 1-4 1-4 II II V) +) C) C) 3 •ri 4-) V) • cd cd .C cd .C cd .C >,•-1 >, g •--4 v 4-) v) O O r-i r-i N Cr) Cf NJ- in U) CD S. (— 00 ,--i N N N .) V) r-1 •ri r-i C) Cd 1-4 Cl cd U) H •4 W u') CO •p V) V) U V) U (.)) > 0 •ri 4—) H Ci r-i Cr N V) v v v v C) 4.) r--1 N ac U) N. N N 1— N. N. N N. n N. N- N 00 c0 00 00 0 r-1 1 I 1 1 I 1 1 I I I 1 1 1111 Z. c 0 C-) c o CO o C_) C.O C7 ra n ra O cc m Ca c-a a. '''• e4 e4 Ne4Nc a: c4 c4 c4 cY cL c4 c_ r4 e4 L I into the geometric mean calculations. For tests in claystone, shale and siltstone (30 tests) the mean value was 10 ft/yr. The field tests performed provide data on the horizontal (along bed- ding) field permeabilities of the rock, since the bedding is oriented approx- imately perpendicular to the drill holes. This is the preferred flow path within the rock mass, and permeabilities in this direction will be higher than in any other direction. As a result of interbedding and absence of vertical fracturing within the Laramie Formation, the vertical conductivity (Kv) will be much less than the horizontal conductivity (Kh) . At this site, Kv is estimated to be at most 1/10 Kh, and may be as little as 1/100 Kh. Sandstone and coal. The test results in Table A show that the field permeability of sandstones, while generally greater than the fine-grained rocks, is highly variable. Some of the lowest field permeability values resulted from tests in relatively thin sandstones , stratigraphically above the L-F "aquifer" zone. Correlation of units from borehole data showed that these sandstones were not always laterally continuous, and this may be one reason for their lower permeability. Test results in the lower Laramie and in the Fox Hills Sandstone (L-F zone) showed generally higher field permeabilities, ranging from 32 ft/yr to 3,141 ft/yr. The range of field permeabilities reported for the L-F aquifer in the Denver Basin was recently summarized by Romero (1976, p, 42) who suggested a probable range of 10-35 gallons per day per foot2 (488 to 1,708 ft/yr) . Most of the sandstone test results at the site fall into or below this range. Extremes at both ends of the scale are probably attribut- able to inherent errors in test procedures or to unusual conditions affect- ing the test, such as caving of the borehole walls. Geometric means of the 111-2 [;SA Geotechnical Consultants sandstone permeability data were calculated using two different ways : 1) the data from all tests (multiple values for a given test interval were arithmetically averaged) , and 2) only those test data obtained under sat- urated conditions . These averages arc 118 ft/yr (31 tests) and 303 ft/yr (16 tests) respectively. As mentioned above, it is important to remember that test results represent only horizontal field permeabilities. Vertical field perme- abilities in the sandstone are probably on the order of 1/10 to 1/100 the horizontal values. This affects seepage rates, since water must move verti- cally downward before it can travel horizontally within the bedrock. Storage coefficients for the L-F aquifer have been reported by Romero (1976, p. 45) to range from 0.00012 to 0. 21, with an average of 0.0004 under artesian (confined) conditions and 0. 15 for water table conditions. Although it is theoretically possible to determine storage coefficients from slug test data using the method of Cooper et al (1967) it is not a very reliable method because small changes in the match points selected result in large changes in storativity. The lack of site specific data on storativity is not of great importance however, since the method used for seepage analysis assumes steady state conditions. B. Permeability Distribution The interpretation of regional geologic data has been combined with drilling at the site to determine what rock types underlie the alluvium which covers the area. As described above, bedrock beneath the site consists of shale, claystone, siitstone and sandstone of the Laramie Formation and Fox ]-fills Sandstone. Water tests performed for this investigation show that the most permeable bedrock units are the sandstones in the upper part of the L-F aquifer zone. Based on regional and site specific studies, the approximate subcrop of the L-F zone beneath the site was delineated, 111-3 ESA Geotechnical Consultants and is shown on the geologic map, Figure 3. As this figure illustrates, bedrock subcropping beneath the storage reservoir and southwestern part of the land application area, is mainly sandstone, and in the northeast part of the land application area , is mainly shale, claystone and siltstone. This means that seepage rates through the bedrock will be less in the northeastern part of the project area. Water seeping downward will have to pass through the low permeability shales and claystones before reaching laterally continuous sandstone beds. • C. Existing Water Levels In order to evaluate the seepage potential , it was necessary to determine the direction aid slope of existing hydraulic gradients in the project area. To do this, boreholes were completed as monitoring wells (piezometers) within the bedrock, and measurements of static water levels were made after testing was finished. As would be expected, water levels reached equilibrium most rapidly in boreholes where the higher permeability tests were recorded. In two borings, RD-6 and RD-7, water levels dropped so slowly that it was not apparent until after drilling and testing were completed, that the saturated zone had not been reached. To supplement water level data from the 13 ESA boreholes, measure- ments were also made in one abandoned well and ten stock wells with wind- mills on and around the site. Water levels measured in stock wells must be used with some caution, since, if they have been pumping, measured levels could be somewhat lower than static levels. In most cases measurements were made on days when there was not very much wind, so that data are probably reliable to within a few feet. Also, reference point elevations were not sur- veyed and elevations were estimated from topographic maps (10 foot contour intervals) . 111. 4 ESA Geotechnical Consultants Figure 4 is a contour map of the pot ent iometri c surface within the Laramie and Fox Hi]1s bedrock, prepared from water I evel measurements taken in July 1980. Two windmill measurements are not shown; one was in section 14 5N 63W and is off the map area, but was used in drawing the con- tours. The other was in section 11, 6N 63W and is completed in a deep formation below the L-F zone. Figure 4 shows that the regional hydraulic gradient is to the southwest, but that a ground water "nose" has developed in the low hills southeast of Crow Creek. This feature is probably the result of direct recharge into the bedrock from the saturated alluvium of Crow Creek, especially in the irrigated areas around Barnesville. Drilling and testing of the bedrock formations indicate that where the L-F sandstones are saturated, they are generally unconfined, so water levels in the bedrock are generally about the same as these in the over- lying alluvium, where both are saturated. During operation of the project, a ground water mound will probably develop beneath the irrigated area, changing hydraulic gradients in and around the site. The dimensions of this mound will depend on the operation of the project, especially the location, and amount of water applied as well as hydraulic parameters and climatic factors. Water level changes in monitoring wells will help to determine the lateral extent and configuration of any ground water mound which develops. 111 ESA Geotechnical Consultants • • • • • • r T „ ;11 • EXPLANATION Data points measured in July 1980: • Observation well installed by ESA, 1980. ■ Existing well. , • --" > ° — Approximate contour on potentiometric surface in Laramie Formation and _• Fox Hills Sandstone. Contour interval 10 feet. i• SCALE 0 5000 I rill feet 7 ESA Geotechnical Consultants Fort Collins Colorado Greeley 2C1 Wastewater Study WATER LEVELS IN LARAMIE FORMATION AND FOX HILLS SANDSTONE , JULY 1980 Checked by-d'':r4. 4. Date B,'4 Bo Project No Figure No Approved by Date , 2189 4 IV. SEEPAGE ANALYSES (BEDROCK) A. Land Application Area Very conservative seepage analyses were made, based on field test data, to determine the maximum seepage losses that could reasonably occur through the bedrock units resulting from irrigation. It was assumed that vertical percolation would not be hindered by the anisotrophy of the sand- stone, nor retarded by shale or siltstone layers. This is extremely conservative because the vertical permeability of sandstones is normally less than 0. 1 of the horizontal permeability, and the shales and siltstones have very low horizontal and vertical permeabilities. Another conservative assumption made was that water percolating downward from the irrigated areas would immediately saturate the presently dry rocks between the water table and the surface. Actually this would take considerable time, and saturation to the surface would not be permitted because a zone of aeration would have to be maintained for the growing crops. Development of a seepage mound in the bedrock units will induce flow of seepage water away from the land application area to the northwest, south- west and southeast by developing slopes in those directions. This seepage mound would dissipate slowly during the winter season and rebuild during each irrigation season. For purposes of seepage analyses it was assumed that the water table rises to the surface, sloping westward toward Crow Creek Valley. To the southeast and north, where the land surfac3 rises, the slope of the mound was estimated as the slope between the ground surface at the edge of the irrigation area, and the present water elevation at a dis- tance of at least several thousand feet from the site. Because there are few if any open fractures, the only rock types capable of transmitting significant amounts of water arc the sandstones of IV-1 ESA Geotechnical Consultants the L-F aquifer (or similar sandstones in close proximity) . Therefore, it was assumed that most of the flow in the bedrock would he transmitted lat- erally by the first sandstone layer encountered by the downward seeping irrigation water. Field permeahilities were assigned to the upper sandstones based on the range of values obtained from field tests at the site and based on published data for the L-F aquifer in the Denver Basin. Because the per- meabilities of the sandstones vary greatly, upper, intermediate and lower case values were assigned to provide a range of values for seepage amounts. The values used were 2,000 ft/yr, 1,150 ft/yr and 300 ft/yr, respectively. The high range permeability value was selected using the maximum permeability of 1,708 ft/yr reported by Romero (1976, p, 42) for the L-F aquifer, and the highest test results recorded for sandstones at the site. Thu low range perifeability of 300 ft/yr represents the geometric mean of all the data in saturated sandstones at the site, and is probably the most reliable average permeability value for the L-F zone as a whole, beneath the site. Romero (1976, p. 42) reports aquifer test and pump test values for the L-F aquifer ranging from 0. 1 ft/yr to 1,708 ft/yr and suggests that the more probable range in the Denver Basin is 488 ft/yr to 1 ,708 ft/yr. A value of 300 ft/yr is slightly below the low end of Romero's estimated range, but is much higher than the lowest test data reported by him. The intermediate case was computed with a permeability value of 1,150 ft/yr, the arithmetic mean between 2,000 and 300 ft/yr. The amount of bedrock seepage resulting from irrigation was calculated using Darcy's equation, multiplying the permea- bility times the hydraulic gradient (slope of the seepage mound) times the cross-sectional area of the upper sandstone layer for the seven month irri- gation season. This is also a conservative computational method resulting lv-2 ESA Geotechnical Consultants E in higher than actual amounts because the hydraulic gradient increases with time during the early part of the irrigation season, reaches a peak at the end of the season, and slowly dissipates (declines) . Therefore, the calcu- lations represent peak flows for each permeability assigned. Further, it was assumed that all 22 pivot sprinkler systems will have to be used to dis- pose of the water, which may not be the case. The computations were performed by calculating the flow through each of six zones along the site boundary, as shown in Figure 5. (Computations are provided in Supplement C) . No flow was calculated toward the storage reservoir, because the seepage mound around it will act as a barrier to flow in that direction. Gradients used for the upper and intermediate cases were calculated assuming saturation occurs all the way to the surface be- neath the irrigated area. For the lower case, saturation to within five feet of the ground surface was assumed to take place, This is more realistic, since there will have to be a zone of aeration near the surface for success- ful crop growth. Results of seepage calculations are summarized in Table B. These calculations indicate that maximum bedrock flow westward and southward (Zones 1, 2, and 6) would be approximately 200 acre-feet per year. The intermediate case and lower case estimates of flow are 112 and 28 acre-feet respectively. Most of this water would probably discharge from the bedrock units into the Crow Creek alluvium along an area at least five miles long. Part of this water will probably be intercepted by drains, but it is assumed that most of it would flow beneath the interior and perimeter drains of the land application area. However, this water would be available as ground water for use in the Crow Creek drainage. The effect of this flow on the existing water table would probably not he noticeable in the valley area because it would be widely dispersed. lV-3 ESA Geotechnical Consultants • , f 1 • EXPLANATION . • r tioc`e\ Seepage zones- Incremental zone used in seepage analyses for the • land application area -=T� • .�RD-I ' f5RD-2, SCALE 0 5000 feet • • ESA Geotechnical Consultants Fort Collins Colorado Greeley 201 Wastewater Study LOCATION OF SEEPAGE ZONES Checked Date ,P ij�'8o Project No Figure No Approved by =y . 7"I-t Date 8,`-ice c' 2189 5 TABLE B Summary of Seepage Estimates (Land Application Area) Upper Case Intermediate Case Lower Case Zone 1 154 88 22 Zone 2 34 19 5 Zone 3 62 36 9 . Zone 4 45 26 6 Zone 5 256 147 37 Zone 6 8 5 1 Totals 559 321 80 Because the sandstones are flat-lying and because of seepage mounding, there will be some seepage losses to the north and southeast (Zones 3, 4 , and 5) . These flows are conservatively estimated to range from 50 to 360 acre- feet per year. Therefore, the total bedrock flow away from the land appli- cation area is estimated conservatively to range from approximately 80 to 560 acre-feet per year. This is only 1 to 4 percent of the total applied water which is not significant in an overall water balance. However, because of the very conservative nature of the analyses , actual seepage rates will probably be at or below the lower part of the estimated range. B. Storage Reservoir Very conservative seepage calculations were performed to evaluate seepage potential through the bedrock underlying the storage reservoir site. (Calculations are found in the section following the text) . The method used was similar to that described above for the irrigated area.. Gradients were established by taking the difference between the proposed pool elevation of 4,635 feet and the present water elevation along the north, west and southwest edges of the reservoir, and dividing by the length of the average seepage path. Seepage to the east is not expected to occur be- cause the gradient will be towards, rather than away from the east edge of the reservor. The following conservative assumptions were used in the analysis: 1. Reservoir was at full pool elevation (4,635) 12 months of the year. Actually, the reservoir level will gradually rise during the winter months and gradually fall during summer and fall when land application is occurring. 2. A 50 foot thickness of sandstone was used in computations. This is the estimated maximum which could be present. In IV-4 ESA Geo-technical Consultants s addition, the sandstone encountered in RD-3, at the southwest corner of the reservoir, was well cemented and very hard. It is likely that the horizontal field permeability of this material is low, perhaps even lower than the 300 feet per year used in the lower range of seepage estimates. 3. Anisotrophy was ignored. This is extremely conservative because the vertical permeability of the sandstones is normally less than 0. 1 of the horizontal permeability. 4. No lining of the reservoir area was assumed. The addition of lining material would increase the length of seepage paths , and therefore reduce total flows through the subsurface. The results of seepage calculations suggest that annual seepage losses through the bedrock would be less than 4 percent of storage capacity, assuming full storage (5,500 acre-feet) all year round. Since full storage will not be used most of the year, annual bedrock seepage will probably be less than 1 to 3 percent. 1V- 5 ESA Geotec_hnical Consultants • V. BIBLIOGRAPHY American Geological Institute, compiler, 1976. Bibliography and index of Colorado geology 1875-1975. Colorado Geological Survey Bulletin 37. ARIX, 1979. Wastewater facilities planning, report no. 1, Evaluation of alternatives for Greeley, Colorado, 2 vols. Bouwer, Herman and Rice, R.C. , 1976. A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially pen- etrating wells, in Water Resources Research, vol. 12, no. 3, pp. 423-428. Briscoe, H.J. , 1972. Stratigraphy of the Fox Hills Sandstone with some comments on its suitability as an aquifer, Greeley area, Weld County, Colorado: Colorado School of Mines M.A. Thesis. Brown, R.H. , 1963. The cone of depression and the area of diversion around a discharging well in an infinite strip aquifer subject to uniform recharge, .in Bentall, Ray, ed. , Shortcuts and Special Problems in Aquifer Tests: U.S.G.S. Water Supply Paper 1545-C, pp. C69-C85. Colton, R.B. , 41978, Geologic map of the Boulder-Fort Collins-Greeley area, Colorado: U.S.G.S. Miscellaneous Investigations Series Map I-855-G. Cooper, H.H. , Jr. , Bredenhoeft, J.D. and Papadopulos, I.S. , 1967. Response of a finite diameter well to an instantaneous charge of water, in Water Resources Research, vol. 3, no. 1, pp. 263-269. Edgerton, K.G. , 1973. Groundwater quality and aquifer thickness in the Eaton and Greeley area, Colorado: Rocky Mountain section, 26th annual meeting, Geological Society of America abstract, vol. 5, no.6, p. 478. Hampton, E.R. , Clark, G.A. , and Mc Nutt, M.H. , 1974. Map showing availability of hydrologic data, Boulder-Fort Collins-Greeley area, Front Range Urban Corridor, Colorado: U.S.G.S. Miscellaneous Investigations Series Map I-855-C. Hershey, L.A. , and Schneider, P.A. , Jr. , 1964. Ground water investigations in the Lower Cache La Poudre River Basin, Colorado: U.S.G.S. Water Supply Paper 1669-x. 1972. Geologic map of the Lower Cache La Poudre River Basin, North Central Colorado: U.S.G.S. Miscellaneous Geologic Investigations Map I-687. Hillier, D.E. , and Schneider, P.A. , Jr. , 1979. Depth to water table in the Boulder-Fort Collins-Greeley area, Front Range Urban Corridor, Colo- rado: U.S.G.S. Miscellaneous Investigations Series Map I-855-I. Kline, M.A. , Jr. , 1955. The structure and stratigraphy of Cretaceous rocks in Northeastern Larimer County, Colorado: Colorado School of Mines M.S. Thesis. V-1 ESA Geotechnic_al Consultants Major, T.3 . , Kerbs, Lynda, and Pcnley, R.D. , compilers , 1975. Water level records for Colorado, 19/1 -1975 : U.S.G.S. in cooperation with the Colorado Department of Natural Resources, Colorado Water Resources Basic Data Release no. 37. Papadopulos, I.S. , Bredenhoeft, J.D. , and Cooper, H.II. , Jr. , 1973. On the analysis of slug test data, in Water Resources Research, vol. 9, no. 4, pp. 1087-1089. Schmid, W.E. , 1967. Field determination of permeability by the infiltration test, in Permeability and Capillarity of Soils, ASTM, STP 417 American Society for Testing and Materials. Schneider, P.A. , Jr. , and Hershey, L.A. , 1961. Records and logs of selected wells and test holes, and chemical analyses of ground water in the Lower Cache La Poudre River Basin, Colorado: Colorado Water Conservation Board, Colorado Ground Water Basic Data Report no. 8. 1962. Records and logs of selected wells and test holes , and chemical analyses of ground water in the South Platte River Basin in Western Adams and Southwestern Weld Counties, Colorado: Colorado Water Conservation Board, Colorado Ground Water Basic Data Report no. 9. Schwochow, S.D. , Shroba, R.R. , and Wicklein, P.C. , 1974. Atlas of sand, gravel , and quarry aggregate resources, Colorado Front Range Counties : Colorado Geological Survey, Special Publication 5-B, pp. 218. U.S. Bureau of Reclamation, 1951. Permeability tests using drill holes and wells: U.S.B.R. Geology Report no. G-97. Wacinski, Andrew, 1979. A hydrogeologic investigation of the Crow Creek Drainage Basin in North Central Weld County, Colorado: State of Colorado Division of Water Resources, Office of the State Engineer, Denver, Colorado. Open-file report August 1979. Walton, W.C. , 1978. Comprehensive analysis of water table aquifer test data: Ground Water, vol . 16, no. 5, pp. 311-317. Weist, W.J. , 1964. Hydrologic data from parts of Larimer, Logan, Morgan, Sedgwick, and Weld Counties, Colorado: Colorado Water Conservation Board, Colorado Ground Water Basic Data Report no. 16. 1965. Reconnaissance of the ground water resources in parts of Larimer, Logan, Morgan, Sedgwick, and Weld Counties , Colorado: U.S.G.S. Water Supply Paper 1809-L. V-2 ESA Geotechnical Consultants SUPPLEMENT A FIELD EXPLORATION AND TESTING I_ SA (col V( Ilnik al Consultants SUPPLEMENT A FIELD EXPLORATION AMD TESTING The field exploration and testing phase of the project commenced July 12, 1980, and was completed July 22, 1980. ESA personnel involved in the field work included Barbara L. Turner, Sally W. Bilodeau, Alan M. Israel, and Debbie A. Lienhart, The field work consisted of a one day field reconnaissance and the drilling, logging, sampling, and permeability testing of eight rotary and five core holes ranging in depth from 56.0 to 167.0 feet (See Figure 1, in text, for hole locations) . A. , Drilling Two drilling rigs were simultaneously used on site: a CME 55 for coring, supplied by Custom Auger Drilling of Denver, and a Failing 1500 for rotary drilling, supplied by Lesh Drilling Co. of Ault. The drilling method utilized for the core holes (C-1 through C-5) was to auger through the alluvium, to set casing sufficiently into the bedrock to permit coring below, and to core the bedrock with PQ-3 wireline equipment. The drilling method utilized for the rotary holes (RD-1 through RD-8) was to drill with a carbide tricone bit through the alluvium, using water or drilling mud, to set casing sufficiently deep into the bedrock to permit air rotary drilling below; and to air drill into the bedrock with a carbide triconc bit and air/ water mixture (predominantly air with little water) . Drilling additives such as bentonite, lime, or revert were used only when necessary to prevent loss or caving of the drill holes, and when additives were used, the holes were flushed and cleaned prior to any water testing. A detailed log of the materials penetrated during drilling was prepared in accordance with the ESA field manual for each hole. A-1 ESA Geotechnical Consultants Samples were collected from all of the test holes drilled. They consisted of core samples from the bedrock in the core holes (C-1 through C-5) and bag samples of the cuttings from the bedrock in the rotary holes (RD-1 through RD-8) . Core samples were preserved in the field by wrapping with foil and muslin, and waxing with paraffin. All samples were trans- ported to ARIX Engineers of Greeley for storage in their facility at 2021 Clubhouse Drive. Electric, spontaneous potential, and natural gamma geophysical logs were run on all of the holes except RD-3 in which only gamma could be run due to a caving problem. Additional geophysical logs such as neutron and gamma-gamma were run on some of the holes to evaluate their usefulness in correlation of geologic units. All test holes were converted to observation wells by installing casing with selected slotted intervals. Two-inch diameter PVC casing was installed in the core holes and four to five-inch styrene casing was installed in the rotary holes. Bedrock strata of interest (generally the more permeable layers) were isolated by placing slotted PVC or styrene through the zone of interest and isolating it by sealing above and below, as necessary, with bentonite pellets. The wells were gravel packed around the slotted section and sealed with bentonite cement grout to the surface to form open-well piezometers. A protective steel pipe was set in the cement at the top of the hole to prevent damage to the plastic casing. B. Field Permeability Testing Three types of tests were used to determine field permeabilities: falling head tests, slug tests and pumping-in tests. Because the sedi- mentary rocks underlying the site are horizontally bedded, permeabilities determined by the three field methods are representative only of horizontal hydraulic conductivities. In bedded rocks, the hydraulic conductivity perpendicular to bedding (Kv) is generally less than that along bedding planes A-2 ESA Geotechnical Consultants _ (Kh) because the finer grained beds retard vertical flow through the rock mass, and because the orientation of grains in the rock favor flow parallel to bedding. In the site area, it is estimated that Kv is on the order of 1/10 Kh to 1/100 Kh. Falling head tests were performed in the bedrock as boreholes were advanced. Testing was most frequent in the boreholes located in the land application area. These tests were performed by flushing and cleaning the hole, filling with water and recording the water level drop over a one hour (or longer) period. Some tests were continued overnight or for several days. After drilling, water levels were measured periodically until static levels were observed. Additional falling head tests were performed after installation of piezometers, in order to test specific zones within the formation, Two methods were used for these tests : 1) Filling the pipe to the top with water, and 2) placing a watertight, weighted pipe below the water surface to pro- duce a rise in water level by displacement of the water with the weighted pipe. For both methods, water level drops were measured using a pressure transducer instrument with digital printout manufactured by UOP Johnson of Minnesota. Analysis of falling head tests was performed using methods of the U.S. Bureau of Reclamation (1951) and Schmid (1967) . When the interval A tested was below the static water level, the formula used was K = FT where K = coefficient of permeability T = basic time lag (computed from water level decline) A = shape factor determined from casing diameter, hole F diameter and length of open hole below casing For test wells above the saturated zone, the formula used was A-3 ESA Geotechnical Consultants I K = 1//c Qrl where Q = rot and Q = flow in cubic feet per minute c = unsaturated conductivity coefficient for a particular head and hole radius r = hole radius in feet h = mean head during test AH = change in head for a change in time,, t. For tests just above the saturated zone or where most of the test section was in the unsaturated zone, a slightly different formula was used: K - 2Q (c + 4)r(Tu + h-A) where K, Q, r and h are defined above and c = saturated conductivity coefficient for a particular test section length and hole radius Tu= depth to water - depth of hole + h A = length of test section, in feet Two additional types of tests were performed in some of the cased wells (piezometers) . In RD-6 and RD-4, a pumping-in test was performed. This test consists of recording water level changes while adding water to the well at a constant rate. The pressure transducer enables rapid changes associated with the early part of the test to be detected and recorded. The results of the pumping-in test are analyzed in the same manner as a conventional pump test, using ( Theis ) curve matching procedures, or a semi- log plot of water level rise vs. time (Jacob plot) . The curve matching analysis is based on the Theis formula: T = 114.6 W(u) where T = transmissivity in gpd/ft W(u)= well function s = drawdown (or water level rise for pump-in test) in feet at match point A-4 ESA Geotechnical Consultants A Once T is determined, permeability is calculated by dividing transmissivity by the thickness of the zone tested (K = T) . The Jacob method is based on m the formula T = 264 Q As where T = transmissivity in gpd/ft Q = flow into or out of the well, in gpm 'Is = change in water level for one log cycle on the time-drawdown plot. In boreholes C-1, C-2, C-3, C-5, RD-1, RD-2, RD-3, RD-4, RD-5, RD-8, slug tests were performed, using the weighted watertight pipe to produce an instantaneous water level rise or drop. These test results were also analyzed using a semilog curve matching procedure. Curves used were those published by Cooper and others (1967) , Bouwer and Rice (1976) and Papadopulos (1973) , for both confined and unconfined conditions. The slug test analysis consists of plotting H vs. log t, in seconds, 0 where H = the initial head increase or decrease due to adding or ° subtracting a volume of water from the well H = the difference in head at any time, t, between •H and the static water level; thus at the beginning of the test H=H0 For Cooper and others (1967) and Papadopulos (1973) the formula used is: Tt = 1 ____2 r w where T = transmissivity t = time in seconds at match point rw= radius of the well casing K is determine by the relation K = m where m is the length of aquifer tested. A--5 ESA Geotechnical Consultants The Bouwer and Rice (1975) curve matching method uses the same data plot ( vs. log t ) but a different interpretive formula: H 2KLt = 1 In(Re) r 2 r c w where K = average hydraulic conductivity over screened length L = screened length R = effective radius (a function of the geometry of the test; e . determined from special diagrams in Bouwer and Rice) r = radial distance between the undisturbed aquifer and the w well center rc= radius of casing in which water level changes A_6 ESA Geotechnical Consultants 1 SUPPLEMENT B BORING LOGS AND GEOPHYSICAL LOGS I S/ C :'oi 't t1nE < <, I (TonSUI1ant CARTkk SCIENCES ASSOCIATES PILLING AND SAMPLING LO PROJECT_?I ft.ols•,f1!DATE DRILLED 7// i(5'D h7/?° HOLE NO. G�1 "_OCATION Sw SW -Se( 3D 'T_5 tO e. 6 3\ro GROUND SURFACE ELEV. 1/6q5. (1“'-Away) - �� r>7 L PIC�U.�ver'AC e DRILLING CONTRACTOR i-urf,."^ /�u;�r LOGGED BY DEPTH TO GROUND-WADER 20. 7 TYPE OF RIG C M E 5(-- HOLE DIAMETER r'a3 .(c" ' HAMMER WEIGHT AND FALL nj/ /4 SURFACE CONDITIONS yrc(ccy P/4rh WEATHER Su hny1 )20"1"- DEPTH CLASS. FIELD. DESCRIPTION SAMPLE MODE REMARKS 0-0 t�L6u,v=I:-rh /� T C(1 n _ r..{f� J. �ler 4tiIlit.' J1' o.J— f7• vpr.)9: 1"100 broun�iit.3 : /J•y n- )I� 5eYSn' wtib t � 1.•nt �-..odS ( STr v -r,n= - coarse. /u;r,e49 6•n1( •'+-•.q I wrp 5 ) „rib,/ Jfc�++ 4.c5cr £u .1 n,jular- q� L-t<'1 1lcrl:.5 J1 fu arri v Po0P1y ,rode( ►y (SI+s of ro•t r or'4r.iL6, • -r 6• o • • D • • • • • Jo-u J r,•a color chp' -- /_)9 h vuve_ br.S.n (SYS/6)o fr*,ed nP.(1 m.ow", 12-.0 • 19.0 1 - Il6•D _L_13RAt'11E roel"1R-rionl 17.0 2.$ S At(5.1.1"1"c_.LiSty yetfew t0 17. _N17—wealbered? be<Q,n'ck SS t'o.t alive brown(5 ) 4.5.10 low-^^v4 In;•,� - "Vi (15.4.)`0 n.- ,w,‘d '' ;u„b PoundP((l tc.rly 3r -Jed send) t•[,^cr cr„�e sc�..-(, 7/15/P /)(r,;d va (,ie q:v.v o '✓ W•;I CP..+.Cntacl nn@;' Dew/ hicrt. , fc'r. r o•S�. •1 ( Scf 4� 1 I'hyj,cal coed . .nl I,.fle 4-. .o lroc•ur,-� — (-orroy :vv lib a Cprb,yC bla ct'Ay/ huran�st, Siri.jthteacerf For wet, r--/ SHEET / [-- — - cryr.l )orei)J rori a iv ISu •OF e• • • PROJECT 2..1 F:1CrPrley ≤P ncp IInojy(•a _DATE DRILLED 7////x'1) - 2//7/(3" HOLE NO. C• —I . DEPTH CLASS. FIELD DESCRIPTION SAMPLE 1 MODE REMARKS 1 S �'J.v— "a2 E :,HT�D,-/or✓c- c c or,,,a) d / `6 1 rushee( 3-1/2,7f Steel Z — c.a s i n9 I-0 2 I.o _ — -- - 2-1.0C ,O:1,J?-ict tir �, 4 Crnr' Yrtle-f and Snow�l .2-7.•(1 ..-..— - ' - 1.> ,r-"44-44-- -` T W 5-) FfOic miea5ares• ZS.-7 -- 1--D CO(e Ietr'.ev,eeL - - f •n- hore- )-1I•0 — 1.7 w.sh caw..., - r 1• — Z6.D 26.o- 32-g Sandstone — )0./4_ - )0./4 Z�.� — WeII cc-1-.- n ref 10:.39 . ti P Core4 g.uwe{- ..,.d S.rr.o.-'' -I•• - _ S y m2`""f • - Y .... Hole .rr.easare, 30.8 8 r W 5-2 _ Z .D _� O core retrieved • .- Well Ce....ent-es( 54 nrlj lone- ' —.L. ' . 1A4,L .t art"d 6)' C .t-t?"g t,•�e • aid S+.•a11 p.c.: Fc....c.•c/ oa. I —. CPre c....11/4-her. 3 0.17 -r • ' —. ... ..k._ 3l•D Pre,,,-,- ./ -{fall-., hFad . ... . t rs t 31 1 I :sa -.- — , G tired..e d.. ` Ir 'e t c..4 s,,,--•h al, -_ - • = an6 ,- ,/fit- • •-, 32,.-g- 35.2 �,Sf9 NDy CL.)97SToni , f Flole c.'t treS 3 G.o —CL'ST Li5ht oi.vc bro,....(S y.S-/;)i 7JuA0 r..-.-04, w 3.$ c care Yej 1^1<�Pol — pins+.c f•nesi 101.4, .try Strpn5rh/ 46SurriC top .).2 lost — .rued diletn..t)A 2,34. C.ne - 'r. .,d ,r..nt,t/ 3 LI'D — rokndced- 54b1-ro,r"OM roor)y rodeo/ 5..J1 . T rrl'i i f. M ' �+ -j • ...III,. Condit-...; rod Tr.-, req.r r SP4c'" )) low harar,ess) wear Stre.yrhl - rrnout wea+herer{ - CLYT 3.5--1- 1N $-3 - G'I.D :--.t-i9YSTONc: ot,ve 2; 36 36,0 — c9raY(SY✓i2), 4Y'd. CJ,5hr- n-.,e.1 plr.sr,c z:So 3�''�� ' F ..f5) ,-,Qd dry Streti✓rih) m.Jd,l4 r4n1Y1 v/5�-q corFil t..klei 4n4 Srm0Jr-h -17 6ch11 v o1 r,, e.st f ' - 16.y ,rn,;,/ - -- _ Phys,eo Ca,.al,rlon; Mo[I, -{racfurea .51 . `_' rrnoc) Il..ruLAes -' Nale r- eA Jure5 ,-41...c.)$�gG,ny)� $/ Weak Str[.57F11 -3$0 1.1.-,it weathered. -5'-v corc. rerr,cveq .` C.0.5,h,5 bP54h+ � -s):p .L z. ~.. 1}010 W5—s — y/.0 f p ✓. oI( ,( 'tead1...} ho-4 e1? yl_O . S:17 / 7//G/:o s,tv.f for cr.. ;.,. r - L 17. y rrnh7d2 1 -- SHEET 7 OF L# - ,.rr -.. - --- PROJECT-! ( 1_ef_t7V__Ss 'c'' -"n°Iysrs DATE DRILLED_ as -'/ zHOLE NO.C —r DEPTH CLASS. FIELD DESCRIPTION SAMPLE . MODE REMARKS .7 3,5-.27_777L ry7or✓t-(Cv..•'J, Dole 'rr,ea(u.r{'J 146.0 ±r S7 — 4, co re rer ,, r,� eJ VI S--7 ,44.ot — — 1-7‘.,b ' core( gj-u-.iei-...( S.,.00•-1; • 11.0 ,*n.../� ws—s. r I-1 1.,,, m,E4sa r�J ,s(,e I-1 flj.0 6a c°" - retr.e✓e{ s 5-°•‘) -o•J W_S-ri c or,d Q-14_',,'; and s.••,..+h . .ri Z•D - 43, a .rn.:.,/ , '' e . WS��� - L 4 H.s. .meas...rc s 56.U ' corms re7r,P�o4. 5-o 9 5y O - • " 2%5.3 ,-6.® - ! 56.p 9:3s 7,4l7 arr,vc4 9:00• bej j 41 Go(i n 1 N S-I1- core (ccc,e1 a"1 5rn>caih • S 8.0 17.6/rr..i-.-.1 '? , • - • r I Pole er.,casures 60.6 . H.(, Gore rer-rie✓e4 - • 4 ') mote . • - •- 1 60.0 a • WS—.13 . . - ..'., ,� • J Ii,27 dl.o '- 'S-I9 core II$."rr 00-::41. S•r•...•4 1: ye . 6,.� N i G•2 ar.`. l -- _ (lit" Q 6,vi r an 1v • WS-I5 • G7• 0 be{ore pl,fllnf eGi--t- . Corte - . , 6y.p • t 7 cur= re tro-0,4' • - Hare ..r•e..sures •66.3'.7 - - `11 re .....I•.o�.IDSt w4Tn fluor S+! - • • - 5—I l .Dur •, ,J 66.a - �z :H8 GG•6 c�,V Scai1PI 4 Pc1LY1"„� 66. 13�^ /�c — shill (rag�.,c.,,s — rL ,6.v" hie - I:o 6 7. 0 t"uli.ny hr:.d -Ir 3 e, )4 17. a . e. SHEET_ OF ��_• PROJECT?!f'4 Gree/ey ,4 c_c_ oge /innL)S•1! DATE DRILLED -27//i/e'o— 7//7/X) HOLE NO. C--1 DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS I a e.- Hole. -Vern”:nolrd 6 7.c/ � jt)f8D Cob well Losjoi Co ro. SQL rr≤ S-t 'i-) he.C tNni _._ 54-.......a.1 54 ern.ernet—3.,rn.nn a. _9 "C( Coll ter Iv,s. _ VVISIP T asA ins+awd ISolkte.l Pit (See dicyr4.,,, le) -3 r hole. bo be buk.(;lie! N,;i-i, a 1 — 3 r,/ -o be r tDro4 a i.n:a + c.-S•1 ni f. k poled. Qh tk later 4.te i i ` 3., `.) yz.°- 37,0 (3{ant ('Vc,._ f I'�1�nk21�ut _ 37. o--22.a S(0-tte�( P)c '°.o pe.r}ote se41 — Li. o- O• (3lrznk FVC 11.a--j`— ni 21.O_ q 1 >�rn�el )6.01- _ yt,o - 3's.o G ravci r/ 3�.D 37.o Qen+,ent Sea OLD I 1 , DO I / 7-'' 5)014-e 37. o- 24.0 orave4 .. 1 i , 1 ri7.J' Pvr-_t5r _—_ 21.0 - 20.0 I3enl0nli - Sew :fix J I; , -- x.O.0 - D.0 Ce.cnt - b r 3.7.' •1�,e-t up .�.' ,p I —_ `SAO �tp T"'e seat 11 ' V4-,'.i 3ravel yiv' - --...,e, es—O,4rI K ro, is' v1 � car -9..— . :r 1- +-L. SLGle) - dote: ol't S,)Ied i h fb 37- 0j dec:dea .}•o roa or I Down 10 Y1.o r SG!- 1'4 5 ince $1ota+c( Ir.he"J' . ' )S ' 31.0 2.1 .O - (J.:A? 7z, azxi_e,f SHEET 1-10F y I • ..... . --,-i • -I -I .• l•-,. -•_1..'. ..,HLti f--- :;,1:-, I 1-: - - - . - . - -f .y - - • - • _ --I I- - ._ ,, ::. -i.L.:_ti 71,. . .1-7 .I___.i:,_, -.- -.7"-., ---I I 1 `_ r . --------.-=:-..7'±.-7:!:---'.•1-7-7.---..I-•"*LUID-Iii-..__-_'i--.7-, 7 _,' I .-�-:.F,"i j•-,-1 I•:_:. -1- - ._•_. _�1 _l ' _I- `_� . , `- �__,• „ __'J��J 11 .I I :_.I 6 .1 .I I • .r •1' ,I.� ,I, • I ,-�,-�� .I;-'�:• 7i--, ,_ -_--_:, .:.:; z.,_ , -- --- -- ,-- -- -:-.--, :-.7-1 17:: •7.7: '- ---- •-c .j>•I `�i ". _.__,_i_____ __-_-[: _ _ _1 _"!-''"?.ice ,•:1 . • '{.'i; if•yip .il •.� Its; ;�I-_--�j, 1 ,• 1- ti .4 II i„ 6 1 ! tl - • _ .nr tin• ___.,_ ..,, ....._, , . .::„._;..„ E ' 1--STRN-C-E_T. it": .. .,,,106c., i_ , i :, _ _1 5�iV D,IV : •F_, b I�L :I: li+ _ 1 1 :.C ! . .1. 1. '±B- n • 1 2i '!:f 1. . , - EARTH SC1ENLL '6 RILLING AND SAMPLING LO" Iv, DATE DRILLED r.7/80 HOLE NO. C-2:- -..0C �-IS4 Greeley Ser�4.LL'��-L-�i—r �7/�-- GROUND SURFACE ELEV. ����_Zy (survey OC AT ION S W1/� $U�Yr Si c � Q 7—Cf���—f'� PitF o 5U FALC DRILLING CONTRACTOR 7u. SPr LOGGED BY �1 MZ DEPTH TO G-ROUND lA-T -2 TYPE OF RIG CM SSHOLE DIAMETER r9 03 (3-") HAMMER WEIGHT AND FALL (1)//). WEATHER Srs12 r hot SURFACE CONDITIONS1?oJlinj Fo � d�fa� Dry DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS O , a ALIJA/Jun • R p tArr,ved on Sire sC SSc.,- r up -e.r. o,o- 3.0 CLfl Y C19140; olive ._ - John r3ray r r,11 "'J• 3ray(3y "i,r---'1oolo h rlast1t Fn�sj Ruef,h vai+h a 6";F1, hi- _borlo fine rain jsa 1 /b- rour,ded ovriy � - ?-.-0/014 sic ern 2u.5er, 2. D yr ac4 Sr(n • w ------o.o -1•S Bats of orjani S gnirh0-f 3.0 -2.'1.0 5JLTy 5FIND: Dw<14y 5 _ Y-cUow to L), 17/-a live bro,rr,(3ya1 -Sys/6)i —J v 'o JoW fjr,.s'-.c 17 (med 9 ra,n,4 su-b-roi.nde{j r orly9r"d'¢. • Sand. 6-0 8.0 ID-V Iz.0 1 _ I6•D 8.0 SHEET/-_ •OF Lf • CPROJECT 7 __I /__rir J:) S(• r, � 5_ Jy Ill. DATE DRILLED -7/7/80 7/p�6'c' HOLE NO. �Z DEPTH CLASS, FIELD DESCRIPTION SAMPLE - MODE REMARKS sr, o-Ly.o "1LTy SItWD (coM•cf) /O _ _ __J_ -Pr-af F°R{"I F'1T10n, - - 2`{•1D 211.0 - 37.0 _Shr 0s--orJE : 1-1 h1 al(r•( 5S hro.n(sys/6)/<51'°low pl"rrc ocsj4srri'd o-3c,ne- ,.'red gra,nrd(Prec/a"-.-. '-r()) Sitb- r- roa.r.drdjpoorly 5raded. sired; .reatrr c --•ntcc?� blebs of c.I y varlbeto•.-.-.cs saf't'-1O.0 v _ • el,yS,tal Ce-d,,ion; CIoSe1yy -Era c{ofra(•1.5p.r..S): ) 6. fV d,fP„yo-fo• I..., hardheS5j weak.t -r ythi -- - - iit-r/t we..fhered. • 4 e .r F. --. . = zy•5-3o.' T°.4. s+.n•I*ry 30.0• Sandsicoe Lecv•--,s Sa--`d, AR fpllr 51'") S�-„sic 3d verif 3 (7-c: — ll;w °.0 vie. art io Lek rk. �' C. iu.shec( E'/, "5iee( ca5rn9 • — ►1:14 -- to ,342.2) I•'1'Sr•ctup Cor",n1 with a C(io•...o" . :1-ws—j $D-d Per{urar'ecf-Pall;ny hies) 32.0' •r ws I tesrI -1/81go 53r& 3i.0 G1. a Sand ens. Rtr.,"c'•(nehar $,rP $•o•� - y y ) SGr W near co r:..' _ s .)-ol,n Bray otr;tl;n', 311.0 - �[. ,— --3y.t•- y(.a CLry57ofJE: Qlrve 5ray -_ Corti 3,,,cr 4.( en--•oorh C13+ (`5)'3/z)j c Z clo hiyb (i145f;c- 4;,1Cs; low -.' Noic mnc.rorrr 3b.a - . , Cilgiahcyi hi5)) dry s-rre.y7hi 9en'I ho ^ 'j SBvun.waeirtrvcQ U St)-(-f; .S,t`( • W S_�- Y • C-Ip FV,y.s,e,I Con4,t,c•,'. �105e1y-Cr a(lvrel (.1-') 36.a 0.1 e.v,denced by band+ di4 weathers_, 11:31 360 wh,ch d,p o-100 lo" hardness weals — 11.58 • Str .n th; (mod. wI.r-herea. 5 1 ,,,,,raj $,lief` an,1 5•••007h WS j 8.V r.;.,f • ..... 3ii.tr -1l•o CIaysr.nr co.,,,,,cri 3 E-0 beco~CI Ii-#-fle fr:.ctvrr•ti lit 11C. .1•f..,/ele /rne•rJu re.f 4" D ` Neuthc.cL rS.o _ ,re r -tr.•-- '' VV3- L( • l(o•r.) 41.0 Pcrfor....rd -{'.Many - \A/5-5. 1. vs head! 'lest 4t2. 1O.0- 56•o S(1Nny GL(li 7-omit Olive --- yi.v - ul,v< blot s 7 70,y, rmcd—h,j4r - ''°8 Saad7 )r"ySy /I)± /- clit (lart,. ( .,rt( lou•-^•.oA ,.f,l fancy) end, t'LJ dry rrn.Y1 r*l•,r4 .b-rp,ndr4 5- 6 t/ �J I moor 5 r:drd Sa.,{1 occais,.nal Zi•3 of or,..,,rt; -- r11 -- lrro ci.r.^7l I - ('h yti:•) conrj,l,on: ),trlc iv no 4 �.r-ocl I„ed nes:, wce.rc Sirch50,)II,•,. }o ------ 2 .0 �,,, __ SHEET OF +Rcr'n5� 1nl C- 7 • /.lr>.Ibc,c DATE DRILLED 7/ /? • /?/ ° C -Z PROJECT 2-1P? �-rPr-l�•i S�� �6 ?�• HOLE NO. DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS y1•.- j(.o_SPrNDy CLoyS7owe (con-1-'4) — Col ccf r;u,c7 o.'( $ir.r.0, • -r C IS t _ !o 'rn"r)ry e \IV$-7 -- D,Li4ed f-u ao a, A —1 o.0.ri.n -be-ore p01. ..- 0t L 4r o — 3:,..n `i6 a . '1;01L o; cure/ $v(c-1- 4n& 5 ..•boTh _5 PI — L.,1m e asrr t ,Sl.a L.,1 e r e 48-o I _ - - ---- La.': T-47:25a„d lens: f;ne-...�Sr...,. I 1'/b. Core retrieve,/ Y" _ _ S u.b-roundel, poorly s rod c(r hen ce.-e....j — ' ——_ . 4E.�-.. 5- Sank, r_ns as .b..e =1.7-7_ -- _ t{$.8-H4.0- Set.•4 1C n$ Af .boVt ... —CM' _— _. VvSI — d .5'1,ClrPr{orm^G 'j - fall:n. bear/ t-'≤ r I_ —,-/:31 31.o ` _ 31.,.-s1 y Snn4 lees Gs Above. . y/ SP —lo' -r/q��D • ac►st s-I. s-shq Sand lens °.s &bore. \P-1S'ID T 1., — — !— �/rrVGq bh jiFt X —e15t .rt Alpo( -- e eoreJ g7w,e and sue+ e�rLt - - — si.1 S1' 4 $6npi lent e — S� — — 7 S. ,S ^n""/ix D eC 'lied +o elo c 90.4 Su.0 �CISF • I 1- run k -Ec•re Pul1,,y care. — 4W S-I - j.s-sy•b Bur,A. of G« Co 56.19 ri6.°-_60.2 C L AY_STO11.1 % ofi✓e --- _ — Ii:oZ .56•a . areky(sy3/)j 7ET,lo hi5b- ''nr¢. pl4Snc -, = ll : lo •.rfesj )c d,lofancY) h1 h dry Strcnjrhj _.v/ S-I2- eore<( tt�,C a^( Sn.•+ ti Jen ' lorrr.o) Sfiftj S�icl. 4 �2.Y nru�rl� 'el$f- phYslcol cenQ,f.on: lirtie {r`o-ct,.,-rectj g — r7 `�i-0-T — '� low karkriess) vve+� 3trrnothj lint/c 17 g 1.1,71. n-nr.S.re s 6/.e, _ no W,c of-here ne.�- a - ci.$ Lore ref rieue z w� h - . � away _ n r{-le r,s. -6°.� - "' , ;WS-13 - ., • _ 7 �L.yy 61•0 4 e S VI_ — 61, 7 y1.3 'Sand legs a5 kbo)€ Cored gu ter and s••ooth . X2,o _ = -- CID- DNS -I� g is.b rr{�,/ •sr>' bs•i San•/ Iens &s above. "X" Hole rmea.LJres66.'2 6a. H — S.z core F�e�r;eve$ 6 y,r • Gift- - J A1 ST'S- .S\ �. • ' T 66.0-6( •) San:4• hrl) s . ' i ` X6.2.- 74,2• _.c;j1fJy C-t_fYSTorJF x'13 . ¢54•,riy Gl.ve- yray- °hue Llack. (S T y'r�r); 7'-'q' , 4' ( r __ cur /7 h7'101 , - 1051, II•,',4c 4.,n C.4 es; 1 ,-m,od 4�s-I6 — !,Iai<che '� Y•,.,e $ra,n,i, ,.t. r.. .do+-crp•^t9) ,,say a d SHEET 9 OF i ? 9 lnaf / 115°- Y g° GC-' Z PROJECT_-_/ Iq— p~celcy___Sr��'� y �DATE DRILLED_77 _ _-- �� HOLE NO. DEPTH GLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS —C L 66.2-1`l.2 b_LiNt'5y c L.yiysToor (ra.,•a) cored q u,cr and 6.-.a,h -" Physical c•nA.,l:,•n: lir-)le -to na -erociv.rmy; -- .+no4 Il erdn e6S, We-4k Strenyih) t;4-}Je }-V . Sr wee n+ihcr� s 7O•D SP) = 1 66.-1--766.-1--7,9.v66 - •D Sar,d Ienc et ah ve- t =C1- W S-17 II:31 b.6m/t rrJ� -71- D 4 -- H-ole 411eaSu.re1 7-l•2 -- • W 5-18 7.8 rare re -r,evt4 - - 74.2 Perfor.,-e4 fc IIi^3 a • .. 11eod -- .--,41-1,1 7y.a Q H 74•-2— :II- 74.2. I se-t- Gas.nq to 3 D. 1.4' $3;ck. 44.p 349.ca5anj A-04-g! — Holt 'le rern,nate4 19•a- — Colo. wel\ L.Ji Iry co -ro T Iwn SPi resist.vir. neutron- • -^ 9an m n. a .,„,,• .r..re<l-9.-r...rnet q°9S WC' 4e1 li +o be back-F necf w • wA.}, k S`)/So bent-m.1 Tik, op.( COS.n' -ri be f'uIie 4 Q÷ 0 later d ki-c. - p to Ser '.SoN.req fip i - (See clrnw.n5) /�(,, . ....__ ... zNPrL i _,.. _ 3 c_aP o.o I - __ BIanI-n127,,119 VC—, _ (2S') ce.r-.en4- I _ 5re.'4 p B entan,re iSa.S'-U`R p, Sea, s.s' I 0 O i �C.1. G ra re) a, I Slir+eQ p� I - �o 00 i �8 Q0I L —Lap I x • (Not io S,olt) /� �j i. T SHEET OF _L_ • c ., t:---1---II .. .--..I.,.. -,„ -.1... :t;I. t F.,. 1 . I .. . . •ti.-^ - :i I �I! !' I 'Ii jl Iili 'ii 'll ,',I 'I' ." •ii •I .• .II 75 tiro •'u -- �,:, - .� �;, ;, . .:i� is ,- , . - -- .•1.:-:1 _ : . 1,- _I ..'I_-: -• .i .. l LL ,._ �: -_ _:L ) • _- :i _: =y 1 _. �_ __� �:__-1- _._ _ n �1-= '�: _.: ._ �— �___�-_= — I _- _---i-- - -_._ , ; - _ - _- . r- 1. , Y -••-i-'''- L.A ~4_ • • 1. :-Tl-_ !1 •-_ . •, ~.3• .._I .. .a _._ __J. - .;r .-l .� fir: -. ij1.. .II; ..._. .. - . I -1:ii t -.-. I __ -. '-1 -1.. „.Y t 1 -•• •Ji 1_ I• ▪ "-i1:• •I l"' ! : —; -_..1 : '11i !;i! .i': lit '— i1? 1ii7 5 0 - ', I , 1 :1= is•_ i I • : :: . : - - - 1 ` 1 : 1.: .1_: I I . r i �q,��1 AI TSIP '± TREIcTAE_. - •100.cRs!2v. oi\v/D� . - `la : l�D ��.I__ _; 0.. --.----Ft) L-L--_: scRLE—::_.?:: z : I: :- _ -� I -tI :. 1a j ..f' I -.. •-_ i• ,J I.I..I• ._. 1 • -le .` ;.:i�.i11I 1..il..l ;.i' . _. 11. ._1.. ._ .w.... EARTH SCIENCES ASSOCI RTES BILLING AND SAMPLING LO HOLE NO. C -3 7 PROJECT 2/?11Cfreley •err r,Vo r 1 d,r —DATE DRILLED_ //O J,9p` 7/1)-P70 / � a GROUND SURFACE ELEV. _yt2g2•y14l�C'!��£`/) LOGATlON1`1F��/ SW Sew 3�—Z I11) � '--1 r-Iiz.au c,'CrAcr ' DRILLING CONTRACTORe•cast0,---) ka Pr � LOGGED BY 19 r"1A_DEPTH TO GR-O-U }OQ—WATff 37'7 TYPE OF RIG CM MI E 5 J" HOLE DIAMETER f & 7,' /� EII HAMMER WEIGHT AND FALL L` SURFACE CONDIT IONS (:-3 re)( cy 1canf,(4‘,/-)/ WEATHER cuhr/, ;/4P1- DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS :5f 6i LLuvl Li,ri 00 : J- 8rAy d r ill i nv _ o o - l?•o SRND:_Liyhi dii ve bre,.� r' �- f9u:rer•,ny will) <c 6 �51 ' LS�fo Isw plant c �.,es� cfBTgo 1 Co0-finu,ovs 1=li,hi' `fine— , .4 9r•afined, 541..0 YounS - ≤' D ^_ So%•�j $i�ir'- 4ts.s-er. )' U cc^y".kr, foo fly srede.lj hoo-ce„+•p,,,,,4; ,,.ots, _ 0.0 —1.s Bits o1 . o enrlicsjraw) — 'AO = 4 6.0 Tad 10- D • Rrr;✓el an s roe 9:" = pushed sy,l' s-u I C"s•r•e ¢o if. r Sf ict to, ,'•rn*s u-r Cor�nr With 0. Ca!•6;de �� .D 12-� 5....4 - b1+. 4_ T ly• 0 '_ - / I6, o -I�RAM=a -- foPJ1AT1 17.D- No.o 513r11?STorOE: Pale yel . .SJ brn- t]arX yet brn( inyk5/i)j *n( •5 -i` 'n.31,/y Fe t7r.,de 544,—,e<i ggt°fo 4,nt — WS-I 19.0- 'Li"'}?.00•5- .-mac 3r..r+er1,34bro.+.,,ded— sKpuny.,.ior (Dort), drnCea ≤4.r,4 lop .S',rr,ot! ee,r.-,,•,e4i _ bCro,+-v•ei Ron cc.,•-•enret;4 I •.5'breat-t ,stir —_ _ -- ~5:S� }rr'3 ,fares •6s'j bern.,..r.1 ,,-,•eFj„Pc1gen'I G 2. y.sg 11;� I,o•„-e• r a,3t, �_ SHEET / OF 3 PROJECT?I�__GLcJer ,5c Pr,- Pr)oirc-iDATE DRILLED//OJt— 7//i/1 HOLE NO. C— 3 DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS -Ss i 7.0 cro.o _EF1!JU6ToNF ( cahiict) C Croek cts“-re-r c.,..not. ,c -- s �fh ill y5ical cot,dl- 6Dh: in¢ei,sciy fr h i�.0 /Jy ,l°P .3r . oSs aC,n9)/ bec Or^�e1 1ir'fle -a I...ii• j ' 'u- /i7; -f rrtctarett; /mood. h&rd,.ess and St•r frl, • }lo(t •leas✓re-s zS-0 C 2y?.p decrecsin5 to -i r; ble. han:kess and 1,0 core re.rr;ev-d I( ' •nten6'I 1.D re,-b..,.o_, in huie. sire�$r6 q¢ier .;'; top •s r W16--t . we gibe red) beco�,nj Imodr went- red. ,Sp WOShn�ay Lrt.jic.tte$ Zb.0-1 s o A Le 717 /OO5c dan d.9 • I2 5:0-3. .o Scolds--on4 cur>-tu>a‘"≤: .grrrur/p 2-11,0 26.0 WS"Z 10:06 "2-6'o I - 11:0Z • Gore." f,.cier'ord s,...00*h tt `' -• s/Nu�lrG��wrrJ �O.o j 2$ D rz 3.0 Core rerr.r✓e4_ - 27-o-3o.v? • '3 i.o core b..rrrl bec.-. -, — • Ws_'57 Sitied ro Or,ri Wub'f +wn ✓ fUii 4)� pilot,. 1 30.0 • • -- . r • (I:oB 31.0 - RD .firr;Lie 4 on Sir-e z. oa B .0 drillers* ,r• ervcc nre barr-1 • r P .to•torin1r Vith a ¢r;cone bit- - ! - Hole_Si Ifeck u-P to 30 ( . 3 y.,) • r I3(9.° '' . . - e38.0 29..o SD-nci has lncrecoiro • • clay conterl'r- , r, • SC---__ __ - 1av•p yo.0--67.o CLHy5r0O1 : M04. 40.o Clay Cu.t+-inks affeah I �1S," 0live brD..dh (5-7 Vic/)j be .d')-i-b;n� in [trill3ny Fluid. ph lie 'ray(s') 3/129.4 .,,. yz.5' - +ht. Mod, Olioe. brown cplorc'-i-iwt ��•o ...aY ,.a;ccte Cl. weGtherad 1-O.n ier.{a,r....rd - kW' 3a..e (re o> c. . s--f.�%h•ng), II e.....1 1- 414- 1rI • . SHEET --2— OF `'�_ 44.0 . - -- -_ - 7 _._ __ .-�- - — - • . . --- . _: -- :_ :- --,ate-=,- -_ -_-- _ -_--_-�- —a _ .:— • --�� - ----" --- -- _•- PROJECT_ .3-I 1 G!FeleI �ee�?a o 0.10.4t,r DATE DRILL ED/Ib r'o — -7/1-4/ 70 HOLE NO. c-- 3__ DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS T IS-I- 4o.0-i,7.o LCLAILTor,)E Co )L �i'd(_ r0 y b•D 49-vt — — 4 5v.° 50.0-30.') Sands-Pone Jeiv — $o.D .rill rig c.hatier3 •—SF- - _ so-S?-C drill flu,d beco^*e_r (161- _ 150.O-5)3.O 5,�-44 - sa..d q" 5q4.-s .) yr3tty) 510an abur,c{uncr c� lenSel,_ Clay Cu $i n55. • 32.0 3.7c _ �c� O.0 1 ' 54.0 . II i —Ce-rncnf- grow. 33.3—• T—IM Blank- p05- 36•$ V.,4 - ' beAtoni.a sca.P 37.0— .7 21c 51.tr_'d 56•D 1 1 PvL 0111 t ��}II- 47.0_t '' )) entw:re seal 1— tee 5 8-v y8' - J CAL���—j(}). gravel / I 60.0 cop (No+ to scaly) Du,, 40 ScI4.nocn) Tr)- 5°'7 I ELD I --- C3-o .,-.....:1 lens i nicrbc,QJed µ,if-1] 13.o Colo cf,a n5 ) be drill s 1,f ClG toLISh+ 1rr)(lv7 e 9 ft7 yst o.+C, , 67,D— Per{c.r— a rnll,„� he,X. 64.0 +efl Ml poll. 4t.t•..Incr;e a V).o coin. Weil L0”,,,5 Co ill ru,. CPI rests*.v,44 yo..,.r, LODS- • NciP 4v tc L crt.nrd w,.h 4 Sb/p. 1 1[nii.,,•.•C..../ 0.4( DK cr$,,5 tr(wilco( al a Inlc'r da f c I ___ __ _______ P h (.,7.O ,Sola1"J 4ip iv be initalsr4 f. SHEETS_ OF 3 l.7•v _ _ :.. - :. 2_: E. _"I --- la.. ..,1 ?I- .:_IaL `-� t1:i ii:. 1- - .. . _: -- - }}11� -;• 71..::_.: �1 -11' - - 1- -. :i.,2 ::"...-r:.;-1 J0 :_ J -`I`.; 1: ,11 ._' -- - -a 74 r A.Liti .I.,., ;.l --; -;I' -i I]l_I.'i VI 71. _,..t _.• ..�Jr '' , ,t,J ,. _.J I1{. • I, • •i .; . . .4-.J .I" V,a_L IJ II I. _ I 1 . •-'• •+.- .. ...._ 11? .J•. . 11 ...- •t: .,/ 3 �. 1 • i .;.'I'jt. �l'i ''I. +.1'1_i L',:', l{{ i:•' L; { .L:::-.-; i :I :I ••• j �i :4�1 111_ J— i?.. _. _ ._�.-.. - _ 7 I. - 1• =17 71 I It"2 .1 .J - - - .1 �__ .i 1.'_ .l...t 9:• .L _. --j`- :i - _..1 1 • t.J-_ _ • 1 ._.=� _" -- --_ ._ __.' - =?.yam .. - {.�._ ____-- -I• J. J� .-.1 .l.t� ...� ,.-!� -i1 -._4_ 1 =. f{{ - il.. _.'i _--. • -` A _ . f _ 1?_ _•__�v._1I}. - _ __- �. I- I , .II ,,.. J. — '--- - _ 4 g - - -- I --_,=-- 0 , I ,-..i.‘ , -, 7 i :_s:j..2..._. II V '1_ ' JO 1 ;:'1, -,ll 1Tç 5 / /I;':,I l _ :� I. , o 4,sIFIUSCLFI _ _ _:= . =I -= =< ≤1-= .. _--1- _-T --._�- '1 - - 1 _ --- L ..,_ . , EARTH SCIENCES ASSOCIATES • - DRILLING ANL) SAMPLING L( C ° PROJECT 2- 15f (P 1 LLi.l cr : r -0G k G DATE DRILLED `l•' i/xr'- �I�1 �° HOLE NO._ ^ (� LOCATION SIn/��i •S',-/j, �eC, a 'T�IU R D 9, 141LO58.146 (St,vry GROUND SURFACE ELEV. Pi cif c:. Sur«PrE DRILLING CONTRACTOR C'Sto 'r-• f°4Ph DEPTH TO GROUND- WATER LOGGED BY fi r"IT —io4- TYPE OF RIG C h E 55 HOLE DIAMETER P« 3 HAMMER WEIGHT AND FALL NIA SURFACE CONDITIONS Proms - 1^arnreIarcl WEATHER J-IOI . DEPTH CLASS. FIELD DESCRIPTION • SAMPLE MODE REMARKS . Oro bl23/80 a O.o-2.oIlL Strs'Dy SILT 1104 ye;brn : D /Moved' ro Sr•?) set..,10yR-r'lij^`1840,.,-prasrl- Ei„csr 34,- f.,t yra,„" l.t. ¶P or '•v er,n Saha. tails DI rpois o''d 0r'.n,."f — 5 f . LArgr7-F fopri,t,on7 • i John taro) ulrrlt;,, $ 2 O —_ ,-o-/ , R N D 5TON r ' rlod--�'el D 6 9$-i44fl -F'ne- rr.,ed gr. .+e • bf-� SC brn (I yR lY)i i' .c Sot.- round ed ) roorty 9 rade d S r'a j f US}l ed S rlir Sleet ,r o-5- e. cc end, : reradeJ s;lty w:}hw f f y' 'crib; C Sin 0 ! o lan.rnrC of 1 5 ,i�i i....1n pi.,ysacal cohd,+ion: •CIo sefY f/ac+�ed(•2 ('Orrn5 W.'I!J Q. Clrc�.,oa( ' Cfacih9),ctolno o-so )ow 1,•rdness; We4k7 ® •1./.0 i•d- deeply `ie411,t-rpc?. • • G.o 6.0-. '.0 Coal Sean., ' C) - PL • g4 sr S ID.6 • a . , U IL•a • I'-l.o _ 1Y.0 -_ .r C tiV1 flolc n*4C4 SVr e3 ,1,0 Car'¢ fe&J,,re3 G•0 1N5-I core at' gv;ca 6016 ' i r — I6 2y.r� CLAy57'oNg% Crrrv; i fir 1:1- `�/rwr/�S cwt.- 16ry- . 0^ 1 D7str l3rn(37I, ?/._ S71-1/a), 90V 5 y . . ric llrjh- Flasp)c. -14ihe≤j no cl,lei®nr-Y.1 h1yti® V . c.-. a :At7 saranfth Srn'I 1o•.,sr ' ..nor31 o l - . r . _-Ig'.o �` nn (N al t t Y I Sr ,� t th)sicol rune-4,eh; closely -(ra(iurrq , (.5' S(wr,.y),d:l,p,i., o-s .r.,.c( h.r/n"Ss, r •e,rK S4 ref.11h) n'r,.J went hire r! S 'w yo,o _ w 5-1') I ,S1-1EET I 0,F a r /PROJECT_ /t`34 C(C'e%y SepP Anr,! -c.sDATE DRILLED.( v '1/31e0 _HOLE NO. C ^1� f DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS C1,5f 16.11- I'-isCL.py crow E (Co.,,'dI \A/ t'..6 ernln/ --- ---z2.o-�3 3 ZOna a� Intense � S-� 1:08 2-1. 0 wea-tner,^5i Ptidd,b6 St-co otny. -, z.:31 Hole i,-naasores z S.S yZ.p -- 4.3. core retr,eve4 _ -_-- 23.z-23.$ -_[ i5nite zone s Vv�^� I I.( tr--183 Lib. e Z_ Lf.o 1'i•D-J-6.3 .5_1 I-TS 7 o NE' >' L el 5ro.y- ,5 ht _ - olrve yr .y(sy6/a)i ¶ T6/o Shg6•Iy piast<. f)oes) Slits- �; hyhd.IQiancy) ow drySyrensp/�ln..0ar. .,. 4-S- ... Physical ,0 hetrr,on: close)r -fractured(.. )o( ' ,pp,n t 0-3-vi hard! week StrenipF,j Irf-tle weathered. 3:37 Z6-0 .7-6•0- 74.3 Tra.hs,sf•o•.3 n n.- rater- _� - 2 6-0 61)_6f7D -t„ bedded sa..d)si)+t and clay. —_ q:Q° brr,wod or,s ,te 7:3o/ _ SS; _ 2-6.3_ '75.S_ SPrjnsrorvE: L;5hi ol,ue 5(.1.. WS—b SwitcwdTD a carbide (Sys/i.)i ggtalo-in.- f"'ec( 9fa,n<{,f 1;ru.✓d.c - bir port). graded stndf yen's ho^^o)weakly — - 0_3_0 ce•-...entedl irno'St. core4 %u,ep an/ s"--oc+ti7 2 8.0 .,C` — — Physical Con,litwn: Close)y1•PrCcCtvrtC (.V I r.. 3'r'w/r SP& oCr,,9)1Ceelno -y vilow hardness/ weak. Hole er,-,e c sores 30.0 $frenyth/ Ilt-tte WC 4tl,er cd. 3.1 COP' fe-{r,e vo{ S 27.b-7-7.7 L ijr ire •4 uusF ay.o�r— Top __ 28.1- 2$-4 well ce n+c^ � 3onel color -- 0-e SandSIor'e •onIt- C,hanye -fa ' Nw4-brown(5)123/4j. a vv.S--) Shows Sp,n ..,.arcs wn( --` 31-o S.,a51..... be e o•-••es n...- c v-...cn,rd,- I S a rovn[l Elf. -30•0 -3 4ew s,.-ad/ `coricr et;�nS(•S/ an.ete 26.0 D,c( {411,n9 head 1,O. F31 'fleet show weatne rla r�r, (Fe ux,ge Stw.niJ/ `'v. vveatb,r,n5 OS awhole- clecreate.r. VV S`g 9'IS 3/e 0 Send ass s Fechs of black Cheri' q�31 �b• tIJbecicn.:1 10-5°) SvSSPSte.� . -I Cored t(yuiet aria S^^ooth 32.0 1,r'",.'/ pole n-neosgres 36.0 4•o Core feir;evec( 1•S Wash away ws—Cr 31•v • • 3b.v Vic( -N,l);njr heoq q:36 4 S-r #-- 3-6.p 36.a 12:l3 WS-1 O •6 r,^.,=^J84 pid c lo•o. rvn 3E-a I • 9o.0 1 • vas-1( 1Z. •id 111.0 12: 17 - I "12, 0 - F I W S-1- SHEET �- OF x I .. ----- -- .� ,--- PROJECT_R_)? _G7rPe1o,/. se.e ?a.4Q_ )0)11;s DATE DRILLEDLL' 1? — r/� /�° HOLE NO. C -1-7/ DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS 261- 7s 5 S1�l,US7orvE((ur+'d) 1 C' eorec{ surer c4"d s.�'rih ` �� 36.0-LPG.° F.-a. Sz4rr'rvd - - I.1,-.t.:-.-.264 la^.+r^aa (c..e.-,-.-.) or I nrrc. S S—) Hole rrr+e a f v r aS t-{6.0 — q,v ev corn retrrf4 yy•t howash i ndre.rred 36.0-77.0 = W 5-9 ye.o^,S3-3 Send breats into — — 11'z y 4 6.D Sub-her;36.zdsk.O5r)1ci;pprns 4 o-c, =W5-1 Li Cor" %v,0t unrl s...-u., OT w .R nn4.ri$fi. = 146.0 Dict -rolling head r-eft 3 4'P•o- .. — - .1-- run D;q on sD.D WS'15 - 3:21 3-)•o 7:23 core( feket un4 s^-o0-t17 5z.0 6 — 3,y „-"�"/ ` _ - \ 1 ) = Note irneasvres 53.3 i 53.3 - 53-f �I aySton! I e nt — -1,s core ratrrev00( CISt- ::- S4.s- Did lall;nr head testy Y 5 y•0 53.7 Sand beco,n-•es 1-i'h+ olive brawn(3 y SA), .,,,.re co^•.p•w `\/1)S-f ESthan °bats sa---•e ,n all ocher _ 3:3 5 5t1-s respects. II:28 6/z7)Y0 - (irr.vel on S;re, $:oo 56•D 56•I-56.9 ea.,Jed 1.one of Fe --- — I,. 81_ 5-6-D —1-- oxide _slams; o^S° c' 'P a c aced /_ jet an( srrro�rh o r )•1 erns;-/ ee. • • Hole ,rnra€vre4 661.0 5.7-D W3-1S 6.3- tern retr.evv,/ . l•1 Washed C.why I G°•D WS'1 1 p • 1:`'1 61-0 11;07 WS—Z0 cored u.et tins SrrnOurh t,;.D 1 N 1.1'2 ?nt r,1 pm 7.„...,e11140.ri'i L 6.0 `i. .7 cure rvtr.evQ,( G4 0 _ 66-D d•q -e.Iliny hea( _ — test sf g WS-zl -r SHEET 3 OF dt.0 -6- .1•„ {.•4p PROJECT 2/ G,r-cz�p,n�e��("ae i^ti1,ts,'s DATE DRILLED ept-VrO I���o HOLE NO. ( DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS G6.opS . .W`.?,_r/�.S ,�r�,id�fanc LC4'1 ') G a ;2S — ?111.,. J Co.-7,1;h or7 •C'n ca, are g.6ho�7,a„lR/ pc.,-f,>7 �6�(o /' kJS',�oZ - ' d ,.,:,•••r ti-- 5'r ,,-'rs.sea (on9� ,0 s.Gho.+). Pnr{� S n4 l ytinom D--- 67- 73 0.4 -/.a' seQ 4r)., - 13-7G a4 •os' Sea c.4:-.,c7/ow) har rip ss1 /ow 16-rent.` % .S r1 I l/11$'2 1,1,3- 7/, / d .s rnolt 70.E Orange D� pe/ .or.(ioY,�c 5, /1 s://c_c o....r c o»ere A'or7 C� 75.0 -75,2 cv7.S°al. a;3)5 p . — - 2:35 Sara :5 tin e / V. 7C' e r77a.%,1 • p 721 0 - — /,CC on' !7`R. tot t--ii aoy, ./dsppa� I,JS- i- I — ✓riaf,c. (SomP .»a v,[,r r]c_ 10.0 • -Z rr.irJl/ {-raac). su.(y-ound p ec� oorly ,o.o --- • n r cLe c/ f1 ,1 e w sc..(rf re J -. — -d--,e1( •lrP)jl a r,o 0,ac,.,(,f — (<-f%) dense-, me) �o dnJ. • -7 Y.,b • ,,,,S-a - ]tnJ 5.5--76.7 cc.RYsToAJE 01 r y 2: 48 _62.11 r, a -7" r y • o — �layst• 5 4 1 r»od-h.:Pia-j6c,y� Vert' .36 tA).S-a6 a 9.r3 �6 fe.er err-2-7;7 (G f�j ✓y7o,sE. 5/-2 s- C k>. ••y P.-7-, o..Z- Sa 4e1Sf /`ysic-41 Co piof/,5 oY�; Cc..Je 1c-. Ate n9eOs r+rei 741,7 • S P) 421 / C7:24 red art fad 1,on o-(d-d ...50,,)es.%r;na c f,n,L • I '78.0 S-s p1.xn.eS ,•--nG� uCe3 J y n�o o e. wwle} ry,„� �<.o5 1J1� ,d _ mrcuw.cr 7.8 -. (-a.".,`7 7:.,rut Pti c aL,L s 1—re—rip t w3—,27 Wash o,,,t hate aria Moo!. ,,.r{.L� -�I `l• Star1 C4n'r 76.7- 1C„ . £'A/JDS7oNC- Jk ye/ nor-it-7j .STn0,C , hr,z (io Yk f/a)�0 ►-hod yo/ 6r7•L @ 3.5 .-),.,"/fr I o,,.o • (/o Vie_ 5/1) -><00-/5 .T,/ f. 1i%,.rr (.J3-02S �[7q.Sipeedc.u} I J-P.5 e- :S ,+'vc.t. c J. sand . ]`�t c o"` 10;/o o�`Y,7».-/// if-4- -r-e4 b roc-4 n c-c cL. rn d in`"7 9 t& /SY 10 0 1O!1O 87 YJ h?a�ilr ll -fearpof -frniccc`, 11 nc,..,e...01 0 `/-n'51, 11-61 Co,,n4.7re-J. be. E to v�0 s1.e . r„n.Sfl Rs r Ph-yd,c4 Condifios` Mad. GLccr,--1 6 S-7,o^ WS-. 7 i , - �r,aur ) ly„.74-tod L7drdn0ss 2 rYiinAt. - Weak .r/reh 7`II, Mod. we-af%u-r-erd . 9 8 .0 . — -' o-- D,4 -.0411;r1.9 heed _ `JG.7— 79.x . at,S , sr crc1 tesr - G I Iron ax d_e 6rt ,1a a ' IA); 20 -(�/O iv? '70 ri7 n,7 , , �u�170 l✓ s /i i',3:3 ke1/ CI,;-tc/7'o•,. Co—Id . R6.,o b-e X f>�dar:ii — /0:2.0 &,.o 79..2 -12 G. c' La turns e of fop CCre ,rtr 4Jv-c-u lo.? Gals/one. . / -1,p .S 0poF`�L- (.^ ,N ,rG c)/ ..Jrrt r, Co/Ora c10 Ott( (.....7317 • 4'4 s?, 2_e.s -...,3---• 8F. and ] ,� 4,(2 .• • n-71 11. SHEET OF r . PROJECT 0-?1. (re )ey Sc•,�•,5e _ J-4 1L --DATE DPILLED ?c./.0.1"-- ,du HOLE NO.G -`� Y DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS �? 76.3-- ISS IVb5Y�i,t, cnnr�� 10 PVC- becu•r-•c Cr '3hee S __CIO.o .$aae` b2cormes ClC.yCY dUrinj I^S-faligtionl c.lee.neq II 101c wiih roller 4rr1 bo5ah roforiny al- $6.0 ern �r30Jbo qO,o- ctrIti6,5tloid fho" 9.2•*0 _ s o e.+•c clay Drlil -Pi El;4 iS t+.-,,x-tyre of • ci&y an,l So•nci t[Sin9 revcr-l- q L1.0 • r.I6.D qg.D . I0D.o • !07 a - lc) 4.0 I 71i ND 13rr,vPtl on $ire C4!30i PJ^^P II0 6•D of; r15 b roteri N5 down call el..) Iob.o ctid 4etll,ny heoc( tesrt#7 71'48o yrr,veJ onsi4e g; 00 Pi'--f Piree( I O S•O (itren..j 44 '/ • fer-,,t Luz- 0- !Obi hole blocked by pvC. - _ O 60.0; I H0,0 • . Ip SHEET s OF g --t � 7 A PROJECT.?- __ L� 5 � 4 _ DATE, . _ DRILLED 61 Ls"� 'v -���2_HOLE NO. C'.. 6 - DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS -I3S 5n1VD.STVIVI= (Cuh+‘9') RP 1(607 I P.0 T 115 So,n) bcc.o,-nes bet-let _T 11 f a;q_bey ns t0 c 12o.v c.,--eereq(well 7) 1 1'1.0 • 1 2N,o _ J11•S: Calor change ro'r7.4 obvc brasyv 1.1?i•.S -Drill f/uid c.hanyes arnour7+ o ' c.Iay Irlrto5e2r, 5 olor',- cell freda- any S.° roq -}at'n3 01.O"n,ncnes 126 12-3..o -,o enc .'nierect Coal i n cfr�‘1 - -•1�Q u.d. • 130 _. I — r`t2S1 drillers ra]Ie40 out ho' oft-o' ;l( Pipe and Excha�3rd Wi+h H- lo•o { rods. I 1 . • 136 _ SHEET ‘, OF PROJECT 9-1F1 Greeley c'ce' I2 41efis DATE DRILLED O.S/g° /7/ .?U HOLE NO. C-5/ DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS 13F-1 -- • lya 1 1 L P-0-/ ly6 • 1N$ - ISp 151 -r Isy Fox DILLS Fogr,/{rior, (?) 15y /bt _S:LTS:urdE �. CIAx57olve -t. Isj-v Drill fltL' of f' arj ;I!t" — — 5 I lt;eY 1S6 154 SHEET 7 OF 8 PROJECT-.7_(1Q 6r_f_e_jc-L1 Ste"' -_ !bsrI, i!DATE DRILLED_4s7Re" " 7fl/ 0 HOLE NO.C-'Y DEPTH CLASS. FIELD DESCRIPTION SAMPLE • MODE REMARKS i ---Si 14 JAS-u .. - i!-?�%�tJ *≥ c 1Lz2,�'_c_ I- D -- "c,a r /` rt. 1O- 162.'_it _c.LPySTPJ Dark ye/ T —cisr otahjr•e C/sy/tG/y l e 17/.3/? flrr.ved on Spie b'.06 I- 1 a"f ierty-rrPI 'f' 14 4c. 160 $ - W.I. realm)-tab -I-Lpe a('rocr hun0 cif _ when we r51- ct-t4e—yycd e -to re_,,,..-.'e ro-tor,n5 Lolr. •. - T 6 T— ei+ is Ploffed cif--(•. b,' = ?tic..., T Iaz.D 8;,-s (.)- clay 1h — 13. 1 . l O,o • 1 drilliF),5 f/tzi4 . IC3 — . I Poi ter„r„/, (red I tC)7-`->, F°u"9 he0a r-cr�# 8 — Reor e�-er Comp(d O De-1156 Is I 7/8/go Co[.0-r cf 17 0 - y✓eV (0,50,1/1-) +--o.sz Sty • % - S anal d lo, - c- 4 X12 /(. (1,o ` $�,,c+� 7 I _ orovr>l surPar h iii 5 tv0te� 4 t /72-- . ` - later date •1 - Isoi4ted tip 1,o be set- . I7j - — n.„ btatA.L. _— PVC • - •-104.5 beluYu te.seal - '•1C1� /76 - cr g�a�21�y6"-`4") -ll9(80 Pt ome{er cased 111.d if-0 a" Qa Q slo1*d ---6f-• - faVel Pic Placed. l7L . i- 1 '1.0' TD. Cap t.) • 170 . I b' SHEET_b OF g • I t I - _ -- _: �_- _- _ _-f-_ - - _-- - r • Q ..---11::-:'_- -� - --1- --- / .. :.:11-:1 _ ,--.1_-_-_-. ---i__1:=�7 - I I ...1 1--1----L-_ _�--_=_-j=__�:-__ �0�.i-= -_-I-:_ '___ _-_ ....._,...____.=_: , . - �{_ ---_ - ,_ , _ -_ 1_IIJ-` - - -111 ' _ iI= -j: - -1-- -_ _ - - { - =_j= = j�g - t---- _i_ _ _:2i , - , _ --: : I - . ---- } -- I- _1 -:: r. - MNR AZT . [3 Alf 150 _IRE-S1,I_S_T A-N=C;E1--_ 5OCPS - 1 , 5 ,Q7Q1Vi - ; : 1_ z : •►LI Fua S uAiE-,:l ._- i _=7---1 -==t - _,-_- , --- --7.- rPONT � NEIOUS _ = .i=-- 1 ^,1 Div--_. -.-_-_ ►- P 0 T.E N 11 .6L--.1-!:.;--- t ._- .,-,-._.1_ :.:} - l_ =I : :_'__-_= 5 r1V/D_1V I _ =:__ _ I l I-,1_._ _{ • 1 :1 1 EARTH SCIENCES ASSN' " ! RTES )RILLING AND SAMPLING LOu PROJECT %z Igq cr,fic7 Scsp4 _F1tAlySif _ DATE DRILLED_6/'o/b'o — 6/1Vig.9 HOLE NO. C' •-OCATION _ fc.c' ;.:2`) R S07 r'PC'/0T GROUND SURFACE ELEV.4��� -- ✓IL i_V_r ACE DRILLING CONTRACTOR Cy�to�" �LSer LOGGED BYJ MT DEPTH TO GR7OUNO WATEit 3( , TYPE OF RIG CME SS HOLE DIAMETER Po 3 HAMMER WEIGHT AND FALL N R SURFACE CONDITIONS RPM nc. WEATHER u.l ` 4. DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS 0 .0 4 PL.L uV.1 jam► AD O)cl/so SP U rrivrJ o,n s itc 1: 30, 0.0-3140 SAN�2 . Rusk), y cdow roe 5 e} uP +0 drill. Li3hi olive brown(5y6/7- 373/6)j <Scifo a . Bray Anti, low PIaSt'� zinetj 981-010 rir,� maned. 1.o T 51a,ned SKiP ,5r4-ded Sand, sub-ro..Jrde 4o sub-0.n&.ufn.r •a,p—fa.n Bits Of toots c_na 0r3a.n ic.S, y •0 a _ • . 6. v t - /n.o -r 11.0 -r T I 14.0 16.0 - t t I g.0 --- I SHEET / OF x.O.0 b - PROJECT 2- / n h .5' _rrc-rlc• sir _<< 'o4Irs LLD ATE DRILLED_6 __- I19J - f,, t/- '0 HOLE NO. G - S. P--S I _____ DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS ( ..Sra.o-3i.o silt Lcon•t'cU_ a D 22.0 2.6.D _1 2. 2.0 r 30.0 3).0 -I. tf 7.s G RF)v ).--_ 3"c1iAM e4er 9I.0_ -Drill beytns fo chxt-^e¢ 3 .2.v .Driller-Infers f ron*, QC+,on c,( aril: I-hot GfO i 15 ,. 3" o(,a,...e+er• t 3 y•o , I 36.0 I enc.t.mi spd Ho) ^ 37.0 ti ole cave4 I h ^' 37.0i a.ddcd benioh;..e ethd 38.D RD bac L Sown )., c,rdcr to scr cash,. - - r 1 47-e �. -- -- 'II.5- `t'i•5' .�_Eiv : 0-4 be(ore ... �P 4 4' SHEET 2 OF `S PROJECT:2-1 ?L_Crese/e) Ssse4.5 • 1JDATE DRILL CD_61 _?o -.2. / ,'a HOLE NO. -s DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS Y -. 0 q 0 r1 Jp 41.S- (y•S � M) (C(141, ) P 14yD 'LRRG 1JE For ni1TIow - _ y4..5 -.5)..0 S ANDS-1-O111E : "Sofa SI)3hrly 5 plas+,c •P.nesi wtaLly c-e.r„eO ecAi _ehce.ntered bedrock. yy.S SaecL. Sandstone inferred 6Y °Errl/ Ifiction- c.battering_ I I y .a I 50.V 6,/29/10 - Arr.vod' on 514-e 2:15— = Set op to.cl;-IY . Pushed syi" Steel caSin9 +o 54.0 S2•a — SD-.57.S S I,LTY SArvDSToh)E: _ -Si 11 "'J S °flue 9rar (3 '31i); ^2-00 61,511,11Y P I4s*.c Corni vs,,-th carbide bi t- _ ,he —?090 F ,.e-r•-r•e4 gr1.ne4 (r'°c5ily o-5° f si u1,ine) sub-ravnde4)(oorly 9radedLahcQj Ea-k1), cc,,,,ente.t hvrr.-,e roes s.rb-40r.) (o-S°) 5-rr.,.nq.e (4. 1e,,,+h,cr) oT 0r9a.n,cs (I,5hit-e)i Sai.d. 5N-0 Physic.' Concliii.n: CleselY 1rac-ture4) RO (.3'spc.,_:ns ))Iov., hardhessi we0. . Strenyrh.-•resh: SS.a C Ii:Y7- priihn; wafer iS vary Sri+7y. $6•a VAST I•Saru; ) I iz: yy 51.o• Tr` ri.:,48 57.5-7.6.6 C LRysT0F)E ; dlivc yrny }Tole r,-neos„hes 60.o I S P.': C)9+ _(5Y3A). QZ"bo- h,9), 04 31-1c- _f;r,esf )•q core retrievecf D5 /. Sc�nyterc4 la..,.,noe aF I,yrl.teid.pp.n9 o-S"• ^f rmcd'iI,SMhpl4 c sr. e,.-.e ..Z.o te....a•...+rs• e s .ncreoses - with dq'thr V Sr.ft Sat'd, 1-oJyed tN fray+•• erd or bit. IPhy5 FaI COnc1,4,vn: little fa, no frup,r.na, 1 - /marl horrtne5S; Weak Siren9#J; -f rash. 6o-D • b7.p I. 11:S7bz o I:i3_l_ • - 6ti.o • I . T SHEET OF 5 JE:CT��9__�l�elc� S�pr,�t-f"-' t.YOf DATE DRILLED /J /'° ' 2. 1f/P0 HOLE NO. C - 5- PRO DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS d I C 1St c I D•y "n'n)'e` 57.5 - 76.G C LAIYSTorrG (cohrtr) - No'e 'measures sq..). •- p core refr,eVe4 —- Changed S hoe •}o gtte^"pt 66 to retr,eve core. it,ed ar,oTner 1.0 fVh — �i,3g Noe rrMaSurPJ eo•6 _ - ocore retr,ere4 — i:48 t4.0 17.5nrvn/ 6 4,• D itr — 3:3s' — N 01 a ryv,e a s u r e) 6 I. b t, ct.rQ reif toJod — y:vo .jo,l Arrived ont.te E:30 7o.• - IStg Sei up $u,sKly Dr,llers rotoreq ovr - 11.:14 71•/ hole, thawed u7 W S--2— — _ — Pulled drill S4rinr1 to -7 7.0 I IhSyrtll tcpctired c(r, Il . — Sh04 o.n4 core catchtr • MJ5-3 70.0 Perfor.rne ql - fQI/'r?,e he 4e i-eSi it ( )4•D .4- - w s-13 76•v r— - 76.6—00-6 5tL-T5TOn»r olive 9ray(sym); — 71:$1) 76.( Swi4c1,e d to r•. 3:2.3 lift -s;:r 9ef6 ,�IISb11I V.v.,.Ane.; scarrerod le,,,"lnae_ V-5_5- --- alf-Eer um Cetb,der bit, D"S°. o{ of anie-S and fh,n f.1') leraes Of It,ne I 9 Did a 6,s, ruh. grained Svb•ruunded Poorly 5rarlad rang -- i7.D d,pp," t..se; S4t`d. 1 b ..P bole rrtsures 74, 6 J - 6.5 core re1,,Qve4 . Ph '`cal Contf'0,on: ()toe fa-ne. ,'raeive,^,, _ •1 • /1� r"O4 f1414{hest 4r.r( Strent•1-ty fresh -.- I D. I 011...40^.1 ' /jr't j . _ w.5-(7 • = 8°•S ferforn-•-•e a.-EafJin.9 ?p.) _ he..ct te.t #Z •— _20'6-40.6 Cf.PrcTs:rJC ; Olive gray =4:0 8.O.6 Nole rr,posr„•s Yr6 1Sf .;S.Y 3/23; g4i4o rr^ed-hirjh p/osf,c -C,r.es rGscp, WS--) �B:JY 3.9 core retr,eve4, c,n a 4 e grU,ne,i sub-rove er(J PoGrly yfndr - 4:15 suntgi Sctttf. .- 10:II g1.6 '7 .D g- 617-91E° Ph steal Go Adi+.on: Iiti/e to no -fr4Cirr,oq1 Arr,vee l)hS)tz g;is rr..o • hardnrfJ and Srrrn5thj {'r eSY', -f '81.8-$s.9 5a^dsicne Ichr: .P.ne • e — 9rn,he4i Sub rounded) d.pp,n, o-So - c - —T- Hole ,rr,Pasv,-rS gI.S 'd3•t-83.3 �nd Saunt tens at obv re -4 core /'etr,eveql gy•o u-s 6151- +WS-q Drdlerj el-1 d dr;ll pipe - . . f . t1,ovyhr It hu4 Snapped. T I''=7 -- 86.6 I — I':?Y 1 S�r,,,;, W.5-1O / 1g . 45pJ 81•b- C7.7 5onaifene 'ehs nS 41,ou'r SHEET 17 OF -.--- I??•c, Ll.:4—. PROJECT 0-121 - r rec.te ),.e C AJ,StL.Y' DATE DRILLED/9//p° - (7/2_:121S6 -HOLE NO. C - DEPTH CLASS. FIELD DESCRIPTION SAMPLE ' MODE REMARKS -r'ClSk ` 0.b- 4o-b GLA-y.57Urre (C ord d).— 1:5— I4 C _dr•cidcd_2v-��--0. -4•° -- • r v h bcf..rc h Pv� ,1 �ur, = £, r' d T u.et a.+./ s--...4.1-•- Q- \k/ .-.II Nole c''''•S,,rei 7O.6 • 9 p, 'a0 - -- - - - I.(cot-c re.}r.cve4 — — 90.6- qi.k. _C_TL-7STor✓e: Ol•ji e 5(u y __ •=e1 R,.6 5iks (5'7 3h)r q?? a'o 3lis))f-n>,ei' PJ4Srte NY? • c.hef7 cloy Str r rt Sc4i1ered abovr Cored tvietl5mo•t1 • Physical c-oral{-.o•; I;*4c -Frut4vred —� . �z'� — enrch breaks rro..,. dr.u.n9 oriented I Sub horr3 - Svb ver..=all n-norl j ,r harahQ5J- ;ar.l n a S?rcea) -Fresh. role i.r caS�rrS '?4'. — 1-/-G> core retr•evs>g9 -. WS-I.3 9y'° a - - — 2 n qy,b • — "a;A3 ati•6 9144,- 1'erforr.•.e.( -fair,,,,, he',t teS+v a O 6.o - t Volppe/r� 'l �l/e r,rn;n a-t ed 6? 14.6 . . G/a.o/80 Oru clO v,.;,(1 - y r ^ji,r `.- r1 S? rte - 7///S° --- o is.olgve d rip .nstY.11ed 7/740 Ca. rl� •J;.-Iiac Anc -r r 9roK1 S elat.-01- • • Pl4<.ed 9r..ve,1 arovhl • 5/o77et1 p,pc. Tbeh vs.eq benton.te pelrrfs to creme c Sea'I . - 41/p 1/ / aP 1'r.rccic -- ._ -- Sled p, r- i ! - •. _ CifrO}t . . — 6 . — I _ Gen�on'r. .y �,,r 6S.o . _� • seal —77,70 - .r/ - . Y y�o, ,11, J� 6�.� •a '� rr``'' III I -- ora-2f Ve O — • (1. r'r J'- 11 b f e r-f -- • 17 ,11,..tte DOll I I "�.-a�'pLir; c.( U I �r 1,..., (cdus 1 • •7 s_no r l 1 r1 s i..i:/ • (90 ---�••i• •.I I r �ttrtsr - -- (PIA -- I of 1 c__ Bionic 0 I 'ivui ( • -+ chi(Lap . • (hof fo Sce.le) - SHEET s_ OF .:5- . • I_•III••I 1111II'11 1111 — L1++,111 -,II !11.1.1 111 III II. 111 -, F 1:'I ;III„I; '+ � _ . - _ I •_ - - _1: - '1 -' _ I- - ` --'-^J_i l4- :I-_-:,. _• I- _ •• ii _ _ • Il • 1'' • ,111 •.* :'.I, I IJ i . 1• 1 ' • • -_- .I"_—"Ii---!fIf-2_.-1• _', _--- ri i. '� .a_ 5O• `1 �, -I-i'.„-2 _1". I___ 1:..: ---, _-:1 1:-: _, • -;.-___Ti=- - 21 :_ =-:I;-ri'� Y _ .�:= _I ; _! . 87 .41. - J - •-- _ -1- -- - • _ •1 -,d1 • !dd --i--.-- 4 . tom- �I 1' I-1t- t4:, -I w 'Itt il, 11.. . ,_ .: -::.I - ,i 1 .I • - -• i •.-_.. -: _ . _ _-7- r .--1:::r. _. - - ':-.--'• •- I it __ —----h ,J. :1 9 a-1� II II ,;.J 'I 1 -_ G A f°�m� . .' p• T �" _ - S_�5TH- ►C� `{ -i Ibi f i : :�_ I I I — l ' r 1 t' 'I 1 I _. 1I Al EARTH SCIENCES ASSC"' I RTES IRILLING AND SAMPLING LOu PROJECT 21 q 6I-f-r`iSC 171ir 4',_O DC DATE DRILL ED_J ' 12 - i4- 1(1,W HOLE NOYn -1 \OCATION Aln-r. r )- . 7 lilJrIG,,^Ir q•C /V,1<), n?r'.11rJ• F 4ci:—, -) GROUND SURFACE ELEY. 14�L^�•(li (Surthey) ✓ �rrr .r),j'Jf„' ''✓�]/ DRILLING CONTRACTOR LerlH I�villlvr� CC' LOGGED BY_ - DEPTH TO GROUND-- /AT€-R 2Go TYPE OFRIG_GIIIN^ISOJ HOLE DIAMETER.L_5 _ 7 'r'' HAMMER WEIGHT AND FALLti4 SURFACE CONDITIONS . I1 h ]Ii 1ir),-%/40l 1Je",)Iv WEATHER Hp{ fovvy DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS /� .^ II I1 J O.0 sly Aic-UVI (I�Nl r2P AVrival:,; s, (ir.7`-, HD-2) 0.0_1I.9 SILID___Sfk)I): flaIP 110 4 g:30, 1-I S-1%P:"I:;_7r,ff.,)0 LM,Y 1,YOWrJ CI0V i� V1).320'3070 /Joy pl&Sic (r Y() 6rNIIN.4-c/uti .f.odr,11 Af�J✓.Jn �{lr�l 2,0 -rInler, �o- �o7 ,rJe Coavre Killed 4 PN(ll). Mori, Woll 9Po61e0fof c, UN,-f uwss 1),.,IlWJ I,y (4:55- t,,4 local 5-0,-65 !J nU,ote,J11 L7 L/ r� / r' a,val c`1Pf I VAC`, goA) solivou/doleJ O ,i/e c.),4-loGCcoli✓,ucJ 9,0 - 0.0-1.0 Sa,J,I is oaysf 9Parnr:1 -,}-„l al ells ,. 1 O _ hrPcl o , - i.O- 3 D MA I ,kG aI f1 .10 evi S-vNal 2,6v -»,/U/-in ,(0 G I► 0) - - •1t Aiecl-10 -rrrJe 9jir.CIN!(!1 . 6.0 — —2.0 1'2li" 91,GdPr ro0blrk - -mew -fa coo rSe �ka1 / f4U . pper,,J 1- ≤,o C(a 16,6- •,i 0.5 -1-tuC gv — °I,0-1t.9 occosro )cI -ltrw 9.0 1P,; eiic#(4sl',,-li/ /0,0 900011.5 la yekj (fr 0.1' 41i(Ic)) Oki d 1n,-1614j,/r/C4711 11v 960. 0,s- 1.0' a far 4" — , - _ R6DPOC (LAI?I li ro1'ifl 0,u) ll.q 0k,11os pc,--1c f(„L,S I ( j,;,11-6.,a-jicciii. ✓r llJv 11.E 32S C/AYST/ E To Sfl4)Dy CLAY rOiJ f 12.0 LI^! Glum kOr (SY 5/2) • 9`0- 9 -4 • i(at l) aAre 12-»,ia�-f- -to 7� N 11,0 Di,,11Ji, eNSC,cFl m -tool p/Qr-c )PS, S-/O,0 s1,Je �I� hsclfratfllcr do ykal,)nd, pooply 9i3OG/Po( Soo , 14,0 --- r9PA) 110Mc'. 13,0 I.l,1I/f(11'0) are clef of 0l 1p1 ' 1 4 12131ji(c I r'oNo(,-ho.) fora godverf. il,oS S /6' off' g " --- /16/61. oea11iekedI sow re E-6."4Sui ;, I.1U 19.9/ of rvi f *�1 -i toe/ c �,I2.° 3914'1 � 1/a.J I, 0I1�C 16.0 --- s-leeI ec,tI 5, (l.1 gvr�y (sy 9/,) B— 1 _s-heleap) 14, 9 '0 — • , 0l.7W5 In) I10IC Q,,(lws orft, o N4 I;3O l 1E,0 r Igo-21.0 OrrGrca/Ja I 111") 50-.).:11 [ins 4 rlrA1 CI'?" " 7 C 0yJO u!v i ,,Jd fdpw,i1v^, nl;/)(uo I� 4e ,:fGl(,)9 SmoJ-It C'- c7,I.A/.( So.�IC U;•-IPA SHEET_ OF )r � - PROJECT 2I�9 6' r fY 7 ✓''_/1A L/i/f DATE DRILL FD._ iki «^ , / _1Ii HOLE NO. WO ') - DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS 20.0 'Isk ►f� ,S_C�CAySf�/JC 7b S;�°JQY CUY�1�'�c _ R 0 2_0o 70,1 ado1/...( .o'/0d �i ,, 2.I,0-22.0 Sa4O(y I(apJ ik)(ee6lf a ✓r•1 v -1{.�,�ogv 4, 0.0 S 2,0 22.0 Cl-AYfTJA C To S4v9/('ovir.✓r✓[ (45 G4,✓f S ii.r1) cope, j C-44-fo is are 6 s-L0,w/I t irC,l orn,✓"CI D ,Its `4rf4 4,Jd out?1tviJa I Fe Cr-A.1(0-1fo ch')7 S,.+oo L, cwt. . 4 U Sao 9 6Q/•} 4 - C`Vfl/G 7 ve i✓rN (..),-141 -ili k) 26.0 op.“. p411/4)j (A) e-3 2.30 2 ,C 7g,0-2c1,5 Skill 1•4-1"(N2R.o-24,� Ci INC - Dc �fcvP�r�r� ate. Gr,,N��. 9yPFi)illi Dray (SG 3/,) ; NO 30,0 Ff 5IcriP,J5 r , N4I.n-CIo)s4uive Ie,,ise DI gveeAft, - I 9fray (c ) N G.2'-I4lic%. Q- 4 32.0 �:a5 3?.S I?�,l/GG �Isf 32.S— 41.0 CCA�IS!0 S�Miiiva �easnf ,,s k C lays4-oA)e SaNd y 0Ic yl/vve_ V er .34.o ✓4ove ( ii.g) hu1 SI5/J,ti(G�✓ily ( i5 p�,IIJ gu1d GNP wPa4>'�P✓rc(, Ilk �jYPF,✓,sl, G���y (5 �oc�f� Svc 9»►rv�� r-V 3/ ) , 9S-/O0X -r,wol p � //f4� , t�l/JOJ C Ph! L S 7 s- � 5 o'J 610: <^Wvi✓r�lD "rh�l/ play [�P</v c( 36.0 PhJj/( I &J i 16.v,/ AICC OGG'. q P^, ON 00441thr Li/14 G<[4J/6v(I D'S (' rr Act (Rail:Nee,' zvA(5 sl/au(A)y rc _ �3i.o doe( �uti fv I �'.t7(v y j7.! u, ll.. 3r0 re slUlNr�5 l N��.g Dr,llf✓ F✓�ur1 31.sII »7�,i 'I r: /Jib l<�il,e,PU , h5d12:,1,(1 yak lejf CoN IL1I.US/ SUMS YiGk07 zuNf1 9Fn1 11444 of rv.J. A, Q,(' flick . • 40.) , 71 "3:40401 �r�� S-!r 4:3D 711, cildci, 'CIS ,(Ao,, s.141:30, o p',iTy CIP?U.4J0 �tf0✓( PV,s�lJ1 g-� � v� I1 l, 0J I�frf •V H, 0 42.0 ¢ 9 t-fln/a iruhu 1 004,1,c1 I . _ Icvc 1 10.7. yillo) L y 'l;IS , cwt. va c F SHEET 4 OF 'cry r� Ii i . i PROJECT m9 c(' (IFY .,)((!''1 ( 1'/"(' HJ_DAi E DRILLED±I:dvI1 - 1 11 co ' a HOLE NO. 1\ (I i DEPTH CLASS. FIELD DESCRIPTION SAMPLE JMODE REMARKS 1.7., v �t�✓ �rv,llr� 41,O ` 1.'‘'I' "4.o So.�((, ILL: Srati�r ,, r> ; L;�,1,,r,e I) ej .e; h;�di-o Itti o.,:)w (cd 32.5) L,,1 5k: 1 Iia,dr,. aN%{ -Ci;;.Ic; OIiv-C IGcic (CY 74) - 46,0q5--loo 2�IrJeJ r -,r S.y SQN✓1; -)nnl. — Op,111 Vurd- a,vof ho,l0 , vare shell rv_,9 Amy-1s 6lanf E-7 sMoo f 1/1; avP 3.G 19VPSYA)1, -PISS-deI - o e v5 p Icily ei d � W$f -,wV.ro c, 40 19I1d Sl(G I l oN�x r /ION: /vi t iCe I- /i ,(JO 1- 144 -IIie,eoI SO.D SA 50,6,-S3, S'11)USTO IJE iv O CH II I S F sn6ie eg-ci cimEn ; °clue 1710c I< SY 24 1cy 4.,s 1D RS% iA)PS up I g5yo -rive �2.o :3l wrd poorly vale sa/A; bids are/�nol� r`e -1-170., ,, 0.1 /), OC`CCL/ /JQ I She II -(6().5-: ecil apA,I, Phys,c4/ Cotia',-�r�N; ;t 6d �n[id- trot" „ICY cJ3arl,frea • 54.D S3,0-S9.o S-((;yS-n11).STD,Ur; A,5-3.0 )1144-'104,111 Olive 9vay(SY 9/. ) N Soy -rt✓Pr - /r1- • ' _ N7o% -�i,)n 91,214(0(, pocr ly 9vadp. SGNGI, pro dalIy 4h[&) brc7cb tn1'l, S6'� o((arlo,0G l S Iia(c /rms, PQ1,�4 -I/www. 2_9 or ocat6A)cePool MG� I p yes 0)1, I ply /C:cif CG/)vl[17UN; �tiloal I?GFGI_114I -s'o Ih1 S4GIPy Idvf(^' 0.1' ) S�aGIe 5,o- 7 f.b SI ii,- 11 vD SA/'v U Nr 4S5 6M INgeocoEI) : Si, ,IIGk 4-'J S-c,O15 Vk1G B oN of slice le c.ho of (a II 50,0)PXCP`2f 19;7?60,7 addict a vod 511-4( beds arc /h,c%1 (O,S— 1.0 [) J IDA3 Iplrvc jka/ (-51 /1) ¢„ DI,Ur 64e/c 2 -Io b2.a (sy 2/, ) . ah ] �'5% -1i.vrJ, Uj�I'' 1�r�lls c�c1inl a��d can rog 21/alvra/ poorly 91•a a Sit+vo417 arc 5,nw y'_ [ r i scool l4-I cY 4edaird Cv,7I, s/ l Pif G le c o — dam/NeAi1 , -Iiv,o.,I 4t,a((J f(url7.,o- I .h7`oirol A4411 ��pParevi haul, /.J�-1 1 17 tll t ,,l`Co Ax,/, j� Lm-i1(1/',0T r II' i3 Aiv COrt l)vf SS0v aG�1 ! G'n " AA)14: 41,e 5PJrval c` eI<, "1 41.c 11:24 ati1 o� d,cse1 bC✓IS is 0- LS ' .Sh,le -1 hry 0.1- ' t-II I o.3 ' SLevdr-I✓roC, . (P7 f . SHEET 3 OF 4 < �- I ',LA � 0 K�� I nVf,?/( c Ja"r- /1,J..2I L!r DATE DRILLED .In I� )2 - 4 } 01- HOLE NO. PROJECT_ 2lb�i —Y I — DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS + RIO x.16- sq,o-76,6 cik11(4410 cfiO05rro. (rj•.i'.,f e to IOp'/tcf (i,ci,:v,f SS wre 44.11 SI-too 1 GArc r iC LAST ^.U ' W s S1-,-)0AV- -N.0 • Cld,c1 to-IitICrIhf ) . 1/,ripY,i4(A)G Iol hilt. l-I 71,0 '`s l hk P�lliv j he4d J . '64- I 12,0 ) N,0 vlk�fi 10.7 7// JO Rezome-ki' OOMpfc(7vI I Gcfl 5,I l'7c) c:+5. ,,,/la Pule MP[Fo/oS `11.0 ' 'Na 7Jr4/�o Nqo level 10,7 � ' -� , 7l1s/E-o ii io.9 7114;-'0 Il,o Owl' 71/7/F0 it. ) (14,c1Port 's-itel �II7J�D Oa(0vdiD co-co76.E / _ il.o Wcll 10)91,9 v4,o Se, ` relrr-I-wily { 9ol1,N t, 92ol7l7y5ic41 lost , 78,0 - 81aap I _ —21.o ,2,I) 'vI41c I ?1,0 q i. e l �ss-�, Q6 o !0 0 - Beirlooik Pe Ile+s� ri ;� ;i P6 o !lilt. °J!Ib, dc4eo1 9ra ve l ?4,,,' - 610 D D �i�.a d rj 81a�r� 1 ; ^ it o—L`-='-u ., I CID) SHEET # OF 1 11.0 I - 1 Ll -,...,-;.1.11.;•• 1 .,II.: , , ..1 .1„„, " ,.., \:___i__:,___, __T:_„__._,_:,_ .___,1___:_.___-__. _ ___,... _.„__ _.___ ___.:_:_1__•__' -• . .- .„. _, _ _ . ,-. ., -_--, ----_,.i I, -i-I l:--_.: -., .-i '• •:..1:' _ .•:,:L.: -.- .. ....i . . :-. -- "••-a:;1 _ 1 .-. ri - CFA-l I !- .JI v-�fr—'I - I- i 'it 1 r I s�i H_ILLS"' i--- • . 1. -_--L---__Ft-,::___-.. !i • p Ht°QP -5' P : :�'qf19H :;fta-- '*-- F U Li...-- SC' LEi---,--, I EART '! SCIENCES ASS ( I ATES /� � /FRILLING• AND SAMPLING LOG PROJECT ���I I l:''et'!� CO/9"eP A'4I '; /%/c_DATE DRILLED7��/JF26 ')411/2111q) HOLE NO. p D - 2 — I /4 I- h n IIf:Wit:, 1 loos �i4 11) 64 1SrcTGIlOUND SURFACE,. ELEV. 1-if.-2 .50(Survey) '_OCATION �. 1�.�%��1 fl J � r[z0, -,r �r" ,.. DRILLING CONTRACTOR± II Dritt.iv6 LOGGED BY ST DEPTH TO JROUIdD—WATER 10. 6 a' 1' HOLE DIAMETER /01/2- 714 HAMMER WEIGHT AND FALL /VA TYPE OF RIG «JL' r - SURFACE CONDITIONS ric4 G,�z! WP( y i 1)pa, GJoll -1S1,()2,-,1 WEATHER 1-1-)-1 0,,L.2( Swi/ y DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS 00 :SC Alloy tut RD b AN/iv-L:1045'J(( / 2,60 — 6I2:', .b-3•o A1Y Y ' S-44J1.� grow 111 ` ..:, ElotoCh L1'Yrf1'4)5 7/9/, vA," ( s ye -5i) i N ls�o -amp pl a(c OAIE-r5 Sy 2, 45-, a� 1.0 — 3.30 Ida / �'Ifoes� .., K% UJe— C'oLlv/il' ,lalve briWJ�C(/�� °G1 rUeap�fir�/, ai,, o(i • W e v a d f(v1 rJ U o• �r.✓nCX s of • , M vj c I�l l. pre vo.K _.GL roo1S -f S, 7/,q/gyp- ]' i , . 4.0 __— -2.0 )1704'l CoN (n1) N 207 frwd _ S(in:Ac, olkrllw ; had yl : ¢voo le c'r,J0Iw5 CJa•Ifv I" IG.I�,c �;�nr, �IGy�J IG Jr��t `� /� �/ I t�� vr� (-rife �2NtG^Pv) l��e 'MQ e (A)kP bedded W/S'cCA)dy y I^uM� a1,3el} yep vy) lay PPS. • T ,� q.ao,[l, pfielcr,_-ate by 6.0 Snn�I)y CLAY; Ylled o(Ie 1 oNc, -1`oc•vvc- - sari( llellc 3.6—S o VOy (N ¢) 1 N 'S' - 1JIIJ./Ie 2.; aa --IAc-1 (4wccl Gk-bufe ) 4( Irv,5� h w) eva�e , �INPS; N rs��� -�'�,JQ gva(,acd, poorly � /�cl:�Fcl LP,�1aor� 40�(,-,(1 8,0 s? vc��o� sa,�cl, 9P�' I�a��a. Wc,.kv, Dkr1lF,,(9:70-3:1(7 • 6.0-7.0 SO/VOl y IP,Or, SaN� �YOC. T (3.0') -� w S..topped tU INcvPlifef }i 30VolMOT clrr,tse lix Ifalci4.5 cot ip( ; a.J-11,I ilie (fie Ilowr5 1 e6'GW,O (IOY1.2 j 11 —0D.00, 3.0-6.o ob-d' 10.0 l.0- 5.0 SoNoly Cla) 40 CIR, t vo-( r(Uwr( ia, 20 leNs; A., 9070 wIcol pIG1-ic 41,0f; __ ,Y„N) 44,0dr,ll v, lri loy0 -PIA) 9PaiNP S-4Ai0( . 1,,C1O7tip V,+4 '4rrl0/ I2.O s,0-34.0 gk'nvEal Seto o; 1111u1 rt - �.o- 2I.v Dolled �s I- colovedi gm L S% Pi4Pr• N E Dya N t ,,,,,, ��'o�� • VJe Q•)a1 0001,1r SKrp 9Pc�rIPGf 4 (� ,N5 ID��zfirCGVC �,1 w� VW Sc(A)0f; 20% 9001 ,radzi UNoi) CI,Pf-I , a4ol Vock k05,Mep-if pr6( , Spt voui.)01(() .D _cub a,J5uI P, No to 0 NAPA)-1?G'l, V. pel'Vr0USl I6.J I SHEET J__ OF 4 - PROJECT �N9 0_VPP�Py Scapa ( r7',Iilyf DATE DRILLED ?6 ll 1`1 1.0 HOLE NO. I• __, DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS 20,0 �"�I' g C F'�.0- 34,O JCLL'l SA N I) 6,02 of J It:1, G jOr,A 'J'14, C4c Io9 S. u 20' v od, 1631 Si 22,O d (41,1P If- Cc(c4, 21,0- 2 .c. 1,013 -'{s}. 1 (-)rift /11 I d e I fG V.0 T 26.O 26.0 Oyrll ypi sIGL-,t- 77?sd. :llc fl op ii,0 /Jiid(D.2, -i it o z?-,v • t,Uk)21.0-34,0 Qvf G1II k.,I1 Vk1( is .4 I'1-n1N`p. 3 CM 32.0 II:Is, X330 Ocwr?o,.,cI SPIT pkeff, I� 11;2° 34,o 7r,II Yost Slot4 24.0 CI-- 34.0—)Q,0 -/)/i) V FLAY CL9YEyS /vDt o(,,I�Ius ewe- � g1r,���P[- SL Cale yell 0GJ1S4 �yoWnl (10Yi' 6/2) P,�a�Fll�r5ceGto�/�Lf ,, 50% �,7o0l 9?ICr1 7c (rnlrer pied. fir( !/G f� 7, Ivliv�i, 0 �yy S4,,PNs-t"t1; Ate() •-oc):) i, Prf, 3 N SG Yo ci e kat.)Po(J poorly C�{ rIOL'POf SO4(lf r' %Pnt, rrlGMO l 11.11 37.b pv,ll yak U. sloe-) . owlsoda' SheI( rpcf,At�N, "!'Pfevi. alr,llFc i,cr a(�r0r . 3&,D —, 3 0-4.9.5 �FyvJT/SrCT TD S1LTY Snip; l'0,t,�Ie4 UotS 1J o v'.5 ISL' at) 1, ��iart�ic pc/fie/out/ file yPllowuI, brow,) (I( IvYiZ G/ ),,5-070 "'I° . 1 I �� sh)1-1I , 4D /Jon1 pIaS11L ylN('� -mod SUJl2/L 1G ft! /J J t J � WCG`rLiPvPC� hPc>IiOL�C 40.o ,Urcic d,Ia-10,2ey , 5115h1 �yJ s!r-��;.1t,. 1, -lr,let' if P8/'C/2i - slt5lt-I -1�v<jl/tNrrrs;� - 5101v �in�e Jvao„r.l � 7�o Se•� cC�Jw� �N� 00,11 pGGt ly 9dGOrPL� SLfiJ01; lP,! ItG�,0, j—H U��{1 owf o) r{ /c1Rt E l�i�oI,• OI(,ofe N� hold 4 C�lr(� 37,0-3`i3O a:� 01.r(li`2 Yr,j/ X2,0 — 14,-,,,,A.,J4- ;i.0 /!•,-I ry'l•}�{f Pr-olh i l t y 435 - 41.0 Chooci )o.�s, c(G;11 > 1" sur1vrlf liVA entry hal,/ 41_0 . 6P - -- - p r e eN 1 Cj 1.;ar ri t, G.,df 1.livrt S1 t o err (I C. SHEET r O F 4' `,� rPPlP eP9u�P /;-111 rl^ DATE DRILLED �'2C -Jul I.`-1 Vig) HOLE NO. I\' 1} - 2 PROJECT�I��1� ;� 1 Y�--- DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS cr k, '` - '" aro 4`1• .,/1,1I)ySrc,i p Cu rYc:,.,1,v Qt) T -fee-i�. hole is -1'Sl�1 �_ -_-A 4-j c. -t ,/i� 33.0 ' , -III ' ( 60- _BED OU—(fo)' I- ILt,S -1--n I`,4�:,J w� lip if, aaG S� R 9 v ro JC_' ! l - 20' ',GC' o1; (111 0,4 -i6 rJ Y-4 , - S5-Z ?nod 40/A(,) (1ia1701'- pa 6 -1� olive brows ( / N ,J vow 11 af�9gyata roUr S r -,j plcrs�c ) 1.4)es • 1Syo v, �rnit 3rL/r�r - al ova . poor ly Vacl{61 scNoli 9e lloAio. �9�,0 �,,11,��;f,ao�lrl c�.cf g,p ptir Sica� CU���I I���1 • IoW �,aVcl Agri; fir, 1 r,,,s )- -IUJ4 Co 5--i,,,, god, Iv oieeply 1,iea1hek8 �6,� Sbp lUse aGf��� 1'90 N 45.5 (Io lGG C1�av �v f10 l��c : 5e� 97.S' o „ � �F�� O,J e vay (/) 4), /4,0r-to ((tile u),,,, - Mirth sirel CUI,AJ' S vPd.N40,o I .9:1,s-' slid, up y7.0 .J �Iaslic,l y 1;�eci•eurPs yoda- ' hale, �e1 � s, ¢�3u _ �-ro�lal coN4uc�l -I-v' 30 �lrrv�(cl on1 s,�C 1lpw 46g-560�1LTy SANDc ,dc: >red 7; � 7 52,17 Q N 30% ,voN I�;�tc DA J,,✓,1.Ici•,1, - �ikr1113 , ,roy �� �� I (� p� t-z �,K� are aa,a9. ��v � Tl�err N70% tr�P �`vGI�NP�1 su�1Gi lee.' wr:,1 N1.0 ' Af!VD poorly cot d, 5PN bom0. slr�l,11y • y►ooNcl ror �ao bud u� . e IA 1 0,1I •J,ii v.(1100 AM SQ,0 c 1 �oN�! 1OA) �vlc���{ NG� 'z'' Ilr u,e t" ,i1 Pl7bs/c� , 7oGS- so.s Ot, Iwe(-f-I I1PYPOl ;,o rn)015)40o-ft. (N R oo , II) f ,f / Q _3 Y:90 j. S��S l '1 if YICf PUi fL1 Y1 Ia✓9 III Ira SO,S�4,II�/G G`{ r f o ar, 0PMP✓-ltC, 1•sm.lof 044.1P:. // U $6• 0 VeY 5-1,S 4.2 ,-). �'GiG 1/'L s1,s Y��uf/'I a �ara� ,� y lra vol- tail cem tv-la(o{P z` A:•i (,v 6k k -1 141 s o,� )r c,,x l ('pn1-10,i 1,06,ficiA.) Iro,nG10 rte) relic{ b ACl �,s5 Coav c�cw�e�v Dk.)vecin; ccv,luhva is ��v�^IJrrw' / D S�.o (N P"` dv.IlP�r erl�K��-� - 9v y (SC14/i some suvraCe'; 3-S5 I I I I II pr.3-5-5.slow Sr.S:v 2vf, skoW Wh'�rIS i C0��wr� - pocJlbly - NI ')✓r uiwz.cIo S4.f—S�'� p�+L. �kflCtil✓P ��IIW�, (� ' 1loi -Loo 1( J�v �Or' '1 �J 60° VPGC1 47 NC'I) oNe cloMJl,all cow 24,llo f' 90 461 CI -71-t /g1-\- 56. 0 6 ''/„l4g,r,fJ,hQ tool, k..:,.) I Ilk -Po11r,J! Zr^4ikr/, 1-0-1(.1 I1,D�.cp 1.q5 l,1 tide ,4UGSv.-Pi 54, 1 -Lo leue( 711a f P'o Poo 10.1 - AY,'LW/ov I-,I, X00, (it'Ai (,1 s.3 0. /Jo 1 M 4117,,ti 64.0 4,pl 00(4:1,4 I,.E rlovd -11J lC 1 h, lo%u) Iv,7S„ll 1JlxI 0.2 lgolc 1�,r (fie' f/ �� ArJ��aeal �o�� 56.0 I:2.5. Lcq s4 2:.3c SHEET 3 OF / PROJECT_-1?'`1_ (2/ :(-/I_;r �lrl_'"_� _'`,1' L'; DATE DRILLED )!it'/ -74---)1i, II lr'1?") HOLE No._r7 ii)_ DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS U) ev IPvtl vfc<ccw7t; 7/4O 10,5 7/O),cO 10.4 7/)QI?U l0,' 7116k0 10-7 71161E-0 ►DLS- 7111110 ,0.1 - 1114,-0 JO..c rIICzopCi�I, COAtpie II t).,,, dr'(1.,rc 711Y11U: ,Scat- 1 ...___i2_ ___,___ ___,______ 1, r S A, 6 64-eel oas -- 6 D �5� (47,0 rel (4. ; "cL,.er C✓r't; Or;cif i i I _ j _ 26.0 {'G?t���- \J � -r 5 t,- 91.0 �i 1Y l 43.0 - i J ,�, 96.0 i ,,, 9°gin1 F sJ d v ►:? a.,I,19 . 56.0 -a V. -7/!7/ 0 (101,(Jo (0011[-%%`. . L-.6) SP, 1 era-kW? i, OA)of I , SHEET 4 OF • -•-• 'i ,._ ..., . r_i __,..,, _ 1 1__VID - -_, O - y �_ r :, C� CPS 5' !� ! 1:_, ,a.. . ,_ EARTH SCIENCES ASS (- 3I Al ES r� )RILLING AND SAMPLING LOu pt� PROJECT_2I ,�`�!�761��rr-( C(11!l;( A`qirt;i DATE DRILLED_ y 14 - 16' Pr) HOLENO.\!J 3 LOCATION 1)1/J (Or,JfvOLP)( c01leo62 (9C_Ld GROUND SURFAC ELEV. B1QH 7D (survey) ,( 1O, SUr-, F.rr DRILLING CONTRACTOR LP3II QYIILii' Co. LOGGED BY. S�h DEPTH TO OUND-WATE- �, ?KS TYPE OF RIG 19,1 JS0O HOLE DIAMETER ID/2 - 7 -P HAMMER WEIGHT AND py FALL'II /M SURFACE CONDITIONS n,1-I�r� 0 911//de- c(1 ) y pul! VOfildo, WEATHER No-1- co/RI/ DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS 0.0 3P ALLUVIUM R0 o aYy,Uc.I ON 5',4( N I; 4S • p.0-21,0 511A)D_L_D kle j10 i i1 {-le,4 SppakiPolr,Ill/Jy 19Y0Wn1 ( 10 YP 4/2) • v 5-- ,9 -Pwef; Usd 9z " -It/rc/✓e 2.0 95-loon S'IA)e 4-0 C QvJC p -- 6,4 w--fi, 7jif 4 000).r _' �� `! Y�'`1 �� °frills- Ij}, ?.asp rvi.4 /1D'. pA?riyoJyr, Fd cQ;V✓1 / c2-4-Z aNd 4 YV�1 IS ) J9 IUO��J / I I 26.G u dick f v /C I!, ' s-;41,, Y0UNOI FG1' (I P'), bfujo: k UJ Alva( W,,{v+ / / c i I (irte 4D 1io o 9P�I0U1 / v. pervious I h1VI,v^ /UrFf/S/IJ r • r_ I d.0- $.0 0((41/wJc/ roat5 f.PiE u401 iltall LI7,1`4/f n.' 0f)al'I,f) 0CII Sit-^I7-11 (=LJYIP`, ..._ ',Ye."1I coCrv5r 9kationiiSG.0 IL/ 6,0 ^'2(),0 f iNe riW INPcI f .rJd) SKIP - 9 GO deo/ I F.0 8 1 I lI O l! N 8.v /Jere L{'J Oi�:1 r0�+.� .J ,D Y72G II (r�l^ GAG G ILO _ I io.0 -z- Oki ll9,;l?'alEl:"ad !z.o = N1 ,S qvuolly !cos N0,3'Lti,cfC NI7,5 l�+/lo/n�l.. ;-,il� Iq,a - U Il� .. i'IIP I �f/P1 1 C+/J}� 5/140o Y'C/ QAH L 11-Z _- 160 t -(r,s" gYCi,Hfly (P,ui ti 0.1'-ArCk - ^19.5 1;i.uJJ 0),I dl(, 201, — 1 SHEET_ OF _ PROJECTItg_q CI?(rICY Srrj/IZ 9 tYSIS DATE DRILLED,)i1/'/ / 4- 1 i9['O HOLE NO.S0^ 3 DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS 20,0 Sli 0.0-31.0 CilrJ 9 n , ) iN.20 — I SM 2,.o-7s.C SICT SAc I): , ��, � EaVGUN (I0y/? S/2/1 ,y 4G� /JUG 4 Iv mu,' %--hb,- ll(0 p/QS4tC -1\'')6q, -0 (�"ID/0 rw 1-G U, o vNC f �i o�c�,GI o e("t �WP f/GfvJPC' SNl( U, P00r 15 ,2► o 9 k,iIv j SIIJGJf J!/G, frei/ 9Pnl G)0,iO, yevU,0U5 — o.1v,Ilty per 24,0 hyrakaullcf. = 5,30 S.C Aill1-4J-11'64 6,E cp 25-,c,-- 3l,S OW o: j u(J i 0o�ovPUl/r —77. u i/ �oN L s `7p co) qS"l UU�o 4-IA) a,�ot coarse 9 va(N'o/ SG,JD(`, ;/c p __ lVaded1 vouNcle 1I I SUbl'DU/�c- , _ 28,) �fz UNaI ClPk I kici1; v. I9PYU,GOS -` 30,0 N3O,o ASI•,GI< S-0,0,09 ravel = ,3o.o mod `(�G-E}u- f/JYef PN 7 J — - "3 LS Dhl(rO Sr,00lti 31.5-35.0 SrliYSA4Ip Ta CCAYCY 32,0 SC ' cu{ ((,Ic, .�y,(irvSrw.�r SsillcANI) (• ) (C/r rn0^f art drier/v - — c(Gy,, ,llrr,s l r 9VrCtl l fN9) JI/?(�f I yr I'7 S1M f'lGG C'G.h.MIN 4) 31 ) -_ /�UCI('i S N 3s,o 7�1od.C1,Gnev sr 3s,o-46s 0� l� : �IUI�f ('Pciiti,, �,�.,elsf)��(�Gr.�r ., 36.0 ColovPcl� ye,,, ZSy fwej 9©-logy q I (�iAllerf eummf,v1 In)P Qn)d 0U0'Pre 91'alNnd Scf/vd, .i r `r n,S % OrpaJPl , q'ILII + 01717k1 v/C1, -,- ' Sor1e l'-1 I:2'Ls, SC4 Pou vdedi Ueky t •5%0 19FVU,out z t t ,/ `TD, __._ dote c&u'J-?.0' go.s 0af ptefe l ,ti �.7yw ;47 QD 6 r;r.r,A.)4;, yaw; 711_11; -^ Arteiv'L5 G,JSIll g:0O 19.0 ILk Ca,,16i i3.0'.1 ,4{,y,J I()J Ili; b F tff,A�)1r11),I4 crt C �W0ti 1�'.�lU"G1 IIr1. w II,u k- I 11,7 ' (b.,,;O.•.I• —1, �i'f.r)t — SHEET 2 OF J PROJFC1 ?jFC9 j[(/(Y - 'i /Jr l/-',?l7 (-1 DATE DRILLE DJ,_1 jL _/0_ -i_!1170_HOLE NO, VP-s7 DEPTH CLASS. FIELD DESCRIPTION SAMPLE ( MODE REMARKS r ! �i� 0 �1' 3J,O— G,S G 1)((L `/ 1 F MOT ^ 90,1 �or lac./;rv;s �;rLI ' .2L S./1- 0 (ca:;i E�i� tic- )'4'"-1-,..d) 46,0 — o wn�-2_ F1,!_%,"VA� , te 9_63 t`l; '1 CI4a-�lr�l,.�J 9;4.x- 4.,,(; Nu`.i In la(/,r or VC 7C,R��I\C Ca�PDs\i5 0&-k., -- — A�✓1-)D1 1Y.,lick SIM 46,5- 6 0.6 S .1 Y cf /110 cit, _ w(1.,t/e Its-AO for..)-;-,, . 'J t11 M 0 kut.l ) ( Idyl\ `L/ )l doll. AcH-ra ofJ� i,11 q?.0 SGT- �`G10 /J,:N -ID 5119 11115 rI�Ur1lL 50 lb 01 biN-1;;ALIA V tJes- 1,0-70%J -I I-s'e Paive,21 465 )25 £croe-if wiill poor'(, gl'c1: Fd sa.11,o( 51(;/'/-It . oN1,l .N ccca;(././�, / 1 J CI1 � r) r•v I 50.d �L frc� n/, II ` 57,c Di' III - .11(t1'� ' a�JO{ o/1co-ri am r If. '( - '-11,11 c.,., (JIY,II(Y 1 Iliv✓ S24, , t ,�,a�/ L i 1 e l0rt(Lr g « NS3.0 Ovtl/iv PA)j4 561'1561I'a/t(1cr 6-4.x.-55.6 DIGS e y SC, 1fvl' �/ - - — 3o-40%) 1,16c( pia IC ci.J(5. LD- �_I c,/arrflwjt rro. 6'Govc 41741- -_ --1 70Y0 fsirvesiawe• f�,0of 0,4 t..,u"-S f�(o1'- (1f SC.) sr1 , s-&,0 11r.4 1 9i . e1 CI!;L1 15 56.0 D4-,11v4 1.,);ye'rr n t / G/Joll Q1'1 70-c 07 } -C(Lose. c,r4 n/erf l3-! r,aff6 4/cfr --5-6,5" Isla �j IlauPii i,r,s (" G I) 1;x.�clf f`v5vut�ll//4! �� five. r4,d;4r! C,klbi'J.5 ' 60,o gkkvil y /e f( 0tc'-1httLJ . J r 1 w 16.4 Go,6 Muria/hole �M (;0,6 -80,6 SICTYS/hJi) ( /l(et I. t� t r�. ��^^ 11, 7 U a d ra 20' `U • ,IM,!IGv -Iv C, fly cCi.'Jvt11I,a'J( CeLOve t .{?R,1 I koCl1/e,pUlll'j, G2c, _ (r+411C,,S ) exe'j4 cUrv,:/,l acak-Jo, 'bi�a tf PJ�,�- o con& 0, -,III-,P,e are tfor?rIiivejI Iu�rJ0S /2//(l,v,) /t� / ' 'a do — /`I U l f1 C�olot ed -id /�!c tie/lout;it DIscri i%..1 s e11 v-'S (=if(-J)- Wow) (lovl?S/ ). to-304 cl,;l;1 /oh,itr . Nl'S ,-,4,-.4 pi-Irk f lira-m We' Il Lo1IF -P6(4 G� 0 / �IN('f! �S-/7S�o // ,�P1 icic.,e 1,y 10C11.2,11 j �6„Yln/rd /10c/- O:,(I IGelid s7i/vd/1 _ GIr /J�;J ^'5— (D% q{60,'1 ! ,r i4,,Jrx /1 pot,,, . elicit,1/ (ia/c/ . (, i 1 vir. Ilk() ,",,r,�,', (,6.� - y?.1r(1 ChG 1 rG !Adel,- ' �l/6'I; J/5.. 11(',,tr'vI-,I • 0((GI,,vcI IIIFNfI /� / + Z �' • sllrll u'�-11,�,llJ1;111'1u , v,1;F' J --3- Y l.;)/(,7 au,{, /,,,,: )/l4 /P/ 401 „_ �` in `i,,, I; i,.., u,,rc �./ l[ SHEET OF � PROJECT 1g t'�tr'LL(EY �C ()CAA/. DATE DRILLED_�(rlV/ ,i' 1 / (1fO _HOLE N0. In -3 DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS J Goo sM ►;�(' ICJ r� , II.I1 6,7,6 —6 .o S,�too-l1, (,O.C-%U.6 _Sj L►Y c11 � olk,llw7' o t,ilik . ,.i.5c, e. Irt,%tla,r-,11O 70.0 _ - 6�„D Cunt /god.c1t4II(r. -f ollourdty veIc-IIv-tly cjulr] olclllk11 u,+lt, 5 °Arc Mild (11640- �7.0 (� 10,6 1rci-/(y 2'L/r r"7 —73.0- 7if S gkCcuelly le,JS c1r,l11N) , oC(Gff / _ CG7 b'a 79,D 72,. 0x,I/1/w14 prc% up , 13.G 217.;.4 Clrci'/iv -Per N 1,c, . 76.0 Avon- Sc,mde P-2 ,,,sy be r�,,-_,,M,,, c.,1':l Ly ,idI'f .r►o.+ c l., e( .r.wil 78,0 - 1s 4t,rfe•c(-lwa,,ilf the eouife Side Ci - Vic r'i 7_ XI'1)cx :-.),--.1✓( • — 9frodG-llorJ01 CGA4c,(4 -.): _ Philrosyf hes.hll 0.b — 04%,i,J({ see-I (c.frA,s £Z14Ot dv,II u,ii-C art' 1)'SO ��1lxrll2c IIx /00. -e-7.0 Gi i waUY �A%1 o: MI4I1-I ..L 12.)o More Marl ' - lolovPOl1 L Syo �i/Jri -� aG to 1r'we r� w }0 1ieuv y 01'9G IP�I P.D coukJP YLr tVeOJ sat/d, preGs . ('cane_� r,r9fi�7LnJ)l: I it Il - %YCirNAcI, -y 20 9kaue I; 5eA), +u IcwS I7 0, (]pill.tk poorly 9DGde / ar-?/ C'hPPf .6-3 Srol,s ko-k (,N °luu ) GN l 9 1/Q,0 It 11-1h i c j pp PPO, 90 o Srlbtovval'all v, )9Fr01o(S p�O,J x(1e/APV lid,IjhI'fr(4I a;d'1)GQ' iiro5 e J oGff; Aye' oer.-II;F,ad, 4 lz.-:%85,6 0p,il Y,k sk6if KO fRcotply_(rcuY JNN Lcf for,,n„ I 0,0- i-7,3 S)U'/ _. f1NGSra c Cc49c>vriil7 si.0 0;,,11441- p✓'rc�Ff j— klul.� yell 0U,111 !,kouN (IU`I1: 5�/¢ I ✓fJ��� l.tn 11,(11�2r,licf-7r�n) (� l "17 4 rrei 1ru!ll-,�s `ide WPJ �l7Y V, t�rJe ��lCrin/P7l �Gt7r )' t `� } / / N 1?a,,� )1f-1 e aciva,xt C�iD 9frac e0l SQN((. 9ed. 170M0 0. tJPI 1 T -, VIl k 1 it 111,S. .0eAlPail / ! {. 1( i l.[Ut�:f l)OI� fl7frccl COA,thllltw NGtof O U. i0cd V. 3/�I��N / � �1 IiIl1r IJen-ll'lekCOI. I (02.9'�1ofc r,•1PoIuo°) �00 1' Or(• CIl4rr UP 0..'ly 11P.JP1rfc.1,-1, ��� /X� He lS,� ;o,01sl(NC 0.3' kl i'./tN:r 1F 1",.re (d/Lr✓16v,JfCH,IILI, Grol.e) of cif -lr1,l/Nr."l (le 7.('0. ?.rc1r, )f0 dole At/((G/ .1 g2,G -lh,J r;^,!✓l ref/1;wiQ ,t.;f1141, I ,,f, c., (12.0 o,/ ivIr. /, �7, 3 — Fl-I SHEET OF S I / 1 rl PROJECT 2I (l _Gi''rCICY �IY 1!( -rJ/1 ,>;r DATE DRILLED_ruIV_IL-IL f�U _ HOLE NO. ia)- 3 DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS 1 / NOT(' (A)c IgoiIPCf ofI o-1 -Hie .D6!6II U,,,h-�' ''/P -(0,p_i, .,.. T I2rr,-Ir„v.1( /1,,-i( /wet prior (4 7111) Ade !'( ,T,.7 _ II II !/ // I J�� -F P,,,q 110(c m e o-1- of b lA) ou l l4 d,-)'c i J �Ca tAl 1 101(n) _ 5o I, 11,0,�, we/•�1(J /?PC/l eI J _ .ror or -1 td0v1'01 OUrx I wo,kp l,)a oikk/i7 I-0 GIIl�e ('/0A�Pr '(i /✓O�G,U�?.11'vi,/, -.._ bole P,J�� re- L , ,J� -14e (sole c,wI,)I -lli;IP5C 1 —AIL'f�r-( 1'Jok 3/3 ` G I,GGUsc(Jrulh ID pr efefr(/o 'Pt/ 1a , =— CNa 01,�/ /)C1 .ill -It,( hole 1L£ 1 IC c-f (jc.1-c1 c t lici 7t - WliJ Po1(�W„J/ 4 Tyre-k l k oil c{Pafr. ' I" r '.S'b(4.uk _ f oily yloval �Ic154 (,:Iopr, Nz0 (Fw 38.E 5101G" l_ 1—_ 1.S 1/Ili ,�:DUp� 3&,S c1,e1 CwIr5 ! 7111?) ea!ovodo OI'f1 ( ii ! i k _ -J�,r I to I,I<<� rA� o, P:2w,aI3 h;;;Ic . I L X1.5 -011-16,41c, I I _ T 4/.S sb,3 , qI.�IKfc $rN}oNk, Fellrls 4/1 �L 593 __61,c I � II I . Y 9 vaue l I , >;S4.R, e I " i I O . --1::_, g',g •— 3'blaU �1I sl gi.3 T' SHEET S OF s ` T -' I-� - ! ,, i * : Tr12JJ -, . - - ; -- `'1 --,I - -- ---( ,] ` f - • --__I---f .- ---- . ..' .------"- L, .�_ �'+- �' 11, •I-:� '. i',1 '��, ,-- . ! GMflAL 1. 1 - 1 - - - I] -:: I i,,,,,,i..-d, 1•.:7-.' :il• -•,. .-• •,,: !......: _.,,. :,:,:: : ::.,: i•il rn o i- Hill i P .I i7. . 'I I III I,' II '," :L:i;jiT: .1_ J ul '--- I - �I �'! - - - I! II I . .I - II I 1' 1 �1 1- I1 • 1 ; -- EARTH SCIENCES ASSOCIATES TILLING AND SAMPLING LO( PROJECT 218'q 6rrilry CCf'•1G( tr.Ot'lrlf DATE DRILLED_Joi1e26-),L, /, Is�`0 HOLE NO.ieo- i .00ATION �i_ � ; �/ r i_ /� cc(21),ROUND SURFACE ELEV. y(07`1•6OfScrrvc lS Ic f ,��, o� �0.181 ?»;, F �n� r , L3 �. DRILLING CONffTRACTOR-Lcc/ VkiLIIrJ� LOGGED BY SR DEPTH TO G iiIi48-w f-E-R TYPE OF RIGfa,1fA) Oo HOLE DIAMETER ID /- 7 7/0 HAMMER WEIGHT AND FALL N 4 SURFACE CONDITIONS r2P4Iir, Vo1IIti)9 I•-'/•,1e.{7IU( (Wire/ f- ,shili/}-r WEATHER /494,, b ee1y v DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS , 0.0 SG AGLUVI0 ,44 a ii) Alovcd cm 6s!k ;OJ G/?s. G,r,�r d o r�,� 0,0-5.3 ..1.4Y EY S�r4)l) j Da ycllow�f 9:00 /26 dri/lev - bvoWN,IbYk 4/2)1 )5- 2010 y,7od a/a �s��rcl+� ready 2,0 l�Ias lic �wes� $0 - �5% Time �p —_� 9a• ponbli by q;/s Coa vSe 9 va,A) v( scull of )iw oI cde II - - n J / ( �/ r IJjrlll�f al.(iP'( GNdl.�r✓v7ti — — �Yuaec(,.sa�arv�cllar �v s�+� — ` :SC- rot),volpCl• 2,4z. aid cher1 pievele,v4- 9'v _L__- .S? -3,0 Sarool 9racIff POarJP` . . a :Pled 4 /Oo✓LIP g l-CcNN✓od- �wes_ -09,6- one s hell -rvG jf,nN-1" oeceel fe -lo S 15-7, No.sIzCII )va.,).. prPIPN4 WS-Mlle, rills-1 -gEDIc'oCic (Cni I1E (6 0.14110,0) 4 E.0 I CL/1 STUN E : Mod yellor�xt 53- z.o_ -_- bkO WA) (10V s.4) ; 9s-10Gyu ,h-,00l, p 7,0- CuI 1rJ9f are .fare - galas-�1c I, S; 9PN) LSyo sat1Of;J e Vv�Iye �(�. - yr,,x .D pl,ys'c�l �altol, ll0/J•. soi iv loci I''''/c11 01,01 of rr 'mud. l - - WO Set 9 ' o C. Para. I�G�:INPIS� ID GI ee{1 y G1ea-/l ievPd, c ]I�rf s4ac� oParJ�e o '�' Illic� sI�`r%I f iu 6 S-I(, NIA).9. - hail /ore-al ro AG o (0,0 N7,o 17964'I puGler Iisl�-I o6Ur__- ,►30 ,� {ro rvs # - Sy C/l) Some Fe s-IGiwI•v'— -� ('Yilico1� o,f'I a, d a - s-hil prese&+, r,iool. G�ea�ll,ekec(• I�,o Doll frG 1 ItiCyf%J-.l 1?.a a CAA TPME TOSILTYSANU �Ss� -Iz.o- G o --1 s�,ll �tr�e� ,;.�,1'�rsJ�, }1IiSs S i oN E; L�r�h I 1JroW�1 1S Y2 S/0) + Plod t;e l lowd, bPow v (l ow s/i); 4 /vbk: 13-/ a,)oI g-I2 o r L I4.D — S- 1 o `/a •,N e s, 91 1000 r,vP - Cord1 c ll') 'd w.41, JIG oks6 civawec( sG�^I; d. poovl!) clyaca(c(, -1-8-2 Ma1 '1 (r/6O4 Al✓Pv r I some /MCC, -�lc,luS eoi0leN4,slrl,-IIyeeM,� INYec1t)-Il,a�- Dye Cfrrrrl4Iv.� — : 10hsleGl eoIJdI-I,OA), C(141145.S ave : u, , .1{,1 Riga, 'YIa1iIP, r,ioal Wen-1 li(.vrd ca,-1 h sorfci 10;40 iS,9 lb'0 T • oveGf o c l,vc;li' 0vorJJe Fc dac+)wj. Iv.4s ,i6.5- . Y.10 'I `uclft -iv 1'�SI��I awe .C)�oy (S Y 6/,� Some Fe s--kflvruj :1 IE10 4 OWI9Y?SFNr{"i CPa1eAa-lwr✓ ^tor{ 1 10.5-0 -ok ,v,eKlvvf! 112 eu,o1F,J- Siel Gc4-1114)9r chip/ C'G� — I v. 2 7-0,,k11-10.,- • 5-1,11 be bvoLo 1,j I�r.Nr.>I FAllivr 1-1,G.214 ;111° '2) D' — SHEET 1 OF 4 PROJECT z I?rI _7 4A/ SeP/J'i r. / J( l_(l/( DATE DRILLEDJcI;;1C 2 jr4Ikr1,11//U HOLE NO. el)- 1 DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS : 200 .S-1..., _S4VOSTU/I( ID SILTYs4'J�ii , C99 Dk,1I-'r4 qi fc4,.$,r,,:�-/ui ` 12.0-q�,,, CcJn;� ' INySS aid S\rri J, air I.S�,I' l't 2.0 29,0 21,0)i)ca7 beco1",f 1P5s- cPfr1Pnr.�C01 V. Cla Cul�l^X,J- (c wsJ ohs(w�[c�cli ) 26.0 .. � G(i�l 2cY v Iz•! 4 �ele Aieosu•Pr 2k.1 I �; i n pf ('OrG4r�'`-- ''''"Took I �to„, t1II1,os IirG ( I; ! ,1 E.5 SaNrl J voG� I I f r r i`''/ 11NQ �J/,tP01 9 Kowa -ft' l�le ID 1P fr� YO4'I `�cO fr iJ `I I II le r U0t0k If /PtIDO (e 4rs,14 1,3D. •(i 3,7 � 'h�OUI on PPMPN �r� (4;711°6,-. -7::D/Cs- /17/I U - $:OS NrG)Pufl IB,9 30.E Ij vo�J ( l bY�° g/4) b 12 - i- • 7:�s N,a lr,c( 19,0 G/30/ f0- 7./SIY,olec�I ,q,/ I � 31.0 /Lo -zuNc N 3 '' --Gr,C/, b,oc, 2LO 3frie Moo{ C P 11 rA. • S I IIS a p PP(ry IA) Cu•tl rNsJ, SG,.,d _ 32.D • Is TrIPd IDrocvrrr kawedi la- - 0llvr 5ko (s r s-, ) , Q-IZ QaU 13-4 c1i,,i v,ct, , ,,Tt lie) 13-3,S-4,i i-s I pry bP�Orr pacl W5 31.0 r n'J411Is' v. 146 39.0 �70�1 p ,f.0 floUdk.l! 39,0 3A. 'II'S ►ar,/Ie II aylrlr�dr�� well eel,P��al [ riPOI.- INP 9YQ(nlP�r S�JIr� all ��� G}{Q�aG+ pODD 15 �V/GG�rG�i -ID SAPIIr. I I g,, Q„/ Lich, of/J'-4II 39,5 �N01S4J/)0 fv S,I�ySGNtAS1Gv POMro./ GsriO1 �� 010fe 36•v n7„l'/;lreIl1 `uir�,G-�a� Cal al ov( a+ 21,0) / _ 5.410 G (��rt-A -i4 6N .4 J9.o) _ ,Jo re: Its Ie iGJ P ,,rG! 38,D O� .I.j t I ( ( 2:5153?,r 1,,,(0,J eAJ w . .v3p,(' l/I�rI [,l S�IJl1YIS 10 ,»0d• Tip -5-,kI ti v (a t[I,5 -r r, 4-.)1a �p.��,e,,�rr�. -0,.9A-,, ILI. (hlksl 62:. 4-/- `f0.v Drilled TuleI Gvd Stir oo-I�1 �''S r,rld.,�acc�r I�o(Pr'G ,'& z 3o 0Nd (I CI h (��) ri ,iti,+ 12.0 ��� i SHEET ? OF 4 Ir PROJECT qi_o_ gvec_!C;/ Seel2 1'-•Je,- DATE DRILLED,)1{i,ie ?6-_A,I,rl if0 HOLE NO. L-1)-- I DEPTH CLASS.` FIELD DESCRIPTION SAMPLE MODE REMARKS .44. b r ll.:)-t- 111LUC—roof go Sic 1 yCil,vo ,JC.: I:D S 46 0 - —4,0-O.0 AA/OSTO,,J( Aril) ec./vsr J./- east `th—EY 4P2l oleol) �o J J A) is I-I,Oh t B•-7 pe6 ,� egue (r��f cw�,J1 `411 9r(�y (Sy 5/1) CIQ[�y�UNC� is A4eoi. d/c 4p1� �`Cr'C'o{ // 14 ) 9rGy (/Ji) ; �eofl G(e gP,a, %¢'r-lo %'' -- - — p1Cliaid? ;(�411i: 1i 4e.0 bN7 S'O,,,,t SGNJ,1,),t (edrQreu/SD ((3-1) _ ?'77QGiI'1 ii I LAO(A, -cGII(,vJ 21-4141(,) occ!�I/oal a I oak 6 oN1 Pout' 3:50 he�d -�(s-I. T-I-t I t B-7 N,U ()Ay 13.7} level` S�aM evr��//N�,_/ ! / l ,./ �/ �y ph s- ,-,7 Lovd(4'loo✓: f plc, le -1, ,,,,'J (•...,DL,5') 51-G...,,I,tHv1 4I 1"l,gl' s0.o hako1; 1,41-le wPai ekeo( , r 'k' 47,5 ¢ffi/1 �'wibrr..v,-lGtGu1 mL� I Pe4J 6,v�10 11SNi le ' FV`IcivUT / r 1 L W Cuilm.1 f a,, 1 Sv4ds--lovrte ys e DYrll,v/ zut s2.a ✓J" Icy, °N�! ski oo y�,I-S�.G,,IS�GNL�SiOfIP S, fGt/ - 's-}VNC' - I,Ou , .00 eeMf d G(cl2 `!''i�/�/f Gc4- • Pole is ccr kJ lcut•J5 sq.;) sq.0-SSo Gil-tnJ1b0vs ,r,4T . w.14 SGNGIS-IvNe CN01 CIO ysI0,JCI r 5S.0-.S-6.6 a1/':.;J1.Pvif 4 G 7,241 I evrolP,v-I- w, /'Jo/J CP i -1'GJ cov1d, _ 56.0 Sd.0 anbbo, (C-((our A44-11 1.,)(-iii • nlo,) CN-1 c l ^^c„j o( s-t onr C('o S 1) $6•S CQY tern), }{'VOJk_fHGI y E.Ai, f�_ C�OIP,tt/Gfil ! Si:f �) C 1�Pd 5Y4y (Ns) Sa�olsliJ/✓1 GVvI U i0U TOIL I hOtlr -101fnlTn�G�1613), 58 O Clays-love (^- l.s-') 54 1 hnaol S 1 • T' 7/1l, Ai g'•0 nl,of. 9`Gy RA')0l1Ne CAd ei30 N I -OS;a 0:lly 3• , ark] C1Gyf/w CO/J.IiNt,e , ivy eGiIG.v- (P S-i(e8ttf7(4G-t . 1 Cerrow m417 ev,d av� 19. GS , 60'0 l -l/l/io Ia;() level Iq.C'S .ic, ) G O.C G�Pa do�lv/�F o clou loci Pole was ''I7iocllr(c✓ 2O 9y»1 clukty .4,41,//h, , 1S1L • 61,0-64.4 ctAyS rwuCt oboe No aP1yucla,4( � U.�/l lio,oyc 6blockl S y 5/l )1 615--/O 0% -))16L� f;,(,,,,, gi/ey cctvol J 6 2'0 r/cirhe five.', 9P,J L S 7 fcvvot i al o t-PN(.)coof. - piaiy cfeUG5e• I,DvclleGl' 2urel4- !%tdcf • // II I _ k l? i l oc,ccl al 6( 0 Ph y l/e'c/ 00/v0 70d: /�Io(IJ IOW - 9 G1 ._ 11afdivel wile IevAilioG ro e a S, ><}� {D ,No GJPc,7�rfs rv� 691311 it 1, r' ' , TOO le Ill, f -- - N c 3.4 il2al'I ea clef r/ish�/� — I / 1_II Sar�cd'nk ( -- 1070), oCCQI/c)s r1 �GIII J5 11 PG G7 f 1 �o10 I N,G ��4� 1f `/ l7�OwJ shell -Pi-L.-45 titGa,! 171 P1PNi, --- -_ s-bl.11.,c{ c-} I .8 44 r G /( / —�— 7fa�8o Co(or&_ o — Well 1.,,,,,',--. r--a' 1_- S?J R�-✓)rJ rt' r 44 - Nwirin ' ' P' () :: • SHEET 3_ OF C -C c,C' f Tor l•7C',2 L - ' :, l / e'> „7)4- DEPTH �-r'+n DAYS DRILLLD� � � HOLE N0.__� DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS . 4 (1))1p, IN.,/ vu,-/y),-...;,. '/YJ 4 -�/2) ko /C1 , - - ?/3JVV I9, 5 1 — PiPzo F-6 WSJ-a1161r t) I — Oldar IS' ; 7//OO D 1 1, / r 1 j r o-f G rl g...,4 k I SeI pl))`�71 _ _4,9 e op 1 -ate _ tla.)k 2a,s —,,0 2VA4'(1 i�o1 l'-2. I 23s ',-57?4,4 o ii6 Po — �"� .,,iI s o'lcC _ glove _ ,.- 4 u j I I Oj Si�iGr% 1 •� Pr! J I jVJ J ^ I Leo c1 it ...:-47,5 Io C;', Do C7 'Ow)k fravel ,c° ';,I I 'P° i'J ID IJ) I 69,E I SHEET_ OF 4 ' I: � x .1 .1- ..I _=I = -1- { :.-, 1_-• -_:_1 -_I:_"..:_. _ __= I -:I-== I__ ,1= ! _ ' =T�Iv= --_,I-- i - I-- f :"-. _ -I-- _rLulu--LE��ELI ,- ;�! -I9 I f I' --. a 1. I ,' t) -- -� �- -_ 11 :- - - -r"---7----I--=1--- - : ----1 _ :.__ - 'z "I 1 i • i _ - 22 1 GAMMA - .- __. • I ILL ll __- RESISTANCE ---J----::: .__P ! : , r g _I i. -- I I A I I I IIoCPS l_.- ?MV 1b ' __ I _ Qf S,4o &i S O- i 4- FULL _ SCALE - " •I - !_ ►___ 1 1-!--!1 1 , - ; '_ Ia ILI I_ I L EACH T 11 SCIENCES ASSOCIATES q_ RILLING AND SAMPLING LO 'ill G_CCLCY 6.';5;;(A!),"'(,:� TUI(, - -Tl,.[,.,1i 1'('J RD=S PROJECT I L_-_. • _ _ -S_ DATE DRILLED � ��- HOLE NO.__ n / r ' LOCATION n1227 '� /'1�?411 c�', iN_671 /,,to ),-D"i6 GROUND SURFACE„ ELEV. 'U7. B (Sirkc ) - DRILLING CONTRACTOR JF'l2 QL'I/Ivi LOGGED BY_ Sg DEPTH TO G?OUNO-WATER '' ',2-3 TYPE OF RIG-11,11%1:11500 HOLE DIAMETER j0?, - 77F „ HAMMER WEIGHT AND FALL N /i SURFACE CONDIT IONS 41!r1 'a ) 0voSJy WEATHERJ)7f/ I24rI1f r1bAy, DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS 0.0 =SP ALLUVIUM rffl N 11,o o Gl►v i ve,4 o%l s r-l-{• ?Jr,-i, S pz".:,l ci of r,llpti, 0O-is,b A/)D : Polel yellowesl� w/Ow vf 1�r'IlvvJ - 6VOwa ( IVYI\ G/2J r ✓ems-26) to,_ ii S$r lc;� ay.:/1,0 Noa p oaff�cP ) cborc • 9 100 s-Pt o o-I1+ cwc 2,2-,,,,,/ hide GJIZ'(I/JP(f/ s-a,o0/, U• p006� 44 ovGdaCl o),-/A oNI, oc[of/UUS/ 4.0 - ,fried- orxr4re pa/ d o&r-k-. Qitz 'rich, .s--I.,6kowdded, of ky 6.0 8,0 _ — — - - ?;o-W.0 c,I1y SGN�I- 10- 2 G s.0 bithrif,-; 5-lick . GSM -Niel -P,5:IL•I, a (,Pill 103 _ - - -- 1p,0 11aI 7 1S s/gyp 9Dooed -ilve S� uN1 rvavfr ,,k iiird, occcrt a.041 s l+e 1I .Pvq,914 e precPPv J. 12,0 15'0-24.5 Ge4ocor SAND. ft4,�-i1• (1Is.o-1iiio Ok,Of u. SP -1 os 1 . di, Of) .$G y.r r71 /6.D 4 colo✓eor, 9Pn1 4.5-% fiWPf, clo- )l'Uuli. Aii vii a ciSyo i'I.ve -iv Comte 9kohi,ol v��allr l� 1,-r-I 5r6,•-€1 soNr�i ,� syo 9�a�PI1 y �Z , CI7P /vtt iv.Uy /lY.(J� - q„) ( c 7G,t/ill ? )- li-1'111(I preJF,)� . Am,s r,.fic�l,I rr5 f VI?IX I V I( CAP -ID �. 11 6i/ton/AI , u li /I,1O/,'Zid 12;35 I k,o mu.,:A, e4c. wk./5 7.20 ,,i..((,, !� , 2'20. J )11Glif. Clic 11-49 1 SHEET 1 OF 0?� _ . PROJECT 2f 0 I V1ecet-,cee :r A/,)4Ivor DATE DRILLED Tvl 1 -_\-,-L3?-I_)(1} ) HOLE NO. KD- 5 I DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS ASP Is.o gas Gremcwr S/),v0 ((u',7'D) 2'302G.� /5l'41 Bole, 2. fo o d).LJ,0c oAiol 22,0 1�,0- 23.0 k »'loot• c.�e11 ecAIfA4al 22.0 27W Cl1��lt, wti, SaA)dslo,ve /e S. 23.0- 29.5' Sa,)ol 40 2/1.Q it'Ify s co)al . ' 24.E-z7, o CIA YEY TO SILT' S/1410 C_ Slit IC (Joe ;g a y CSY&/,),„--3O cJ,s 6.11) p/aS11c -rwe5 ' -v 70% l,,r � b„ ,0,,,,,f .,--4,.,--4,,,,i,,,, , 9PN 11,o,�o.'°27,o i'll of eke7r'�+r o(,,ll yal J/ocif 14.4 y • op, sr )7.0-34.0 SAoo f): aS 2 ,U aoue (a9i/civet-Ls/ IS-,o) r/Iu1-11' CohhPd, 9 ,` CVO 3((��►n1P), g0-gS-/o lirJe +j (10O4SC 9 rcrf)PcI f i & (pied. (0a4 IV pol:oucq r 3----i on 91Cc(ieI, r 0G''1c ? ) 30.0 /do GcloGNI e_ -{,n 30.0 �c�ur�z cl,Pol-, GN� �C� 17�,„� - .�„lle� P�,�crjrl ►,il9r(f I�/?TPA)], �h ?/�" ra _ II6O, , 41.2,'e acsJ v. s-/01..)obGirrtP-Ifri l ' SGr I7 PO yit c%iPd• a0,uaN(c by 32.0 p,TC6 4141 Chi 1'4IvG.ri,-.c,rt p'Jf ,i1-• 3?.0 32.E Ds,llw5 32.0 — N32.o-32.8 Clayey �o Srlly Sovpt/ — 5-41 PO // INS. (44 abo(4 of 29.51 32.,P 712d✓I. C4G1(A 39.E 34,0 - 1.0 S,��oo-41)(: d,..11G0s c. 90.0 (LA YEY 1O S1LTY co:SRND: 711,(01, OCIG.fIU�sJGI ��ib� I s/^ as adovc (G+ 29.S) L1. Olr+, 91y (Iy6/, ) N 30Zs1,5h1S pluf1C / I36.cb — ill,' J , N 707 1.),..)P 5`ablied s U3 A.of, / 55 3��u 'I�t� l<Gs„iJ c,rte,lv ( ;/! - 3E,0 '&D POCK ((&/ 41I1 rbl,is41L ) �'0 S. 40,0—1:7,5"S(?f;p-C104 • II . .tr it f bra:• ' I J `SYI�s/1-(re S-ictr,,i,'c1�N l01 f t i 2 6 I D Driller ,; cJU ?�1J ' '1D` -��wr 9 kul•�nr'� `taAJi(, sl,5 1illy 9;�,s 4I.0 l ' Irv�Ir4/ y -11(�c 1 ����� / __ Jo riQGI. cFtitfAl ft� }�,(�'Nrl1 aC rv�� t�,� I �2'� r, l �� t0,714) _ acid f I�� ��'O( r' 1°/)t f i( ec.J�d fl( J ;/10 P, / s A V1 f�J /r, ly MJFG 4t,ll'eG� I // /1�n LN � Si+t N S:UG x42.0 277(.4-1 '1 ,S ,voJ f� rft5'/.//( — 7/2160 Fl1o[WC I G.7 .10,]/ ' 4 4,IIII (,pAAr,�,-Jrc,(, r, � 5 100 CU,Pf(v- - SHEET -OF _ Il /' PROJECT_ -2 ft(") _f/�i_('_Ir .. C(',1:1/1,e' f'1-/VIA DATE DRILLED.j` I / I.— 3_,_ II() HOLE NO. II I) -=' DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS q.0 --S5 r 5 C �i(I, \_ r' (.r l,, II�,� f:I) ~ r'� hole o-l- l t51i !, 001 II w!.55 /J0-1 GoIC)/Al ►'e br oth�(. 42,5- C10) em-1-N-1 1A1� eoieI, :I45 92.0 Jk,/1J s),.;I1T I occasloo 1 ally( f _13_1lays-Irecic — qui(4f, 96,D IA) Curr1I�JfS, rr 4 4f.o 21Icd, Clio irL X9,0 SRNdc-love -ai abo[,e (al = S'0' Set" 4575 'o f g " ¢0.o) J 414,nl'-l!n, k`-1'rgc,�, s-i(el rcirwg, o I„v-i1112:30. 4 SS y7,S-0'z_≤I,./M)DST7J/J E (os a�foU( �;,•4 (k1',11(:(d 40 covl,w+-1 0'O, 5u) JISN, t1C(-(4/y I Ccf [.dPqIIlo-P.{ -d- Woo Bole C tw,, P. 0 �Iulr[i Jfray (5B % ); /t, 0—S7 f Nc'om1,5o4io -rIv an, gm/illy J/:,v lay-CA - • I 6-0,0 Y-we5� gsquo`/o -PWr( 9Ira(Afro tl Co�,II��f oyly vti) . ll�l. �U ,S'(.,,,of 1111004• Pe;�1 f'ry-+e a a ;{ i.---) 41c.. �j /� / n le S ���Nu � a„ .,� I h,sic01 Co,i (, I1u/ , Pk! L/e a 2.50 NLD I(�,I u4! 31.0 '- 7131, Piool. Iral of, it 11'1,1I'd A)0 IJiCc�i(`ii), (121. 1.11 ,/5 .., C.;wl/-,„s,, . ea I`Js,, 1)P01r� l'4,IViiC. 4 -I�( 1 0- IICo51 or IA) a l-trmi i + - 15CIGN olluvicl P2O J Sri, -- JJ p-2 T23f/J'h DI Co(lv5 If ..1�1 _ — N 47,5' (TolG1 = 47.1/ To5oI^'(I:. bG)W � 1:00 (^IX� n,$$.5 ban,.(PouS 20 cAl S o'f d S 1/11f t1 II -1Ufudi.#0 - 56,D I " -I/flick . 713#0 1:0.5"Hi 0 ti-&-d �2r;/L',I Cllf,8,../1 -, Si!,0 2 -1/V/d 004 A' 3S�,6 Do lc I liovv �c,iIN . h t G,-.1 -i(r J, -I P-1-- 1 0,0 o{i.&p 11,1- sl--,!„I,J 60.° A} 2'2. . /,60. 6 -di ik, S-f kWs i of SD 'r �i'5'7 62,9 - Dr,II1 gN,e1 avgl M S00411, UJIjJy ,v0 ILL 0 - -Cov,�.,4�,;,- 1 64,0 -T. piG �., Gs4//,,t) —6,i,s 1./1(1,}-ILL iflo, cf<-I,,;r:•r c4 Oc f 6,,,,,c,-,,,, ,<{ III/,fr;Oi g-3 — �,ll iv a 6-1.0 I),,!! ,41✓ r/o4,/ t('"- 61.0 711 ,f'I tfTr„>!r1 4.,, G r — ----cc 14o�r SHEET 3 OF C" CIo��(.1 c,-,,,,As PROJECT 219 f!''f n ��0=� S �" /�,'� DATE DRILLED_i('Ir 1- 3 'ly(�l HOLE NO. W1). 3 - - �cf - - HCLAS S. FIELD DESCRIPTION SAMPLE MODE REMARKS 6F,p J. -cc 41,S•GS.z`z�r"�11?.f10"1" (r�'_�,,'9 RD orb �Y. gilt /tt4'crvPS Isl 2_735 e Ayr7N(� �D S?,1D`/ - - — 1.3s 7 O-'1. TOO I11v , 1� ,t. ,t 2 ► �y,To/JE, QIIyr vlGc% (sr 2/, ); 4G(b,i; hrd_Psi;-6141 1 10.0 [C4- v af/7 �'w eT u If, ,�,�,1 1�1,6 . l.�aie� on1C✓1 � Nd �l i NUJ S7G1>rIfLC{,4� 27.3,/ 5' ypNe �Vrf! , IJy,II�L'I UDC/ ��,�1SG t10/. C / 1/n)/e1 iC,.faiti Wife l'7l'.i ' _ J / � / ,/ � � S/'!U of PI :-ciCl c ,�ldt00. low -I-, A,r,,1. I,�r1., 7z.t) f/nG (DAL aN c(J( QSWto.),1 05.5, JAI/re 1� Ego WCCI-ll,f>1rJ; . / r.,r/U4 k, lead pe6d / Il,o 32 41'/ n/k�dei ravC�r1G / - 72.0 y1ui'1 glide! s/1s1+/1 �a�ti a1,Nw7 j ke1!/PUF 1/t . (:}-,I cd. 1-,4n-1 ?) qwc/ IGU<I(ovi"(1 7`1.6 (Ci'YP , S 73.S--rho CL/9yEY SrlVD5 /11E . nIC,l;'/ y3rS Phil l/4 i7ICk! (N 3) ti I Sjo -V(A)es, -43- X) -I'we ti.u{� pvawed sai'cA, I2uorIt % d a' 1"o , I 76.0 — 74 o 3 II ePAiP/ �/ci1 oclaff ' e 1I f,,.; G-1 06160t irvol€f med 1 p(41 y � -I'o lie',w{t w slide - -Y,-,af'l is v, — , S -111ri)I5 1, dPGY IJ IDMiNa led r?1)IrG PL•C"ir.' li 1) A10:4B S , kw-0/, No wPa-ll1Pk,.v5. • /2;03- r. 11 r c� 77,v--I6a.D SA/1DSTD/c1C: t'(1: ,) Aid, + 1.33 78,9 �h/I A,�ai El�d4 Si/ y ( Bs/ )a,vd ,llcd9:✓y _ <0olc 111o„p1Gllw_5 W.v _rids); 3 0A),L 5-ya Privni, qS---106 ,_ I,eA of -1-O -1-a -1 i,vo 9 pa'pveri,poop.ly 9 pu FU ' 1�,U G1LtG� 17.4 , Ifw l Sa.iol mod. Wnl! e -' I (vo i.-,112cd 127,6 NCI veac-ho ) I +llw/I)e y ia�FpS I.�� 01,14U'f Godg1,0 (4 %"-I'f1'J an101 1(57‘),-4( ('11r p.f 1:45 Sc1v cil4 ouri at 1 fSPNl ; some�Ia((�tr+JG I I -2rnrrJ/I x100?" ph,sical eo,J r ,,A). S.11/1011E' i—a 1}oIC-/Srekff -TD `�[e } e9,0 Y11al is more cvrG1,1f I O1� �9.G- Cr..,I1ov5f a-1C as WWII etc/Qv-1(a , o(iJeiJ-ill'-Cites i. V. Qu • s1 aL rI1-ocf . D,'i f lvG '"BKO e_ G I S V. AGs'f I .G o,r r���'.{- DAL IJ-1 sr . 1'g U✓I oJj( 111k i0IIlr15 3.zs 6c �1rC.a •kS 1 • l'AaI W,,D di/pp ' i,3, la,.d 9o,) %-0--(qeC/{ al 22.Q [ 99 , , ' SHEET 4 OF 6 . v PROJECT___ ) 1_-_ y-PP_IS 1__ST_rf'" ff l DATE DRILL EDjiiI( !-3 . /O61/(-) HOLE NO._1O-...5 • DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS 92.0 Sf r,,o-l-rlri_ lln1D S i oi)e (no,v1-o�) ` q11,0 D(-1IIf Titer, Si[ ?7� J GINd -inetji- N gS,0 P Ir ' ,(G� �Cn��II li��Nr� ZGNP G�'✓1g �C� l.S�nW��, o,S' 4'4,t/Cr�611N1`/ I(M' 4 N/W 96,0 SGNof. Ngq,s -.roo,o yrlu1'1 is ,rTocl.pel) - Ir (00,0 ePMPn7.1{d, oCCar( JCI 1�.(u1 Avg q4,f - et,ttW51 oYe I,JG!r h ry J co icd/y 4, 0.5 1 102.0 - (04,0 13—g DI/flied Omei Sntoo� Aldo{ rlitf ',ob.° PeJ ua) (Is,v,.t yvelPArl _ arc 3 �,1„/�'f 106,o - - -Il]w1`l ioAto4! f(/S4Nd- • to2,S n?G('1Scce,Ut -u 0 Plcyti , 4, 108.s Or,lly61rlov' ItY11/ SkNd S1DNe, . J.Adti f,0U4I('o,frlck; (4;00) Is-1' ' fv ' Moro l09,o- (I2ACAys7vuC' Dk 91-6y0)3; 3 -9 7.s c(ANwSJ cfre lQis,` - 9s-ivo% rod h Iur-rrc. sliver/ (,,-.) uNol pia,y zc70 EcyJOii usually e><1 h,/, nl<r -y I __clecova5P d r ,,II q;l( Iiz.O �>�I�4.Ir (IZ 'J '1) s( 41 coo r '[OW IG4-) 1"J111G( • ki'✓ , - le � i? d 'Wk lilt, J �'�IN�ij4- �/;i 17.S Vol L)CAUtPbf!{ E[-loos' p,-k-Iy a.^-,en-, VH 112, 0• LOX t• r7J 7/8120 114DCas„'� J(Dr.,(ied ° VW( • piez0.r+eref-f,-1:4-:✓l,ed/ a h 0.Jill O11 (2. Co SHEET_ OF 6' PROJECT.1.0?'j Gr012I1 1:12 A{1 V. ! D- DATE DRILLET•J -?, Ic 2 HOLE NO. I DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS r ' P ' v /7/SO l�,v ►{ccl 23,5 ;e=u„m21-er cuonple -tuA del( t i 1 , — 6i-eel co-Qj I I Iq"bfaNk"'y* t(eNe- 4 ' Dr-.at i I ry� 01.D' 82-� 6na--F--rl�r- .obc cal I • , Iq"per(orai('c� • I I • gravel (yg-%)cytyr- ./ t�' r,'1l •• Li 610ill s TD. 112.0' ,c,..,., I I ' ( I SHEET 6 OF 6 I .�, .. ., a HF i _....:_..._=_11_ ....__,LILL:::-::•" I• _._II____ ___:.,. 1 H ll -- -, -I -1---_I - ,---- - -- - 1._- •-• --___•:-.--;i :::::.-.).'-: :...i :_ .; _ , , it :. '.C�51��� _. :i ' I ��� , � ' � '.,; �:. fi :I - ::J r + • I J I - css o HHii1 —_— i_ 1 —1 ---.1 .,—7. . .., I ,... _— .._ . .— 1—-- , --i---,.. �' NA _ R-AL G-Al _ �1 RIES 1IS hA N C_!E. - Z 5 a C P.� ',I •-t .5, SI/ Dil 1, ;I ,; k j :i �1�I _L�i i 1_-, i 1 FULL SC� G ' ,l, i , i 11j ,, ' , y T f SPUN ;. M Eau5 ' =11 _ai� .. ' EARTH SCIENCES ASSO ( ATES TILLING AND SAMPLING LOC PROJECT---- G (E S-C 1' .6C/1_/9/1-(rI -11L'i 3U tJ HOLE NO.?P - / �,1I ��� EJ L�'l �i� DATE DRILLED ° � �-��� 6 ,' '.00ATION'J1'/� 'miles tArli i / fill' !'D() (17.."4/2 src 22) GROUND SURFACE ELEy. gQOZ•5(0(S-iru y) ' DRILLING CONTRACTOR S/1 Opiii14)^' (iv -LOGGED BY C IL DEPTH TO OUND--WAT R "145 -LO TYPE OF RIG_(:?1II,,,, IS0U HOLE DIAMETER 1P%1 - I7/I HAMMER WEIGHT AND FALL ATA SURFACE CONDITIONS ri!✓4- cr�'�j I,l,M, PpCiJj , Si N!/1// WEATHER l o-1 0/.O1 b"((I/ i , • DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS 0,0 Si ALLUVIUM RV A/rlitl'v10/J S. / g)'/6 1 Clay Csii,c 0.0-6.0 SnA1l' Mull eoloked get,) � o1r�l rut, e1lowlsli 1)rowrJ I0Y( G/4 9e,:-II;ra used 9 „ ,I-yico/ie 4, /- 2J 01,11bv5 .0 s Y, ),/,)es- 9 5- 1Uo 7o r,ecl-fVC tfc w to 1 , ,� e i owed sa,.d, pool, IC 9 c•oeLfd, col, b y R:SO,r�u c 1 oN4s�s-1.' i. rollr)deol, 2'Yo q7 2 rcl'lei.f � — — I 3.0- 4,0 °HI'LG. flot,I a- (3P/J• li oMO. i , 0A) eee e N d; i). 1,0 �L- - - /v PVuroor . Orin; 7.lic-1 ,21 s-AlocA SP 3.0- A.o Clay ofr S1] le,,s I '4.0-6.o SoAIca geodes -Go,: -iv I - .cia-13M 0! 0lrar'U rot, ?4,, 2-yr,rtNr:.' s w f 6.0 - ix�J X/� (L1 P/1 t, 0ovi-1) 6.0- Dr,l/ rob 510 is ' P. 6.0-36.0 CLAYS-1(A2(, 14 O 'J syl: .�s/4• 'lv id t ellool li tk0WrJ CIOY/2 5/i) 96'-i00 jp -mod plan-hc Pi,0es; 1 V g'I) A 'IVo SON0 , Lc_ S},v G,rI.: vCI lo: GJs 4D ril9SICCI C'orJ0ir-hCUP low vioyc(i.Jer.s — No sel erz,O ,(3/4') MC,ci -6 c4cp/5 wea4hcfredi cv{IlAi i se-i- q'to"O 8 "via. /" . Sh0D I-C s-loW)n)g. -/lilt% oG.Sfr✓�— l'l� c4cLiip, 10.0 • . Ovillws L7-111:10 - had iv 1o.2 74'I 9lwies •-on I,S[1a olive 12ro6Ief Q.-Iti -I cAii<at gray (sys/1) soar Fr s1au,r,u5si,1/ B-I -1k+6 :nai • pvesrNl, 'mod. cJeoiIleoPo4 Fig 11- go{ioN o c4frN5 /2.0 10.2-3,i-tiwrs 0/e more CoM19el(4) I - % 19 %4" • • Chips I / • (]irfl�PO( L�GfIr7 ,I�10h, 14 0 aNa clef(.) r No-le! Qa5( Somyle1 otff �'ON- �l�S rc,5 7U�cW6-I,d c,-'t or5, - . It 3OUNrc HtG I'I (j/o4 -�L6pr!r .j ks,1 1S) cIrcu)G1„vur N il° SA"(GG.I(- cm,l iii,N/rY 16,0 7 r r , 1171 ')',,'G,'llu, /PA II_43 e )2 so s, j�7k F rl�S /J d kr7 20,0 SHEET I OF ..5-f \ • a PROJECT 21 j'`/ Ca-0it- S('L/?n,i 4(110r/ �� l2 I(1/ 1-,_I DATE DRILLED ,.)_,,,'Je ,� _ ) HOLE NO. k'D-`� _• DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS !00 :-_-2Isd ,r '-,_ 4 co-,b•D_eG_A_Y_SI !2_ _fca,rl',�) RD -10-Ii N,u �Ir�p 0.1S„ — 20.0 20.0 '11744'1 l6ecor+tf i✓rn/ (r Jr,la'r,;� 2�.U ' +,'Ir:'�S ore �q ' t?- 2- r/2 ' SrZt_ 22.0 .7_ r-A — 22,4 Cc.,g ,Jo((vvl zvt/c 34(7 ) Drilled T;(1(114,44 20. — — 41,„c/c. - Co !o .5 -Iv ppz-1 y _ cm oo* Q u e 6 7- fli PO Ate:TGS s,;,,plf ptuyhe Z coi c,ol,,,drol w,/ or•sr,oic ' /•ta-I I l pIGN� (''((b us f 14 Pi-J) / ---- II lid if o,Y c ra l 4-Ls tAll h.( 26.0 - -2(o 0 1�'IG1'1 geroM eJ y, or.- __ Nz U (Nd u kc, -1 0, some Ctit111N,)f are pla-ly a/vol moo( hcry — 4.-- 91-aalvvd5 -{1aavo(f stale. 28,0 =— r 2R,ir-oot I Ao0,- {a1irv5 k&ccl .s-I.rod ( ' ' 14,0 61.40p 4.25 ,�2, 300 ` 1-10-L9,r (JI4IcNJ(4 P: 2q,c) T I:oS Le '4 s.i.e. -2:301,x, - 0/26 6�l g;3ocloy, Y2o fey/22, 142'7 ( Y GI 27 4,f.Spm yIolet,l23,1 /2O _ (/21 11;20 M Dry hole(217) 32,D 13-3 U'`"�J Air fa,li45 Isoo I - yP,dSeY)latd,Arlll, , 1'il d ILO •f1'( Clc; tkiillti..5 310 I y I;00 v," wl Ain.,) 4-nvv,cwe brj (IkJlw4'11 ) A)35-.0 OccocoA)Q1 stools 1P,trS 'J killed UrE1 cod (DVeSPN4 Sir 00 Is-f. 6,44- s5Ail A-4011,5 'err 46red 0��gkciy (A) ) w, , PO I/. l,/lle 4-q • 37.5 Dr (l pal( s�ocor, /rod. 2Y p �IIs re S4tN1 5. qS-JoO�a y71,,d ��flic c(7a 1� oGr,l/er cruf — •— -111/11 P1 i 1 L S% SGiv 0 ti5(1aau1cr 4-0 pall-/(449-11, 4 19h sic4lco udi-liuti: Alto/&�oa, hw,ci?o�c', o,7 r ;Zu Ic N, C( cJ�'c'1l�6 sed/ ��.� 37.S-3F,2 Sd4r-/aNP IP,Jf, Oil L-c _ B-S 9 yuy Cs 4/l):wcll C�r/irN rat v. L- /c ( l - l/w haul . 1ro.S ToG _ II _ 3:16. 'Pctol 1O. To•IGI 0,0 N 3(1,0- CIa1s•IGNe cu,J•icr,JS O,15 llo 13. ` 9%� 2.y c�t1,-,A)I(etouc ftAl'1 (11 l7 (J' - I ^�D.o GYca51,�,1c( c'r-,-cfy levi - -(v OfrIIJ `urfl / 5,cwno�.-t l/Y(S�,JI , Q4)011,4(41(c.dy1 os' 1 /rl.o—46 o C(11 yCY 1140 T OIJC;__ '4b • 1 ("r?y1„, hvou,J ( GY1; s/�) •I-o n1,(�_ SHEET?-- OF PR0JECT.._221F q CjiTr_ic_ti_S;;2126,! 1 IL,'LDA1 E DRILLEDj?')C -7 - 3() _i_g,PC) HOLE NO. O)_4 DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS l- 44,0 wCsyN b"LA f . rlr)O' 1J t (e04,-]'a h90 Ye(!ow,S�1 1,,ro r,JA/ I U y V4 1 1 tip lb *0-19 4 y recd IacJic CWes J ID to p �// � IG,D I — goy .cI(oe 91/amirof c(4N up thbvly — gG.Sl3�,/slo(.�a�a�� o� jc� ctsi (/��f�i Gec�, eol; S �r j�r7 J CP��r/� (r� a.:1LGAce iroc( et 41--JG-t N Jflrr41 eo/ o ,]io : r`iat le, ,,od. 4 3" -6',,ck. WnGll,ri col B-7 D slier( 5i-clic( gild Ise' 46.o-03 cmys-i Gx)c' (of 00,,,_ sN40C.-gi . L.)/ °I+ 3o.a) Ok Jk,/(N3) -la Oil v-e ('a,l, k,!oc L (SY %i ) r 9s--/o0y Alto s0.D plastic cNPf ,r L C7 S'&Nd; - Cor-a,vf r, wir.IP assorImPNi 0 ''� }-Hole MPcsUre1 � 0 0 shell -Pka i f - /L'/O,k f/ J��0I l kfl?!/.,f/Sr . a' 'U.Er, Too�C/ fh flcc/ ro i 170N' Aid hod, I,lite 1 hr )a//4JC he6 52.0 -ft - - we ,�hPvPol. • - 4.r,l, T4AYI/ G /4 p {p /� // J iso'- - 4 ,0 C1af�fiU;Jc CaN-I!ar,l! 0,15 G/36/p6 �':3(J/o , 14-6 NoLL0v1 fr♦'roof 1441 1. (shells abo) — Ievd 4/, 7.cfi o() 640 Al 5 2.0 fl2a•J I b rrcM e) li-wtta se,114 u 9k,l/r-.v.S I y 1(46,-,i 3 " 0/:0 0 . 52. 2 C la�js;04°, �ct a to(A B-g s"v. 0 )71,10/6174-41, Q4 ¢V,D P/&1;1 StieII f� ✓f �� ,, $6.J 15{-- -y— —— aye -A+ciccl )CIanir - .o7 s' r� U1 r 5-6,U a� I A1c l'GMef •pi•illf !(I( Gal gy J f1r / SM 0 G 0.,, Q2n,,A4- lUr�• (iTCtlla ', oo.A)"1C,0..f cone e(.al1b- g_O� Si') °Ali Llatrt /44411a I(shells- -1)o) • Sq.o CIaJcJWJQ g`a ad el bas �li,l1(� /laic, fuo4 Saooliek ( 5- 707 ) 517e /r ! G,` YG1I1V54J4�1 60.D _ kJ i re 1 I la, o drip becoMP mop( rave, MA-17 if q;9S / Oo�s (Palo iieefU✓ f _ t ,,S��� C�IL,�N®-�llrrtlf� -,' ,.c) Dk,//frf 'VnN G0,C P,6f h ' o-¢. 620 ________ — 7/2/8o /o✓ e.I Colo. r,1el( (-x' i' -Lo S '.• SP / C-3.; e'oo F,7,.,a — a t-Y?.-1J4 64) — 06.-teR L j A -rn.._ C1ryJ 1LCuir0,z . • 7/8 0 7 /,7 s Ilk(le./ ,ts sl7o w,-,. ' SHEET__ OF 4 PROJECT r' /`7 (:rer,/Pe, Sc'" e _---_DATE DRILLED :Tv?" ^�'_ /ne'c'_HOLE NO. 7S3A-6 [ DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODEL REMARKS r 1 I Pelome-kei' I 1410 lee! k ).„0 _ -71,11 0 ?&,65 • 7121 0 4! '7/4 o 4-3,3 Ow co-9 �( X27' s b���rafafive r � e1 i z[1,-1 ' c�s� tezo 75 -fie CCvneRf gra..� O E1pnL s.tyrKe yD.D ' ':>-?g.7Nt,e Seal 4uAtieA ./' I '�+y��c I gtnlel (yg`-X14�) y8.o LI' blank sryrcnc 't.° T.D. 53.0' Cap T _ -i- I .1 LL:::: SHEET OF I . : : I -';I'','-1 ., d ' I .1 ..... - ,:-:I.; il ,' .1:.:,I......,1::,.., ..::, : _.„,..,: :t.. .7 k_.:, Q... . \ , , ____, .._.,.\ ,.___.., _ ,..._.... O ,. "• •, . _i_ ..,. ,.._ ... • 1 • •1 . . .• . , " _______ i_--Tr- - i . . ,•1 . : _ I ._ -I 1 , - � -a- ::_� :,- - - -_-' ,-FLUID- LEVEE Plir., GAI1I'�Al .; d,-. _! .D.ER5 STANCL_ '± � ._.,--i i :- iv c pS__:-_1:--..10 iv%i m �5' /D)v.'a1A24- '1_1 EiiiRiTin SC1ENCFS ASSO '' ATES V,3ILLIItG AND SAMPLING LOG PROJECT t) 1(.2(4, G(-r t l.' 1 (Cr e'if,.( I% ': -I; DATE DRILLED •''1 -11-:17/`Y) l:r•" 1 HOLE NO.i - 7 .00ATION ^' /).`:___1,'.), "/- '' 1 '„-'i'" -1" " L.:2'_ j4) GROUND SURFACE ELEV. Li."�'I.31(c1<,vev) DRILLING CONTRACTOR.-.. - r i)r,I/.•" IrJ( _LOGGED BY /' DEPTH TO GROUND 15'AT-ER — -' TYPE OF RIG ' , r"•'' !"/ ‘; HOLE DIAMETER Kr` ' — 77/ HAMMER WEIGHT AND FALL •' '-rfl SURFACE CONDITIONS bird rw,,n' c , v) ,1L c;,.-f• r,.-ri, " • ' WEATHER ',I r ,-/ec .' v DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS ✓ O -SP /i!, ;, ' rs kl) �Dr,Ilf�- ,�,. It-�/ 10.40 Clot., (S-(,rcf t-f,,lii,,.,. 00-6.0 Sit/J yel it.54 ';PO(JN q 7' y vI Sr " , ' /Jz (� � � ('r7rJl v, (toys? s�2) i 9P,) G S/a i'o p10111C 3 (hv,1� iq wiV95. 0y,(1.,,c 91, I,')(01 cCr )01, V l.'0o► IJ 9YGciedr �y 11 90 , �u1 /Jdo.l,lt1.✓ s0� YovN,'!f , 'l;7Ovc {l, J �oy�1az ,N plr,llrN, /1,D. • NON C( i. 1'c r So,e ,bekoVS piG.ol 4.0 moil p., e5PNI-l; VP/J. 1'0tio ; u, PVU,oii ( ouNC S'oA 1) r I 0-e1,0 ,1P' elii.hiPG �'� 6.o- 9.0 S/I/U 0 i4e!I��Wrf►7 r,iouv(IOY4 G SP ,,,,U la, coIo eo( Ls-% �'r„,cr • c1 c-r0oY, / , 17-,c) -I-) cooArp 9;c(r�Poi rc,NGt, rx,•IS s.0 C.7cltrJ�_, 51O onari :r4 / ✓ �/ �/ 1 -kod li sot, kovonl ed, -lz aN(ir C�+r/1 54P11.r1,0sJ CO peat.i 0C(asrovG1 9VaueIs, /JON ('P/f- j L7y shell �' Y _ PN�GIr 0cCRS((,NG � of va�S'. c1.0 n„1I vG I( .r/o4 , No / Js�, l7(PSPN y'('rJ I'(�/l4o I V. lJ0✓UlolTf) f/,.4 t.,t n ••iIltic=/v"U 16•o (;71J:I'J( 50er:IOv IC1(u:J/titre' c —.4) \ e191- d 61' CE D _0(-1 .(C 4eAm it 1' -0ex/ivDA) 1 _ i e . ,'2: 15-/2: 1c - 13 Doo..) p-3oS CLAYSTONC pale LCll0Jr54 • 12: 4s- 1:¢s Vs lot) . (`,1Iki,S 1,twIJ HO YR 672) 9g- /oo70 sli51rdy 4O 1s",q' li•0 -I-D A1oci p/aS-tic 'Ie/Q51 eN Y Son';.1 c /7.!/'' r 9 � 2 /1 rr / // �/ / 0.1 �tiS'(PC Ctlf:trJ I7hhs' f lotjrf1O.J l0W l,!!r,'INP'5, modt C% �Yil'U`") Ilr;��� wQl1 r , }D (lPPyl wGa Il,frr�, SIC ev ',vSf _'o, u;(;,(ec saldey t-{- SII o -r• c If irvJr 1 I ('asw� s{i��ci B e 7 T�fW�J� . �N°1 ��r ro1G�I, 'log elite'-, i 14.0 sl,7U p1at)4 rid .s �(.-I-4 ,r ✓ 7 — h 1'9", YF Cvvcc 1 iA'5 ream GGove,) lb- 1(0.1 11,4i)M o c COf(.v rj 17.(J i0t,1 I beCoMeS l CI CITY t c l!rnl}j—1 Dt,,/1fJ w,1•(1 --17/R"Ii,,,,„,, • (2,, �iYnn Cdrickek ((upJt G Oro 51,0I 1,„1. /)7 D,<✓[,�iv{I r,/ a 1)',, (e ciciivI,J 5• 11i.o (i ll i J)J i'Ya, Lic.c,�(C .11,,,s L_ o r) •SHEET_/ b,F. 7 PROJECT 'I?_,__CI_-(±r'Oe $r'e0P nrJo'Y[rs DATE DRILLEDJ)U(,lf 21--- ' 8 1i0 HOLE NO. j�n- 7 DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS s �0.o jsi 1,0-3D.s oYS_10fJt -,,vi'-i) 4 P-I k-)I) aIf' gG^)IsaMlilf IS - CGN4GMI,roreI(\f,)i'IN Gaitc 0r'� /Ad'I (y/om l 5l lla<S i vJfc[-) -giy— -- — 21 S' 21.& Cav{,orJaceou5 Zoie - - N2 1,I of llf eat I-o cool, layer 3106, "(?) - 215 2 v MG r, 22.0 �ls� - — Y / r. as ahwe ; roo 1 y -111' 9s -I I,%cIc, Q ppEa•- , cc, ,,J js 2y1,0 flvl"bt du-ri 214, ` lra� $e Oro( J) 1.0'.PCA--ly>,• 26.6 3:g() -1;°°-5:60 Tool' (OIIi„�' 6/ 2 N26.b ���I I' ��fdf� �l 'G1h//�,�sGY 10:05 ge,s91 -KIT, 4 1cl 11,0 ;f25 oc citps fv0r0 e?( N5J ave /Veal. 01,1012 o:'( 1 l)orr 6•S' - X12,_ pray (/)S) G/2s $./r�a;„ /ea('li'j 13.0' olZ; zg,o P-{ (rllcf tp:iScho'psurVIA/11.93171�c 4Zo' (;ail oc ¢.3') 41 Lk 017 r,,30on✓ve0.2(w9 1c,7 . (c‘a1I £.4' 2,4) 15" '- 30D Dk,II t J'= w//11 v kw) - • 7D,S-(0.7(1/AYS1 OAir as akve ICe7 Cui�o 4I , (� r sf99N,MCbv l S llegwekl//hr(,e01) Olive 5lrc% (././400 1a�✓-I lzolt 9 y (5y 1/i) � cis--/0076 Pavel, 9P4) -1.9 a,/ dr(IliNs w/ 32,D r rarlwj Is-00 ki9, Pools 2570 sa,0d, mod. well wa/uv4 4al• IS 22, 1 /o' Dr,llwJ PhyciC4/C'0/Jol,-44.): low h ako/Nert, br � •�s loos t �o�fo�- mod-10 1, e GJP4l1(Pv�+; (75.4) tic,/," 20 v(s,*rt5 - LT L' H e f 39. / o N 31.5 n�0ol/a d ���a/ZaNe; tafr,Il e;,1 1e!aJc1 r l,eav,l.; Ooa d w/ FF Jietw ,iS B-3 Sr,.,a aye_ /+6,9 �f( — 3.-In 6 " -Ploc% (IUJIPd mole- -'Nenl kak)I 32,0- 13.0 77'1447 IA41' /oO h-a- Io )73S 2 11,2oov c ff( J %( 6/ izoS 36 0 Ne11 G.vo!(I nod, rc S-larval f, - /elf,/{1i01)v/, 33.0 (Hole Atfa.rovEr 35.1) 33.0 171-40 IS Of 6 4nnr �G 4-33°'-r -4 3S S- or✓e pro-6 encepl -/L (r�^e- S SuviG(ft ake 1aII app��vec�/� - -- i /- sIQW nd. ., / C[f A)S 5 - /PGI Q/ly 38.0 3s.≤ -3G,S (2,-.( 570,06 G 1 ihell -Po?, ('a 1.,, 7auo alzr-r -Tra5a+oN is I)VefP.)! AA.AP(lc 4-Gyrp D,,IIF0 LzUrE d a S/4O3 , 1 311,0- MG1'I is Aui v. lIaly� 3[1.0- IJv,11p4le rfri(fid Mile IIwec.-lllevro/r v. I,flle -Iv No Nok; (Idle,' sop -!{,ever 1 40,0 Fe S 1t lovge volt I,e4ou-Ii.,./ J CoG In1W�� Coil 1�)f [,i c plf�� 12.3-s 40.4 ccti bt) ',Icy c.f..(irl .r �ba4fAl5 la I col,n/ci 1fal s•..(,hill II-:,eS, 12,4S N,;, cl1 erf p / l' B-5 40•vl /On1 /r. /Jrc ,lGp N 40.4 7/06-I 'I t16 1J low Mud . tin -_— luc,•I(verc, vale I) 1 — - — . { . _-' — -- - ,�LI; o- �4 0 (�aV1a,�iirr,ar,S 7,0C — NaTe, I lei Crf�)►,! )at/�p (n' ` I' CI.,/s/o-vc i, 1 ,l�1i4 C,„11,/(/l'e41 1 (,}-Iv ()S7-yyCET2 OF .114.0 -- - II , ;O.--1-_)rr . T 1 e , c . k° , � 1 1 1 f C. NO. /: U i" PROJECT.�����v(�;^�_ Pi >,:. (' � ' .:��(r _C�/��►�E DRILRILLt-D _�. PPTjcLAsS. FIELD DESCRIPTION SAMPLE MODE REMARKS 9�1i i c.'IS1 so.>- ("Gy2C(/I��S_I 00_C_Ct_JD 1 ) R0 ook I i)ouvf!-1-1"'-'5 "(:— ' _ 49.0-56.D 1'1c-1'1 l kad6 Svdd,fv, 4I,) - :_03 1.2c QrIn 33.b // 1I�Jt' 9v✓rt/`'C/ J!i/IJ�` Il4il„ve ed,..-b,) 1 4,0 Di,illi,o5 L111c1 civil Qg,v 45',d 4Clio/I(!r lr,rI(y I N q?.o n'hol. (Jol(I?IA,Fo�r61z0NC. _ a lorn1 " -A/cI61 dc�cJ/vol'ea 4i N C t - II 0.0- 51.0 56.D Pool S IC/if Cr�;.A:[C �.v — — 5 Sit-r I SR��Oft.%cJE - Slsy legs, 01(ve 9i,a y (5 Y 4/r) ^•30y '' E-`7 Aio,I. C 1 c N' , v. cioo ��SS ' of c to 6o.5. — — cr�ef/r-,107,, v. PrkIPc� ',awl - an U✓a(P "IS-I Scri , U. )20Uv1y JLt I/et2 ; ;� 0kil!o. e,J9C1S( So,-(c 62.0 12hc�sr«1 C0AJ0tAl/J: icy , _ tip ottacItC II Leff atf - . Welt 41, c,ac II eeet eA)-(r cf i•,;o la 0. 5,c 1- -I Ii i(r(,s t, It)Sl. o — rect cfw ) 1,tlr W044111k rol 40 51,o Ok,llwc 2,0,( I- YPSlI h . o icI S!r oD-111-, (af C.ck7A) j j9v $l.a CIayS-lode —as O7o0P 1-I30,S) DV II/✓l le fl- 4S r -- �,5Q,0 /Ji t4'OLs shell GcrTme,✓I _ i3-8 0)/C ) L 1ii1i'3 t . �arq. l rcz, 7 c 3; bii 191 PSPnr ) on+elwlcllluclo" i5 5;2i jol� ll�.O s s.3s Qv�n 33,s. Lr{f I.40 %�`, Clsf. -59.5- �Stiell �yG�f C/'rJ�/Irvu .�,r 56.0 &ri-f e/a3ik,ve IS (roa t w rki 612? MO le.I .5,9.r&AN, :w;. 0)115 Nei. o016 r 1,oIil- 1.4 r;,f-r l c lt-G 014/11,05/ L y F;; 3s 55. 2 `IaySilUNC QS Q ofr((G�i Jkrlled IZUre GA.; Sp,0 -30'S) exePl77 nGcdNeri rS (or- SMDbTti RlJ< 3I-'r��� wect-t'IRelie allo/ -4-tie f'JSrcie 0 1-6 cu 51 Cl-,rpy dYP_plds GD.D — iID7s1. bso 60. 4 -CIAO (e 0.2-6s,5 C- YEY SA4ST oJ)' 9:05 SS sIi9l ii S1�\ecl�IrrJ) {buy r�Pi) OW (dk<< ��,II va�r 11th till(J y ` /i 1 Up I TO /6 -nod p'to-hL �,?. D I oduaAee vs- S 119/411y v�et U� �0 Boy �I/de 9 YarnJel�1 / , -I `, IUve5Ul av, a ue. SCNclr oorAl 9u/droll 41�rtily IN El I. (c n�W }007 ll-� kid(d Saw(c) a�Jd O( ye>! IGy�ysl / 610 P119.3-(c41 Cc,J�IrIw ' 0191-11/ re44, (� L i ca PC (1+ry rc�, r� („ Then) 11 raGl�i 3 �wlc llclC /�J11 r-��' tiGS,2 7)1 0101 �Cr+P� c6 zrraJe N c1± aj c.0 SG�JCts a; 2 LI. quc, uc.�f - -ls,S-7,2.0CM_ySto/Jc�_ If or llccic - — i0rrll volf rl (s y )I IJ� "/DO/u t1GN p1uSilc il�Jff,_7'" c F4 I 5-7 /5-0,J(i,t grd. I1 .O0 .156.4,P S11IEllJr 0_ID I'� 0✓_,i o f1 so f a fJ11 pe l l j.lik,J: Aiu.�l. (14kCji; I,i/le 1Jflov,2 ~I.> tr_; \a•..e_ dc°l�v ‘f d 'cd� r / ;o Jy V ( SHEEY 3 . OF l t0 wcct�I,ccrcy rl� PROJECT 1 e(C.`l (l ('r1r r 4:( /h'J=/;(fr/DATE DRILLED_ (AtJc .11—Jf4] 1 to 1 I`/[ )(1)—HOLE NO. i o DEPT}} CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS ,,,(1-f37 -101.01 1120,14o/2. 613, 6f,0 Cl5i- Ds,s-�I.�CL/�YSTOi)E croAd ',4 ) 1; ) . , vhok0 /1,0levtl G7.6 7I/ 7I1/ID 61.3 7IZ s 7121" ,� 64.0 715 7�.U - 7/3/d U 'f G4�0 0711.11e 7/7 (Ow,? -4 6,1:0') p • 7/7/.0 9:00 Cb-pi ?„/CA) 51� , 11pr1 Spe 1 eJ//J[e-,tI � I 7Z,,o — 7.2.0-7 ,5". C6 AL �i O Ct�`�ST&F . %Li' vegger-I?i 4‘14± to C►51+ I,,1krbP devil ; coal Is ackQji ) we o'eepe,) tie hate uyLI v lONe is DII;>f black (SY 2 )- --1,ek.€ I P' y2o preree4. yJ „� u N 2o7 J� -I 1 (l�S r4J✓G�lr s• ) 5 r Dr ' 74�,� " �d/D bl��f� O .teoral f / frrri yod is f¢ rJ CI✓�S-1ONeI' W it'kCt ;d d i" UCCar/GNC I by II: 0 4-go-I tJ4 ; , shells., oil pdes<A ,,, o(`i/liv5 WGfrt'; AA is No-I adoc.ici"/J lc 1'`?�siral COnlf�fi7✓J7 mod hoAd, AK{ �4 1/; ;2 of ,/l1G eNJt gec I �/ l,yo(ycrcrlr[f// // 76.0I W'rJ (�Phf01. }2'.DU1/J✓N G)00U/1 • 19 10'77, �^rt(U-I4 tA) ecsijioaJ— 576/4 4,./al w/F Flc a �J�N7I4 ��G1 7k ��tJ� �vle; vPG ol�'JIr�1 C Pie �F,S-91,5` 511AL� 011vC ��JG�C- �I✓t ' (SY z ), slMrllaY i7 ela lvvc Q‘Cve Q�,lIpJeGt,flf'.v/ 0.0 _ Q-1 GS,s ) cYUyl s/rclr./3 ticeidelrcNd S,Nooft,,av" 2,Sa,"%'4- � ' . ISS� e • gs—1 D3 fa �t^JC'f; '" 5-.7o ' I r- -- 151.5l'II< lVa 1;a Sr Hof, So i 5dul/S✓ y0^' 11O�c0. ph Jrc4/ eajd' 1 J: �'1 it Qd �jOr(/ a��81.0 I2:St$ by 12:0NOcrl rPGs, ' 042 • s9.o k9,o -9d,CA1196f ( '' % ' Aii11 she II 'pa sAir,,t prf?fe.7l, elaM; x_13 SG•v - 1 o,h., 4151411,5 1,� s jj " 6,C. �G /,- 3" S + (G C�GIIPG S 7,o Narlol iv V. A.� 7 AVM l f via le slow) (1:20) f� GIB s�N3 ' �J I • _,., 90o qa,s t�/. ?,;!/(%1_Y-Iu1147 C __ 11.5-`15.0 Sir',tEn,JOSA'JDSTJPJE_. — ` SHEET OF rj7n 4 >,... 1 I„\!,,I I'4.'l '1 '76 ,IV r, �1, ,, IJlr,slC I4 . c� - - — t "r - --- ------—---- PROJECT_ r.ijr(t'�c ��C.i_lsl(' j fSi—DATE DRII_LCD_ti��e^1" %)`_~I�i }-1Jtl) HOLE NO._-- rPTH ;LiA:SS. FIELD DESCRIPTION SAMPLE MODE REMARKS j2.D - S go-95.o SNInLC AND SAUD.inrvE (earr4',J) rD -PO S brie WcvcKJe W - (SY ), S awls-{uNe is 0k, 0 H redo A, w B-14 N,G gi,c,y (5GY 44)1 ,70% cia(e 3°Z • q4,0 L.,It vo IdtC1 SGVJr1J-ow. beds, SoMe l �h(le� �u�n-i of/4 MGi•I prercP', ,lc Phi Pc41 audit/,,: .Yriol,te I /loci smoDtti i ak,Le 9yinN/ (1C:D ha I-a• A4 NPG-4fred. / Ngc,o-107.o SlanIF : as abut ((4 looiv ,Y(voT N a� o salvo() Nviotkoo #,D — S e((1 Ce (Qr+1 -(_-_-__22)) r 90-I , (HOMO f Gtyticd epAdd o havci;Ael 0 fcri(teved . ilu;itefi IAAe \\ ' 1/15 Ip1.'s 0,141.4 roc (7O'J 7.37 I Ill. ..I �/ I Ip6.p Dr1IIe 1.{tct' 4' _ 1 •S/140 Crr4 CM 3I-4(4,/ �o:�I• 1O1.O-111.O--_—o1_' UI eiG �i) I)^'RD I I (oio — g57a �,-Iv,�1NO(.1 0001 ' S-- 161 S(1G e 1,J -\`it,) beds/ olIccosto,o^cl clicII T�a.s. B_Ii Ch SIccl CONJIdivA . A16J1 !laid �olioyi, tio4 wm-(tiev,90 . IIO.J I 112,0 — II? 0- (23,0 Cole 1) ,f)cN/1C C: Coal 1 ,,,ii :I,f,I; 1 s 13Iack CA) 0 ONo{ silt* tr oIitrc (.,lac(, (S1/4/ 1/r ) 1G7o brlud,,,rit.s (14,0 — coal A' 2070 SI7cle w SiN.4 .41Je ,IO/ CiNrs 1O 74, fa/J /.1(.11 If I1J C 1 JP,A GI Fe i .f .- Oht)S1(1%` IO/J(i`.6N 451 LA,�;{ -IDIata SHEET S OF IIG,) t)C a ��I�l;Ii'� J. 1� J 7ICCI � Vi'i(��, S!'('O..et A11Ci • DATE DRILLED..-421( .�'f•,)cil'r (� 1 LW HOLE NO. 1\��) .t PROJECT.-�`--'--- ,l------�-- - - -- DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS 1 I16,D 1,,.1t 1,2.6-I23.o COOL ()j/9 Nll(.11 Si{(P3, D i.•(16.0 ccGJr I,Ja1 SCuv (eNs rresvi- _(k iii-,o 1 zo,0 (/dai, lrkJ( �-c �'IGf _I w6,If sows -T uaJt�+ r(22.O 191GI'I�i& e1 SG/Jdiri, oNo1 3;35 l2r.S ler-I S,Ir I:7o 74 eta�eif ; Co I -efacli;,O,(fcii9(4-l7.122.0 lo•o°8.00 Qv P +"rv�ol0.�J� �'�S/I� 7�/ Nre o i°,,.°_,5- pq,l itif co i',wt a'6 0 CVyN I23,o-141.x5 CLAYEY SA4DSTO,Or: "'110��,11,O51,y 10'00. P-0[e 1s Ss /:1601 yet 5Y0GJJ (1oYk' s/,)�0 Ir^�� • essr,)I-t"�y 01i(.7.11ea(L i?4,v 7 -1 phut!_�r�ocaa (IDY s/4) lo- �Gyo r2cG� Qrv1Ut; � IJ� 1v��1, r, I if71 .J -�rNe .)pa o IU ID nvoi 1705 Odo I' C INPf- /� ��r / Co•kmi*n;cN-1 t,J pMNI 1900►/. 9tia e,�! Sr%JO(J NON -h� s�isli-/_` �t,tf GA�cI.1r:IGJN 131.1-(ec'$ 176,O Or/'if'J 0� p ssii/� 1•,J{-hriti'bf SaAdOli L - - ,7 LJVIIIGI ()r (1Cf.0 . P�r! c(o I a�Pis. l ' Pka ICG/ LO0,- vi1 : J hle� s(I5171/3 gp,,r,a u,�1,1 11.00. D �f a,aw 11' 9b. -lrrn„a-ira,J 28,0 UJCG�r�fblGl�?). __ lc-�ak,,,5 WliIrk, 125,,2{1, ! Ve-,11 ',awry ,4've/ I - 3 . 130.0 . -1)///h. ?L1tP9 G,id I 132. D Da oO 14,; arc 1'G 7„4f _ a t+GI? 411 au-#ws.1 I _ a/ r? LJ 41' if/1 , el r(I CL11 , F4 Nc1.4,2i, Svc, S'- 139.0 saAi,l1le --Joac a I' 1:1,(2"(t)4,/1I✓t FYI, �l:,, Mt,OI ?iA,cti I .o 13-19 (B-r9) 1?Y,) --- • SHEET G OF 7 I Sq,n - PROJECT.?.1Yri Cil!_er1(_:4,Y:a'p',2:(7 Asrlyiff DATE DRILLLDj/'_“ 11- JL,Iy 1'I 0 HOLE NO.J I' i DEPTII r CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS I4D.0 :0V;wr Ig3.0-!9/,SCLOYC`l SR4)DSibor((*,-0( ri) 5S S- 11 11'0 12.001 ��iS 1`{%iWG m.14',-Li hDte '20 III, s I C.T[.tShPoi hole. 12(4,0 Ilwuv 142,0 .�GI) Le oI .k, 1. o4 / 14201(p 3/.6 Lec S114 2.'30 u)ol eaelmi ve4 4,19,1 R`-3_p,7,e lx- --Y)5 `a o n D e.6.a 17 7/q/kO 12/, 5 9a's�tve�� 7110/E-0 132,? .3-'P, S-kP) -7)121JO1�Py cc�sws (Inv' ( V°16'' We }n(1'le l`t'1utic i., i (,),44„, 14-2 U -1-7) ti SO, 0 pro/ 4 (a s / !If•0_5 CI ,1 .c4. a Pier a,-C 4,, I//ca roe u G :�NIrI L E i'5jj[ cu N5 . _ G��f,!fI W( ✓� S?4flhlc. i (IOS+ L���O,KP IS', 4-0oI - 217rrlira;/1 r4 (4, fort afff'N-\' IUS� S r r .Ict��` II P� l�:d Grp!gle.d I( L/ lf! f N 124. ' 0 . 9fC."1i ) 17p,400 V IPe l le l I r n t 96,0 -._ G1iD i 0 I IIo I aI l 0, 0' I��I NI Srl \\e, 1 D 0. J ►a-i.d I-' rl` Iic P —f '� .. ft;)-I -,(, r, I s ' ' '(J.S H ' 0c1iI-C l s•o _rV--- ',1 . 13'1.o -_,I�'1- 'ICJjh SHEET 7 OF 7 lel r MN rn r : _ :_ ._.: _ _ = __:;: . mil_ : ,. - `,� 1 i.EUID-L Eli EL,.� II,`� '�� z 1--:I- JJi_t - II•i-: _ -- "- 7TA- _ ��_. . . :I ';� ' 11 - : .• :•_ 50 . 1_ -1 _ ,.,_ , ., .. _, _______...-____ _. ..-I__.::,._._; j __,, . _ i i', -:-: - - --:-._ -- I "; -ft; .:-:I::;; :'.:i Li. i . :. •'1 __I _ ,I 111 _. I,y' Q `'I .1?i .,;;I I i I 1 I' i ._ -:71 I I !: • .1 . I I I • ..'I III• lid :;I' } Ij• 11, 'III •1 IIr� LI• • --I- ^ e I.-- - - T _- .. .. " _.. ....-U • I - II ! ( 120 _! • • ! = •1� -_ ,T ^ , ' N�TUR►�L _ GAviMA ,. _ R E I5 I;S T-A N CiE - EARTH SCIENCES AS U (; I A I L :ILLING AND SAMPLING LOG PROJECT 2161 CILY(ICI <(fr');L 410._ DATE DRILLED_,..)( /r }-7.__J___0(?(--) HOLE_ NO. RP -g �� f:_,n I, .,_I. I_••_ r-I,✓ ) . / 1 )914 GJ 0.4 Nt iu_C'`)(-\ 8.R O`/U f�D)SURFACE ELEV. {I s )_ '_OCATIUN I � „lid `^� � _'N�:% � 4 _ - y�23.L SVvv<� DRILLING CONTRACTOR/J.:LP Di'l(clti0 (16 LOGGED BY (--g DEPTH TO GROUND-N�AI R TYPE OF RIG (2.1fi ,!•j1OU HOLE DIAMETERJ.P7 - 77�Y H\AMMER WEIGHT AND FALL /1(`i SURFACE CONDITIONS -.I01 ,r'/)4 SI7bU/y (6&(-/VC "Doi ) WEATHER /1-r1 `I- /r1cFz7 DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS s k0 d 3:/5- Akyru ccl e,el.) c„Le 2•oO 00 r s ALL �vlua� g ,-OvL a �,fr,lf 4-�ImJy IN Co,NIlvPflFc I-rs , L I /2100( �1 eIIOU1f14 LjD(1Wa (iov s�9)r v �vuIIFY, el c, ��F 2.0 n,,, S% .n4) J 9S-/0010 cINe T I - SpecJIaG o(,.,(Itay w/ cooky, 9 frawrC} So,,,,01 / 900 poor `l O O 9'4 o(GNL u riA 9vcoleGi ; OCCC{I(UJJuI jbGUPII 9P/0 3/ 11101,1,19S-. �iIIGU L 9 D S y f D /02/J eeM Pr-)•1-0 r�ua 112 G id Cl2P`7 3 :IS- Owe-I- 0-4 tic(, ; pekiiiuu5 • - - S/LA oa I4-+/ a I,D�w�/ S ao- ?. Ro0'ICc o,✓G� 0v7L(nliCl -- ( rve;rN _ ),0 �� I ci ,frle{ efti7a 6.-D I.o 'I 1,rA)•(-'0.3) o& )-to( f;y•'t Fo>°��G�rord('c �iIUS CG(cfrQt( ? L0J. ( . wa�fi 0--loll 4r Imo" I _1 "VS,o SGJC(,16,da h, pi CN[ / _ 'S'Io5 ' 1(5 J4J .tul.14,4 9k0INF6f /I( 0V G✓loo 1� °I-'I� D rr 11 `?V£'/PN7 /D 0 �ILI``/ SAN {) : rr 3.25 10.0 Qc,l/va c/o�I� SA ID o-IS-.L /e liQwish o1 2,11(), PNsa9e1 tid� ile1 araNye ( 'RC/6 )1 N 3o- 4O 4 .5119h41.5 ?Iodic. _fin1Pf 60- 70i, (?.0 CI,)P 9 GA1Apot , 00f I/ �IG am/ So'Id l 9N, kw 0. 1 pe,,,oUf 01,6 zip,'GU:( (40 _ SMaoA Qv! 21.4(1(,1 r N15,0 ]17x4 l ACIA)9e1 edlik 11) MG0{ '/elIoc,A1(/ 17G0W.J(IDYZ4) 16.d k,� C 11 / TI) S-iVI)JCLly: � � I ,a - 2�.0 - t4 �4 i. el(v:.>If1, d,,vr.),v (IVY (? S/q) • 1 c10`7� 5iic,1 l I1>/1Ubf r,kfJ 1C /1 -- - - SHEET OF �,i 1 J P� () Iy �,I Nf i 1,(//d r-1_41,2,21,I�� PROJECT 2«M _6/1-r-1(-Y Sn_1ij(>1 n ;1eyi/1 DATE DRILLEDJI/IY, /6 I" I if-_HOLE NO.._ 2- DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS 'AO arObc./ 26'a6 9bodcd s':�✓� < o,, tio.o. 2I,v 4,0o „,„•,,t ai-k., luy N90.0 coU.� (+o�u-l?,)1 o(P(aeGr(t-10 _ Glolc_ 12.0 c7o , h,4 f ! ih k,:dl 51+5 441) I pp 1 0k,!!P6 if ti Z`/),,,/i^f' a '(kajivlf .ire heC�if1A,� 240 7.7 Mort (.:,,,,p). -6 t I 114 ,, 25-,017J+IIf a c{K,e45Pi + —2s-,0 le CeM!N-14 ZuNe Sac c Cuv"J5i aft Vfry d2r y I'm l:11 O,,IIPk NSa5(rho%Ir,/iklrf. 2(0.0 .tr,.1#1 (ID le 2/i) ti 24,0 Ov,lliv5 Sltoo '11J — 5; PO /20C/c (Ilip",i 1^r.6ir;:/p77:.r4J; o a i' , C CC G11.),04: I 2G.o-9ZSff cILTY c/ /u0sio/,); 1Icd cL,a}IFY ow , 2g,J — Yell ow(r h 1 PO (ID yle s/4) 0U- f 2 )274f004- 1 is % _rIN ff FS---(100 fie 9kcfwPol -r Savo(, �e Go rly , raoled, yew, Iiow, slr5t-!iy cc,e+f&-1rd. (n)fc+l ilevecl - 4,76 32.0 DPI/It/1)5 .1-;t400-114.,../ 3—I aA)occ4rflivsi cb‘lirt _ —7�3.� a v( . 1.7 h7<�r/I Go-I1 34,0 _ lcolloM of Cort45 30 - T . �',n1 — -37,0-3?.0 ScuerG1 -Il+w 3koy do/ N?-7.o- 390 Ohl!1,6It . _ B4 Ie'cer ipy ceN4' Sloul, .4v,11rk er c pf 3�',0 —1r;f,J - — — hh.�9aa 1l CI :5.111 .ass B-2. — -- if,2_41.O oid1 -t, fkr/ttr s`2.S-4SS CL�y��<1/Jc ', �('�v�� kc•y s:ac ( (-d,:�✓d - _ lid( G✓ r 4?,0 (Nc). `jc-lUG/ ,�locd. /)4r,<( -Aver, -� �v' Y�I�( L + ! 1 1 - - - )eu $ J� SaN�( +9��+U• - lei.) i 1+ 1 f.l�� <• -11''1 r'i+ 51(01 () 1)I11'r'4! . IJU) Ler.I!) , .�_ _ .:11,1/{r h vsl Jf,�f4r1 (f (u ( c ( ) • :1 r� " ____ I,fl e 1� l•1U� Wt:� Ail peed 1_< ISHEET -- OF ��,' �! � f ! crr n /' X41'1, (1 I FROJEGT_1,1`. (1_(J__'�__� _ �� n'_ _ DATE Dhll_LED,�u! r '_�/_-� � 1�'�U HOLE NO.�� I� DEPTH Cl ASS. FIELD DESCRIPTION SAMPLE MODE REMARKS — 7// y`,'' O ;Cls4„ _ /IZS-1c.5Li/161e)ri,LEZ\' 'd _ <i� 6(„I1, /cys{ctic a3.o ►/Pell(' ee.,yo ore _ �,•.�t Gt, (i o_ yis-9l.o C'19D 10iJC; I,c 1,4 (dig- s! S- ;, � q.0 wti�rF r�-�<l,aI� 4/.0 rl_ o,J h� a,+{1 rl I;y o cJ,J ( Y S%�1 2% �Io e$ l�r lr/.)l HO(l - w,t l p<r<If- M- qs— W0% cI,Jo 9 ;. in/ed, ucvy cl,;l,i Ito (.JAS. Left row,l y 9 pc;deo( cl ecof so/vol 3{� i c,,c 6'�• NuIc kicuso,d ¢e J _ 9P,J, i?O/4C 5'o,�le Fe s-tom)►,, ¢5,S. , 5, >/l7fio 1120 lee! 36,.1 slrS�a15 �/� //loci. ��,��P,� (�IIc�l p.rv. ;et 34 �'o�l� . ph 5s 1(4 II C'oiJ 1�,ioN: cviG 4/e 2 f„ i ti Ic I( S-fee 1 e&rrO5. ;0.) —_— (Cal-hN$f Cc.,J hP 6PCIo,) �Y 33,x' (N I�l,,��vr.,��1_ �'„J5��S �r,� �� di,ll, G; ,f ( Irr! X33 Dv,IIIA)5 y I3.' Ign1,01 v i tr,d , l�//p ue.�IIifvP (hf,:l-lvo�,r,te 9enkt) . 45S-5b.0 )77c,41 i, -{ot 1,>5 (Jcekk. ew(-Li: �JwJ) Usws 1.1 D --- .v 5l.o Wail r�blr��f." Ir�ri�F�, p� Neu (c,cs�No -- ' ,clop{. Oell CC/4e -td( Ito) l,o d veiUrn/ N,D c7J�,� — I ff f ll- r ti' ['f 4c di,/ �06'MG 11G/J li {Zc/rI�J UG �cV �dYHthlrG p;Jol 4::(1:r'5' wG4fr, 64.0 —7— hY,,l,c uulw cpa,J(1-K,cViw D',111 QI{rf t cNGI 56.0 = 5M op"H, Q rr< I,c17, -�1' "S6.o Y1�r/Juv opoo),)-lc o1 c:10O pi ��vr� Cu9/CJG rNrr� ierrA) F- pioIHlil 1jIe,urr� I I / $6(vIej. el roue �D IOU CIu55-I�'JC 1 SC(A)0(.5 CI��j-u,Je j IJk u� ',clot/AL 6?"',) QA,o1 �I�yey S0�,di.I�ae) 9P,) zO,I '-ill,ck, COHMo/J(y I,S4-1 ,,IGI : V-3 ,c, y 4e vl,ur .)r-oy owl: ,I,Jc.1-lrl ty I(.,-c. ��(-if] ell,f1 fkorl INJ,CN -1 iv CGS(r✓s. 0v .?< r.o 40c4-,,I.Fl�rflli'r�Lple (A) • (:So40c4-,,I. (.,�1(UG, , �u1 L uttl^Jsi ceda BFI' (.O big bigek 11,0 Ve-(U✓,'. /OD IJ,Ovriv,,tic.r tie c 10,1 al„I//A)S NH3,S" ber',cdcl,. . (4.0 .i II,(1 l y i -I-, re iLr(J J7ez 1 I NV/II/el - (e-.r l:. (lr 1(04 y 1 "'� - --- _ IC, r",r 1Gr iIP) - DfII(s qu(f] c �p,�) ` 1 - SHEET 3 OF 4 PR0JFC7_ 1�q �hf�J l---cry, r, -----__DnTF hRIL LED,)91,./ _-- I.1WHOLE NO. RI)-8 DEPTH CLASS. FIELD DESCRIPTION SAMPLE MODE REMARKS 6S.O ,S s. I.0 SIV,Ic):1I',OC (c' ,Jt'12) 10.0 — — 72,0 N72.° ScAsiotic rs weolcI5 -72.0 Or,ll vGJ? p,cki C em PN GI INA ft OC7.1 o e d i i Ji - --- LA)) �VGttl�� I J y�v Ok,/if pal///OA - • 76.0 75.0 70,0 I 1 7:17 S(.0</11 G/ i]ole tl o,J0 F.?,0 1 how, --1Ol i(^'5 Le4d si, i7, i (I1Ociiiop G3. . (polo. Wr1I 102.5 Gr vG�11 Sp j�F11s7rJrF� b�,d (vffri iLi9S. I/J T✓1 Wcc 4-i 1/..7 Gl�t �.'11t1 1, ; 7/i /O /'/.:CAI • (jla� 1J 711.5-) CUIP 7 —33' Carrki5 1 i �[1 1 -/if loyc �nJ `i� 20'5rc�r��J 1 ( 6c.o� (F lil 11.! Cjr2itl :;d 'h-St 11 fro 4 c39 ,� v - SHEET OF . ^77__::_:____L-.--;-_1---1-7--J—__i-A _ ••• --1---1 II I li 1 - E ---:FA;'11 -71-:.-I.:--,T._,,it.--774 7177--1.-.-,1:-:.:t,. 7:7.-I-A-AT::: --7-- -7T i A 7A72, l_f.Ai -7 i7. :_j'.---I = t±J±LJr •i•:1; , L = 1= =_, : i=- =: - _ �11_ �__ I —_ -� -_ o -_ _-_ _1 -1_ _ I II _I + �.. _: J III _-: _- - a.-_� :_ :7..7 I,2777 _7. 727 " :. ---, ,- ' j• FL b !-:-- -- J 'J; i s _ 1."._:,-:::-.1" � �_: J: _ _ : . — . .� O .. --� 1 -J J- - - .�. —_ �_ __ • — CD vs. i= : � __ = = �i : A _;111—A _� � _. _ ETA : = 0 :ICJ- -r - i . D � — 0 1- —— t .•. _, — _ 8P��.:�t^j 'j '; :i ---'_'a: i .f.� - i!i" —'11L'iii l:'i i 1:•'• +i 1.4 .1. '-I-,,. ;-It P L SIIPPL}:'i:Nr C ANLL.YS1 ;',ii'l' „i'i ONS ( ;' ili ', / /./ / -) ) --- .,n ent.)0� c r. , / („ o✓t_c' —( /-1-?‘: (I,o -- _— — -- (;),- c_c,t--' / I 1 `/j- 7 ire C-,‹: c£S /it f_( L a, •/r J0 L<O !i-_o — %J r0 O _ ;�c `�(J/�r17 C V I, c j L'I }` — / / 0 -7 / f ,`, l!1 L �.C .'.J. = ?o� C C „ • /t,c,,..3 IS o :1:, C.,,'-he.d 1�.-) f, e',,-7 L'c. .. 0 et- .,r« .-:d j--/„.., , :,r c i-DI .C• a,_ .;'- C' LA /9l'-Se-,' I00 c/ r1 al dI v l' 'tZ� S1-7ec 0 r G/ct L.43-Le s Lc_ .12L ( a 7 z ,-S �- _Ca .-2d is-(-0/� --4,e__ -, oR. /-?-) S o 'sir- - a\ /G L.. )-7.S;C,(12-'11-1 ci 3 . 4r �I a sSu � et/ /ate ; ,- 4::,/4_4_.:c_ 5 1 7� �f o IlO e r o' O) E 0 ✓1 ew^ ��^a a'r , Z` ,cE fl 1:11-0..72)--, 0,/^0 u r7 S u r fa-^�-- 7-Q_ ' yy'2J 1_ �e.-� /e d e-( r. 7� u r.(' r o 2c-r 3 9✓i.¢-S. 1-0 r- = £J o v-1?p 1-0_ j roc-oc-01.-,•e-11 r A-)a-S /7/ID l _ a ,; c U_,-.)�f y Z Vii,C.;LY (/tom✓e /CJ IA J 0-4 s' )(o' .' ,Y,oc.!{h .P,�Cr- �,__,_.4.4 • f�rn I `71 r'e_S v .-ni U,1ere r-7'c.-eci c," -4 l /L2 cJ S 2 n o A 7q4 r — Gvo ... t'r r"''2��C-' fig J'-'� r: ham_5, .e___ to l,c.a L (%,_S-rte c- Jl,2 2 3 7�;�j�-y- -- 6:;,c; ,,, , L SA ',_-:-,`!/ -.)71--1 7'' -- l/ 5o fU — /177 1-1n1e--7-1G, r LI '-G� -1 �7 Y/✓y?� /✓..D/' Y' G/-1- S 2• j, No 0 //O v-) CO r-7 lam`--c.1 7&Q :Jar 11, {^e S Q rvo r 1,,^ >l rLc�-./c t/-ti= Kr 7O cc nr� era / a r-O U..Y-,d - re -S-e ir-v o i' 0 1.,_ !C: GI--e-1 !''Cl rz[..f-LLc L io o-rh--r` e 4-- , - f 1 / i ♦- O-. (LP L aJ C�/�- (e), ( /GC /-C rJY S - 9-740 - 4c s^ • ,o /a7 (o . o // `� [d S O 0 4770 -4610 O . 0 /3 (. (°. 0 / 7) o .0 - •g775 - 4 = = p o / a. 0/ s3) r�w -rte X770 - -161.0 _ o. a /3 . p / a7� 5 9 -0 ' -T ,770 - 46, 90 _ 0. 0 ' 36, ( O, p /a7 } / ---- • _o / 3 biE0 t'a�a / !o J� o -;1-e-e✓y sfi F/PK2-Lss ° / (_-a,') A ,��J S h O' (A? • )''r? = /0 C / 3/ Y> � = a S- --`1- m = -17' Q = 1 (n. VA x a✓i 1-r 7 V7-Lo, 0,1-X V , Q 2, >co , 0 /-3 X ,P X / SOo x � - �a / .7177C09-i,cl //5oXO, o/ 39 XIS >C/6,500 x/ -- 443 ( / a r e2 LE - - =n'�-s �- r _I - - - - — -- - -- 7/ebi Lou r Cr y,r K.z rn l/t/ h' / 00 X O, 0/3/ x /4,,f-0 o ?' (a.Z lc v7CE. 4/ r) L.O(Aftr CaG-c 7 ,Oa re.??. 65 o. Do8a o" 0°7e _ � nl O 0 hLc� - 0/7 (0, i fs) " J 1O-O = ® , oia? �0, oia M1, �6 Moo T `e-LA'(-12.41-12 2 3 IV- C7 n- 5- a000 x Lo, p /Ja xao ?C�1°o0 .r! Y eta. Q - Ii-5o X 0" °JIB X a o h 4OOO K 7a / dI /� )o(2L-e-r cO-s-L_ Q = L 00 0. 0 / 05- X 40 o X /a 125-Go C=C�r2_Q S ` } o` 7/erfl " j G Y C4 c C 1' :'i T� �v c>r (y'1 I T�f ( ✓� —Cy � ectS-e n pet re'`1 \ 2 }7.oS if„-e = 0. or/ 7 (. a c7 C) 1�0 • 73/ 2 �lo�- 1t(090 -- o , .a/ 4 (a, 0/3) ? 13c 47 -47/4) — O . .aa7/ (a. Op�. ) 1/1547D J , .a/03 ( tO. Oo9Q/ h � Z � F (� = r2onv x D. .f/fJ3 - aF X ?000 7/ - 43sGo �a Q = //so X Q , !JIDs?, X a8 B.pOD h'�/ -- 7� SG.0 G'Z r 3 ac - J2 LL r c'ccJ c- > a, c7. 76.1 goon x 7/ -- 113560 or-2e 4- _/` G aJf fy? p a re rJT/zc s-e.--r 47 4a9 = 0 /11 (0. d'0 00 \ 'J:oO J) Jc„ � - a / 33 (o , a/r)� l L / •�i 1.0/6 FI o c.--, w , cl 6.71-L w 45~D d- , vt-e CS ;:".1 / D - 6,-9 C--47) 1-I 74)-0 O • -0/331 8 X fSo o V7/ ';-"�`3 s--6c. cce y. _a X Ag X 1fSo.O / 435-6a q = a a.c- 1' �o uJer- Case_ Q 9 /alo )( c2g X 4s10D .- 43 'Jdo f t ra cY_l,e Yt ' C -P w ,►' Gil-.r e 7,7 ,t a �� t� s-c_r 1-20,',7{s GL re I 1✓��. 7�7���y, _Cj/-o/ .1'u�'7`r, CL `r O /a ND i/2 ` Pit Z.I�L = 4705- 4.63. = 0, aac,a (O,aaSG) /a, soO r . a oS5 (O, 008.0) - 46 to O . o /o 6 (0. 0/00 /0, g°. .LS,1 177 40 A. 0 •23 C® , !/10 /1, o �a 42'2 9L9p p, (,0 ,0//7) 2/) loo 75 - 7'J7o� '���D - b, a / / 6 (a, a//1) 0 / ) = - o, a /tea (o. 0 I/7) //) /. v / wn D-.2434 0, !' C J , D/4,9 1 0 1 0`1 < l� p l 0 4) Yri P a �l ) L Lx ; s- /1 (J Fla c,J 0)11 cHL �c.?013 a o 'G-:' F-7.0w PD- e /77 /6,s' 3 n? _ �3 RD.-6 Y)-1 G ? /J' /1L'La.�.Z/% "J$, KY? ss =- 3 /, / .�a y o -o-/Oq X g/ X a8, 3 D Y�A 43 /57-00i "0 z 6Z.— S de-- /1/2,ir, t ,rz //So (.0 / O q X 3 / )C8,3 O �/ 4 357 0 k- /47 acs/�r, = ,200 a . 0/0-7- K3/ X a8 3�� X //a3 7 -II-/1,-. Zane 47it) - 4� YS o, 0 .0.,c)3 5700 a-6 4 O - (, � °' P o s/ nn „��u �z G oo5a ( o� 00- 3) (oL'...) r/u'c,L u = /G 6,, ,I . L ______ 7,,/ 2,,./.,,, , / , , n 12 P 6, (__-_-_,0r?-f - - -- , `� l d90o x o. Oa S' Y/6 y, 7-3S- c) %/ , _ 43Sd0 _L-,,n i I1,Y►/'Y2.Q ;c7-202- X .0, 0.0 .5,7Z o.0 Sa h'/C� )� 3 5 o o V / r 4Z S-Co0 Q Y at- d'7/a4,- n li G '. 3r-), ) X o . 9043 x/(0 X 350 7;a / /--yr. li . Aj See?O je Yn ma 7 as � -Z-O ,-1-e- 1 /5-4- 8 g / 9 Y. 9- /47 37 ✓ tai 8 ° b . . � � � rJ � /CC Vo l 7 O CAle / !/coo' DGs1.1y, ?ooh C.e_s#- O • s">n T &e pay e gores — I/ / J11 oraJ ResP Kt/or'r I" : No Soo e pc—e i- is CC cm 1,r,C. q rcv r a r-7 if a 7�U WC' r 714.e_ atcz-e rE/o/t/' ESQ s7 ,tip T C. .s J i /' 'O / 3 i _d T ono _' / s = .Sc) = vim Sion 4 € -t- -F"_ vJ = 6.Aly k I w = ( 000X . 00 Z 3Cn ° __?) DI PPP p SO ,OL - 4 J� ' /y`jr • ( y C:5-(3)([ �. o Co Co a J / q o a R/JY — cca2` 2-0a)( c...)(•a(Q oo) � ja4 oop )Cri"3f va„r- 25 7 �--4_.+/� ZO t„o 2:5 — 4k L2 o, o .092 .25 3300 3 (� _ o)( _.o_ne,J(, Doc a) 3DO) �O 3 oo Pi /y ? o" ot.c---'f/5 ' 1 Alvv\-lditx6 C 1l�O $ij3,/ Q = ES.YI l:0)( , O 0 )(33C>O) / ? 457oo Y7 Vo-r JJJJ 4O O a C- J t �sA bra ? 8/80 IA-e_ (Co 1,)+.' ,)+. dJ L0wc— C< 'e k = 30o4-4-/x,„ COX D( D )(33 O 4op -�f �� ►~ ' - 0 . _0/ 04- as-0 O vyt • (5,:xo20 o n)<. o /0 4) .0(2) = 2 4 7 6 o P o Gr- 5- 7 cLc- 4/j r. zvlt0 V, ,;a- C -- Q -- moo C1 aoy. 0t04 )C4 0 43s-?Jo -1f3/1 33 cCc- /LA T- v �1 '/O4 0�) - 31 4 400 rt 3! cl ESA ((;?)/ 8 Ll tom/ pap r - 0. o// �zop� W = 1 9 0 0 e r Q = (. oIa.° . O !/ )(r jOO)= aPe' ODQQ SD)(- D q o_c)) — /2 o / 75-o �-{--'41 v- L-o us e-r �` \1 61 q :5--() �5� (JD-D p_ . �f I J CDzo 3i3 � -/L�f �/�Y grTJ4 �v1+ iS waLt'c$ f re._ YJo‘\r ors E. St_ EX-s� S ,:r\N u.-\ 11_rr.ir -9-1;4- -To _ was dC-ill 1 4.1 /0 s/r-`C- C.-O--%-t- 9 1 ✓ 0.C - -0. 6 cie., S o ra Y e (1 .>≥ cr »l i 11) -Sri r14.< C 11 0. c(.21-77 -- So a c -/-1/. APPENDIX c SUPPLE U TPL SOILS 1ESTS (SITE I) REPORT OF A GEOTECHNICAL INVESTIGATION FOR RESOURCE CONSULTANTS, INC. FORT COLLINS, COLORADO PROJECT NO. 4079-80 RE: SITE I, CITY OF GREELEY SEWAGE LAND APPLICATION SYSTEM BARNESVILLE, COLORADO BY EMPIRE LABORATORIES, INC. 214 NORTH HOWES STREET FORT COLLINS, COLORADO 80521 TABLE OF CONTENTS Table of Contents i Letter of Transmittal ii Report 1 Appendix A A-1 Test Boring Location Plan A-2 Key to Borings A-3 Log of Borings A-4 Appendix B B-1 Grain-Size Distribution Curves B-2 Permeability Curves B-9 Summary of Test Results B-15 Empire L 1 uoratriis Inc. Branch Offices f �Yl 1242 Bramwood Place Longmont,Colorado 80501 MATERIALS AND FOUNDATION ENGINEERS P.O. Box 1135 214 No. Howes Fort Collins,Colorado 80522 (303) 776-3921 P.O.Box 429 (303)484-0359 3151 Nation Way Jul 22, 1 980 Cheyenne,Wyoming 82001 July P.O. Box 10076 (307) 632-9224 Resource Consultants, Inc. 105 South Meldrum Fort Collins, Colorado 80521 Gentlemen: We are pleased to submit our Report of a Geotechnical Investigation prepared for the proposed sewage application site located east of Greeley, Colorado. The attached report presents the subsurface con- ditions at the site. We appreciate this opportunity of consulting with you on this project. If you have any questions or if we can be of further assistance, please contact us. Very truly yours, , : _'" " ". I!4. I. % 2575 • y EMPIRE LABORATORIES, INC. O1' ii� • .� ? /: / . 'ti r' �- 4�P . C) Neil R. Sherrod el(li ,"f�� R's;{ s, �= Senior Engineering Geologist t('���;;�� �� Reviewed by: 4001" ithe,, p¢,es O10YF� 4f/��✓. Chester C. Smith, P.E. p �ys co President oa 4808v;# •m a u, �+. eV, 7. r �\�O���T Cl �ORgp � � CC tfi a �� MEMBER OF CONSULTING ENGINEERS COUNCIL ` p 4// --- ii REPORT OF A GEOTECHNICAL INVESTIGATION SCOPE This report presents the results of a geotechnical investigation prepared for the proposed sewage application site located approximately ten (10) miles east of Greeley, Colorado. The investigation included test borings, laboratory testing, engineering evaluation, and prepara- tion of this report. The objectives of the investigation were to (1) determine the soil and groundwater conditions at the site and (2) determine the physical properties of the soils encountered. SITE INVESTIGATION The field investigation, carried out on June 30 and July 1 and 2, 1980, consisted of drilling, logging, and sampling twenty-three (23) test borings. Twenty-five (25) to twenty-seven (27) borings were proposed for the site; however, there was a footage limitation of five hundred fifty (550) feet. This limitation was reached upon completion of twenty-three (23) test borings, and for this reason Borings 5 and 22 were not drilled. The locations of the test borings are shown on the Test Boring Location Plan included in Appendix A of this report. Boring logs prepared from the field logs are shown in Appendix A. These logs show soils encountered, location of sampling, and groundwater at the time of the investigation. All borings were advanced with a four-inch diameter, continuous- type, power-flight auger drill . During the drilling operations, an engineering geologist from Empire Laboratories, Inc. was present and made a continuous visual inspection of the soils encountered. SITE LOCATION AND DESCRIPTION The proposed site consists of approximately fifteen (15) square miles of land located east and south of Barnesville, Colorado and ap- proximately ten (10) miles east of Greeley, Colorado in Weld County, Colorado. More particularly, the site is described as a tract of land situate in Sections 14, 15, 21 , 22, 23, 24, 26, 27, 28, 29, 31 , 32, and 33, Township 6 North, Range 63 West, Sections 5 and 6, Township 5 North, Range 63 West, and Sections 1 and 12, Township 5 North, Range 65 West of the Sixth P.M. , Weld County, Colorado. In general , the site consists of rolling sand hills vegetated with short and tall grasses, cactus, yucca, and sage and used for cattle grazing. The majority of the property is fenced along the section lines and county roads. Several ranch houses and outbuildings and numerous windmills are scattered across the site. Isolated trees and numerous dirt trails are located throughout the parcel . The property is bordered on the west by irrigated farmland and the flood plain of Crow Creek. In general , the site has positive drainage in a northerly and westerly direction towards Crow Creek. LABORATORY TESTS AND EXAMINATION Samples obtained from the test borings were subjected to testing and inspection in the laboratory to provide a sound basis for deter- mining the physical properties of the soils encountered. Moisture contents, dry unit weights, Atterberg limits, grain-size distribution, and permeability characteristics were determined. A summary of the test results and curves showing this data are included in Appendix B. SOIL AND GROUNDWATER CONDITIONS The soil profile at the site consists of strata of materials ar- ranged in different combinations. In order of increasing depths, they are as follows : -- -- - --- - --- - - - - - - -- (1 ) Blow Sand and/or Silty Sandy Topsoil : The majority of the surface of the area is overlain by a one-half (1/2) to one (1 ) foot layer of blow sand, a material formed by wind erosion. A six (6) inch to one and one-half (1-1/2) foot layer of silty sandy topsoil underlies the blow sand throughout the majority of the site. The topsoil has been penetrated by root growth and organic matter. (2) Silty Sand: This stratum was encountered in Borings 1 through 3, 9, 11 , 13, 18, 20, and 21 below the upper blow sand and/or topsoil and extends to depths one (1 ) foot to thirteen (13) feet below present grades. A layer of clayey and/or silty sand was also encountered in Borings 15, 24, and 25 below the topsoil and/or upper sand at depths of two (2) to eight and one-half (8-1/2) feet and extends to depths four and one-half (4-1/2) to thirteen and one-half (13-1/2) feet below the surface. This fine sand contains a large percentage of silt, is nonplastic to slightly plastic, and is generally dry to damp in situ. (3) Clayey Sand: Minor amounts of clayey sand were encountered at the site in Boring 16. This clayey sand stratum was encoun- tered below the topsoil at a depth one (1 ) foot below the surface and extends to a depth three (3) feet below the surface. A second stratum of this clayey sand was encountered at a depth of eight and one-half (8-1/2) feet and extends to a depth fourteen (14) feet below the surface. The fine sand contains minor amounts of clay, is slightly plastic, and is damp to wet in situ. (4) Sandy and/or Sandy Gravelly Silty Clay: A layer of sandy gravelly silty clay was encountered in Boring 1 at a depth three and one-half (3-1/2) feet below the surface and extends to the bedrock below. A layer of sandy silty clay was encoun- ---- -- - --- - ------- -- - -- --- - ------ - - --- --- -------------- -3- tered in Boring 16 at a depth three {3) feet below the surface between the upper and lower layers of clayey sand. A five (5) foot layer of sandy silty clay was also encountered within the sand and gravel stratum in Boring 23 at a depth of forty-five (45) feet, and a four and one-half (4-1/2) foot layer of sandy silty clay separates the sand and gravel from the bedrock in Boring 24. The silty clay contains varying amounts of sand and/or gravel , is moderately plastic, and is generally damp in its in-place natural condition. (5) Sand: The sand stratum was encountered throughout the ma- jority of the site, except in Borings 1 , 13, and 21 , at depths one-half (1/2) to fourteen (14) feet below the surface. Except in Borings 23 and 24, it extends to the bedrock below or to the depths explored. In places, thin lenses of silty and/or silty clayey sand were encountered withip the sand stratum, as was noted in Borings 7 End 15. In general , the sand is fine to medium grained, thotcgh it varies from fine to coarse grained. It is relatively clean, containing ten percent (10%) or less of fines, and is poorly graded in its loose to generally medium dense in situ condition. (6) Sand and/or Fine Gravel : This stratum of sand containing minor amounts of fine gravel was encountered in Borings 23 and 24 at depths nine (9) to thirty-seven (37) feet below the surface and extends to depths thirteen and one-half (13-1/2) to greater than seventy-four and one-half (74-1/2) feet below the surface. The sand and gravel stratum encountered in Boring 23 is separated by a five (5) foot layer of sandy silty clay. In general , this coarse sand and fine gravel is poorly graded and is moist to saturated in its medium dense con- dition. -4- (7) Sandstone-Siltstone-Claystone Bedrock: The bedrock was en- countered in all but Boring 23 at depths four (4) to forty- five (45) feet below the surface. The bedrock consists of sandstones, claystones, and interbedded sandstones, clay- stones, and siltstones. The majority of the rock encountered consists of highly friable, firm to dense sandstone. The upper one-half (1/2) foot to six (6) feet of the bedrock is highly weathered; however, the underlying sandstone, claystone, and interbedded sandstones, siltstones, and claystones are firm to dense. (8) Groundwater: At the time of the investigation, free ground- water was encountered in Borings 1 , 4, 14, 15, and 23 at • depths nine (9) to thirty-five and one-half (35-1/2) feet below the surface. No free groundwater was encountered in the remaining test borings to depths forty-nine (49) feet below the surface. Water levels in this area may be• subject to change due to seasonal variations. DISCUSSION It is our understanding that the area under investigation is being considered for disposal of sewage effluent from the City of Greeley. The effluent is to be stored in a reservoir located in the western portion of the site and distributed by center-pivot sprinkling systems. In doing so, the dry land occupying the site will become irrigated farm land. In order to study the feasibility of this program, test borings were drilled at one (1 ) mile intervals at section corners throughout the area. A total of approximately five hundred fifty (550) linear feet was drilled. All borings except Boring 23 were drilled to the bedrock stratum. Boring 23 was drilled to a depth of seventy-four and one-half (74-1/2) feet, and no bedrock was encountered to this depth. The physi- cal properties of the soils were evaluated, both visually in the field and in the laboratory by sieve analyses, Atterberg limits, soil classifi- -5- cations, and permeability characteristics. Specific yield of the soil was determined by approximate methods utilizing uniformity coefficient, effective size, and estimated porosity. In general , the soils at the site consist of silty sands underlain by clean, fine- to medium- to coarse-grained sands. Along the western edge of the area adjacent to Crow Creek, sands and fine gravels were encountered at depth. The upper silty sands contain approximately twenty-five percent (25%) to thirty-five percent (35%) fines. These soils have permeabilities of approximately thirty (30) to one hundred thirty (130) feet per year. Specific yields of the silty sand approxi- mate seventeen percent (17%) to eighteen percent (18%). The majority of the soil encountered consists of clean, fine- to medium-grained sands. These materials have permeabilities of approximately five hundred (500) to six hundred (600) feet per year and specific yield of twenty-four percent (24%) to twenty-four and one-half percent (24-1/2%). Inter- mediate silty sands have approximately fifteen percent (a5%) fines, permeabilities of two hundred seventy (270) feet per year, and specific yields of twenty percent (20%) to twenty-two and one-half percent (22- 1/2%). The bedrock encountered consists mostly of sandstone of the Laramie Formation. Claystone members of the Laramie Formation were encountered throughout portions of the site, and interbedded siltstones, claystones, and sandstones were also encountered. In general , it is anticipated that the sandstones are moderately to highly permeable; the claystones are relatively impermeable; and the interbedded siltstones, claystones, and sandstones have variable permeabilities depending on the amount of sandstone, siltstone, and claystone encountered. The bedrock was encountered at relatively shallow depths of approximately ten (10) to twenty (20) feet over the majority of the site. However, depths of thirty (30) to forty (40) feet were encountered in the south-central portion and in the northwest corner of the site. Bedrock was not encoun- tered to depths of seventy-five (75) feet in the southern portion of the property along the western edge, which is in the Crow Creek flood plain. GENERAL COMMENTS It should be noted that the test borings were drilled on approxi- mate one (1 ) mile grids and that variations in the soil and groundwater conditions could have occurred between these test borings. APPENDIX A. 41 TEST BORING LOCATION PLAN NI . 146.14ti�lay Mo.6 114 t•to.5 -- 15 14 119 .\'1,4 a11( Mt< 9C.-/ L-E.__ 0.13 - Mo.7 Ala.4- 1.10.1 1" =5000' 1 22 23 24 • 0.15_ No.Ia MD. No.3 Me,.2. l' • R b4 V R 63 / i9 2827 ze • klo.2 2 \h No.2.I No.IC. No.11 o. O ' t9 I 31 3Z 33 is , \ Mo.23 No.20 No.17 No.1O T 6 Al . T 5 A-1 1 . 6 5 (P_ 6do.19 \.isiNo.18 12 . klo.25 O.jU' aE-9 BOR I I.J NOT pRI LLt.ts n-2 EMPIRE LABORATORIES, INC. . KEY TO BORING LOGS ',.' TOPSOIL ••�•• GRAVEL nuOlor FILL •.•*. SAND& GRAVEL e SILT •i•' / SILTY SAND&GRAVEL / i •i.: I ,7 CLAYEY SILT oa COBBLES _ I •/ • ' SANDY SILT • SAND,GRAVEL& COBBLES I 102LAY C WEATHERED BEDROCK I Vi SILTY CLAY __ SILTSTONE BEDROCK I rolrA SANDY CLAY CLAYSTONE BEDROCK I SAND •• •• SANDSTONE BEDROCK I :.•, , ,• SILTY SAND MIE LIMESTONE 1 /. 4 ■ M Ira CLAYEY SAND •••x x GRANITE I XXX FM SANDY SILTY CLAY MI I 0 SHELBY TUBE SAMPLE I 0 STANDARD PENETRATION DRIVE SAMPLER WATER TABLE 24-48 HRS AFTER DRILLING I C HOLE CAVED I 5/12 Indicates that 5 blows of a 140 pound hammer falling 30 inches was required to penetrate 12 inches. A-3 IEMPIRE LABORATORIES, INC. LOG OF BORINGS • L.E_PrN �o I No. 3 Iuo. 4 0 - 10/12 18/1? 4/12 J • : 10/12.P:;;.,:)' 9/1? / O 4/12 7/12i.•-•- 15/121 - ( - 10 1Z112 i�- - 12/12 11/12'. : 19/121 25/1? -1 , 18/12 11 •17/12 ' 14/12 3. • - - - ,., 20 46/1? • • 28/12 --. . • • n-C EMPIRE LABORATORIES, INC. Y • • LOG OF BORINGS DEPT!-I t.Jo. 6 No. 7 t o.B f�lo.9 0 __ t 912=• - I 10 14 12 6 12 • • • 2= • . 26 2 . . 2 6 12=•• z 2 •- 20 20/12=_ 22/12' I • 50/10:1 i 30 r I . I • A-5 EMPIRE LABORATORIES, INC. 1 LOG OF BORINGS DF_PT14 No. tO No. 11 No. 12 No. 13 0 6/12 : 7/12P,. '" 7/12 '��I 18/12�r I- �. I; 8/12 • 10/12 7/12 . • 5/12D Y/. 10 12/12 30/12 3----I 8/12 = . 20112• •/ I I , . . . 19/12 50/12 50/6 • z • 20 50/4 • • A-6 EMPIRE LABORATORIES, INC. LOG OF BORINGS I I bL....PTE-I No. I4 Klo. 15 k1 ,.16 Kin 17' I 0 5/12 ✓i%'1 6/12 J',r. 6/12 P 12/126E'`•`.` 2/12 a • ' 12/12 • '. 9/12 8/12• • - � r 10 5/12 16/12 �./. 11/12 �' /� 15/123: '• xxl .7../. •2$/12 21/12r.. . � 19/12 . g 8/12 . .• . . . . 20 50/10 • '• 28/12 .' 50/6 -' . . t 19/12: •• 21/12 3 ' • 47/12 ....1-. 1---v----- 11L•t_____ • *- • 21/123 ..• • 30 ,50411 a': '.I 50/5 k' : '. 23/12 q• • 47/12 • •• 50/3II 33/12 4 :1 40 50/10 3.' •. • 50/5 -, : : - • • 50 50/9 ,-, A-•7 EMPIRE LABORATORIES, INC. LOG OF BORINGS • ELPT1-1 N o.10 klo.19 No.2O N o.21 • 0 6/12 04'y' 7/12 15/12 ',• . / • / i 5/12 3 ' 9/12 -• 3/129-Y- 4/129- • ,i • 10 4/12 3:. ' 9/12 - 4/12-a: °20/12 - •' 12 11/12 a• - 9/12 41/12 • 20 50/10 . ._t 14/12 •. - 50/9 b 24/12 �;• • 30 35/12 - 50/7 �= • • 40 50/4 . A-8 EMPIRE LABORATORIES, INC. ' LOG OF BORINGS DEPTH • A.lo.23 kio.24 Mo.Z5 0 - 21/12 - . 11/1? 14/12 10/ 213 • w 7/12 15/12 .• 10 6/12 3% • 25/12 - 12/12 r.: • 11/12 -• 22/12 9112 "E1 20 6/12 • I a7/1? — 33/1? 12/12 3'• 30 17/12 9. - 50/1? �... 40 43/12 •- u . 50 35/1? • /• 4• • 'a 60 _30/12 �'• '. 0 . o 70 • .,•. . 50/11 '� ' EMPIRE LABORATORIES, INC. APPENDIX B. • Q3NIV13M 1N3D 213d COO P 0 O O --• -— —— — — — —— — 't -- -- -- -- -- --- - • W o J h• u o o • , w — — — — — — — — — — — — — — — — — — - C,1 - W Q 4 ' J_ m Ov — — — — — — — —— —— — — ` LU tf1 Op — - -- - -- -- -- -- -- -- ' N Ci O N -- O Z o h J O U U O W O N N I- W a W 0 " _ J O _ O O O O O O O O O O O O O P U) n 'O UA ONISSVd IND 2I3d B—2 EMPIRE LABORATORIES, INC. . • I 03NIV1321 IN 3D 2i d O a O a a a O n a P O N V CO(7 ) .0 O a io r. - -- -- -- - - -- -- --= — 1 - _ i W a J 1* CMG = V I q v) Z O - - - - - - - - - - - - - - - R' (V W O C Z V? ' - -- - - -- -- - - -- -- - - - N o It 0 L.I a -- — — — — -- -- — ^ Z - N u, z 0 1 O - - -- -- - - -- - - -- -- _, 4 N w I W I J Cd N 'a i u 1 O N I N a W w u �, O 0 O ONISSVd 1N3D 213d ' B-3 EMPIRE LABORATORIES, INC. • • 03NIV13dd IN3) 2I3d ' O O N C) v in so co 0 0 a O O M --- - - - - - - --- - - N a - -- - - - - - - - - -- - � - - V -- -- -- - - --- -- --- - - W . O CZ U O Z _- - - - - - - - - - - - - - - - Er, CV w O - imic w o CO _ - -! �_ - __ - -- -- - - - - - - - -1 F-+ - w 4k _ O i Zr ,,-,,U o - - -- -- - -r-- - -- - - - --) i ✓ ' w J 0. Q O N LL • 0 Zw O • N N Q w w U w O J O O O O O O O O O O O O 0 O P CO n `0 to V M CV • ONISSVd INDD ≥]d . B-4 EMPIRE LABORATORIES, INC. . I a3NIV1321 _NOD 2J3d O 2 N (7 Q ,p h co P O I O O in — —— __ — — _ —— — — _ — — — i I _ _ —— __ _ _ _ — — — — _ — — __ — l ____ -- ____ —___ _ -- - - ___ _ O f n — _— — — — — —— _ — — — - - -- ,-4 V - -- -- -- - - -- -- --- - — f 4k MI 2 's f J C U o f Z' O — — — — — — — — — — — — — — — — — — N W O .-111111111111111111♦--II_--II I• . J O CO V �— — — Z CZ - LLI N LO' —= 1 = - — —_ -- _ N N CI I CD I W LO —_ — — — _ — — __ —— __ — Z OO V Z N co d Z 00 ----- — .' r 04 cz It t Q) f O CO di I C _ LL o f O z W ° NJ f N Q w w U N O 0 i 0 Oo P CO O .0 U)CD 0 CO) O4O O ONISSVd 1N37 213d I B-5 EMPIRE LABORATORIES, INC. I 03NIVJ3d IND z d 0 0 0 0 0 0 0 0 0 0 0 N CI Q N >O n co o. o O O in _ — CV n gt -- -- __ _ — — -- — — — — — — -- — O Nt -- -- -- -- — — -- -- —_— — — 4 W -(j > 4 CZ U 0 — 0 - ce N it ii�i O — CO - 0 _ J N. - - - -- — -- - - - - - - — C1G �� z - CD ..�. Z t-4 w N O II O V .5- 0 m w J C{L Q O V LL O Z w O N N Q w U IL O J 0 0 __ P cco h ,O in V c7 N .— O O ONISSVd IND 213d B-6 EMPIRE LABORATORIES, INC. 03NIV1]d IN3) 213d O 0 [V - _- -- -- - - - r. - ---- -- -- -- - -- - - - - O , , - -- -- -- - - -- -- --- - - I L1.1 o r U O W CC ' a H Z LLJ O ..... O — - -- -- - - - - — — — - - L OG >~ • S- CO I - 1 a O _ V)LL I O Z tL O N (7/5 lL Q J U N -J i 0 O 0 o m l o in sz ONISSVd INDD ?13d I 8-7 EMPIRE LABORATORIES, INC. I • C3NIVl3a 1N3D 213d 0 0 0 0 0 0 O 0 0 0 CV C) Q h ..On m O. 00 0 0 C7 CV - - -- -- - - - - - - - - - - - - -- -- - - -- - - - - - ---- -- -- - -- - -_ - - n -- -- - - - - -- - - - - -- - O • LU O J it CL U O o cc Lu O 4t r--- I Z CC I CI r LU U N p Q, w VI Lc)N Z O ..,_. � DG '- S.- in J Cd Q O LL. O Z Lu O ^' N Qw Lu U �, O J 0 - o O 00, m On .00 Nr O VI C•7O O ONISSVd IN]D 213d B-8 _ UMPIRE tA1ORATORIES, INC. PERMEABILITY LOCATION OF SAMPLE: Boring 2 @ 3.5'-4.5' TEST PROCEDURE• Falling Head Method DENSITY: _ 98.8#/Ft3 PERMEABILITY: k = 127.3 Ft/Yr 2000 1600 . 1 .1200. 800 1 400 0 0 .04 .08 .12 .16 .20 TIME - HOURS B-9 • EMPIRE LABORATORIES, INC. PERMEABILITY LOCATION OF SAMPLE: Boring 3 @ 3. 5'-4.5' TEST PROCEDURE. Falling Head Method DENSITY: 103.1#/Ft3 PERMEABILITY: k = 32.8 Ft/Yr 250 • 200 ') 150 r 100 50 0 0 1 2 TIME - HOURS B-10 EMPIRE LABORATORIES, INC. • • PERMEABILITY LOCATION OF SAMPLE: Boring 9 @ 13.5`-14.5' TEST PROCEDURE• Falling Head Method I DENSITY: 103.4#/Ft3 PERMEABILITY: k = 269.3 Ft/Yr I 5000 I 4000 I x3000 r I 2000 W e 1000 • I 0 I 0 .05 .1 .15 .2 .25 TIME - HOURS B-11 d EMPIRE LABORATORIES, INC. • • • PERMEABILITY LOCATION OF SAMPLE: Boring 15 @ 3.5'-4.5' TEST PROCEDURE- Falling Head Method DENSITY: 103.5#/Ft3 PERMEABILITY: k = 35.3 Ft/Yr • 4000 10001 w2000tu a 1000 dtl 0 0 .4 .8 1 .2 1 .6 2.0 TIME - HOURS • B-12 EMPIRE LABORATORIES, INC. ___ PERMEABILITY LOCATION OF SAMPLE: Boring 17 @ 13.5'-14.5' • TEST PROCEDURE• Fal 1 i nq Head Method DENSITY: 102.7#/Ft3 remolded sample PERMEABILITY: k = 549.1 Ft/Yr 1500 1200 . t I 900 s I > - � � I Q W 600 P � O. �J 300 � I 0 _ • 1 0 .03 .06 .09 .12 .15 TIME - HOURS t •' I • B-1.3 EMPIRE LABORATORIES, INC. PERMEABILITY LOCATION OF SAMPLE: Boring 25 @ 13.0'-14.0' TEST PROCEDURE• Fa11 in Head Method DENSITY: 101 . 7#/Ft3 PERMEABILITY:_ f r 5000 4000 } .3000 r X2000 n. 1000 0 0 .03 .06 .09 .12 .15 TIME - HOURS • 1 B-14 EMPIRE LABORATORIES, INC. — -- H • 0.m .. I • . I W m, I O u)w r CYQ wu. N I I N J w . U N Z w tuu: — OZ a vi a I— 0 V) I O F— o I-' 1- LL zW C O zi- o De U • Q D C f i LU w N N O l0 ZLL 0 a CO C CD >- - r r- r- CY ct I w cc D 0o CO L0 01 CI- O N. LO L.0 I— N• M• r N Ol N • r- CO 0) 01 N. l0 l0 N. O C0 n to Cl NI r r r r N LC) 10 L0 LO 10 LO L0 I Lf) LC) LC) LO • LO LC) L17 L0 LO L0 in L0 i Ct- Ct L0 01 . • nt LC) 01 I- Q- r Ct' 10 01 r r Ct- I-001 r- r r- r CI- Lf) 01 r r r LL LL 1 1 I I I I I I 1 1 I I I I I I I I I I LS) In L0 10 LO L0 LO 10 LC) 1f) LI) Lf) LO LO LO Lf) LC) LC) LO O CO CI' CO CO O CO CY CO M CY 00 O CO CI- CO CO Ch CO r r r r 1.--- r r- I n r N M c0 Z B-15 • •z O1: • f-U N N N N N N N N N N N N N CD QZ r r r r r r r r r r r r I- r ne- \ \ \ \ \ \ \ \ \ \ \ \ W U) C) LC) 01 CO 1.0 d' d' L001 LO L,0 LO O CD I- r r r r r N r N LO Z 0 LLci, w roo -� O • U)LU H CYQ W LL 3N Cr) J W . U N v z w W LL. c. CC 0_vi a w O _ Cd VI CJ z - O w o O }- • IW ZW O Li z� m O J LLJ Q D CdC W N >'• I- N CO N LC) 01 Zu_ • - Lu Ui(j CO 01 01 1- •n. CO 01 O O } r-• r CY 0 W (Y D l0 0) 01 CO d- CO N N N r r d' r CO o • • • • d LO Ol l0 N LO N O CO L C) I",. O O LC) N r N r N r r r LCD L21 LC) LC) LC) M LC) LC) LC) LC) • LC) LC) LI) LCD • LC) LC) LO LU I • • • • d' • d • • • • d' LC) 01 d' F- r- d' L0 Ol r r d' LO Ol r r d' LO 01 r r- r N W 1- I 1 I I I 1 I I I I 11111111 LC) LC) LC) LSD LC) LC) LO LC) LC) LO LC) LO LO LO LO LO LO LO CD• • • • • • • • • • • • • • • • • O CO d' CO co O co d' CO CO O CO d' CO CO d' CO co r r r r r N 0 'L • 0 d' l0 I•••• 2 OI m a-16 I • • 001 • +I r-U N N N N N N N N N N N N N QZ r r r r- r r- r r r r r r r i K\ \ \ \ \ ' \ \ . -. \ \ \ - I- u r CrG1 1- CO 00 d' COM N N LO CO N Ol r r M r r N 1 r w0 d m I I I.1.1 03 Z,R. I .-7.,J)in. 1— w U. 3� I I N J w f....) Cl) to Z Ott w W a vi N �a i trC v ix F- f- w w O I- LL Z w C p 11 ( ZF- a O g oc z Q D u o w = y N I- N , I- M N. ' Z LL. wCj M d' f•••. I > O Co O r r r- 0 Ill DC : OO 10 M (V N. CO CO N Ol L) Ol Y. N C I l0 CO d' r-- O CI- CO O I-• M lO n r...r N r r r • LO 10 LO 10 LO I LO LO LO LO • LO LO LO LO in LO LO L[) • I tY 10 Ol .1' 1-- • r 'CI' LO Ol r r GY LO Ol r r r r Ck LO Ol r a I- I I I I I 1 1 1 1 I 1 I I I I I I w LO LO Lfl LO LO LC) LO LO LO LO LO LC) LO LO LO LO LC) I O M cY CO M O M d- CO C") - CO O Cr) OD CO r r r r r I 0 Z • O CO rn o lle O Z I-. I m R_1 7 w Z O1 z N N N N N N N N N N Q- r r r r r r r r r r- r Up d' FN \ \ \ \ \ \ \ \ \ \ \ \ \ w 1� O O O I. N. CO O w f r- M LC) 1n CO N LI) LO [Lai • mo _ul) O Nw F- CZ LL w ii- I--J N • J w U VI N Z w wLL - CG a vi F— 0 a cc va v F— F- w OO < LI- Zw a Z CD I-o CZ U < 1.0 ce a UCA } w F N r- r to • N. ' zLL 0 U O in N LO • a r O O r >- r r r r 0 Ili CC n .J.- CO in 1p ip d' d' d• 1.n N co O cal CD d' Ol o d• 00 N Ol CO M d' CO Ol 0-1N LO CO LCD10 Ip N r r r r LO L0 In O LO CO in in LC) LO • in LC) 1.C) LC) • • 1.n LC) 1n 1.[) S • fr) 'fit- LO d- d' CO I- • r d' LO al r r 'J in al r r- r d' LC) al r r- r w L~+- I I 1 I i i 1 1 1 I 1 milli 0 LO LC) Ln LC) LC) LC) Ln Ln LC) LO LO LC) LC) LC) LO LO O LO • • • • • • • • • • • • • • • • • • O CO d' CO CO O CO Ct CO CO d- O CO d' CO CO Sr CO r r r r r r- 0 r N el ` P O j r r r in B-18 , • • • in ZuI • . Or • Z N N N O N r N N N N N N N \N 1-U N r r r . . . . . LC) r r I-• r r- r- 117 CO OOCCN \ \ \ \ \ \ \ \ \ \ \ S. \ \ \ S. \ in N 10 CO O r O N- C) L.O N 1.0 r CO n O O LLI O N LC) N LC) d' LO r r N N d' L!) Ln W J . a • I I LU mo O N Lu I— ce w U. I Q I t./) . J W n > U N a> 7 LSJ LL, c ni.ui t t. I--• O 1 ce W Q l F El]V 4 • LI. Z W L O Z ez CO On` Q U 0C Z Q D c w U) } to I- v) n N- CO • tu LL I O V O1 O a r— ›- r r ce O I LU D n N d' O CO O CO N I� r C) LC) 01 N LC) N d' CO O 1.0 t0 d r N N LC) N 01 LC) In Cl- LC) 01 01 Cr) M r r r r N r r N N I O O Cr) LC) d' 10 01 in in in in O CO LI) LC) LC) 10 LO Lf) LC) If) d- LS) 01 - 01 d' CO • • d• in 01 d' 01 co r d L0 01 r r r (NJ N CO d" r d' LC) 01 l— r- r N N CO iL W I I I I I I I I I I I I I I I I I I I I I I O LC) LC) 117 L1) LC) O L1) LC) LC) LC) LO LC) LC) LO LO LC) 10 LC) Lt) LC) LC) • • • • • • • • • • • • • • • • • • • • • O CO d' CO CO d' CO CO CO CO CO O CO d CO CO d• CO CO CO CO r r r N N CO d' r r r N N Cr) I C) L • O d It) I oZ r in Z • w Or . 2U N N N N N N N N N N N CO O Q'Z r r r r CO r r r r r r r- r r Ol oG•••••• \ . \ . \ \ \ \ . \ \ \ \ \ \ \ w II) L.0 Ol r 01 CD N CO LO CO 01 r CO CO CD O r r 10 r r I- N N co L.0 LO w0 am w . ma O N`W La LULL. I-J Q U) N . . .~.1 LU U N (.13Z LL1 w CC a vi d w i''- o 1 Ce N U= O LU f-- H < Zz a NZ m o S DC z LU 4 D oe ea_ LU N F L.0 • l0 z u- C\J CO O V C) N a 1- r I- C) Lu int D 1\ CO d' LO N LC) 1` •Gt• r r- LC) LO G1- 1- LC) o I- • O O N CO Ol Ol r r CO CO N N N N N CO L() LC) C) Li) Lf) LO IC) Lf) LC) CD O CO CO LC) CD CD to 1.0 Lo LC) Lf) I d' L!) 01 • d' LC) 01 Gf Lf) 01 GF LC) 01 0) • r d- V) 01 r r r r GY Lf) 01 r r- r N N NCO CO CO d• a L 1 1 I I t I I 1 1 1 I 1 1 , 1 1 1 1 I 1 1 Pi] Lf) to O in if) LO IC) L0 Lf) Lf) LC) LC) LC) LO LO LC) Lo LO O L0 Lf) O . . . . . . . . . . . . . . . . . . . . . O CO d- CO CO GY CO CD CO d• CO CO ' CO co d' CO co d CO CO r- r r r r- r- N N N CO (0 co d• C9 O Z r r �Z I O -O N N N N O N N N N N N N _- r r r r r r r r r r r r h. Ct re \ \ \ \ \ \ \ \ \ \ .. S. \ \ I.--U) LO to Ct r O 1\ Ol Ol O1 Ct c1' LO CD O w r- LC) r- N co in Lf) w O . CL CO I I • J I CD 3 J O I W CY Q I W U. I Q D N I 1I J w = L--ii U W emu: CZ a(1 l'•• O° u a F- I--u W O a u. z O O z� m o O 4 D d n } W N I- in co Ct N • Co Z u: W,j in LO CJ Cr' I Op_ CD N r CD } r-- r I- r CZ O I w Ly n to Cr) O O1 LO CD Cr) LO Ol M r r- CV O r— o N . . . O r Cr.. Ct Ln LO CV M Ct co CV LC) co LO CI" LO LO Lo co in in in in in r Co LO LO LO to LO LO Lo lf) I • • • • Ct LO O1 • Ct 1-n Ol Ct (3-1 Ct Co I.-. • r- Ct Lo O1 r r r r Ct L[) Ol r r r— N CV co co a.1-- I I 1 I I 1 1 1 I I I I I I I I I I w Lo Ln Lo Lo Lo Ln Lo LO Lo Ln Lo Lo LO LO LO to LO LO O O co Ct Co co Ct C) O co Ct Co co Ct CO Co CO co CO r r r r r- r CV CV co co O . np co of O m 8-21 • U) Z 0= ' 1-Z N N N N N N N N N N N N N N Q_ r r r r- C)1 r r r r- I- r r r r r FK--� \ \ \ \ \ \ \ \ \ \ \ -. \ \ \ LLy u) N M C1' r O L[) 'Cr O 'Cr r O Lp r LO N r .4* In r NCO N r- r r w0 4a, LU [f]O J cit Oh Ui Q W Ll.. 1—J 4'U) N N J w C) N n Z w U�- — = a_vi I- O°' w Ce RA O x I- 1- w o� � - Ce • LL Z W O z- O >" U Q re a w Cl) I- d CO 1O . Z LL • - w V CO N d' gy • p, r r r )- r r r IY A w oc n CD r r CO CD (31 N LO r 1.0 O CO CD CO CO N. O co d d' d' LO N d- 1.0 LO LO 'Cr M LO LO O LO r . LO LO CO LO LO LO LO LO Ln LO LO LO LC) LO LO 11) In • in 10 1n In x • • • . Kt LO O1 • • d' • • • • d- LO O1 d' LO r d' LO O1 r r r r d' In C)1 r r d' Ln O1 F r-• r N N (-i- 1 I 1 I 1 1 I I I I I I I I I I I I I I I w LO LO Ln LO LO LC) LO LO LO LO LO LO LO LO LO LO LO LO LO LO 1O C) CO d' CO CO ct 00 O CO d' CO CO CD CO d• 00 CO d CO CO * 1- r--• r r r r r r N N O L • O CD r- CO EL,- j N N N w B-22 • i Zw oz —L N N N N N r N N CV N N N N N N N Q- . . . . . . r r r r r r r- r- r r- CY-. \ \ \ \ \ \ \ \ \ \ \ \ \ w U) N. O CO LO CD C ) r 1\ in N N- d' LO CV 0) CO r— LC) d' CO CO 1C) r N N d' r r r CO w0 0.w . I w me 0u I O w . ._ t!'< LULL. I--, ef' I I N J w in C. C/) cn Z 1.1.1 W LL — Ce Ca-N F... i uW tra O 2 O I-- pF- w Z E u_ Z w in O En a U Q D LL- C CY = w N )- I-- r.7) n • Z LL. • w u CC) ›-a ..--- I cY 0 . w a n t.• C3)• r• 10• LO• d'• r• CD• r• 1f) r CO• CD CV • O CO O C7 LC) N Cal Ch L[) LO N- CO N VD r r r r r r--. N LO U) L[) LC) LC) d' LC) LO CD CD CD Lf) in LO LC) • • LC) CI C ) C) I 01 d' 01 0) 0) Ch • d' 01 • • • • d' LO 01 a • NcocoC d- LO N- r d LI) 01 r r r Cl- Lf) CSl r r r LULL 1 I i I I I I I I 1 I I I 1 I I I I I p LC) LC) Lf) LC) U) Lf) LOLO LC) LOLn LO LC) CI C) CD O C) CJ CO CO CO CO CO CO CD CO Ct CO CO CO CD CO d' Op CC) d- 00 N CO CO d" LO 1- r— r r r r • 4-) C 0 0 C) CO tt LC) ry 0 L N N N Da B-23 • SUMMARY OF TEST RESULTS Atterberg Summary Boring No. 15 16 • • Depth (Ft.) 3.5-4.5 3.5-4.5 Liquid Limit 16.1 32.4 • Plastic Limit 17.1 14.0 Plasticity Index N.P. 18.4 % Passing 200 28.3 68.3 Group Index 0.0 9.9 Classification Unified SM CL AASHTO A-2-4(0) A-6(10) B-24 • SUMMARY OF TEST RESULTS Boring 2 @ 3. 5'-4.5' Atterberg Limits Liquid Limit 20.1 Plastic Limit 13.5 Plasticity Index 6.6 % Passing #200 36.4 Group Index 0.3 Classification Unified SM-SC AASHTO A-4(0) Permeability: k = 127.3 Ft/Yr @ 98.8#/Ft3 Dry Density Boring 3 @ 3.5'-4.5' Gradation Sieve Size % Passing #4 100 #10 99.9 #20 99.8 #40 99.3 #60 92.4 #100 67.5 #200 31 .3 Permeability: k = 32.8 Ft/Yr @ 103.1#/Ft3 Dry Density Specific Yield: 17% approximate R-?5 SUMMARY OF TEST RESULTS Boring 9 @ 13. 5'-14.5' Gradation Sieve Size % Passing #4 100 #10 99.8 #20 99.8 #40 99.4 #60 91 .8 #100 46.5 #200 14.6 Permeability: k = 269.3 Ft/Yr @ 103.4#/Ft3 Dry Density Specific Yield: 22.5% approximate Boring 14 @ 13.5'-14.5' Gradation Sieve Size % Passing 1/2" 100 3/8" - 99.3 #4 97.3 #10 95.0 #20 92.7 #40 84.6 #60 61 .4 #100 23.9 #200 9.1 Specific Yield: 24% approximate B-26 SUMMARY OF TEST RESULTS Boring 15 @ 3. 5'-4.5' Gradation Sieve Size % Passing 3/8" 100 ' #4 99.8 #10 98.9 #20 96.8 #40 91 .4 #60 79.7 #100 51 .4 #200 23.7 Permeability: k = 35.3 Ft/Yr @ 103. 5#/Ft3 Dry Density Specific Yield: 18% approximate Boring 17 @ 13.5'-14.5' Gradation Sieve Size % Passing #10 100 PP #20 95.2 #40 74.5 #60 46.6 #100 16.4 #200 6.7 Permeability: k = 549.1 Ft/Yr @ 102.7#/Ft3 Dry Density Specific Yield: 24.5% approximate B-27 SUMMARY OF TEST RESULTS Boring 23 @ 23.5'-24. 5' Gradation Sieve Size % Passing 3/8" 100 #4 99.8 #10 99.1 #20 75.8 #40 59.9 #60 44.5 #100 22.8 1 #200 7.8 . Specific Yield: 24.5% approximate Boring 25 @ 13.0'-14.0' Gradation Sieve Size % Passing #4 100 #10 99.9 #20 97.0 #40 88.2 #60 75:7 #100 38.4 #200 9.5 Permeability: 573.3 Ft/Yr @ 101 .7#/Ft3 Dry Density Specific Yield: 24.5% approximate Illi- __ 8-28 Hello