Loading...
HomeMy WebLinkAbout20060697.tiff r • Vision • • Teamwork ■ Commitment • Communication ST. VRAIN LAKES PUD DEVELOPMENT JN: 3075 MASTER DRAINAGE ' REPORT AND STORMWATER MANAGEMENT GUIDE Prepared for 1 Carma Colorado, Inc. 1 t 1 1 Carroll & Lange di Ilk Professional Engineers & Land Surveyors \ / 165 South Union Blvd., Suite 156 Lakewood,od Colorado 80228 (303) 980-0200 Fax: (303) 980-0917 2006-0697 MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT JN: 3075 July 1, 2005 Revised December 5, 2005 Prepared for: Carma Colorado, Inc. 9110 East Nichols Avenue, Suite 180 Englewood, CO 80112 (FAX) 303-706-9453 303-706-6590 Prepared by: Kevin N. Jennings, E.I.T. Reviewed by: Fred G. Tafoya III, P.E. Carroll & Lange, Inc. 165 S. Union Boulevard, Suite 156 Lakewood, Colorado 80228 303-980-0200 (Fax) 303-980-0917 TABLE OF CONTENTS Page I) INTRODUCTION '1 II) GENERAL LOCATION AND EXISTING SITE CONDITIONS 1 III) HISTORIC DRAINAGE BASINS AND SUB-BASINS 2 IV) PROPOSED DRAINAGE BASINS AND SUB-BASINS 4 V) STORM WATER MANAGEMENT GUIDE 7 VI) CONCLUSIONS 22 VII) REFERENCES 22 APPENDICES APPENDIX A— Maps APPENDIX B — Historic Drainage Calculations -Historic CUHP Analysis -Historic SWMM Analysis APPENDIX Cl — Proposed Drainage Calculations -Proposed CUHP Analysis -Proposed SWMM Analysis APPENDIX C2 — Proposed Channel Design and Water Quality Volume Calculations APPENDIX D — Copies of Graphs, Tables and nomographs used ` APPENDIX E — Excerpts from the South Weld 1-25 Corridor Master Drainage Plan Executive Summary The St. Vrain Lakes development is an approximately 1300-acre Planned Unit Development (PUD) located between the St. Vrain River corridor and State Highway 66, just east of Interstate 25, in the southwest corner of Weld County. There are currently 100 surface acres of existing lakes north of the St. Vrain River, which will be enhanced as an amenity for the community. The St. Vrain Lakes development is anticipated to have approximately 5,000 residential units. In addition to these units, there will be commercial use, schools, lakefront and wetland open space corridors, waterfront recreation facilities, parks, ball-fields, and recreation centers. St. Vrain Lakes is located in Weld County and therefore the Weld County Design Standards will be followed, as it is the regulatory agency. The Urban Drainage and Flood Control District (UDFCD) drainage manuals will also be utilized for additional clarification and information on drainage practices. Due to the size of the St. Vrain Lakes project, the Colorado Urban Hydrograph Procedure (CUHP) will be used to determine flows generated from the site. The Storm Water Management Model (SWMM) will be used in conjunction with CUHP to route flows generated through the site and to preliminarily model detention ponds. Detailed drainage facility sizing will be provided for — each final plat. At final plat stage, the rational method will be utilized to determine sub-basin flows at specific detailed locations. UDPond Wizard will be used to aid in the development and pre-construction simulation of _ detention ponds for water quality control and storm flow hydrograph routing. The existing wetland channel will be utilized for conveyance of developed flows and therefore some stabilization measures may be needed in areas _ where the soil is determined to have a high erosion risk or the flow velocities become of concern. St. Vrain Lakes will be divided into four phases. As the project develops into consecutive phases, measures will be taken to provide for the safe and effective conveyance of the offsite flows entering the developing site. These measures will consist of providing temporary sediment ponds for the disturbed upstream areas as grading progresses into the subsequent phase. All offsite flows will be conveyed through the site by means of drainage channels or proposed storm sewer. Stormwater Management Plans (SWMP) will be prepared with each phase to accurately depict these measures necessary to effectively trap sediment and reduce any pollutant discharge. Each phase will be designed with the necessary water quality enhancement located within the proposed detention ponds, which will also act as temporary sediment basins in the construction stages of the project. MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 1 I) INTRODUCTION This report presents the historic patterns and the conceptual developed drainage concepts for the St. Vrain Lakes Community. This study assesses the hydrology of the historic drainage patterns as well as the proposed major drainage patterns. This report has been prepared in accordance with section 24-7-110 of the Weld County Code and the Urban Storm Drainage Criteria Manual (USDCM). Due to the size of this site, CUHP (Colorado Urban Hydrograph Procedure) and SWMM (Storm Water Management Model) will be used to model the hydrology of the site instead of the rational method. II) GENERAL LOCATION AND EXISTING SITE CONDITIONS A. Location: The project is located in sections 25, 35 and 36, Township 3 North, Range 68 West of the sixth principal meridian, County of Weld, State of Colorado. The site is bounded on the north by Highway 66, on the east by Weld County Road 13, on the south by the St. Vrain River and on the west by Weld County Road 11 and 91/2. The existing _ property to the north, west and south is agriculture use. St. Vrain Lakes is a proposed single-family development, which will also consist of commercial, school, and multi-family parcels. A copy of the Vicinity Map showing the location of the site is located in Appendix A. B. Description of Property: The existing site consists of approximately 1320 acres of agriculture and/or vacant grasslands. The site generally slopes from the intersection of 1-25 and Highway 66 toward the St. Vrain River in a southeast direction with slopes in the northern portions of the site ranging from 1 to 5% and slopes near the river ranging from 2% to 15%. There are multiple existing irrigation laterals, culverts and gas wells located on the site. In the developed condition most of the irrigation laterals and culverts will be removed or relocated, however, the gas wells will remain and therefore a dedicated gas well pad will be required. Soil data for the subject property was obtained from the United States Department of Agriculture Soil Conservation Service (SCS) Soil Survey of Weld County, Colorado, issued in September 1980. A portion of sheet 21, from the SCS Soil Survey for Weld County, depicting the development area and the corresponding soil types is located in Appendix A of this report. The soil types consist of ten types which all fall within either the hydrologic soil group 'B' or 'C'. See the St. Vrain Lakes Soil Map in Appendix 'A' for a visual representation. According to the Flood Insurance Rate Map (FIRM) for Weld County, Colorado Community MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 2 Panel No. 080266 0850C and No. 080266 0855 C dated September 27, 1991, the majority of the site is located within zone C, an area outside of the 100 year flood plain, however the southern portion of the site is located within the 100-year floodplain. Refer to Appendix 'A' for the FIRM maps of the site. III) HISTORIC DRAINAGE BASINS AND SUB-BASINS The St. Vrain Lakes development is outside the limits of study for the South Weld I- 25 Corridor Master Drainage Plan (Master Plan). See Appendix E for excerpts from this Master Plan. As previously stated, the southern portion of the site lies within the 100-year floodplain. Within this floodplain exist three lakes north of the St. Vrain River. A Conditional Letter of Map Revision (CLOMR) was submitted for the Seigrist Riverdance project within this floodplain. The Seigrist Riverdance project was a previously approved PUD project on the southwestern portion of this site near the St. Vrain River. The Federal Emergency Management Agency (FEMA) approved the CLOMR on March 6, 2000, for the proposed 100-year floodplain. A new _ CLOMR will be submitted due to the change in the proposed grading of the St. Vrain Lakes project within the floodplain. Upon completion of the proposed project grading within the floodplain, a Letter of Map Revision (LOMR) will be submitted. The LOMR will officially revise the existing FEMA floodplain delineation, removing the floodplain from the location of any proposed building sites. The St. Vrain site has five major historic drainage basins (A, B, C, D & E) delineated that represent the historic storm runoff. This historic runoff drains to either the existing lakes along the northern side of the St. Vrain River or in well-defined drainage ways, which convey flow to the St. Vrain River. To determine the allowable release rates in accordance with Weld County, offsite basins have been assumed to enter the site at an undeveloped 100-year rate and will be conveyed through the site and released at that rate. The onsite basins are modeled as undeveloped with the 5-year event. The routed effect of the offsite (100-year historic) and onsite (5-year historic) will be utilized as the maximum allowable release rate for each basin. Historic drainage basin 'Al' contains approximately 195.9 acres. This basin lies north of SH66, between Weld County Road (WCR) 11 and WCR 13 drains southeast to the intersection of WCR 13 and HWY 66. This flow travels east along the north edge of Hwy 66 to design point A2 (DPA2). Historic drainage basin `A2' drains to a low point along the west side of WCR 13 where it is then conveyed east through an existing culvert. The allowable release rate is 193 cfs at DPA2. MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 3 Historic drainage basin 'B1' contains approximately 214.6 acres. This basin is defined by a high point north of SH66 and is bounded by WCR 11. Historic runoff is assumed to sheet flow into historic basin '62'. Historic drainage basin '62' contains approximately 533.3 acres. Historic runoff flows to a well-defined drainage way, which conveys the flow to an existing pond north of the St. Vrain River at DPB2. The allowable release rate is 219 cfs at DPB2. Historic drainage basin `C1' contains approximately 542.5 acres. This historic drainage basin sheet flows to DPC1. The No. 3 Outlet ditch crosses the northern portion of this basin. This irrigation ditch is assumed to be flowing full during the 100-year event and therefore the ditch has no impact on the flow patterns of this basin. This flow is conveyed DPC2 through a well-defined drainage way, which ultimately conveys the flow directly to the St. Vrain River. Historic drainage basin 'O2' contains approximately 257.7 acres. This flow joins the flow from historic drainage basin `C1' in the existing wetland/ drainage way. The allowable release rate is 630 cfs at DPC2. Historic drainage basin 'D1' contains approximately 129.0 acres. Runoff from this historic drainage basin sheet flows south to two existing lakes north of the St. Vrain — Lakes site where it will then flow into historic basin 'D2'. Historic drainage basin 'D2' contains approximately 136.6 acres. Runoff from this historic drainage basin sheet flows south to the two western existing lakes north of the St. Vrain River at DPD2. However, since these two western existing lakes were created due to mining operations, it is assumed that they are not historically present. DPD2 will release 198 cfs assuming offsite basins enter the site at the undeveloped 100-year rate and are conveyed through the site and release at that rate and the onsite basins are modeled as undeveloped with the 5-year event. However, the proposed release location out of the existing lakes is at the east end of the existing lakes. Therefore the release from historic basins 'D1' and 'D2' was routed using the SWMM program to this proposed release location. This flow was then routed with the flow from historic drainage basin 'E'. Historic drainage basin `E' contains approximately 168.2 acres. Runoff from this historic drainage basin sheet flows south to the larger eastern existing lake north of the St. Vrain River at DPE. This existing lake was assumed to be of historic imperviousness as the lakes were not historic lakes. The flow from this basin was routed from the center of the basin through the St. Vrain River to the proposed release location to quantify a proposed release rate. The allowable release rate out of the lake is 140 cfs at DPE. For further information see Appendix B for Historic Drainage Basin Maps, the historic basin summaries and CUHP (Colorado Urban Hydrograph Procedure) and SWMM (Storm Water Management Model) drainage calculations. MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 4 IV) PROPOSED DRAINAGE BASINS AND SUB-BASINS For the analysis of the proposed hydrology, the site was split into five proposed drainage basins, which generally correspond to the historic drainage basins. These drainage basins were divided into thirteen sub-basins for analysis utilizing the CUHP and UDSWMM 2000 runoff analysis program. The Urban Drainage and Flood Control District developed the CUHP and UDSWMM 2000 programs for storm runoff analysis of larger drainage basins. The proposed detention ponds were modeled using UDSWMM. The release rates were determined in the Historic Drainage Basins section of this report. The release rates were determined by modeling the off-site basins at the 100-year undeveloped rate and routing that flow with the on-site basins modeling at the 5-year undeveloped rate, as this is the allowable release rate in Weld County. Therefore, the detention ponds will have one release rate of the 5-year historic for the _ proposed development. The 100-year detention volume was then quantifiable by setting the release rate to the allowable flow rate. Water quality will be provided in the proposed detention ponds. The large existing lakes to the south, detention ponds 105 & 106 will have proposed water quality vault systems upstream of the lakes to treat the inflow so that water quality in the lakes is maintained. The water quality volumes are calculated using the UDFCD Water Quality Capture Volume (WQCV) spreadsheets included in Appendix C2. A weighted percent impervious value was calculated for the tributary area for each pond and then the total area was entered. This method was used on all detention ponds. The water quality volume will be incorporated into the design of the detention ponds. UDFCD specifies that half the WQCV can be used for the 100- - year detention volume and therefore the total detention pond volume requirement will be the 100-year volume plus half the WQCV. Street capacities have been calculated and provided in appendix C2. The cross- sections used to calculate the capacities are representative the proposed streets and the slopes varying from the anticipated minimum and maximum. Drainage sub-basin Al consists of 194.4 acres of offsite area, which has been assumed to discharge at historic rates into the St. Vrain Lakes site. It is anticipated that this flow will drain through an existing culvert under Hwy 66 on the west side of WCR (Weld County Road) 13 and be conveyed to the proposed detention pond 101. Analysis of this basin shows a proposed 100-year peak discharge of 176 cfs. Basin Al sheet flows to the roadside ditch along Highway 66 where it is currently conveyed to the intersection of WCR13 and Highway 66 where it flows across the highway through an existing culvert. When the St. Vrain Lakes development is in MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 5 phase IV, this roadside ditch will be further analyzed and inlets will added as needed. See Appendix D for roadside ditch capacities. The flow from basin 'Al' will be conveyed to detention pond 101 via a proposed pipe with an overflow swale. Sub-basin A2 will consist of approximately 165.2 acres (see the percent impervious table in Appendix C for the land use of each basin). Analysis of this basin shows a proposed 100-year peak discharge of 494 cfs. Flows from basin Al & A2 will be detained at detention pond 101. Detention pond 101 will release detained flows to _ the release rate calculated in Appendix B for historic basin A. To accommodate this change in flow patterns, detention pond 101 will hold a volume of 27.8 (Ac-ft) and release 193 cfs during the 100-year storm event. Detention pond 101 will be built with phase IV. This flow will be conveyed under WCR 13 into an existing drainageway, tributary to the St. Vrain River. This detention pond will be designed with a water quality capture volume component. The water quality ponds will be designed assuming the future developed conditions of all offsite basins will be 45 percent impervious. The water quality volume of 7.23 Ac-Ft will be incorporated into the design of this detention pond. (See water quality capture volume calculations in Appendix C2. Drainage sub-basin B1 consists of 120.0 acres of offsite area, which has been — assumed to discharge at historic rates. Currently, sub-basin B1 drains through an existing culvert under Hwy 66 into sub-basin B2 and will be routed via roadside ditch, curb and gutter or storm sewer to a proposed swale through basin B3 through the St. Vrain site. The WCR11 roadside ditch capacity is located in Appendix D. As the project progresses to phase III, this roadside ditch will be further analyzed and inlets will be added as needed. See Appendix D for roadside ditch capacities. This drainage swale will drain to proposed detention pond 102. Analysis of sub-basin B1 shows a peak 100-year discharge of 146 cfs. Sub-basin B2 consists 103.9 acres of offsite area, which will drain to the existing drainage way in basin B3. Analysis of sub-basin B2 shows a peak 100-year discharge of 136 cfs. (See the cross-section A-A and B-B on DR4 for visual representation of this drainage way.) Sub-basin B3 (308.1 acres) will consist of approximately 8 acres of multifamily residences, 23 — acres of park, 245 acres to be developed as single-family parcels, 16 acres of commercial parcels and 17 acres of detention pond/ stream. Analysis of this basin shows a proposed peak discharge of 974 cfs during the 100-year, which will drain and be detained at the proposed detention pond 102. This detention pond will also function as a lake. The 100-year detention volume will be provided above the anticipated maximum water surface of the lake. Detention pond 102 will hold a volume of 67.0 (Ac-ft) and will release approximately 115 cfs during the 100-year event. Detention pond 102 will be built with phase III. This release will be conveyed to an improved drainage channel to detention pond 103. The drainage channel will be designed to provide non-erosive velocities. Drop structures will be utilized in accordance with UDFCD criteria where needed to maintain sub-critical slopes. This lake will provide 10.6 Ac-Ft of water quality volume. MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT -- Page 6 Proposed drainage sub-basin B4 consists of 240.1 acres to be mainly developed as single-family parcels. The flow from this sub-basin will be picked up by the St. Vrain storm sewer system and streets and routed to detention pond 103. Analysis of this basin shows a proposed peak 100-year discharge of 843 cfs. Detention pond 103 will also receive detained releases from detention pond 102. This flow will be detained and released at the historic rate for historic basin B, 219 cfs for the 100- year. Detention pond 103 will require a detention volume of 29.8 Ac-ft during the 100-year. Detention pond 103 will be built with phase II. The water quality capture volume required for this pond is 4.68 Ac-Ft. This water quality volume will be incorporated into the design of detention pond 103. Drainage sub-basin C1 consists of 554.0 acres of offsite area, which has been assumed to discharge at historic rates. This flow will sheet flow to roadside ditches and be conveyed to existing culverts, which will direct the flow to the existing drainage swale in basin C2. The roadside ditches that this basin drains to, WCR11 and WCR28 currently convey this flow to the existing culverts. Inlets will be needed along a portion of WCR11 near WCR28 to effectively and safely convey this flow. (See appendix D for roadside ditch capacities.) The existing culvert conveys this — flow to an existing drainage channel in basin C2. This existing drainage channel will have velocities in excess of 5 ft/s and therefore will need some stabilization measures. Since the existing drainage channel contains wetlands, it is proposed to provide erosion check structures in accordance to UDFCD criteria. The No.3 Ditch crosses this sub-basin, but as previously mentioned, the ditch will be assumed to be flowing full and therefore will not impact the flow patterns of the sub-basin. The peak 100-year discharge from this sub-basin is 487 cfs. Sub-basin C2 consists of 177.3 acres with runoff being captured by the storm sewer facility, which will route flow to detention pond 104. Analysis of this basin shows a proposed peak 100-year discharge of 857 cfs. Flows from basin C will drain to the existing wetland channel and will be detained at the proposed detention pond 104. Some stabilization measures will be needed along this channel, as the soil in this area is sandy and therefore, a potentially erosive soil type. The velocities exceed 5 ft/s as developed flows are added close to detention pond 104. Detention pond 104 will release flow at historic rates of approximately 630 cfs, with a detention volume of 25.2 Ac-ft during the 100-year. Detention pond 104 will be built with phase I. A water quality volume of 15.30 Ac-Ft will be incorporated into the design of the detention pond. Drainage sub-basin D1 consists of 97.9 acres of offsite area, which has been assumed to discharge at the 100-year historic rates. It is anticipated that the St. Vrain storm sewer system will pick up the flows from sub-basin D1 on the eastern side of basin D3 and convey the flow to detention pond 106. Drainage sub-basin D2 consists of 38.0 acres of offsite area, which has been assumed to discharge at historic rates. It is anticipated that the St. Vrain storm sewer system will pick up the MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 7 flows from sub-basin D2 on the western side of basin D3 and convey the flow to detention pond 106. Sub-basin D3 consists of 138.9 acres to be developed as mainly municipal, single-family and park/open space. The flows from basin D will be detained at detention pond 106. Detention pond 106 will release flows into detention pond 105 at a rate of 63 cfs for the 100-year event. This existing lake will therefore need to provide a detention pond volume of 36.0 Ac-ft. Detention pond 106 will be built with phase I. This lake will be required to provide 3.4 Ac-Ft of water _ quality volume. A water quality vault will be proposed for water entering the lake to maintain water quality in the lake. For further information on basin properties see Appendix 'Cl' for proposed Basin Maps and for a basin summary, discharge and _ routing calculations. Sub-basin El consists of 110.4 acres of offsite area and is assumed to release at historic rates. This flow will enter sub-basin E2 at DPE1. The peak 100-year discharge from this sub-basin is 91 cfs. Sub-basin E2 consists of 206.8 acres to be developed mainly into single-family parcels. Developed runoff from this basin will be captured by the St. Vrain Lakes storm sewer facility and conveyed to detention pond 105. Analysis of this basin shows a proposed peak 100-year discharge of 1965 cfs. Detention pond 105 will release 140 cfs during the 100-year event. This — existing lake will need to detain a volume of 55.7 Ac-ft to release at the allowable rate. Detention pond 105 will be built with phase I. See Section III, Historic Basin D & E for information on this release rate and how it was calculated. This detention pond will maintain a water quality component of 3.4 Ac-ft. Additionally, a water quality vault system will be proposed upstream of the lake so that the water entering the lake is pre-treated for water quality. The impervious values of the above basins are calculated in appendix C1 using the values provided by the UDFCD (copies of the UDFCD information is provided in Appendix D'). This impervious percentage was utilized for the calculation of initial and final infiltration rates and CUHP calculations. The Urban Drainage and Flood Control District (UDFCD) Manual was utilized for the approximation of a 100-year event, one hour point rainfall depth of 2.65 inches and a 5-year, one hour point rainfall depth of 1.36 inches. See Appendix A, figure RA-3, for the Rainfall Depth- Duration-Frequency isopluvials. After the hydrographs were produced by CUHP, the flows were routed from sub-basins using the UDSWMM 2000 runoff model. Emergency overflow spillways and outlet structures will be designed and constructed for conveying flow from the proposed detention ponds to the historic discharge locations. V) STORM WATER MANAGEMENT GUIDE This section will provide an overview of the Storm Water Management Practices, including sediment and erosion control practices and potential pollution sources MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE _ FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 8 anticipated on the St. Vrain Lakes development. It should be noted that future _ Storm Water Management Plans (SWMP's) will be required for each construction phase / final plat within the development. The site or phase specific SWMP shall specify the exact location of Best Management Practices (BMP's) and how the implementation of BMP's will be sequenced corresponding to the phasing of the construction within each phase or filing of the St. Vrain Lakes development. As an example, before construction activities can start in phase III, phase II will have to provide certain erosion and sediment control measures. Sheet SWMP1 in the map pocket for a general layout of the proposed sediment basins. (See the phasing map in appendix A.) This project will consist of the construction of single-family homes, multi-family homes, commercial parcels, and municipal areas located on approximately 1320 acres, with associated streets, utilities, landscaping and irrigation. Soil disturbing activities will include: clearing and grubbing; installing a stabilized construction entrance, perimeter, and other erosion and sediment controls; grading; excavation for sediment basins, installation of storm sewer, utilities, and building foundations; construction of curb and gutter, walks, road; and preparation for final planting and seeding. — Clearing and grubbing will be necessary to allow for road grading and utility installation. Sanitary sewer, domestic water mains, and storm sewer will then follow along with the paving of roads with adjacent lots. The permanent water quality and detention ponds will be constructed at the appropriate discharge points. Finally, construction of interim water quality ponds will collect runoff and convey the treated discharge downstream. Construction activities associated with this type of development typically require the use of heavy earthmoving equipment, dump trucks, generators, concrete mixers, and other assorted equipment. Best Management Practices (BMP) will be followed to provide storm water quality and minimize erosion and sediment runoff. Mulching and seeding will be required in areas of over lot grading in the interim condition. A) Proposed Construction Sequence/Timing Schedule The general sequence for major construction activities for the St. Vrain Lakes development will be as follows: 1) Project Implementation. The following general sequence of activities will be followed in the construction process. Some of the activities will be the responsibility of the builder and are indicated below. These builder related items shall be included and administered by the builders separate SWMP. MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE _ FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 9 _ a. Appoint a SWMP Administrator. b. Install/construct temporary or permanent erosion control BMPs, as appropriate. c. Grade the construction site, as appropriate. d. Areas where utility installation will not begin immediately (future phases) will be temporarily reseeded. Phases that are proceeding with the utility and road construction sequence will not be seeded at this time because they will be active construction areas that will not be dormant for more than 30 days. e. Implement construction sequence for utility installation: 1 . Sanitary sewer installation 2. Water line installation beneath street alignments. 3. Storm sewer installation, with inlet protection — -- installed as inlets and storm sewers are installed. 4. Curb and gutter installation. 5. Water and sanitary services extended to lots. 6. Preparation of road sub-grade. 7. Paving of roads. Once roads are paved, curb socks will be installed in gutters to slow runoff and promote sedimentation. 8. Installation of dry utilities (gas, power, cable, phone) for lots. This construction sequence will be scheduled to allow for no lapse in activities of more than 30 days. Once this sequence of construction activities has been completed, areas where construction will not begin within 30 days will be surface roughened (within 14 days) to reduce erosion potential and promote infiltration and will be temporarily seeded if the weather is appropriate for successful seed germination. f. Implement construction activities related to the construction of roads including debris management, spoil piles and soil stockpiles. Install specific BMPs as shown on the Stormwater Management Plan (SWMP) sheets, to provide erosion protection prior to landscaping and re-vegetation (builder). MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE _ FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 10 g. Complete final site grading including replacing stockpiled _ topsoil. In addition, clean out and re-grade (as necessary) detention and sedimentation ponds used for water quality capture purposes during construction to _ conform to the design of the permanent site drainage system. h. Final (permanent) seeding, sodding, planting and landscaping of the site will be the responsibility of the owner. Some temporary stormwater controls, such as inlet protection for the storm sewers, should remain in place during this phase (builder). i. Remove temporary control measures (builder). Sequencing of construction activities will progress as rapidly as practical to minimize the amount of time that portions of the site are disturbed. Areas that will be inactive for more than 30 days will be surface roughened to reduce erosion, slow runoff velocity and — ^ promote infiltration. Additionally, slopes steeper than 3:1 will require blankets, matting or netting for long-term exposure (greater than 2 weeks). Inactive areas will be seeded with an approved temporary native seed mix when the weather conditions are such that growth of native grasses from seed is possible. 2. Post-construction Site Inspection. Following the completion of the project, including final re-vegetation and landscaping, the SWMP Administrator will inspect areas that have been seeded and landscaped to assure that the re-vegetation and landscaping have been successful in establishing uniform ground cover (70% of pre-disturbance cover criteria for re-vegetation). If re- vegetation has not been successful, spot re-vegetation or other remedial actions should be implemented to assure compliance with the Stormwater Discharge Permit and other applicable regulations. The SWMP Administrator will carry out the inspection. It is anticipated that the builder's representative will be responsible for this stage. B. Potential Pollution Sources Potential pollution sources at the project site include sediment, equipment/vehicle washing, vehicle maintenance and fueling, paint, solvents, wood treated products, asphalt (bituminous) paving, concrete, metal, petroleum products, waste storage and disposal, and off-site sediment MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 11 transport from vehicle tracking. Many chemicals typically associated with construction activities are considered potential pollutants. The table below lists many of these pollutants. Careful handling, storage, and application of these materials reduce the likelihood that these chemicals will contribute to _ pollution of the environment. Preventative practices are discussed in greater detail in Materials Handling and Spill Prevention Section. The table provides a broad list of potential pollutants from a range of construction-related activities. Inclusion of a chemical in the table does not necessarily imply that the chemical will be used as a part of the development construction activities. Chemicals Potentially Associated With Construction Activities Potential Pollutant Sources Location Gasoline (benzene, toluene, Construction vehicles, gas cans Job site, access roads, tanks ethylbenzene, xylene tetraethyl and generators on site and fuel sites leads, methyl tertiary butyl ether [MTBE] and other compounds) — Diesel fuel (and associated Heavy construction equipment Job site, access roads, and constituents) fuel sites Oil,grease and hydraulic fluids Construction vehicles, heavy Job site, access roads, fuel construction equipment, sites, storage areas and lift generators, small containers and houses lift equipment Solvents (TCE, TCA, and Small containers Job site, and storage areas others) Paints, stains and varnishes Small containers, bulk containers Job site, and storage areas and spray equipment Glues and waterproofing Small containers and bulk Job site, and storage areas compounds containers Fertilizers Bulk containers Storage areas Chlorine (hypochlorite) Disinfections of water line Job site, and storage areas Cement Bulk containers Job site, and storage areas Metals, paint chips, wood Construction debris Job site and access roads chips, insulation, asbestos and plastics Microbiological contaminants Sanitary wastewater Septic tank/leach field (coloform, giardia, etc.) systems, broken sewer lines, MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 12 portalettes Glycol Construction vehicles and Job site, access roads, and equipment, small containers and compressor site bulk containers Tackifiers Bulk containers and spray Job site and storage areas equipment C. Non-Stormwater Discharges Potable water is anticipated as a non-storm water discharge. Potable water will be used for grading, dust control, and irrigation of erosion control and permanent landscaping. An effort shall be made to use only the amount of potable water required for these operations. Construction dewatering is not anticipated as a part of this project. Any other non-stormwater discharges resulting from construction activity are not covered under this SWMP. If groundwater discharges are anticipated, a separate construction dewatering discharge permit is required through the CDPHE. D. BEST MANAGEMENT PRACTICES FOR STORMWATER POLLUTION PREVENTION — BMP's that will be used for stormwater pollution prevention include structural and non-structural BMPs for erosion and sediment control as well as materials handling and spill prevention measures. A detailed Stormwater Management Plan (SWMP) will be required for the St. Vrain Lakes development. All personnel responsible for implementation and maintenance of BMPs should review and understand the BMPs identified in the Stormwater Management Plan (SWMP). The BMP's that will be detailed and identified in the SWMP will contain non-structural BMPs, as well as erosion and sediment control details from several of the many available sources, including: • Denver Urban Drainage and Flood Control District (UDFCD), Drainage Criteria Manual, Volume 3, 1999. • California Stormwater Best Management Practice Handbook: Construction Activity, State of California, 1993. -' E. Erosion and Sediment Controls Erosion and sediment control BMPs will be used to minimize the amount of - soil transported to receiving waters and/or wetlands from areas disturbed as a result of construction activities. MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 13 BMPs may be classified as: • Temporary (operative during construction) • Permanent (continuing after construction) • Structural (silt fences, swales, sedimentation ponds, sediment traps, surface grading, mulching, storm sewers, drainage ways [including roads], etc.) • Non-structural (limiting disturbed areas, timing projects to avoid heavy precipitation, soil stabilization, street sweeping, maintaining buffer zones, education and outreach to production staff and sub- - contractors on erosion and sediment control practices, good housekeeping and other SWMP provisions, etc.) Four basic approaches are used for controlling erosion from stormwater runoff in construction areas: 1. Stages of construction that disturb surface soil are sequenced to minimize the amount of time during which soil is exposed to potential erosion conditions. -- 2. Temporary re-vegetation or surface roughening is used if construction areas must remain bare for periods of time long enough to pose a potential erosion threat. 3. BMPs are installed up gradient of significant surface disturbances to reduce the volume and velocity of runoff entering disturbed areas. 4. BMPs are installed down gradient of significant surface disturbances to reduce the volume, velocity, and sediment load of runoff generated in disturbed areas as a result of precipitation events. The erosion and sediment control strategy for a construction project is dynamic. As phases of construction progress, the strategy and measures implemented must evolve to remain effective. F. Structural Practices Structural practices for this site include silt fences, erosion logs, rough cut street control, diversion dikes, inlet protection, vehicular tracking control, and sedimentation ponds. Erosion controls and construction shall be phased to be fully effective. A vehicular tracking control device shall be installed prior to the mobilization of MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 14 construction equipment on-site. Prior to the clearing and grubbing of the entire phased construction area, localized clearing shall be performed for the placement of perimeter erosion control measures (silt fences, erosion logs, etc.). Site clearing shall commence only after perimeter erosion control measures are in place. Storm sewer inlet protection and curb socks must be placed in accordance with the plan and also whenever soil erosion from the excavated material has the potential for entering the storm drainage system. • Storm drain inlet protection will be provided by devices designed to reduce the sediment load entering a storm drain inlet or catch basin. Sediment-laden runoff will be filtered by an appropriate medium blocking the entrance to the storm drains. Silt fence or erosion logs shall be placed behind each inlet for additional protection. Inlet protection must still allow the storm inlet to function in a storm event. • Vehicle Tracking Control (VTCs) is used in order to prevent construction vehicles from tracking mud, soil and other debris onto public roads. They consist of a stone-stabilized pad placed at the exit — of the site. When vehicles move over the pad, the rough surface shakes loose any mud and debris that may have been carried into the public right of way. VTCs will be located wherever the site borders a public right-of-way, street, alley, or parking area or any point where vehicular traffic will access the site while roads and utilities are under construction. A VTC will be provided at the construction trailer for the site and at the designated concrete washout. If construction trailers are established on lots by staff during the course of construction, a VTC will be provided. • Silt fences consist of filter fabric stretched between fence posts, with the lower edge of the filter fabric buried below the ground surface. They are a temporary measure used on small or wide disturbed slopes to control down slope sediment movement by reducing the velocity of runoff flow, filtering sediment particles and catching windblown sand and soil. • Sedimentation ponds riser pipes to release flow over a forty- hour period and emergency overflow provisions to handle the larger storms. Sedimentation ponds are temporary and will be removed as construction is completed. The sedimentation ponds will control the amount of sediment leaving the property. When the sedimentation MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 15 ponds become half full of sediment, the ponds must be dug out to their original design and the sediment needs to be redistributed onsite. G. Non-Structural Practices Non-structural practices may include temporary seeding, permanent seeding, mulching, geotextiles, sod stabilization, vegetative buffer strips, protection of trees, and preservation of mature vegetation. All seeding, fertilizers, and mulching shall conform to the approved construction plans and the City of Aurora criteria. Seeding in accordance with the seed mix specified on the approved erosion control plan shall stabilize all disturbed areas. The engineer may require additional BMPs as necessary to retard sediment transport. _ Non-structural controls for this site shall include mulching and final sod stabilization. • Mulching is the application of a layer of plant residue or similar materials over a certain area in order to reduce the effects of raindrop — surface impact, slow the velocity of overland flow and reduce wind erosion. • Blankets, Netting, or Matting will be required on slopes steeper than 3:1. • Temporary Seeding is required in areas that have been graded but are not to be permanently re-vegetated for an extended period (not to exceed 2 years). Seeding produces a vegetative cover, which greatly decreases the effects of erosion. H. Materials Management Practices Materials are sometimes used at the construction site that present a potential for contamination of storm water runoff. These include fuel, oil, lubricants, paints, solvents, concrete-curing compounds and other liquid chemicals such as fertilizers, herbicides and pesticides. Practices that can be used to prevent or minimize toxic materials in runoff from a construction site are described in this section. A list of all potentially toxic or hazardous chemicals used shall be maintained on the site. Warning labels must be attached to all potentially toxic or hazardous chemicals. Material Safety Data Sheets (MSDS) and other safety information for a potentially toxic or hazardous substance will be on file and MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 16 accessible (on the site) during all periods in which the substance is used or stored. In addition to maintaining an inventory of potentially toxic and/or hazardous materials and associated safety information, the following materials management practices must be followed: • Materials will be handled in accordance with Occupational Safety and Health Administration (OSHA) requirements and manufacturer's instructions. • Chemicals regulated under the Comprehensive Environmental Response, Compensations and Liability Act (CERCLA) will be reported and handled in accordance with relevant regulations. • Materials stored at the construction site will be covered or otherwise protected from the elements. • The quantity of fuel and lubricants stored at the construction site will be limited to the amount that is reasonable to support the specific construction — or maintenance activity. Strict storage practices (i.e., off-site storage) are preferable. Fuel, hydraulic oil and form oil should be stored offsite. • Bulk storage areas for materials not consumed on a daily basis will be enclosed and protected from the elements and contained in a manner to prevent release to the environment. • Petroleum products and fertilizers will be stored at separate facilities or isolated by impermeable barriers. • Hypochlorite and other chlorine compounds will be stored separately from other materials and kept dry. • Areas at the construction site that are used for storage of toxic materials _ and petroleum products shall be designed with an enclosure, container, or dike located around the perimeter of the storage area to prevent discharge of these materials in runoff from the construction site. These barriers will also function to contain spilled materials from contact with surface runoff. • Measures to prevent spills, or leaks of fuel, gear oil, lubricants, antifreeze, and other fluids from construction vehicles and heavy equipment shall be considered to protect groundwater and runoff quality. All equipment maintenance shall be performed in a designated area and measures, such MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 17 as drip pans, used to contain petroleum products. Spills of construction- related materials, such as paints, solvents, or other fluids and chemicals, shall be cleaned up immediately and disposed of properly. _ • Concrete trucks and other concrete coated equipment shall be cleaned only in properly bermed, designated washout areas. • Hazardous materials and wastes shall be stored in covered, leak-proof containers. • When fueling must take place onsite, designate an area away from drainage courses to be used. Dedicated fueling areas shall be protected from stormwater runon, runoff, and shall be a minimum of 50 ft away from drainage courses. Area is to be protected with berms and dikes. Secondary containment, such as a drop cloth or drain pan, will be used to catch spills if necessary. If a small spill does occur, the operator will use absorbent materials to remove as much of the spill as possible. The spent absorbent material will be disposed of properly and promptly. There will be no bulk storage of fuel on-site. I. Spill Control Practices All employees must be trained to recognize "significant spills" based on the relative toxicity of the material. Spills should be cleaned immediately, using as little water as possible to avoid spreading. Stockpiles of cleanup materials should be stored in an easily accessible area. All employees should be notified of the location of the MSDS and the cleanup material storage location and should be trained to clean up spills. All construction site personnel must follow spill prevention and control practices as follows: • Designated individuals on the site will receive training on cleanup procedures for various types of chemicals and the location of information and cleanup supplies. The MSDS for a chemical provides information about health hazards, safe handling, use and control measures. The MSDS for all chemicals used on the site will be kept on the site, and workers will be required to review the MSDS for materials they are working around. -" • Spills will be cleaned up promptly after discovery, and materials used for spill cleanup must be disposed of offsite at an approved facility. • Personnel will wear appropriate protective equipment to prevent injury resulting from contact with a toxic substance. MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 18 • The designated coordinator, the SWMP Administrator, will be notified immediately of any spill of a toxic or hazardous material that threatens human health or the environment. The SWMP Administrator (or designee) must in turn report the spill to the appropriate federal, state, or local agencies in accordance with applicable regulations. • If a spill occurs, this plan will be reviewed and appropriately revised to incorporate measures to reduce the likelihood of a spill reoccurring and to improve response time and cleanup effectiveness. • For any construction activities covered by this plan that involve the use of toxic or hazardous substances, on-site spill prevention and cleanup coordination, in the event of a spill, will be the responsibility of the SWMP Administrator. _ J. FINAL STABILIZATION AND LONG-TERM STORMWATER MANAGEMENT All temporary erosion and sediment control measures shall be removed and disposed within 30 days after final site stabilization is achieved, or after the temporary measures are no longer needed, whichever occurs earliest, or as authorized by the local governing jurisdiction. Temporary erosion control measures may be removed only after streets and drives are paved and all areas have achieved final stabilization. Trapped sediment and disturbed soil areas resulting from the disposal of temporary measures must be returned to final plan grades and permanently stabilized to prevent further soil erosion. Final stabilization is reached when all soil disturbing activities at the site have been completed, and uniform vegetative cover has been established with a density of at least 70 percent of pre-disturbance levels or equivalent permanent physical erosion reduction methods have been employed. K) OTHER CONTROLS Additional provisions of the erosion and sediment control plan relating to waste disposal include: • The contractor shall remove all sediment, mud and construction debris that may accumulate in the flow lines and public rights-of-way as a result of the site development. This shall be performed in a timely manner. MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 19 • Soil stockpiles shall be protected with temporary perimeter sediment barriers at all times. • The contractor shall control sediment, debris and all other pollutants from entering the storm sewer system as a result of construction operations. • The owner and designated agents shall ensure that all loads of cut and fill material imported or exported from the site shall be properly covered to prevent loss of the material during transport on public rights-of-way. • Vehicle tracking control shall be required at all access locations to the project site to prevent tracking debris offsite before street paving is complete. • BMPs for erosion and sediment control shall be properly inspected and maintained throughout the duration of the construction activity to a level where BMP performance is not compromised. L. Practices for Construction Activities on Building Pads — — The SWMP Administrator will work with production staff and sub-contractors to assure that the following erosion and sediment control practices are implemented as units are constructed and landscaping occurs. 1. The amount of time that building soil, landscaping materials, etc. are left in the right-of-way will be minimized to the extent practical. Inactive stockpiles will not be permitted in streets. Production staff and sub-contractors will be required to sweep up remnants of stockpiles remaining in streets after stockpiles have been moved on to lots. 2. Dirt curb ramping to bring heavy equipment and materials on to landscaping locations is not allowed. 3. Streets will be scraped and/or swept, and gutters will be cleaned following: a. Completion of foundation excavation and backfilling _ b. Completion of water and sewer connection work c. Completion of flat work d. Tracking of soil material onto streets 4. Blow trash will be picked up and disposed of on building sites as necessary. MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 20 5. Parking for production staff and sub-contractors will be allowed only on paved or otherwise stabilized areas. 6. Vehicle access to lots will be minimized during wet weather to the extent practical. _ 7. Vehicle fueling will use a fueling truck that will temporarily access the site for fueling. Fueling of vehicles will occur away from storm drain inlets and watercourses. Any spilled fuel will be cleaned up immediately. There will be no bulk storage of fuel on-site. 8. Fuel, hydraulic oil and form oils will be stored offsite. To the degree that hazardous materials used in construction (oils, solvents, etc.) must be stored on-site, quantities of materials will be minimized, and storage will be in accordance with the BMP section of this SWMP. 9. Temporary stockpiles for use in house backfill shall be stabilized if they will be inactive for more than 14 days. 10.Portable toilets will be located at least 50 feet away from storm sewer inlets. They will be located in level locations, but not in drainage paths, curb and gutter, or on sidewalks and drives. They shall also be stabilized to minimize the risk of tipping over. Downstream perimeter controls shall be installed to prevent leaks from entering the storm sewer system. 11.Trash bins will be located at least 50 feet away from storm sewer inlets. They will be located in level locations, but not in drainage paths, curb and gutter, or on sidewalks and drives. Downstream perimeter controls shall be installed to prevent contaminants in storm water from entering the storm sewer system. M. INSPECTION AND MAINTENANCE All temporary and permanent erosion and sediment control practices shall be maintained and repaired by the contractor during the construction phases as needed to assure continued performance of their intended function. Silt fences may require periodic replacement and all sediment accumulated behind them must be removed and disposed of properly. Streets will be MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 21 scraped and/or swept, and gutters will be cleaned following completion of foundation excavation and backfilling, water and sewer connection work, flat work, and after tracking any soil material onto streets. All disturbed surface areas are to be stabilized in accordance with the approved SWMP/Erosion Control Plan or approved amendments and shall be reviewed onsite by the SWMP Administrator (field review personnel). _ The field review personnel shall individually observe each BMP that is shown on the approved SWMP/Erosion Control Plan or approved amendments. Any deviations from the approved plan shall be noted on the Report. The reviewer shall especially note any BMP that is not in compliance with the approved plan/approved amendments. Deficiencies that are not immediately repairable should be reported to the construction superintendent, SWMP Administrator or his/her designee for instructions on how to proceed. The review shall also include recommended courses of action based on the field review. BMP's shall be reviewed in accordance with the "Erosion Control BMP's and/or Sediment Control BMP's specifications and criteria listed hereinafter. The Stormwater Discharge Permit requires that a thorough inspection of the stormwater management system be performed at least every seven calendar days, and after any precipitation or snowmelt event that results in runoff or causes surface erosion event (typically storms that result in greater than 0.5 inches of rainfall in a 24-hour period). In the event the project has been winterized and/or no construction activity is occurring for an extended period of time, a field review shall be completed at least every 30 calendar days. The following are some of the inspection and maintenance practices that will — be used to maintain erosion and sediment control BMP's: • All measures will be maintained in good working order; if a repair is necessary, it will be initiated within 24 hours of the report. • Built up sediment will be removed from silt fence when it has reached one third the height of the fence, or is no longer functioning properly. • Built up sediment will be removed from BMPs when it has reached one half the height of the BMP, or is no longer functioning properly. • Silt fence will be inspected for depth of sediment, tears, to see if the fabric is securely attached to the fence posts, and to see that the fence posts are firmly in the ground. MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 22 _ • The proposed permanent water quality vaults in line of the storm sewer facility before the existing lakes (detention ponds 105 & 106) will require maintenance. The required maintenance timing will depend on manufacturer specifications. The water quality capture volume in the other detention ponds will require maintenance to clean out sediment build up at specified levels. The allowable sediment build up will be specified with the final design of the detention ponds. VI) CONCLUSIONS This drainage report and SWMP guide complies with the standards and specifications of Weld County and the UDFCD. The discharges for the proposed development have been calculated using the CUHP computer program and correspond to historical discharges. The proposed development and drainage facilities shall result in no adverse affects to downstream sites due to storm water _ quality or quantity. The site and adjacent waterways will be protected by the implementation of SWMP's for the individual phases of this development. Phase or filing specific drainage studies and SWMP's will be prepared prior to construction to ensure drainage performance and enhancement to storm water quality. VII) REFERENCES a) Weld County Ordinance Code, Chapter 24, Weld County, December 2002. b) Storm Drainage Design and Technical Driteria Manual, Adams County, Colorado, February 1989. c) Urban Storm Drainage Criteria Manual, Urban Drainage and Flood Control District, Volume 1-3, June 2001. MASTER DRAINAGE REPORT AND STORM WATER MANAGEMENT GUIDE FOR ST. VRAIN LAKES PUD DEVELOPMENT Page 23 d) Soil Survey of Weld County, Colorado, U.S. Department of Agriculture Soil Conservation Service, September 1980. e) South Weld 1-25 Corridor Master Drainage Plan, Anderson Consulting Engineers, February 2000. _ f) Preliminary Drainage Report for the Change of Zone Submittal, RiverDance PUD, Pickett Engineering, Inc., January 17, 2002. g) Phase I Environmental Site Assessment, Terracon, May 24, 2004. h) Wetland Delineation; St. Vrain Ponds Development Project, ERO Resources Corporation, September 3, 2004. i) St. Vrain Lakes Area Structural Land Use Amendment, DTJ Design, Feb. 2005. }Ste ii �\ Yi #I1 n7 ti 41 tltlas Yi flpi �a — R na pi 5 h — IF APPENDIX A Maps I MULLIGAN \ RESERVOIR I I�--___ HTujEprygl,jpE66 LO'AASp .; ,--1. (TO BE IMPROVED) I p I 000 ° LONGIONT , / . LYONS 0 U STATE HIGHWAY ` 40 M o ^ PUTmtuE o Fvn AE \\\\\ NCR 9 1/2 -1 (I-25 EAST "' /lPARALLEL 2 ent�.iS4 zs `-----_ o seniaN 25 C-1 ig! C s FOSTER tili EIU51N0 ST. VRAIN LAKES RESERVOIR NCR 91/2 SITE -J WELD COI 1 NTYR AD28 °u �,I 3 — S N SF:TION 3s SECTION]a Li SECTION 35 � /�f'-' / H O .5--- 7,- ,,,.$ .0,0"° I I R 9• I g\\IgPAN NCR 29 1 ..4 i �. l t / ° - . -~� l � Lo c o �, t° Q ry`Gl' ;l�A �1 0 '_ 9o�t9 9`c LN it _ �■ r.HIGHWAY 119 NCR 24 I I-25/N 119 \ FIRESTONE . FwtSAME FAEDERNX (IMPROVED TO fREDFAIIgc OACONO ULTIMATE OEC0110 = V CONDOMS) / .. E)OSTWO R&D IPRO ROAD VICINITY MAP 0 "°'6L`an9e- • • • \ , L J \ t t i 1 /; j .4...,', ,.. .. , : • i : s .-- i r t;l'trrgr,l'a i 1 / ,_y••G. i -sue. ,�--� _ S. 6 '� �_�� :�. �_•\ 14i,; ' l'.rd \ + .ateIN .•. ••}s' tap y' i' /r d4.- - \ 1 ,4.vi., ., •\ i •r /� �.,p''l = r-^.e�•J 4:4.y.j.. f I y r -t �. ! 't`:�-S T'!', r 1h, ter._.._ / !, 0.T,•7= r�3 2 : • r • *i' -'' ).'. • ::I�i ism•.,". i ,::..Jay. c �... i.. :R r ` -,i„,o / J :`•!'' pia ►--&'"". ,'+' ` E 1`'' \ \ i• )0 r-._ f i \ ' ..... . /,' . , , t.............---IF. .•',. ter' .-r /.'•k. '. /x y - _I r_.........-- :, ....___ ..., •r _I ,ii , , ..,,, . .. . ....,.... . . . ••• . .. . • __.••• •0 • . a, _ . ,. /,.... — II i ..-. : " _ _._____ . . ........ .., ...,,...y..,.;41 .J , .. ' ; .4.,. .,..,. f,_.. , ,r ,,,,.. /- t�� p p P 1 ... �f iR ?U !� - • t; ` ri\ .t L a r ...i.-K...:. • 1. •, Y _ /,' / �•• i ..\._,,,s....:,0 ._ .„,,-.i,..,-:...,.7.-::.•,,..,,„1-..,:‘,.,;,.. x * T'-. 1 Ii • � `f" ,: '1, l\l \ `1I - ;-,., ,-'.4'M-ice 1� w � r cnii.In i ANI _ ,��, \ \•r _-1,-,.-_,...,..1.... 1 ' i i t r., r, , 0 ‘. ' ' \., ` :s_••••••*.:- . \` \\. "�l„c../`-` r4' '`may r'x, _ \'i g�p'y•/' r$r , r.�. r r rt . 11e .e t,""'• _ �. % \ i . ₹ ':S "*-roc -���~� ' 3•�'! • 1 \\ c r J:�. f 1 + "" le .!.yyam, +'° ../ a...I „f. ,ir.,+ 1 •, '1 i{.- w \ ',..-1•---!-C.,-.'":""""."-- IT•,[ •F ,alb'^ 11 i:iys?'r i`! Pi ''''• 7(''r r• 1.f , t":01i . - -• .1.1., Cp .'. rr ., 'w� fr : 1 S?�r/!:. !� J: ti /,,e .',�. /\ ��i �`q- •'� ��':=`!;/ 1 '' 1 tv'4J�f'. ''• ,..,,::,-..r.,-""��FF „.,..4.-_,...,,...--..,,,,..7,-.....:;;:,_ �+fi--�"� 4..._,... s---.��' . .1 .1.. ,...„.._ „ ix . .... --...z. t,: - • iv. , .,•,,,,_•. ,:-,„ • •,.,,-,„,e-,01 ,... .,, rg ;• ' R I; I' • ._--- gr}r f ro\ f� 7),` 0-,t,04., O ,, I r i /�"•�i f�� r sir i .,. 'tti '.; P` �l SCALE= J. .;'. ,, i ••••....0 PHASE BOUNDARY 1 St . Vram n Lakes PhasingMap �N Carroll ., m m r 9,O, f, w E: agE u. m_ ` 6 m. p ZO W mO it".N w v t IA Ott cc c'-' I m7Bna -J s¢az ¢ ' hr ZN c Cr S “.. 02 cWa C. 0_ .cm � 0 A EES.2H an 2'(;') r H I1� p'� 6 o f E c E m. w ¢ O 00 w �' ' _ompa Sill `• �I u. e a � oo �w r y a a <<g6LL ,25 K m . OO4 _' a m0 . 2,30 ° aax r, T\ �[Z F W D- Z � W v U 1� 1 x 1 V all U 0 6 Q ® ? so a 3t N I m p,V m sot. ? uEyg _40.00 mo g318,77-36-. tti 8 ::711T/: : • • ro m O _ Z Cr▪ i 8 wiag rmZ Q C WV 6W Y. kg"la' V0 Om m1AN � Q nC^CU /� W O NCO ? EYt10E CL H ≤ AG i zu cc eg E E o8£m a OLa s cc D.I . y� �1 � y�'° W b 1 C 0 H = a � O �° - L3 oe-'w4 ' OC" re' mE B Z? o •. E E $il � � � O d ��Ew O6g Un mY a g, q n 282 U4LE ? ] MEN g_2;-so!, �� I - Dlii IIIIIIIIIIIIIII�* @ ' CC r w Z O N yy34 it jr.,-, 83 G - 11� ‘1."1"1 -1,1-4..,...:W :',*!,:, . , {4 4*, it • $ �, v_ •,f }Y ^S 4 r ^ tea„ R sj tq51{ ,:,::,;...;-.V ` _z " *� ,,., �l�y et` r Id!, �` r 5 _ u .3t a a ,.�. 79 53 far. i II--1..1k)...:11;)),?*' „,., „_ '''it#4, -'• ir 1-,:iii *? a 3t It y. tj. y ; Y 1{ l r, .l;,!_:', .' ,1„,.. Mkt fit.+ i{� �° _ r �l.�t d a t. k#111c- f At--"titIP,M. -- - C'*tH' .7.... - .- , 1..` yr, _ l ,.. . `� r ' 6: m � '- fF. 6 .y, a4 i y 'lM � .v.„ .tY .y.l - F a• it.„,,...ale . - i z 1.fis „.„,,,,,4„,„„..,,.,,,w 4' a, K .may p N • I e i.. e � i �, �L ',,,l'., 'is, ^.v „--r M a`�j • :-:1'r.''',"1":4•&t.,.:,-.:,,,;.. i„•,..-.1.4..-(1',. .,„-.,...,14:-...a ! '7 ��� ^S y4 :CC flare", }} ? xI x e ai-Qil _ � frzk�°Fv`t3"1'#1"i14. { �hr�P+" t _ 'a V12.1 r �. (5 xsa: t . J r '8 4A. � Fps- -;24,,,, a: '‘,..4 1 t s sa-51 .. aM1� t' c. I Pr; U.S. DEPARTMENT OF AGRICULTURE `` , i SOIL CONSERVATION SERVICE 1<r- [[ ; SOIL TYPE MAP i:.. 132 SOIL SURVEY TABLE 14.--SOIL AND WATER FEATURES [Absence of an entry indicates the feature is not a concern. See text for descriptions of symbols and such terms as "rare," "brief," and "perched." The symbol < means less than; > means greater than] Flooding High water table Bedrock Soil name and Hydro- ' Potential map symbol logic Frequency Duration Months Depth Kind :Months Depth Hard- frost — group r Ft ness action In 1 , 2 B None --- --- >6.0 --- >60 --- Moderate. Altvan Aquolls D Frequent---- Brief Apr-Jun 0.5-1.0 Apparent Apr-Jun >60 --- High. Aquents D Frequent-- — q Brief Apr-Jun 0.5-1.0 Apparent Apr-Jun >60 --- High. 4*: Aquolls D Frequent---- Brief Apr-Jun 0.5-1.5 Apparent Apr-Jun >60 --- High. Aquepts D Frequent---- Brief Apr-Jun 0.5-1.5 Apparent Apr-Jun >60 --- High. 5, 6, 7, 8, 9 B None --- --- >6.0 --- --- >60 --- Moderate. Ascalon 10 A Frequent---- Brief Mar-Jun >6.0 --- --- >60 --- Low. Bankard 11 , 12 B None --- --- >6.0 --- >60 --- Moderate. Bresser — 13 A None --- >6.0 -` --- ) 0 --- Lou.Cascajo -4 14, 1 , 16, 17---- B None ___ --- >6.0 ___ ___ >60 ___ Low. Colby 18*: Colby B None ___ ___ >6.0 --- --- >60 --- Low. Adena C None ___ ___ >6.0 --- --- --- Low. — 19, 20 B Rare --- --- >6.0 --- --- >60 --- Moderate. Colombo 21 , 22 C None --- >6.0 --- --- > 0 --- Low.Dacono --7*23, 24 B None to rare --- --- >6.0 --- --- >60 --- Low. Fort Collins 25, 26 B Rare to Brief May-Sep >6.0 --- >60 Low. Haverson common. 27, 28 C None --- --- >6.0 --- --- >60 --- Low. Heldt 29, 30 A None --- --- >6.0 --- --- >60 --- Moderate. Julesburg _ '--,,o31 , 32, 33, 34---- B None ___ --- >6.0 --- --- >60 --- Lou. Kim 35*: Loup D Rare to Brief Mar-Jun ..5-1.5 Apparent Nov-May >60 --- Moderate. common. Boel A Occasional Brief Mar-Jun 1.5-3.5 Apparent Nov-May >60 --- Moderate. 36*: Midway D None --- --- >6.0 --- --- 10-20 Rip- Low. pable See footnote at end of table. 1/ WELD COUNTY, COLORADO, SOUTHERN PART 133 - TABLE 14.--SOIL AND WATER FEATURES--Continued Flooding High water table Bedrock Soil name and Hydro- , Potential map symbol logic Frequency Duration Months Depth Kind Months Depth:Hard- ; frost group I ness I action Ft In 36': _ Shingle D None --- --- >6.0 --- --- 10-20IRip- ;Low. ' pable: --*37, s$on B None --- >6.0 --- --- 20-40:Rip- Low. 7 4'39, 40, 41 , 42, 43 C None --- --- >6.0 --- --- >60 ; --- Moderate. Nunn ▪ 44, 45, 46, 47, 48 B None --- --- >6.0 --- --- >60 I --- Low. Olney _ 49 A None --- --- >6.0 --- --- >60 ; --- Low. Osgood 50, 51 , 52, 53---- B None --- --- >6.0 --- --- >60 I --- Low. Otero ▪ 54, 55 B None to rare --- --- >6.0 --- --- >60 1 --- Moderate. Paoli - Renohill --- --- 'Rip- Low. 56, 57 C None - >6.0 20-40I Rip- pable 58, 59 D None --- --- >6.0 --- --- 10-201 Rip- Low. Shingle pable - 1 'angle D None --- --- >6.0 --- --- 10-20 Rip- Low. pable Renohill C None --- --- >6.0 --- --- ;20-40 Rip- ,Low. pable; -1'61 D None --- --- >6.0 --- --- :10-20 Rip- ;Low. Tassel p able; ▪ 62, 63 B None --- --- >6.0 --- --- ;20-40 Rip- ;Low. Terry pablel —.'64, .0 C None --- --- >6.0 --- --- ;20-40,Rip- ;Low. Thedalund pable; 66, 67 C None --- --- >6.0 --- --- >60 --- Low. Ulm 68* A None --- --- >6.0 --- --- >60 --- Low. - Ustic Torriorthents 69, 70 A None --- --- >6.0 --- --- >60 --- Low. Valent • 71*: Valent A None --- --- >6.0 --- --- >60 ; --- Low. Loup D Rare to Brief Mar-Jun a.5-1.5 Apparent Nov-May >60 I --- Moderate. — common. 72, 73, 74, 75, 76, 77 B None --- --- >6.0 --- --- >60 --- Low. Vona See footnote at end of table. /2 134 SOIL SURVEY TABLE 14,--SOIL AND WATER FEATURES--Continued Flooding High water table Bedrock_ Soil name and Hydro- i i Potential map symbol logic Frequency Duration Months Depth Kind Months Depth:Hard- frost group ness action Ft In _r 78, 79, 80 C None --- --- >6.0 --- --- >60 --- Moderate. Weld ... *. 81*, 8e, 83*: Wiley B None --- --- >6.0 --- --- >60 --- Low. Colby B None --- --- >6.0 --- --- >60 --- Low. * See map unit description for the composition and behavior of the map unit. l7 .__ J. /.....,, ,, .......... i / 1 I - - III II 1 I I 1 I I I I ••, . , T HI I r� [ :? r . }, ;A . "-.4` �.. Ir e<� `: ,•, i- a i.' '..•I�: •„;•,.•,.e..„:.-7-r _'• �. I: al :Ica -.. . e : ' ' .... •41.H . ' '''..:.'- "' "4-- •• o ~ I I • . " =1 ' ,I •..i I; Ir ,, y f (� f I .r , . . .O . .,• 1 I I _ p , 2, 'LL, 1 t }a I I I`. I • . . • . . . • ..• .. : ... ...: :. ., • ,_ . - - •.••._ •.. •••..... • . . . •, .4 ..r. . 1....•..:...:.',t,I....,•.L..1i.O.L..1.4.14. af; E ' I : . i...'I' .i I .‘'.i. r ''1 . ....['';i' .f- 'I-.1.. 1 'I ' • . .i. ....1. 1.'i . e."'i- --• ,u.),:.:„.7.,,,.....•,....,,, •„ :,:it,.„,,j . ,.... ..• ,.:,„. • . ,, ,,,...,.- .L,J .,. r , Zr , • � � F • I Sf + �I}. f' //� SOIL TYPE B \id I SOIL TYPE C N.T.S. • 1 St . Vram n Lakes Soil Map :I1 RAINFALL DRAINAGE CRITERIA MANUAL (V. 1) — 64 Urs'n s NC' (1 L, Kam Ail Ocpit > L34M.) - R 71 W R 70 W R 69 W R 68 W R 67 W R 66 W R 65 W R 64 W R 63 W ) 1.3 1 41.45 1.45 1.4 L35 1.35 L4 ' f I z \*ONOMONT ^' I NIWOT I I H, HI � Jo 1 31 z 0 m I — 1.2I WE BRIGHT • ADA 5 z 1\17) colen D i- BO DER JE ERsoN .I I _� ¢ DENVER Y _ \ I J /�_ r ^ tr,1.1 ' 1.37 _J 1.39 ADAMS — I ' . / D VER ARAPAHOE a en 4 1.0 ERG EEN 1.4 in LLa NA PAHOE / ARAPAHOE 0 SEAS ELBERT ONIFER vi • in CO 0 PAR ER o UJ w • 5 �. 0 m o W • o SEDALIA t ,- 1.1 X1.39 1.0 1.2 1.. FRANKT w 1.4 1.4 _ R 71 W R 70 W R 69 W R 66 W R 67 W R 66 W R 65 w R 64 W R 63 w FIGURE RA-2 Rainfall Depth-Duration-Frequency: 5-Year, 1-HourRainfall - - RA-14 06/2001 Urban Drainage and Flood Control District RAINFALL DRAINAGE CRITERIA MANUAL (V. 1) K Site CI ht Animal df Z. 65�) R 71 W R 70 W R fig W R 68 W / R 67 W R 56 W R 65 W R 64 W R 63 W 2.4 2.52.652.7 2.17 2 2.652.7 �- ., 2 6 LONGMONT \ \ \ irk eN NIWOT • I�II ^ m z z t / YELD 2.3 BRIGHTO • DAMS w 11 ce) `f o / I ,-\ 0 I :Oi DER I E ER ON lENVE'o / / R ry /r in vs ,. 4 2.2 �I�,a ��� ��• / ADAMS n — , 0 E ARAPAHOE " 2.15 \ 2.1 4 \ a" \ ) V4 I 2.7 — EVE'.'EEN • w� 2.65 F — A PAHOE ARAPAHOE 2.05 I \ p LA ELBERT `S IFER • Icn o PA ER Ja w 2.05 SEDALIA 26 cn N. — FRANKT WN 4 \ 2.5 2.1 2.15 2.2 2.3 — R 71 W R 70 W R 69 W -4R 66 W R 67 W R 66 W R 65 W R 64 W R 63 W FIGURE RA-6 Rainfall Depth-Duration-Frequency: 100-Year, 1-Hour Rainfall RA-18 06/2001 Urban Drainage and Flood Control District hr RY 6f 4• ^� 4i (+ Qt £4 pRrtrt• �i �rt iF R• 5tr ^- yt &Y in 8 5%S R. T 4. t n 4: LI an pppgittt an T on 3. n 1a ti .... 1i yyP S $- — s a 4 kr .— a y` APPENDIX B — Historic Drainage Calculations 4 ; I. 4. .1 , , / H.P. �, i - 1 �.� assn A / 195.9 0.10 /21%.3/4) i� - / AC. 0.39 V 1' � 1 , / asin B ' / / of / ' ._ / 1 i I,,' --- 214.6 au �_ ; ' ,/ AC. 0.42 / , ' / _/ / asin A " � f / // / r 196.61 0.11/ 1_, AC 061 assn B 1 6333 0.13 /f B1 AC. 0.44 / asin C _ - - 1 _- 542.5 0.10 / A0. 0.36 r 1 / , 1 I 1 awl C _ r. asin D .. zs� o.lo - - .z, AC 0.38 ,29.a�ao9 1 az AG 0.3] V* Basin E _ re-4 *b� _' / 1662 015 u "`/ Y 136.6 AC. 0.51 "- '- E � �.� . A DESIGN POINT --i PROPOSED II 1 FLOW DIRECTION 7 �f' /w` ����� H.P. FBCH POINT /` n J � a BASIN BOUNDARY 1/4 d - CSC • SCALE= 1:1500 A A = DEVELOPED BASIN DESIGNATION IB C 9 = BASIN AREA (ACRES) C = 5 YEAR COMPOSITE RUNOFF COEFFICIENT 100 YEAR COMPOSITE RUNOFF COEFFICIENT I Historic Major Drainage Basins C; °..,.i,„9e -- i N -400...)� AI; ash A — A: VI ,� �' ,ws Pw I 6 - ,. / qih (itaein B /. f -min r rY ws ,v 1! Kau P w 2 ,- 101 3 202 . ,� _ 5In 5, _� 210 193 CFSI , fr ' F 103 :J 0 1 - AC1 t 0343 204 / ' (Basin 0 , , K `� � i Ili . 211 7 105 ;', , 206219 L f 3 S — ak !' V.-+$`.. 'v, 632 CFS 3 i� 107 # BPein E` A 3 N8 " ..21 214 �,1At °'" D 209 140 CFS XX CFS =100-YEAR OFFSITE j t.+-1 .rte ,>6. as T r- .. P], WITH 5-YEAR ONSITE HISTORIC RELEASE AT RESPECTIVE 208 111 I LOCATION J _ , CI: , �?1 = 110 g� �� A A - DEVELOPED BASIN DESICNAl10N B C B . BASIN AREA (ACRES) J %1 c. 5 YEAR COMPOSITE RUNCFF 1.u)FIOENT �.�. 100 YEAR COMPOSITE RUNOFF COEFFICIENT JLEGEND o ___ ST. VRAIN LAKES 90 SUB-BASIN SCALE: 1" = 1500 J °P"NA GRAPH: HISTORIC DRAINAGE 190 CONVEYANCE Carroll&Lange= SWMM ROUTING X29°� DIRECT "DW/ J i ,,E. .Go,ao a sza =6a, MAP > DES ON POINT (390 DETENTON POND N CO coCO m r n, O CO O LO m t!') r o (O Ida co N f� r mg: to N -- r O r r O O CM 0 CO CO (O N N O O 0 co N O (o y- Ln O O N (mO r 0 r O O M _ O N Cn O CO 6) I- G N N N M O (OY) LO N ' a) r O r O O V O I- r7 c) co I- a to co O iI N r O CO CO in N N O N M O O V O O CO LO In CO CO r O)LC) 6 r— coca \ 0 O 0 O CO O r) M Cn N ' r) co r co N- O O V O CO CO r) CO `n 'n LO LO CD O V N Cvj co r r N co cr to c CO m M CO CO r 'V LC) CO 0 LS, O N N O O ri N = N CO CO \LO coN- M CO C N w N m com c � � co . rOo co O • c'') r `— Nt L.0• N 0 16 CV O r O 0 0 CO 16 Lo CO m r LC) m C ry O • r O CO CO C Q m CO co O r O LO N M r O r O 0 0 4 O y m CO N . r (� N N o 1\ < m O c O N LO N I r O r M O O V 0 w C) 7 w LV 43 V d < ti ti d V - .3) p) QQVovvaAcj 5a3 sa) CD CD 0 _ _ Er rn Q Q IM 3 e • H6.1 c c 0 0 p p O a.+ L L O F— CO to In o c a Cno _ ) { ) _ ) - ] ) ; 2 - ( \ r. / ) _ APPENDIX B { CUHP Analysis ( - ( MSTR-HIST-100yr-offsite Syr onsite.chi 2ST VRAIN 100 YR OFFSITE 5YR ONSITE 1100-YR 100 2.65 25-YR 5 1.36 70 1 1 5.1 1SUBBASIN= Al .3061.241 .59 2. .013 .4 .054.227.0018 .582 70 2 2 5.2 2SUBBASIN= A2 .� .307 .939 .335 2. .0141 .4 .054.035.0018 .569 70 1 1 5.3 3SUBBASIN= El .3351.117 .547 2. .0107 .4 .053.933.0018 .562 70 2 2 5.4 4SUBBASIN= B2 .8331.545.6792 2. .0165 .4 .053.749.0018 .55 70 1 1 5.5 5SUBBASIN= Cl 1.0581.584 .628 2. .0114 .4 .054.331.0018 .589 70 2 2 5.6 6SUBBASIN= C2 .4031.012.4612 2. .0196 .4 .054.315.0018 .588 70 1 1 5.7 7SUBBASIN= D1 .202.6263.2689 2. .0187 .4 .054.459.0018 .597 70 2 2 5.8 BSUBBASIN= D2 .213.4458.1407 2. .0335 .4 .05 3. .0018 .5 70 2 2 5.9 9SUBBASIN= E .263.8084.4748 2. .0628 .4 .053.159.0018 .511 E Page 1 MSTR-HIST-100yr-offsite 5yr onsite.cho 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 11/28/2005 AT TIME 15:44 CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 IN 100 YR OFFSITE SYR ONSITE BASIN ID: 1 -- BASIN COMMENT: SUBBASIN= Al AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION (SQMI) (MI) (MI) (PCT) (FT/FT) (MIN) 0.31 1.24 0.59 2.00 0.0130 5.00 ..., COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.156 0.280 THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM ( DEFAULT ) ( DEFAULT ) R= 0.06 D= 0.04 CALCULATED UNIT HYDROGRAPH TIME TO PEAK PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF (MIN) (CFS/SQMI) (CFS) (AF) 25.29 470.93 144.10 16.32 • �� WIDTH AT 50 = 64. MIN. WIDTH AT 75 = 33. MIN. K50 =0.24 K75 =0.32 RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. INFILTRATION = 4.23 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.58 IN./HR. TIME UNIT TIME UNIT TIME UNIT - HYDROGRAPH HYDROGRAPH HYDROGRAPH 0. 0. 85. 62. 170. 19. 5. 25, 90. 57. 175. 17. - 10. 71. 95. 53. 180. 16. 15. 111. 100. 50. 185. 15. 20. 136. 105. 46. 190. 14. 25. 144. F 110. 43. 195. 13. 30. 140. 115. 40. 200. 12. 35. 129. 120. 38. 205. 11. 40. 116. F 125. 35. 210. 11. 45. 109. 130. 33. 215. 10. 50. 105. 135, 30. 220. 9. 55. 98. 140. 28. 225. 9. 60. 91. 145. 26. 230. 8. 65. 84. 150. 25. 235. 7. 70. 77. 155. 23. 240. 0. 75. 71. 160. 21. 0. 0. - 80. 66. 165. 20. 0. 0. 1 BASIN ID: 1 -- BASIN COMMENT: SUBBASIN= Al **** STORM NO. = 1 **** DATE OR RETURN PERIOD = 100-YR INCREMENT TOTAL* STORM** 1 INCREMENT TOTAL* STORM** Page 1 MSTR-HIST-100yr-offsite 5yr onsite.cho TIME RAINFALL EXCESS HYDROGRAPH TIME RAINFALL EXCESS HYDROGRAPH (MIN.) (IN) PRECIP (CFS) (MIN.) (IN) PRECIP (CFS) 0. 0.00 0.000 0. 145. 0.00 0.000 63. 5. 0.03 0.000 0. 150. 0.00 0.000 59. 10. 0.08 0.000 0. 155. 0.00 0.000 55. - 15. 0.12 0.000 0. 160. 0.00 0.000 51. 20. 0.21 0.000 0. 165. 0.00 0.000 48. 25. 0.37 0.026 1. 170. 0.00 0.000 44. 30. 0.66 0.599 17. 175. 0.00 0.000 41. 35. 0.37 0.314 53. 180. 0.00 0.000 39. - 40. 0.21 0.159 96. 185. 0.00 0.000 36. 45. 0.16 0.114 135. 190. 0.00 0.000 33. 50. 0.13 0.083 161. 195. 0.00 0.000 31. 55- 0.11 0.057 174. 200. 0.00 0.000 29. 60. 0.11 0.058 177. 205. 0.00 0.000 27. 65. 0.11 0.058 175. 210. 0.00 0.000 25. 70. 0.05 0.005 171. 215. 0-00 0.000 24. 75. 0.05 0.005 167. 220. 0.00 0.000 22. 80. 0.03 0.000 160. 225. 0.00 0.000 20. 85. 0.03 0.000 151. 230. 0.00 0.000 19. 90. 0.03 0.000 141. 235. 0.00 0.000 18. F 95. 0.03 0.000 131. 240. 0.00 0.000 17. 100. 0.03 0.000 121. 245. 0.00 0.000 15. 105. 0.03 0.000 112. 250. 0.00 0.000 14. - 110. 0.03 0.000 104. 255. 0.00 0.000 13. 115. 0.03 0.000 97. 260. 0.00 0.000 12. 120. 0.03 0.000 90. 265. 0.00 0.000 7. 125. 0.00 0.000 84. 270. 0.00 0.000 5- 130. 0.00 0.000 78. 275. 0.00 0.000 3. - 135. 0.00 0.000 73. 280. 0.00 0.000 2. 140. 0.00 0.000 68. 285. 0.00 0.080 1. * LESS ANY WATER QUALITY CAPTURE VOLUME ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 3.06 (1-HOUR RAIN = 2.65) EXCESS PRECIP. = 1.479 INCHES VOLUME OF EXCESS PRECIP = 24.14 ACRE-FEET PEAK Q = 177. CFS TIME OF PEAK = 60. MIN. INFILT.= 4.23 IN/HR DECAY =0.00180 FNINF = 0.58 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 11/28/2005 AT TIME 15:44 CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 IN 100 YR OFFSITE 5YR ONSITE BASIN ID: 2 -- BASIN COMMENT: SUBBASIN= A2 AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION (SQMI) (MI) (MI) (PCT) (FT/FT) (MIN) 0.31 0.94 0.34 2.00 0.0141 5.00 COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.156 0.280 THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS AREA RECEIVING AREA DIRECTLY CONNECTED - IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM ( DEFAULT 1 ( DEFAULT ) ^ R= 0.06 D. 0.04 CALCULATED UNIT HYDROGRAPH Page 2 MSTR-HIST-100yr-o£fsite Syr onsite.cho TIME TO PEAK PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF (MIN) (CFS/SQMI) (CFS) (AF) 17.40 720.70 221.25 16.37 WIDTH AT 50 = 42. MIN. WIDTH AT 75 = 22. MIN. K50 =0.25 K75 =0.34 RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. INFILTRATION = 4.03 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.57 IN./HR. TIME UNIT TIME UNIT TIME UNIT HYDROGRAPH HYDROGRAPH HYDROGRAPH 0. 0. 60. 85. 120. 22. 5. 69. 65. 76. 125. 19. 10. 166. 70. 68. 130. 17. _. 15. 216. 75. 61. 135. 15. 20. 217. 80. 54. 140. 14. 25. 192. 85. 48. 145. 12. 30. 169. 90. 43. 150. 11. 35. 155. 95. 38. 155. 10. - 40. 139. 100. 34. 160. 9. 45. 122. 105. 31. 165. 8. 50 107. I 110. 27. 170. 0. 55. 96. 115. 24. 0. 0. 1 BASIN ID: 2 -- BASIN COMMENT: SUBBASIN= A2 **** STORM NO. = 2 **** DATE OR RETURN PERIOD = 5-YR INCREMENT TOTAL* STORM** INCREMENT TOTAL* STORM** TIME RAINFALL EXCESS HYDROGRAPH TIME RAINFALL EXCESS HYDROGRAPH (MIN. ) (IN) PRECIP (CFS) (MIN.) (IN) PRECIP (CFS) 0. 0.00 0.000 0 90. 0.03 0.000 12. 5. 0.03 0.000 0. 95. 0.03 0.000 11. .-. 10. 0.05 0.000 0. 100. 0.02 0.000 9. 15. 0.12 0.000 0. 105. 0.02 0.000 8. 20. 0.21 0.000 0. 110. 0.02 0.000 7. 25. 0.34 0.011 1. 115. 0.02 0.000 7. 30. 0.18 0.101 9. 120. 0.02 0.000 6. - 35. 0.08 0.024 21. 125. 0.00 0.000 5. 40. 0.06 0.008 29. 130. 0.00 0.000 5. 45. 0.05 0.001 31. 135. 0.00 0.000 4. 50. 0.05 0.001 29. 140. 0.00 0.000 4. 55. 0.04 0.000 26. 145. 0.00 0.000 3. 60. 0.04 0.000 23. 150. 0.00 0.000 3. 65. 0.04 0.000 21. 155. 0.00 0.000 3. 70. 0.04 0.000 19. 160. 0.00 0.000 2. 75. 0.03 0.000 17. 165. 0.00 0.000 2. 80. 0.03 0.000 15. 170. 0.00 0.000 2. 85. 0.03 0.000 13. 175. 0.00 0.000 2. * LESS ANY WATER QUALITY CAPTURE VOLUME ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 1.57 (1-HOUR RAIN = 1.36) EXCESS PRECIP. = 0.148 INCHES VOLUME OF EXCESS PRECIP = 2.43 ACRE-FEET `-' PEAK Q = 31. CFS TIME OF PEAK = 45. MIN. INFILT.= 4.03 IN/HR DECAY =0.00180 FNINF = 0.57 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 11/28/2005 AT TIME 15:44 Page 3 MSTR-HIST-100yr-offsite 5yr onsite.cho CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 IN 100 YR OFFSITE 5YR ONSITE BASIN ID: 3 -- BASIN COMMENT: SUBBASIN= B1 AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION (SQMI) (MI) (MI) (PCT) (FT/FT) (MIN) 0.34 1.12 0.55 2.00 0.0107 5.00 COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.156 0.283 THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES -- FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM ( DEFAULT ) ( DEFAULT ) R= 0.06 D= 0.04 CALCULATED UNIT HYDROGRAPH TIME TO PEAK PEAK PATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF (MIN) (CFS/SQMI) (CFS) (AF) 24.40 496.91 166.47 17.87 WIDTH AT 50 = 60. MIN, WIDTH AT 75 = 31. MIN. K50 =0.24 K75 =0.33 RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. INFILTRATION = 3.93 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.56 IN./HR. TIME UNIT TIME UNIT I TIME UNIT HYDROGRAPH HYDROGRAPH HYDROGRAPH 0. 0. 80. 72. 160. 21. 5. 31. I 85. 66. 165. 20 10. 86. 90. 62. 170. 18. 15. 133. 95. 57. 175. 17. '.. 20. 160. 100. 53. 180. 16. 25. 166. 105. 49. 185. 15, 30. 159. I 110. 45. 190. 14. 35. 145. 115. 42, 195. 13. 40 131. 120. 39. 200. 12. 45. 125. 125. 36. 205. 11. 50. 117. 130. 34. 210. 10. 55. 109. 135. 31. 215. 9. 60. 100. 140. 29. 220. 9, 65. 92. 145. 27, 225. 8 70. 83. 150. 25. 230. 0. 75. 77. I 155. 23. 0. 0. 1 BASIN ID: 3 -- BASIN COMMENT: SUBBASIN= BI **** STORM NO. = 1 **** DATE OR RETURN PERIOD = 100-YR INCREMENT TOTAL* STORM** I INCREMENT TOTAL* STORM** TIME RAINFALL EXCESS HYDROGRAPH I TIME RAINFALL EXCESS HYDROGRAPH 4-4 (MIN.) (IN) PRECIP (CFS) I (MIN.) (IN) PRECIP (CFS) i Page 4 MSTR-HIST-100yr-offsite 5yr onsite.cho 0. 0.00 0.000 0. 140. 0.00 0.000 73. 5. 0.03 0.000 0. 145. 0.00 0.000 68. 10. 0.08 0.000 0. 150. 0.00 0.000 63. 15. 0.12 0.000 0. 155. 0.00 0.000 58. 20. 0.21 0.000 0. 160. 0.00 0.000 54. 25 . 0.37 0.037 1. 165. 0.00 0.000 50. - 30. 0.66 0.602 22. 170. 0.00 0.000 46. 35. 0.37 0.317 66. 175. 0.00 0.000 43. 40 0.21 0.161 118. 180. 0.00 0.000 40. 45. 0.16 0.115 162. 185. 0.00 0.000 37. 50. 0.13 0.085 191. 190. 0.00 0.000 34. i 55. 0.11 0.059 204. 195. 0.00 0.000 32. 60 0.11 0.059 206. 200. 0.00 0.000 29. 65. 0.11 0.060 203. 205. 0.00 0.000 27. 70. 0.05 0.007 199. 210. 0.00 0.000 25. 75 0.05 0.007 193. 215. 0.00 0.000 23. 80. 0.03 0.000 184. 220. 0.00 0.000 22. 85. 0.03 0.000 173. 225. 0.00 0.000 20. 90. 0.03 0.000 160. 230. 0.00 0.000 19. 95. 0.03 0.000 147. 235. 0.00 0.000 17. 100. 0.03 0.000 135. 240. 0.00 0.000 16. 105. 0.03 0.000 125. 245. 0.00 0.000 15. 110. 0.03 0.000 116. 250. 0.00 0.000 13. 115. 0.03 0.000 107. 255. 0.00 0.000 8. 120. 0.03 0.000 99. 260. 0.00 0.000 5. - 125. 0.00 0.000 92. 265. 0.00 0.000 4. 130. 0.00 0.000 85. 270. 0.00 0.000 2. 135. 0.00 0.000 79. 275. 0.00 0.000 2. * LESS ANY WATER QUALITY CAPTURE VOLUME - ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 3.06 (1-HOUR RAIN = 2.65) EXCESS PRECIP. = 1.509 INCHES '^ VOLUME OF EXCESS PRECIP = 26.97 ACRE-FEET PEAK Q = 206. CFS TIME OF PEAK = 60. MIN. INFILT.= 3.93 IN/HR DECAY =0.00180 FNINF = 0.56 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 11/28/2005 AT TIME 15:44 CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 IN 100 YR OFFSITE 5YR ONSITE BASIN ID: 4 -- BASIN COMMENT: SUBBASIN= B2 AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION (SQMI) (MI) (MI) (PCT) (FT/FT) (MIN) 0.83 1.54 0.68 2.00 0.0165 5.00 COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.156 0.325 THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS -- AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM ( DEFAULT ) ( DEFAULT ) R= 0.06 D= 0.04 CALCULATED UNIT HYDROGRAPH TIME TO PEAK PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF --- (MIN) (CFS/SQMI) (CFS) (AF) Page 5 MSTR-HIST-100yr-offsite 5yr onsite.cho .2—,. 28.08 487.55 406.13 44.43 WIDTH AT 50 = 62. MIN. WIDTH AT 75 = 32. MIN. K50 =0.27 K75 =0.37 RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. - INFILTRATION = 3.75 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.55 IN./HR. TIME UNIT TIME UNIT TIME UNIT HYDROGRAPH HYDROGRAPH HYDROGRAPH 0. 0. 95. 142. 190. 31. 5. 60. 100. 131. 195. 28. 10. 173. 105. 121. 200. 26. 15. 285. 110. 111. 205. 24. 20. 363. i 115. 103. 210. 22. 25. 401. I 120. 95. 215. 20. 30. 404. I125. 87. 220. 19. _, 35. 385. I130. 81. 225. 17. 10. 354. I 135. 74. 230. 16. 45. 321. I 140. 68. 235. 15. 50. 297. I 145. 63. 240. 14. 55. 276. I 150. 58. 245. 13. - 60. 256. 155. 54. 250. 12. 65. 235. 160. 50. 255. 11. 70. 214. 165. 46. 260. 10. 75. 196. 170. 42. 265. 9. 80. 181. 175. 39. 270. 8. 85. 167. 180. 36. 275. 8. 90. 154. 185. 33. 280. 0. I BASIN ID: 4 -- BASIN COMMENT: SUBBASIN= 52 **** STORM NO. = 2 **** DATE OR RETURN PERIOD = 5-YR ... INCREMENT TOTAL* STORM** INCREMENT TOTAL* STORM** TIME RAINFALL EXCESS HYDROGRAPH TIME RAINFALL EXCESS HYDROGRAPH (MIN.) (IN) PRECIP (CPS) (MIN. ) (IN) PRECIP (CFS) 0. 0.00 0.000 0. 150. 0.00 0.000 15. 5. 0.03 0.000 0. 155. 0.00 0.000 14. 10. 0.05 0.000 0. 160. 0.00 0.000 13. 15. 0.12 0.000 0. 165. 0.00 0.000 12. 20. 0.21 0.000 0. 170. 0.00 0.000 11. 25. 0.34 0.012 1. 175. 0.00 0.000 10. 30. 0.18 0.115 9. 180. 0.00 0.000 9. 35. 0.08 0.026 25. 185. 0.00 0.000 9. 40. 0.06 0.010 42. 190. 0.00 0.000 8. 45. 0.05 0.001 56. 195. 0.00 0.000 7. 50. 0.05 0.002 64. 200. 0.00 0.000 7. 55. 0.04 0.000 66. 205. 0.00 0.000 6. 60. 0.04 0.000 64. 210. 0.00 0.000 6. 65. 0.04 0.000 60. 215. 0.00 0.003 5. 70. 0.04 0.000 56. i 220. 0.00 0.00.0 5. J 75. 0.03 0.000 52. 225. 0.00 0.000 5. 80. 0.03 0.000 48. 230. 0.00 0.000 4. 85. 0.03 0.000 45. 235. 0.00 0.000 4. 90. 0.03 0.000 41 . 240. 0.00 0.000 4. 95. 0.03 0.000 38. 245. 0.00 0.000 3. 100. 0.02 0.000 34. 250. 0.00 0.000 3. 105. 0.02 0.000 32. 255. 0.00 0.000 3. 110. 0.02 0.000 29. 260. 0.00 0.000 3. 115. 0.02 0.000 27. 265. 0.00 0.000 2. 120. 0.02 0.000 25- 270. 0.00 0.000 2. 125. 0.00 0.000 23. 275. 0.00 0.000 2. *-- 130. 0.00 0.000 21. 280. 0.00 0.000 2. 135. 0.00 0.000 20. 285. 0.00 0.000 2. Page 6 MSTR-HIST-100yr-offsite 5yr onsite.cho --. 140. 0.00 0.000 18. I 290. 0.00 0.000 2. 145. 0.00 0.000 17. i 295. 0.00 0.000 1. I * LESS ANY WATER QUALITY CAPTURE VOLUME ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 1.57 (1-HOUR RAIN = 1.36) EXCESS PRECIP. = 0.169 INCHES VOLUME OF EXCESS PRECIP = 7.52 ACRE-FEET PEAK Q = 66. CFS TIME OF PEAK = 55. MIN. INFILT.= 3.75 IN/HR DECAY =0.00180 FNINF = 0.55 IN/HP. MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 11/28/2005 AT TIME 15:44 CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 IN 100 YR OFFSITE 5YR ONSITE BASIN ID: 5 -- BASIN COMMENT: SUBBASIN= Cl AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION (SOMI) (MI) (MI) (PCT) (FT/FT) (MIN) 1.06 1.58 0.63 2.00 0.0114 5.00 COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.156 0.337 THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES .. FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM ( DEFAULT ) ( DEFAULT ) R= 0.06 D= 0.04 -- CALCULATED UNIT HYDROGRAPH TIME TO PEAK PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF ,.., (MIN) (CFS/SQMI) (CFS) (AF) 29.75 474.46 501.97 56.43 WIDTH AT 50 = 63. MIN. WIDTH AT 75 = 33. MIN. K50 =0.28 K75 =0.38 RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. INFILTRATION = 4.33 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.59 IN./HR. TIME UNIT TIME UNIT TIME UNIT HYDROGRAPH HYDROGRAPH HYDROGRAPH 0. 0. 105. 156. 210. 29 5. 68. 110. 144. 215. 27. 10. 197. 115. 133. 220. 25. 15 332. 120. 123. 225. 23 20. 431. 125. 114. 230. 21. 25. 487. 130. 105. 235. 20. 30. 502. 135. 97. 240. 18. 35 487. 140. 89. 245. 17. 40. 454. 145. 83. I 250. 16. 45. 414. 150. 76. I 255. 14. 50 377. 155. 70. I 260. 13 . .c-- 55. 352. 160. 65. i 265. 12. 60. 327. 165. 60. I 270. 11 . Page 7 MSTR-HIST-100yr-offsite Syr onsite.cho 65. 302. 170. 55. 275. 10. 70. 277. 175. 51. 280. 10. 75. 252. 180. 47. 285. 9. 80. 232. 185. 44. 290. 8. 85. 215. 190. 40. 295. 8. I 90. 198. 195. 37. 300. 0. F 95. 183. j 200. 34. 0. 0. - 100. 169. 205. 32. 0. 0. 1 BASIN ID: 5 -- BASIN COMMENT: SUBBASIN= Cl **** STORM NO. = 1 **** DATE OR RETURN PERIOD = 100-YR INCREMENT TOTAL* STORM** INCREMENT TOTAL* STORM** TIME RAINFALL EXCESS HYDROGRAPH j TIME RAINFALL EXCESS HYDROGRAPH (MIN. ) (IN) PRECIP (CFS) (MIN.) (IN) PRECIP (CFS) 0. 0.00 0.000 0. 175. 0.00 0.000 129. 5. 0.03 0.000 0. 180. 0.00 0.000 120. 10. 0.08 0.000 0. 185. 0.00 0.000 110. 15. 0.12 0.000 0. 190. 0.00 0.000 102. 20. 0.21 0.000 0. 195. 0.00 0.000 94. - 25. 0.37 0.023 2. 200. 0.00 0.000 87. 30. 0.66 0.598 45. ! 205. 0.00 0.000 80. 35. 0.37 0.313 147. 210. 0.00 0.000 74. 40. 0.21 0.158 281. 215. 0.00 0.000 68. 45. 0.16 0.113 412. 220. 0.00 0.000 63. 50. 0.13 0.082 518. 225. 0.00 0.000 58. 55. 0.11 0.057 590. 230. 0.00 0.000 54. 60. 0.11 0.057 627. 235. 0.00 0.000 50. 65. 0.11 0.057 638. 240. 0.00 0.000 46. 70. 0.05 0.005 628. 245. 0.00 0.000 43. • "'., 75. 0.05 0.005 604. 250. 0.00 0.000 39. 80. 0.03 0.000 576. 255. 0.00 0.000 36. 85. 0.03 0.000 544. i 260. 0.00 0.000 33. 90. 0.03 0.000 508. 265. 0.00 0.000 31. 95. 0.03 0.000 470. ) 270. 0.00 0.000 29. 100. 0.03 0.000 432. 275. 0.00 0.000 26. 105. 0.03 0.000 397. 280. 0.00 0.000 24. 110. 0.03 0.000 366. 285. 0.00 0.000 22. 115. 0.03 0.000 338. 290. 0.00 0.000 21. - 120. 0.03 0.000 312. 295. 0.00 0.000 19. 125. 0.00 0.000 287. 300. 0.00 0.000 18. 130. 0.00 0.000 265. 305. 0.00 0.000 16. 135. 0.00 0.000 245. 310. 0.00 0.000 15. 140. 0.00 0.000 226. 315. 0.00 0.000 14. -- 145. 0.00 0.000 209. 320. 0.00 0.000 13. 150. 0.00 0.000 193. 325. 0.00 0.000 8. 155. 0.00 0.000 178. 330. 0.00 0.000 5. 160. 0.00 0.000 164. 335. 0.00 0.000 3. 165. 0.00 0.000 152. 340. 0.00 0.000 2. -- 170. 0.00 0.000 140. 345. 0.00 0.000 2. * LESS ANY WATER QUALITY CAPTURE VOLUME ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 3.06 (1-HOUR RAIN = 2.65) EXCESS PRECIP. = 1.469 INCHES VOLUME OF EXCESS PRECIP = 82.90 ACRE-FEET PEAK Q = 638. CFS TIME CF PEAK = 65. MIN. INFILT.= 4.33 IN/HR DECAY =0.00180 FNINF = 0.59 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 11/28/2005 AT TIME 15:44 - CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 ^ IN 100 YR OFFSITE 5YR ONSITE Page 8 MSTR-HIST-100yr-offsite Syr onsite.cho BASIN ID: 6 -- BASIN COMMENT: SUBBASIN= C2 AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION (SQMI) (MI) (MI) (PCT) (FT/FT) (MIN) 0.40 1.01 0.46 2.00 0.0196 5.00 COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.156 0.291 THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM ( DEFAULT ) ( DEFAULT ) R= 0.06 D= 0.04 CALCULATED UNIT HYDROGRAPH TIME TO PEAK PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF (MIN) (CFS/SQMI) (CFS) (AF) 19.14 672.28 270.93 21.49 WIDTH AT 50 = 45. MIN. WIDTH AT 75 = 23. MIN. K50 =0.26 K75 =0.35 RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. INFILTRATION = 4.32 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.59 IN./HR. TIME UNIT TIME UNIT TIME UNIT • HYDROGRAPH HYDROGRAPH HYDROGRAPH 0. 0. 65. 103. 130. 25. 5. 73. 70. 92. 135. 23. 10. 186. 75. 83. 140. 20. 15. 255. 80. 74. 145. 18. 20. 270. 85. 67. 150. 16. 25. 251. 90. 60. 155. 15. 30. 220. 95. 54. 160. 13. 35. 200. 100. 48. 165. 12. ' 40. 182. 105. 43. 170. 11. 45. 163. 110. 39. 175. 9. I 50. 144. 115. 35. 180. 9. I 55. 128. 120. 31. 185. 8. I 60. 115. 125. 28. 190. 0. I - 1 BASIN ID: 6 - - BASIN COMMENT: SUBBASIN= C2 **** STORM NO. = 2 **** DATE OR RETURN PERIOD = 5-YR INCREMENT TOTAL* STORM** INCREMENT TOTAL* STORM** TIME RAINFALL EXCESS HYDROGRAPH TIME RAINFALL EXCESS HYDROGRAPH (MIN.) (IN) PRECIP (CFS) (MIN. ) (IN) PRECIP (CFS) 0. 0.00 0.000 0. 100. 0.02 0.000 11. 5. 0.03 0.000 0. 105. 0.02 0.000 10. - 10. 0.05 0.000 0. 110. 0.02 0.000 9. 15. 0.12 0.000 0. 115. 0.02 0.000 8. 20. 0.21 0.000 0. 120. 0.02 0.000 7. 6.-6 25. 0.34 0.010 1. 125. 0.00 0.000 7. 30. 0.18 0.091 9. 130. 0.00 0.000 6. • Page 9 MSTR-HIST-100yr-offsite Syr onsite.cho 35. 0.08 0.022 21. 135. 0.00 0.000 5. 40. 0.06 0.006 31. 140. 0.00 0.000 5. 45. 0.05 0.001 34. 145. 0.00 0.000 4. 50. 0.05 0.001 33. 150. 0.00 0.000 4. 55. 0.04 0.000 30. 155. 0.00 0.000 3. 60. 0.04 0.000 27. 160. 0.00 0.000 3. 65. 0.04 0.000 25. 165. 0.00 0.000 3. _., 70. 0.04 0.000 22. 170. 0.00 0.000 3. 75. 0.03 0.000 20. 175. 0.00 0.000 2. 80. 0.03 0.000 18. 180. 0.00 0.000 2. 85. 0.03 0.000 16. 185. 0.00 0.000 2. 90. 0.03 0.000 14. 190. 0.00 0.000 2. 95. 0.03 0.000 13. 195. 0.00 0.000 1. * LESS ANY WATER QUALITY CAPTURE VOLUME ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 1.57 (1-HOUR RAIN = 1.36) EXCESS PRECIP. = 0.132 INCHES VOLUME OF EXCESS PRECIP = 2.85 ACRE-FEET PEAK Q = 34. CFS TIME OF PEAK = 45. MIN. INFILT.= 4.32 IN/HR DECAY =0.00180 FNINF = 0.59 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 11/28/2005 AT TIME 15:44 CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 IN 100 YR OFFSITE SYR ONSITE BASIN ID: 7 -- BASIN COMMENT: SUBBASIN= D1 AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION -- ---- (SQMI) (MI) (MI) (PCT) (FT/FT) (MIN) 0.20 0.63 0.27 2.00 0.0187 5.00 COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.156 0.263 - THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM - ( DEFAULT ) ( DEFAULT ) R= 0.06 D. 0.04 CALCULATED UNIT HYDROGRAPH '- TIME TO PEAK PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF (MIN) (CFS/SQMI) (CFS) (AF) 12.82 977.59 197.47 10.77 WIDTH AT SO = 31. MIN. WIDTH AT 75 = 16. MIN. K50 =0.25 K75 =0.34 RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. INFILTRATION = 4.46 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.60 IN./HR. TIME UNIT TIME UNIT TIME UNIT j HYDROGRAPH HYDROGRAPH HYDROGRAPH I 4-.5, 0. 0. 45. 75. 90. 19. 5. 96. 50. 64. 95. 16. I Page 10 MSTR-HIST-100yr-offsite 5yr onsite.cho .---. 10. 186. 55. 55 100. 14. 15. 192. 60. 47. 105. 12. 20. 161. 65. 41. 110. 10. 25. 142. 70. 35. 115. 9. 30. 122. 75. 30. 120. 8. 35. 102. 80. 26. 125. 0. 40. 87. 85. 22. 0. 0. 1 BASIN ID: 7 -- BASIN COMMENT: SUBBASIN= D1 **** STORM NO. = 1 **** DATE OR RETURN PERIOD = 100-YR INCREMENT TOTAL* STORM** INCREMENT TOTAL* STORM** TIME RAINFALL EXCESS HYDROGRAPH TIME RAINFALL EXCESS HYDROGRAPH (MIN.) (IN) PRECIP (CFS) (MIN. ) (IN) PRECIP (CFS) 0. 0.00 0.000 O. L 85. 0.03 0.000 94. ,� 5. 0.03 0.000 0. 90. 0.03 0.000 81. 10. 0.08 0.000 0. 95. 0.03 0.000 69. 15. 0.12 0.000 0. 100. 0.03 0.000 59. 20. 0.21 0.000 0. 105. 0.03 0.000 51. 25. 0.37 0.019 2. 110. 0.03 0.000 44. 30. 0.66 0.597 61. 115. 0.03 0.000 38. 35. 0.37 0.312 144. 120. 0.03 0.000 32. 40. 0.21 0.158 191. 125. 0.00 0.000 28. 45. 0.16 0.112 199. 130. 0.00 0.000 24. 50. 0.13 0.082 196. 135. 0.00 0.000 20. 55. 0.11 0.056 186. 140. 0.00 0.000 18. 60. 0.11 0.057 172. 145. 0.00 0.000 15. 65. 0.11 0.057 160. 150. 0.00 0.000 9. 70. 0.05 0.004 145. 155. 0.00 0.000 6. . 75. 0.05 0.004 127. 160. 0.00 0.000 4. . -, 80. 0.03 0.000 109. 165. 0.00 0.000 3. * LESS ANY WATER QUALITY CAPTURE VOLUME ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 3.06 (1-HOUR RAIN = 2 65) EXCESS PRECIP. = 1.458 INCHES VOLUME OF EXCESS PRECIP = 15.70 ACRE-FEET ...., PEAK 0 = 199. CFS TIME OF PEAK = 45. MIN. INFILT.= 4.46 IN/HR DECAY =0.00180 FNINF = 0.60 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 11/28/2005 AT TIME 15:44 - CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 IN 100 YR OFFSITE 5YR ONSITE BASIN ID: 8 -- BASIN COMMENT: SUBBASIN= D2 AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION (SQMI) (MI) (MI) (PCT) (FT/FT) (MIN) 0.21 0.45 0.14 2.00 0.0335 5.00 - COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.156 0.265 -- THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM Page 11 MSTR-HIST-100yr-offsite 5yr onsite.cho ( DEFAULT 1 ( DEFAULT ) R= 0.06 D= 0.04 CALCULATED UNIT HYDROGRAPH TIME TO PEAK PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF (MIN) (CFS/SQMI) (CFS) (AF) 8.08 1820.83 387.84 11.36 WIDTH AT 50 = 16. MIN. WIDTH AT 75 = 9. MIN. K50 =0.29 K75 =0.40 - RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. INFILTRATION = 3.00 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.50 IN./HR. TIME UNIT TIME UNIT TIME UNIT HYDROGRAPH HYDROGRAPH HYDROGRAPH 0. 0. 30. 103. 60. 17. 5. 311. 35. 76. 65. 12. 10. 368. 40. 56. 70. 9. 15. 264. 45. 41. 75. 0. 20. 191. 50. 30. 0. 0. 25. 140. 55. 22. 0. 0. 1 BASIN ID: 8 -- BASIN COMMENT: SUBBASIN= D2 **** STORM NO. = 2 **** DATE OR RETURN PERIOD = 5-YR • ,-� INCREMENT TOTAL* STORM** INCREMENT TOTAL* STORM** TIME RAINFALL EXCESS HYDROGRAPH TIME RAINFALL EXCESS HYDROGRAPH (MIN.) (IN) PRECIP (CFS) (MIN.) (IN) PRECIP (CFS) 0. 0.00 0.000 0. 50. 0.05 0.007 37. 5. 0.03 0.000 0. 55. 0.04 0.001 28. 10. 0.05 0.000 0. 60. 0.04 0.001 21. 15. 0.12 0.000 0. 65. 0.04 0.001 16. 20. 0.21 0.000 O. 70. 0.04 0.001 12. 25. 0.34 0.049 15. 75. 0.03 0.000 9. 30. 0.18 0.125 57. 80. 0.03 0.000 7. 35. 0.08 0.032 69. 85. 0.03 0.000 5. 40. 0.0E 0.015 59. 90. 0.03 0.003 4. .� 45. 0.05 0.006 47. 95. 0.03 0.000 2. * LESS ANY WATER QUALITY CAPTURE VOLUME ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 1.57 (1-HOUR RAIN = 1.36) EXCESS PRECIP. = 0.238 INCHES VOLUME OF EXCESS PRECIP = 2.71 ACRE-FEET PEAK Q = 69. CFS TIME OF PEAK = 35. MIN. INFILT.= 3.00 IN/HR DECAY =0.00180 FNINF = 0.50 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 11/28/2005 AT TIME 15:44 CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 IN 100 YR OFFSITE 5YR ONSITE BASIN ID: 9 -- BASIN COMMENT: SUBBASIN= E ^ AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION Page 12 MSTR-HIST-1o0yr-offsite Syr onsite.cho .--, (SOMI) (MI) (MI) (PCT) (FT/FT) (MIN) 0.26 0.81 0.47 2.00 0.0628 5.00 COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.156 0.273 THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS '- AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM ( DEFAULT ) ( DEFAULT ) R= 0.06 D. 0.04 CALCULATED UNIT HYDROGRAPH TIME TO PEAK PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF (MIN) (CFS/SQMI) (CFS) (AF) 13.95 915.98 240.90 14.03 WIDTH AT 50 = 33. MIN. WIDTH AT 75 = 17. MIN. K50 =0.26 K75 =0.35 .- RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. INFILTRATION = 3.16 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.51 IN./HR. TIME UNIT TIME UNIT TIME UNIT HYDROGRAPH HYDROGRAPH li HYDROGRAPH 0. 0. 50. 86. 100. 20. 5. 104. 55. 74_ 105. 17. 10. 216. 60. 64. 110. 15. 15. 240. 65. 56. 115. 13. 20. 210 . 70. 48. 120. 11. 25. 181. 75. 42. 125. 10. 30. 158_ 80. 36. 130. 8. 35. 136. 85. 31. 135. 0. 40. 115. 90. 27. 0. 0. - 45. 99. 95. 23. 0. 0. 1 BASIN ID: 9 -- BASIN COMMENT: SUBBASIN= E **** STORM NO. = 2 **** DATE OR RETURN PERIOD = 5-YR INCREMENT TOTAL* STORM** INCREMENT TOTAL* STORM** - TIME RAINFALL EXCESS HYDROGRAPH TIME RAINFALL EXCESS HYDROGRAPH (MIN.) (IN) PRECIP (CFS) (MIN.) (IN) PRECIP (CFS) 0. 0.00 0.000 0. 80. 0.03 0.000 18. -- 5. 0.03 0.000 0. 85. 0.03 0.000 15. 10. 0.05 0.000 0. 90. 0.03 0.000 13. 15. 0.12 0.000 0. 95. 0.03 0.000 12. 20. 0.21 0.000 O. 100. 0.02 0.000 10. - 25. 0.34 0.041 4. 105. 0.02 0.000 9. 30. 0.18 0.124 22. 110. 0.02 0.000 , . 35. 0.08 0.031 40. 115. 0.02 0.000 6. 40. 0.06 0.014 46. 120. 0.02 0.000 6. 45. 0.05 0.005 44. 125. 0.00 0.000 5. - 50. 0.05 0.006 40. 130. 0.00 0.000 4. 55. 0 04 0.001 36. 135. 0.00 0.000 4. 60. 0.04 0.001 32. 140. 0.00 0.000 3. ^ 65. 0.04 0.001 27. 145. 0.00 0.000 3. 70. 0.04 0.001 24. 150. 0.00 0.000 2. Page 13 MSTR-HIST-100yr-offsite 5yr onsite.cho 75. 0.03 0.000 21. 155. 0.00 0.000 2. * LESS ANY WATER QUALITY CAPTURE VOLUME ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 1.57 (1-HOUR RAIN = 1.36) EXCESS PRECIP. = 0.223 INCHES VOLUME OF EXCESS PRECIP = 3.13 ACRE-FEET PEAK Q = 46. CFS TIME OF PEAK = 40. MIN. INFILT.= 3.16 IN/HR DECAY =0.00180 FNINF = 0.51 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. Page 14 ^1 F5 P' F i, ^- t ry -• pF 14 ti : µ: APPENDIX B SWMM Analysis i MSTR-HIST-100yr-offsite 5yr onsite.sin -A—. 2 1 1 2 3 4 WATERSHED 1 ST. TRAIN DETENTION POND ROUTING TRIBUTARY TO ST. TRAIN RIVER 50 0 0 5.0 1 1 1 101 2 2 202 1 3 103 2 4 204 1 5 105 2 6 206 1 7 107 2 8 208 2 9 109 0 101 210 0 1 50.0 1855. 0.010 4.0 4.0 0.035 15.0 0 202 210 0 3 0.0 1. 0.001 0.0 0.0 0.001 10.0 0 103 211 0 1 50.0 6561. 0.018 4.0 4.0 0.035 15.0 0 204 211 0 3 0.0 1. 0.001 0.0 0.0 0.001 10.0 0 105 212 0 1 50.0 4278. 0.017 4.0 4.0 0.035 15.0 0 206 212 0 3 0.0 1. 0.001 0.0 0.0 0.001 10.0 0 107 213 0 1 50.0 3370. 0.016 4.0 4.0 0.035 15.0 0 208 213 0 3 0.0 1. 0.001 0.0 0.0 0.001 10.0 0 213 110 0 3 0.0 1. 0.001 0.0 0.0 0.001 10.0 0 110 111 0 1 70.0 2256. 0.002 4.0 4.0 0.035 15.0 0 209 111 0 3 0.0 1. 0.001 0.0 0.0 0.001 10.0 0 111 214 0 1 70.0 2452. 0.002 4.0 4.0 0.035 15.0 0 16 101 202 103 204 105 206 107 208 109 210 211 212 213 110 111 214 END PROGRAM Page 1 MSTR-HIST-100yr-offsite 5yr onsite.sot URBAN DRAINAGE STORM WATER MANAGEMENT MODEL - 32 BIT VERSION 1998 REVISED BY UNIVERSITY OF COLORADO AT DENVER *** ENTRY MADE TO RUNOFF MODEL *** ST. VRAIN DETENTION POND ROUTING TRIBUTARY TO ST. VRAIN RIVER -- ()NUMBER OF TIME STEPS 50 OINTEGRATION TIME INTERVAL (MINUTES) , 5.00 25.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH 1 ST. VRAIN DETENTION POND ROUTING TRIBUTARY TO ST. VRAIN RIVER HYDROGRAPHS FROM CUHPF MODEL ARE LISTED FOR THE FOLLOWING 9 SUHCATCHMENTS TIME(HR/MIN) 1 2 3 4 5 6 7 8 9 O 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 5. 0. 0. 0. 0. 0. 0. 0. 0. 0. O 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 15. 0. 0. 0. 0. 0. 0. 0. 0. 0. .- 0 20. 0. 0. 0. 0. O. O. 0. 0. 0 0 25. I. 1. 1. I. 2. 1. 2. 15, 4. O 30. 17. 9. 22. 9. 45. 9. 61. 57. 22. 0 35. 53. 21. 66. 25. 147. 21. 144. 69. 40. 0 40. 96. 29. 118. 42. 281. 31. 191. 59. 46. ..,- 0 45. 135. 31. 162. 56. 412. 34. 199. 47. 44. 0 50. 161. 29. 191. 64. 518. 33. 196. 37. 40. - 0 55. 174. 26. 204. 66. 590. 30. 186. 28. 36. 1 0. 177. 23. 206. 64. 628. 27. 172. 21. 32. 1 5. 175. 21. 203. 60. 638. 25. 160. 16. 27. 1 10. 171. 19. 199. 56. 628. 22. 145. 12. 24. 1 15. 167. 17. 193. 52. 604. 20. 127. 9. 21. 1 20. 160. 15. 184. 48. 576. 18. 109. 7. 18. 1 25. 151. 13. 173. 45. 544. 16. 94. 5. 15. 1 30. 141. 12. 160. 41. 508. 14. 81. 4. 13. 1 35. 131. 11. 147. 38. 470. 13. 69. 2. 12. 1 40. 121. 9. 135. 34. 432. 11. 59. 0. 10. 1 45. 112 8. 125. 32. 397. 10. 51. 0. 9. a 1 50. 104. 7. 116. 29. 366. 9. 44. 0. 7. Page 1 MSTR-HIST-100yr-offsite 5yr onsite.sot 1 55. 97. 7. 107. 27. 338. 8. 38. 0. 6. 2 0. 90. 6. 99. 25. 312 7. 32. 0. 6. 2 5. 84. 5. 92. 23. 287. 7. 28. 0 5. 2 10. 78. 5. 85. 21. 265. 6. 24. 0. 4. 2 15. 73. 4, 79. 20. 245. 5. 20. 0. 4. 2 20. 68. 4. 73. 18. 226. 5. 18. 0. 3. 2 25. 63. 3. 68. 17. 209. 4. 15. 0. 3. 2 30. 59. 3. 63. 15. 193. 4. 9. 0. 2. 2 35. 55. 3. 58. 14. 178. 3. 6. 0. 2. 2 40. 51. 2. 54. 13. 164. 3. 4. 0. 0. 2 45. 48. 2. 50. 12. 152. 3. 3. 0. 0. 2 50. 44. 2. 46. 11. 140. 3. 2. 0. 0. 2 55. 41. 2. 43. 10. 129. 2. 0. 0. 0. 3 0. 39. 2. 40. 9. 120. 2. 0. 0. 0. 3 5. 36. 0. 37. 9. 110. 2. 0. 0. 0. 3 10. 33. 0. 34. 8. 102. 2. 0. 0. 0. _ 3 15. 31. 0. 32. 7. 94. 1. 0. 0. D. 3 20. 29. 0. 29. 7. 87. 0. 0. 0. 0. ^ 3 25. 27. 0. 27. 6. 80. 0. 0. 0. 0. 3 30. 25. 0. 25. 6. 74. 0. 0. 0. 0. 3 35. 24. 0. 23. 5. 69. 0. 0. 0. p. 3 40. 22. 0. 22. 5. 63. 0. 0. 0. 0. 3 45. 20. 0. 20. 5. 58. 0. 0. 0_ 0. 3 50, 19. 0. 19. 4. 54. 0. 0. 0. 0. 3 55. 18. 0. 17. 4. 50 0. 0. 0. 0, 4 0. 17. 0. 16. 4. 46. 0. 0. 0. 0. 4 5. 15' 0. 15. 3. 43. 0. 0. C. 0. 4 10. 14. 0. 13. 3. 39. 0, 0. 0 . 0. 1 ST. VRAIN DETENTION POND ROUTING TRIBUTARY TO ST. VRAIN RIVER -- WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R -- N (FT) 101 210 0 1 CHANNEL 50.0 1855, .0100 4.0 4.0 .035 15.00 0 202 210 0 3 .0 1. .0010 .0 .0 Page 2 MSTR-HIST-100yr-offsite Syr onsite.sot .001 10.00 0 103 211 0 1 CHANNEL 50-0 6561. .0180 4.0 4.0 -- .035 15.00 0 204 211 0 3 .0 1. .0010 .0 .0 .001 10.00 0 105 212 0 1 CHANNEL 50.0 4278. .0170 4.0 4.0 .035 15.00 0 206 212 0 3 .0 1. .0010 .0 .0 .001 10.00 0 107 213 0 1 CHANNEL 50.0 3370. .0160 4.0 4.0 .035 15.00 0 208 213 0 3 .0 1. .0010 .0 .0 .001 10.00 0 213 110 0 3 .0 1. .0010 .0 .0 .001 10.00 0 110 111 0 1 CHANNEL 70.0 2256. .0020 4.0 4.0 .035 15.00 0 209 111 0 3 .0 1. .0010 .0 .0 .001 10.00 0 111 214 0 1 CHANNEL 70.0 2452. .0020 4.0 4.0 .035 15.00 0 OTOTAL NUMBER OF GUTTERS/PIPES, 12 1 ST. VRAIN DETENTION POND ROUTING TRIBUTARY TO ST. VRAIN RIVER ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A. (AC) 101 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 "" 0 0 0 0 195.8 103 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 214.4 105 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 677.1 107 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 129.3 110 213 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 265.6 111 110 209 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 265.6 202 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 196.5 204 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 533.1 206 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 257.9 208 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 136.3 209 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 213 107 208 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -- 0 0 0 0 265.6 1 -\ ST. TRAIN DETENTION POND ROUTING Page 3 MSTR-HIST-100yr-offsite 5yr onsite.sot . . TRIBUTARY TO ST. VRAIN RIVER HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 16 CONVEYANCE ELEMENTS --- THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC-FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC-FT FOR SURCHARGED GUTTER TIME(HR/MIN) 101 202 103 204 105 206 107 208 109 210 _ 211 212 213 110 111 214 0 5. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .0( 1 .0( ) .0( ) .0( ) .0( I .0( ) .0( ) .0( I .0( ) 0. 0. 0. 0. 0. 0. .0 ( ) .0( ) .0( ) .0 ( ) .0( ) .0( ) 0 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0 ( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( I 0, 0. 0. 0. 0. 0. .0 ( ) 0( ) .0 ( ) .0( ) .0( ) .0( ) O 15. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( I .0( ) .0( ) .0( ) .0( I _0( I .0( ) .0( I .0( I .0( ) ,_ 0. 0. 0. 0. 0. 0. .0( I .0( ) .0( ) .0( ) .0( ) .0( ) O 20. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( I .0( ) .0( ) 0. 0. 0. 0. 0. 0. .0( ) .0( I .0( ) .0( I .0( ) .0( ) O 25. 0. 1. 0. 1. 0. 1. 0. 15. 4. 1. .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( I 1. 1. 15. 0. 0. 0. .0( ) .0( ) .0( ) .0( I .0( ) .0( ) O 30. 1. 9, 0. 9. 1. 9. 2. 57. 22. 9. .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .1( ) .0( ) .0( ) .0( ) --, 9. 10. 59. 2. 0. 0. _0( ) .0( ) .0( ) .1 ( ) .0( ) .0( ) O 35. 7. 21. 2. 25. 13. 21. 21. 69. 40. 28. .1 ( ) .0( I .1( ) .0( ) .2( ) .0( ) .2 ( ) .0( I .0( ) .0( ) ''-- 27. 34. 90. 10. 0. 0. .0( ) .0( ) .0( I .2( ) .0( ) .0( ) Page 4 MSTR-HIST-100yr-offsite 5yr onsite.sot I1 0 40. 30. 29. 9. 42. 60. 31. 65. 59. 46. - 59. .3 ( ) .0( ) .1( ) .0( ) .4( ) .0( ) .4( ) .0( 1 .0( ) .0( ) 52. 90. 124. 26. 1. 1. - .0( ) .0( ) .0( ) .4 ( ) .0( ) .0( ) 0 45. 69. 31. 26. 56. 157. 34. 116. 47. 44. 100. .5( ) .0( ) .2( ) .0( ) .7( ) .0( ) .6( ) .0( ) .0( ) - .0( ) 82. 191. 162. 52. 3. 3. .0( ) .0( ) .0( ) .6( ) .1 ( ) .0( ) - 0 50. 112. 29. 52. 64. 286. 33. 151. 37. 40. 141. .7( ) .0( ) .4 ( ) .0( ) 1.0( ) .0( ) .7( ) .0( ) .0( ) .0( ) 115. 319. 188. 84. 10. 10. .0( ) _0( I .0( ) .8( ) .2( ) .0( ) 0 55. 145. 26. 82. 66. 413. 30. 170. 28. 36. - 171. .8( ) .0( ) .5( ) .0 ( ) 1.2( ) .0( ) .8( 1 .0( ) .0( ) .0( ) 148. 443. 198. 116. 24. 24. - .0( ) .0( ) .0( ) .9( ) .4( ) .0( ) 1 0. 164. 23. 110. 64. 513. 27. 174. 21. 32. 188. .8( ) .0( I .6( ) .0( 1 1.4 ( ) .0( ) .8( ) .0( ) .0( ) - , .0( ) 175. 540. 195. 142. 44. 44. .0( 1 .0( ) .0( ) 1.0( ) .5( ) .0( ) 1 5. 172. 21. 134. 60. 577. 25. 170. 16. 27. 193. .9( 1 .0( ) .6( ) .0( ) 1.5( ) .0( ) .8( ) .0( ) .0( ) .0( 1 194. 601. 186. 159. 68. 68. .0( ) .0( 1 .0( ) 1.1( ) _7( ) .0( ) 1 10. 173. 19. 152. 56. 607. 22. 162. 12. 24. ▪ 191. .9( ) .0( ) .7( ) .0( ) 1.6( ) .0( ) .7( ) .0( ) .0( ) .0( ) 207. 629 174. 166. 93. 93. .0( 1 .0( I .0( ) 1.1( ) .8( ) .0( ) 1 15. 170. 17. 164. 52. 612. 20. 150. 9. 21. 187. .9( ) .0( ) .7( ) .0( ) 1.6( I .0( 1 .7( ) .0( 1 .0( ) .0( ) 215. 632. 159. 166. 113. 113. .0( ) 0( I .0( 1 1.1( ) .9( ) .0( ) 1 20. 166. 15, 171. 48. 600. 18. 136. 7. 18. 181. .9( ) 0( ) .7( ) .0( ) 1.6( ) .0( 1 .7( ) .0( 1 .0( 1 .0( 1 219. 618. 143. 161. 128. 128. .0( ) .0( ) .0( 1 1.1( ) 1.0( ) .0( ) 1 25. 160. 13. 173. 45. 579. 16. 121. 5. 15. Page 5 MSTR-HIST-100yr-offsite Syr onsite.sot 2--. 173. .8( ) .0( ) _7( ) .0( ) 1.5( ) .0( ) .6( ) .0( ) .0( ) .0) ) - 217. 594. 126. 152. 137. 137. .0( ) .0( 1 .0( ) 1.1 ( 1 1.0( ) .0( ) 1 30. 151. 12. 171. 41. 550. 14. 107. 4. 13. 163. .8 ( ) .0( ) .7( 1 .0( ) 1.5( ) .0( 1 .6l ) .0( ) .0( ) .0( 1 - 212. 565. 111. 141. 140. 140. .0 ( ) .0( ) .0( ) 1.0( ) 1.0( ) .0( ) 1 35. 142. 11. 166. 38. 518. 13. 94. 2. 12. 152. -. .8( ) .0( ) .7( ) .0( ) 1.4 ( ) .0( ) .5( ) .0( 1 .0( ) .0( 1 204. 531. 96. 129. 138. 138. .0( ) .0( ) .0( ) 1.0( ) 1.0( ) .0( ) - 1 40. 132. 9. 159. 34. 483. 11. 82. 0. 10. 141. .7( ) .0( ) .7( ) .0( ) 1.4( 1 .0( ) .5( ) .0( ) .0 1 ) - .0( ) 194. 495. 82. 116. 133. 133. .0( ) .0( ) .0( ) .9( ) 1.0( 1 .0( 1 - 1 45. 123. 8. 151. 32. 448. 10. 72. 0. 9. 131. .7( 1 .0( ) .7( ) .0 ( ) 1.3( ) _0 ( 1 .5( 1 .0 ( ) .0( ) .0 ( 1 183. 458. 72. 104. 126. 126. .0 ( 1 .(i) ) .0( ) .9( ) 1.0( ) .0( ) 1 50. 114. 7. 143. 29. 415. 9. 63. 0. 7. ..... 122. .7( ) .0( ) .7( ) .0( ) 1.2( 1 .0 ( ) .4( ) .0( ) _0( ) .0( 1 172. 424. 63. 94. 118. 118. 0 ( ) .0( ) .0( ) .8( ) .9( ) .0( ) 1 55. 106. 7. 135. 27. 384. 8. 56. 0. 6. 113. .7( ) .0( ) .6( ) .0( ) 1.2( ) .0( ) .4( ) .0( 1 .0( ) - .0( ) 162. 392. 56. 84. 110. 110. .0( ) .0( I .0( 1 .8( 1 .9( 1 .0( 1 '- 2 0. 99. 6. 127. 25. 355. 7. 49. 0. 6. 105. .6( ) .0) 1 .6( ) .0( ) 1.1( ) .0 ( ) .4 ( 1 .0( ) .0( ) .0( ) 152. 363. 49. 75. 101. 101. .0 ( ) .0( ) .0( ) .7( ) .8( ) .0( ) 2 5. 92. 5. 119. 23. 329. 7. 43. 0. 5. - 98. .6 ( ) .0( ) .6( ) .0( ) 1.1( ) .0 ( 1 .3 ( ) .0( 1 .0( 1 .0( 1 142. 335. 43. 67. 93. 93. - .0( ) .0( 1 .0( ) .7( ) .8( ) .0( ) 2 10. 86. 5. 111. 21. 304. 6. 38. 0. 4. .'-. 91. .6( 1 .0( ) .6( 1 .0( ) 1.0( ) .0( ) .3( ) .0( ) .0( ) - Page 6 MSTR-HIST-100yr-offsite Syr onsite.sot .0( ) _, 133. 310. 38. 60. 85. 85. .0( ) .0( ) .0( ) .6( ) .8( ) .0( ) 2 15. 80. 4. 104. 20. 262. 5. 33. 0. 4. 85. .6( ) .0( ) .5( ) .0( ) 1.0( ) .0( ) .3( ) .0( ) .0( ) .0( ) 124. 287. 33. 54. 78. 78. .0( ) .0( ) .0( ) .6( ) .7( ) .0( ) 2 20. 75. 4. 98. 18. 261. 5. 29. 0. 3. 79. .5( ) .0( ) .5( ) .0( ) 1.0( ) .0( ) .3 ( ) .0( I .0( ) .0( ) 116. 266. 29. 49. 71. 71. .0 ( ) .0( ) .0( ) .5( ) .7( ) .0( ) - 2 25. 70. 3. 91. 17. 242. 4. 26. 0. 3. 73. .5( ) _0( ) .5( ) .0( ) .9( ) .0( ) .2( ) .0( ) .0( ) .0( 1 -. 106. 246. 26. 44. 65. 65. .0( ) .0( ) .0( 1 .5( 1 .6( ) .0( ) 2 30. 65. 3. 85. 15. 224. 4. 22. 0. 2. 68. -' .5( ) .0( 1 .5( ) .0 ( 1 .9( ) .0( ) .2( ) .0( ) .0( ) .0( ) 101. 228. 22. 39. 59. 59. .0( ) .0( ) .0( ) .5( ) .6( ) .0 ( 1 .....„ 2 35. 61. 3. 80. 14. 208. 3. 19. 0. 2. 64. .5( ) .0( ) .5( ) .0( I .8( ) .0( ) .2 ( ) .0 ( ) _0( ) .0( ) 94. 211. 19. 35. 54. 54. .0( ) .0( ) .0 ( ) .4( ) .6( ) .0( ) 2 40. 57. 2. 75. 13. 193. 3. 15. 0. 0. 60. .5( ) .0( ) .4 ( ) .0( ) .8( ) .0( ) .2( ) .0( 1 .0( ) .0( ) -- 88. 196. 15. 31. 50. 50. .0( ) .0( ) .0( ) .4( ) .6( 1 .0( ) 2 45. 53. 2. 70. 12. 179. 3. 13. 0. 0. 56. .4( ) _0( ) .4( ) .0( ) .8( ) .0 ( ) .2( ) .0( ) .0( ) .0( ) 82. 182. 13. 28. 45. 45. .0( ) _0( ) .0 ( 1 .4 ( ) .5( ) .0( ) - 2 50. 50. 2. 65. 11. 166. 3. 11. 0. 0. 52. .4( ) _0( ) .4 ( ) .0( ) .7( ) .0 ( ) .1( ) .0( ) .0) ) .0( ) 76. 168. 11. 25. 41. 41. .0( ) .0( ) .0( ) .4 ( 1 .5( 1 .0( ) -- 2 55. 47. 2. 61. 10. 154. 2. 9. 0. 0. 48. .4( ) .0( ) .4 ( ) .0( ) .7( ) .0( ) .1( ) .0( ) .0( ) .0( ) - Page 7 MSTR-HIST-100yr-offsite Syr onsite.sot --- 71. 156. 9. 22. 38. 38. .0( ) .0( ) .0( ) .3( ) .5( ) .0 ( ) 3 0. 44. 2. 57. 9. 143. 2. 7. 0. 0. 45. .4( ) .0( ) .4( ) .0( ) .7( ) .0( 1 .1( ) .0( 1 .0( ) .0( ) 67. 145. 7. 20. 34. 34. .0( ) .0( ) .0( ) .3( ) .4( ) .0( 1 3 5. 41. 0. 54. 9. 133. 2. 6. 0. 0. 41. .4 ( ) .0( ) .4( 1 .0( ) .6( ) .0( ) .1( ) _0( ) .0( 1 .0 ( 1 62. 134. 6. 17. 31. 31. .0( ) .0( ) .0( ) .3 ( ) .4( ) .0( ) 3 10. 38. 0. 50. 8. 123. 2. 5. 0. 0. 38. - .4( ) .0( ) .4 ( ) .0( ) .6( ) .0 ( ) .1( 1 .0 ( ) .0( ) 0( ) 58. 125. 5. 15. 28. 28. .0( ) .0( ) .0( ) .3( ) .4 ( ) .0 ( ) 3 15. 36. 0. 47. 7. 114. 1. 4. 0. 0. 36. .3 ( ) .0( ) .3( ) .0( ) .6( 1 .0( ) .1( ) .0( ) .0( ) 0) ) 54. 116. 4. 14. 26. 26. .0( ) .0( ) .0( ) .3 ( ) .4( 1 .0( ) 3 20. 33. 0. 44. 7. 106. 0. 4. 0.- 0 33. .3 ( ) .0( ) .3 ( ) .0( 1 .6( ) .0 ( I .1( ) .0 ( ) 0( ) .0( ) 51. 106. 4. 12. 24. 24. - .0( ) .0( ) .0( ) .2( ) .4 ( I .0 ( ) 2 25. 31. 0. 41. 6. 98. 0. 3. 0. 0. 31. .3 ( ) .0( ) .3 ( ) .0( ) .5( ) .0( 1 .1( ) _0( ) .0( ) .0 ( ) 47. 98. 3. 11. 22. 22. .0( ) .0( ) .0( ) .2( ) .3( 1 .0( 1 3 30. 29. 0. 39. 6. 91. 0. 3. 0. 0. 29. .3( ) .0( ) .3( ) .0( 1 .5( ) .0 ( 1 .1( ) .0( 1 .0( ) .0( 1 44. 91. 3. 10. 20. 20. .0( ) .0( ) .0( ) .2( ) .3( ) 0( ) 3 35. 27. 0. 36. 5. 85. 0. 3. 0. 0. 27. .3( ) .0( ) .3( 1 .0( ) .5( ) .0 ( ) .1( ) .0( ) .0( ) .0( ) -- 42. 85. 3. 9. 18. 18. .0( 1 .0( ) .0 ( ) .2( ) .3 ( ) .0 ( ) 3 40. 26. 0. 34. 5. 79. 0. 2. 0. 0. 26. - .3 ( 1 .0( ) .3( ) .0( 1 .5( ) .0( ) .1( ) .0( ) .0( ) .0( 1 39. 79. 2. 8. 17. 17. .0( ) .0( ) .0( 1 .2( ) .3 ( ) .0( ) Page 8 MSTR-HIST-100yr-o£fsite 5yr onsite.sot 3 45. 24. 0. 32. 5. 73. 0- 2. 0. O. 24. .3( ) .0( ) .3( ) .0( ) .4 ( ) .0( ) .1( ) .0( ) .0( ) .0( ) 36. 73. 2. 7. 15. 15. - .0( ) .0( ) .0( ) .2( ) .3 ( ) .0( ) 3 50. 22. 0. 30. 4. 68. 0. 2. 0. 0 22. .3( ) .0( ) .3 ( ) .0( ) .4 ( ) .0 ( ) .0( ) .0( ) .0( ) - .0( 1 34. 68. 2. 7. 14. 14. .0( ) .0( ) .0( ) .2( ) .3 ( ) .0 ( ) 3 55. 21. 0. 28. 4. 63. 0. 2. 0. 0. 21. .2( ) .0( ) .2( ) .0( ) .4 ( ) .0 ( ) .0( ) .0( ) .0( ) .0( ) 32. 63. 2. 6. 13. 13. .0( ) .0( ) .0( ) .2( ) .2( ) .0 ( ) 4 0. 20. 0. 26. 4. 59. 0. 1. 0. 0. - 20. .2( ) .0( ) .2( ) .0( ) .4( ) .0 ( ) .0( ) .0( ) .0( ) .0( ) 30. 59. 1. 6. 12. 12. ... .0 ( ) .0( ) .0( ) .1( ) .2( ) .0( ) 4 5. 18. 0. 25. 3. 55. 0. 1. 0. 0. 18. .2( ) .0( ) .2( 1 .0( ) .4 ( ) .0( ) .0( ) .0 ( ) .0( ) ..„,...„ 28. 55. 1. 5. 11. 11. .0 ( ) .0( ) .0( ) .1( ) .2( ) .0( ) 4 10. 17. 0. 23. 3. 51. 0. 1. 0. 0. 17. .2( ) .0( ) .2( ) .0( ) .4 ( ) .0( ) .0( ) .0 ( ) .0( 1 .0( ) - 26. 51. 1. 5. 10. 10. .0( ) .0( ) .0( I .1( ) .2( ) .0( ) 1 ST. VRAIN DETENTION POND ROUTING TRIBUTARY TO ST. VRAIN RIVER *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS *** CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC-FT) (HR/MIN) 208 69. (DIRECT FLOW) 0 35. 107 174. .8 1 0. 213 198. (DIRECT FLOW) 0 55. 209 0. (DIRECT FLOW) 0 0. 110 166. 1.1 1 15. 111 140. 1.0 1 30. 206 34. (DIRECT FLOW) 0 45. - 105 612. 1.6 1 15. 204 66. (DIRECT FLOW) 0 55. 103 173. .7 1 25. 202 31. (DIRECT FLOW) 0 45. 101 173. .9 1 10. — Page 9 MSTR-HIST-100yr-offsite Syr onsite.sot 214 140. (DIRECT FLOW) 1 30. 212 632. (DIRECT FLOW) 1 15. 211 219. (DIRECT FLOW) 1 20. 210 193. (DIRECT FLOW) 1 5. 109 46. (DIRECT FLOW) 0 40. Page 10 _ t, 4• {e A — k x a a. — 1i �a Y — q — Pk +;Ili,., — 1. �1 APPENDIX Cl Proposed Drainage Calculations t. _I 3 1 _ _ ,. µ jygg '4,--41 -, 1 5 N p 122 , 1 \\\\: 4 • 101J 11 142 152. ,'. 1 6 • 102 1 192 .1. 8 21 1 #103 ) 11 162 172 1 12 10 31 104 1 012 - 82 oo • . ,. 41 102 . 13 x iLI , • � . .., 105 51 -CD_ I 106 1. 1 1 LEGEND ST. VRAIN LAKES-1 0 750 1500 3O70 90 SUB-BASIN SCALE: = ,500 PROPOSED DRAINAGE 190 CONVEYANCE ORIGINAL GRAPHIC SCALE Lange SWMM ROUTING MAP (290) DIRECT ROW/ I Q Car rOIN WI I aE = DESIGN mm)seo Goo) (\390) DETENTION POND 0 0 \ ....2 \ o 0 0 0 0 O `�-' o o o CO o o o ci CO o Cn O in co L O O Co o O O V N. O Cn co o" 4' O) Lc) fl- 0) LO E — CO V) N U N CD O d- 0 O U CO 0) 0 0 W 0co co 0 0 0 0Oo W a N N Ln N f�• rcci , O CO d N r ccoo r N N �' CO t ON M r UJ Q Q Q 04 — Z_ N -a a Q coc‘ co m a Y w o y o o y i LL C O C Y C LL Y co 0 0_W N m 0)) 0 co u) cc C1:1 co w H c a) U _ V) cn Q O - co N — W a • - J C - Z N o 0 O < `--' o 0 0 „cp. M �-' o o o N o o 0 0 o ti E � � NrnrnLO a u) mo c- v `nrnrnOmin � — CO Tti' "77i isi a) o o � o 0 Eco 0 0 0 0 0 N U O O O M O CO N co 0 CO 0 r CO O CO O Ncc; O co coCV r? Ln O .— ^ • o r Or N c „ CO CO c0 r O) CO ca CO N r LC) In M V d r r a) N N 2 r N .< a a` O -0 V @ 0 0 0 .� N ` N N a _N CL (7) N CO a C LL i LL N C 7 U LL C o0 = CO LL C N +a-' O = .N CO N 2 o co C c0 o L N C 6 O E L m m d E c °) m a c o o CO a c E U Q) - CO o d �' m a) co �' m N o CO U a) a) d U — 0 0 0 > to• o CO co 4-. o a) -E E x ED � a o 0 ai a a CO O C a) a5 -� a) C W 2 no a N U C7 a) n w Q C c To Z W E m e = co a) co c w a) a> _ a>O a) C N a a) a) v) .N 2 c 3 O co no H c y r 3 _ V) (I) 2 ° o -3 Co a Q E J 15 = 5 L �� O O O O O O O Q N 11, Un u> LID LID LID uD ce a. a> 0 V V' V 7 7 V J z H 2 0 0 0 0 0 0 O m O 7t m 0 cn N O r O m 0, m a a' Q 7 V N 7 r T— N < CaCCUW 00 C CCCCCCC al co co co as co co co !^^ CO CO CO 00 C] CO CO CO COMN CO N O O .„1. CD N co O Co O W O C° CO V • V t!7 O O N6 CO r O O CO O co r CO r in 4 co to to O C` c N Ocso N W o 0 m • re) co N . . 0 L to C)o N W O v- V: N. O M Cr) oo r M N O M O V' r 0 0 «') O O O N r '- '- CO C.y r r O N. CO to N CO o N- OT O V O O CO O o ti N .y m g r co O O CO CA V m •CO N CO •N CO . r LO to r• OCID 4 �. m M O T- r M O to r O r r O O Cr) 0 r N 13 CD N CO NO o OD to CA C` o t�Am N `N_' tC°oOMO N tomOOM Opc7ttO CO Q. r 0 co V O O O nj w-- CO• O co O M r O O V 0 c'j CO ct O L _ O CO O) r r to r co O CA r `- co coo co co Cn to V to c9 r--c) O) o O cnaD o m NN r 0 0 '- . O to O V lc r O 00r- C,) In O N r O COCOci O N r r 0 to 7- a- all O O O O a0 a0 O O d. O (�j r ... CC E CV CO N co to o M CO CO (A \ CO C N O CO V CO o G C,O in c.,; N CO to rr IL'S a ( . U M M to CA co 1_ C j LOco = r O " V O O V 0 t j ' N N O cc d' O O �: O CO c CO O T- N O O CO coN o CO p0) r •0 CO CAD O Up O CYJ CV O e N a) r. cc m M CA tf) r M• N to c) r- M U Lit Cb O r M M to O CO r O LO M O O V O N r N to O CO O O V O N CO — 5 5 � a wa w N w N CD 7 CA Z CA N Ci O O p) d ^ N — w O O p) d QEaaUo = ≤ avW QEaaUUvVZRx w . CC RI m V '� C = w E N _ co @I m V C = = a W ty CD CD O O O d N d CV O 3 O .� Q Q A ›, C Q' C J CCI CU+' ++ T O r C &T O O - w . L O O O �+ HHCOCo in or c iido, o< HFO- tointoo5LL ) oo ) . ] � � \ $ 14.4 ( 441 ! \ { Pm . { own { \ \ \ � \ ) / I f E"*". APPENDIX Cl - Proposed CUHP Analysis .- } 100year proposed.chi 25t. vrain 100-year Proposed 1100-year 100 2.65 70 1 1 5.1 1SUBBASIN= Al .3041.237. 5777 2. .0126 .4 .054.228.0018 .582 70 1 1 5.2 25UBBASIN= A2 .- .2581.248.412751.63.0093 .4 .054.115.0018 .574 70 1 1 5. 3 35UBBASIN= B1 .188.7363.3576 2. .0116 .4 .054.001.0018 . 567 70 1 1 5. 5 55UBBASIN= 62 .162.6739.3199 2. .0135 .4 .053.902.0018 . 56 70 1 1 5.4 4SUBBASIN= 63 .4811.225.4251 48.6.0116 .4 .053.842.0018 . 556 70 1 1 5.6 65uBBAsIN= Cl .866 1. 56 .731 2. .0121 .4 .05 4.32.0018 .588 70 1 1 5.7 7SUBBASIN= C2 .366.7591. 3356 46. 5.0162 .4 .054.184.0018 .579 70 1 1 5.8 85UBBASIN= El .1721.105. 5595 2. .0099 .4 .054.422.0018 .595 70 1 1 5.10 10SUBBASIN= E2 .323 . 505.0813 58. .037 .4 .053.479.0018 . 532 70 1 1 5.9 9SUBBASIN= B4 _ .3751.015. 307645.77.0168 .4 .053.709.0018 . 547 70 1 1 5. 11 11SUBBASIN= D1 .153 .723.2974 2. .0159 .4 .05 4.37.0018 . 591 71 1 1 5.12 12suBBASIN= D2 .059.3879.1477 2. .0171 21.2 .4 .054.495.0018 .597 70 1 1 5.13 13SUBBASIN= D3 .217.2898.0513 41.7 .04 .4 .053.146.0018 . 51 E Page 1 m. 100year proposed.cho ,... 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 12/ 5/2005 AT TIME 14:18 CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 ain 100-year Proposed BASIN ID: 1 -- BASIN COMMENT: SUBBASIN= Al AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION ... (SQMI) (MI) (MI) (PCT) (FT/FT) (MIN) 0.30 1.24 0.58 2.00 0.0126 5.00 COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.156 0.279 THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES m. FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM ( DEFAULT ) ( DEFAULT ) R. 0.06 D= 0.04 CALCULATED UNIT HYDROGRAPH .. TIME TO PEAK PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF (MIN) (CFS/SQMI) (CFS) (AF) 25.20 472.43 143.62 16.21 .0-, WIDTH AT 50 = 64. MIN. WIDTH AT 75 = 33. MIN. K50 =0.24 K75 =0.32 RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. �' INFILTRATION = 4.23 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.58 IN./HR. TIME UNIT TIME UNIT TIME UNIT HYDROGRAPH HYDROGRAPH HYDROGRAPH 0. 0. 80. 66. 160. 21. 5. 25. 85. 61. 165. 20. .,.. 10. 71. 90. 57. 170. 18. 15. 111. 95. 53. 175. 17. 20. 136. 100. 49. 180. 16. 25. 144. 105. 46. 185. 15. 30. 139. 110. 43. 190. 14. 35. 128. 115. 40. 195. 13. 40. 116. 120. 37. 200. 12. 45. 108. 125. 35. 205. 11. 50. 104. 130. 32. 210. 10. 55. 97. 135. 30. 215. 10. 60. 91. 140. 28. 220. 9. 65. 84. 145. 26. 225. 8. 70. 77. 150. 24. 230. 8. 75. 70. 155. 23. 235. 0. 1 BASIN ID: 1 -- BASIN COMMENT: SUBBASIN= Al .... **** STORM NO. = 1 **** DATE OR RETURN PERIOD = 100-year e"'") INCREMENT TOTAL* STORM** I INCREMENT TOTAL* STORM** TIME RAINFALL EXCESS HYDROGRAPH I TIME RAINFALL EXCESS HYDROGRAPH .. Page 1 100year proposed.cho ..... (MIN.) (IN) PRECIP (CFS) (MIN. ) (IN) PRECIP (CFS) 0. 0.00 0.000 0. 140. 0.00 0.000 67. 5. 0.03 0.000 0. 145. 0.00 0.000 62. 10. 0.08 0.000 0. 150. 0.00 0.000 58. 15. 0.12 0.000 0. 155. 0.00 0.000 54. 20. 0.21 0.000 0. 160. 0.00 0.000 50. 25. 0.37 0.026 1. 165. 0.00 0.000 47. 30. 0.66 0.599 17. 170. 0.00 0.000 44. 35. 0.37 0.314 53. 175. 0.00 0.000 41. 40. 0.21 0.159 97. 180. 0.00 0.000 38. 45. 0.16 0.114 134. 185. 0.00 0.000 35. 50. 0.13 0.083 160. 190. 0.00 0.000 33. 55. 0.11 0.057 173. 195. 0.00 0.000 31. 60. 0.11 0.058 176. 200. 0.00 0.000 29. 65. 0.11 0.058 174. 205. 0.00 0.000 27. 70. 0.05 0.005 170. 210. 0.00 0.000 25. 75. 0.05 0.005 167. 215. 0.00 0.000 23. 80. 0.03 0.000 160. 220. 0.00 0.000 22. 85. 0.03 0.000 151. 225. 0.00 0.000 20. 90. 0.03 0.000 140. 230. 0.00 0.000 19. 95. 0.03 0.000 130. 235. 0.00 0.000 17. 100. 0.03 0.000 120. 240. 0.00 0.000 16. 105. 0.03 0.000 111. 245. 0.00 0.000 15. 110. 0.03 0.000 104. 250. 0.00 0.000 14. 115. 0.03 0.000 96. 255. 0.00 0.000 13. 120. 0.03 0.000 89. 260. 0.00 0.000 8. 125. 0.00 0.000 83. 265. 0.00 0.000 5. 130. 0.00 0.000 77. 270. 0.00 0.000 3. 135. 0.00 0.000 72. 275. 0.00 0.000 2. * LESS ANY WATER QUALITY CAPTURE VOLUME ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 3.06 (1-HOUR RAIN = 2.65) EXCESS PRECIP. = 1.479 INCHES VOLUME OF EXCESS PRECIP = 23.98 ACRE-FEET PEAK Q = 176. CFS TIME OF PEAK = 60. MIN. INFILT.= 4.23 IN/HR DECAY =0.00180 FNINF = 0.58 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 12/ 5/2005 AT TIME 14:18 CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 ain 100-year Proposed BASIN ID: 2 -- BASIN COMMENT: SUBBASIN= A2 AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION (SQMI) (MI) (MI) (PCT) (FT/FT) (MIN) 0.26 1.25 0.41 51.63 0.0093 5.00 COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.087 0.520 THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM ( DEFAULT ) ( DEFAULT ) .. R= 0.23 D. 0.86 CALCULATED UNIT HYDROGRAPH r TIME TO PEAK PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF "..' Page 2 100year proposed.cho �., (MIN) (CFS/SQMI) (CFS) (AF) 14.23 1702.76 439.31 13.76 WIDTH AT 50 = 18. MIN. WIDTH AT 75 = 9. MIN. K50 =0.35 K75 =0.45 RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. INFILTRATION = 4.11 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.57 IN./HR. TIME UNIT TIME UNIT TIME UNIT HYDROGRAPH HYDROGRAPH HYDROGRAPH 0. 0. 30. 167. 60. 25. 5. 99. 35. 121. 65. 18. 10. 323. 40. 88. 70. 13. 15. 436. 45. 64. 75. 9. 20. 317. 50. 47. 80. 0. r 25. 231. 55. 34. 0. 0. 1 BASIN ID: 2 -- BASIN COMMENT: SUBBASIN= A2 **** STORM NO. = 1 **** DATE OR RETURN PERIOD = 100-year INCREMENT TOTAL* STORM** INCREMENT TOTAL* STORM** .. TIME RAINFALL EXCESS HYDROGRAPH TIME RAINFALL EXCESS HYDROGRAPH (MIN.) (IN) PRECIP (CFS) (MIN.) (IN) PRECIP (CFS) 0. 0.00 0.000 0. 85. 0.03 0.014 127. '. ,^.1 5. 0.03 0.000 0. 90. 0.03 0.014 99. 10. 0.08 0.024 2. 95. 0.03 0.014 79. 15. 0.12 0.051 13. 100. 0.03 0.014 64. 20. 0.21 0.089 36. 105. 0.03 0.014 50. 25. 0.37 0.213 80. 110. 0.03 0.014 41. 30. 0.66 0.615 190. 115. 0.03 0.014 37. 35. 0.37 0.334 369. 120. 0.03 0.014 33. 40. 0.21 0.181 494. 125. 0.00 0.000 30. 45. 0.16 0.135 485. 130. 0.00 0.000 24. 50. 0.13 0.105 433. 135. 0.00 0.000 17. 55. 0.11 0.080 376. 140. 0.00 0.000 12. 60. 0.11 0.080 322. 145. 0.00 0.000 8. 65. 0.11 0.080 278. 150. 0.00 0.000 6. 70. 0.05 0.028 241. 155. 0.00 0.000 4. 75. 0.05 0.028 201. 160. 0.00 0.000 3. 80. 0.03 0.014 160. 165. 0.00 0.000 2. * LESS ANY WATER QUALITY CAPTURE VOLUME ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 3.06 (1-HOUR RAIN = 2.65) EXCESS PRECIP. = 2.168 INCHES VOLUME OF EXCESS PRECIP = 29.83 ACRE-FEET PEAK Q = 494. CFS TIME OF PEAK = 40. MIN. INFILT.= 4.11 IN/HR DECAY =0.00180 FNINF = 0.57 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 12/ 5/2005 AT TIME 14:18 CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 ain 100-year Proposed .-^ BASIN ID: 3 -- BASIN COMMENT: SUBBASIN= B1 Page 3 100year proposed.cho ,..... AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION (SQMI) (MI) (MI) (PCT) (FT/FT) (MIN) 0.19 0.74 0.36 2.00 0.0116 5.00 COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.156 0.260 THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM ( DEFAULT ) ( DEFAULT ) R= 0.06 D= 0.04 CALCULATED UNIT HYDROGRAPH TIME TO PEAK PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF (MIN) (CFS/SQMI) (CFS) (AF) 16.84 695.90 130.83 10.03 WIDTH AT 50 = 43. MIN. WIDTH AT 75 = 22. MIN. K50 =0.23 K75 =0.32 RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. INFILTRATION = 4.00 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.57 IN./HR. TIME UNIT TIME UNIT TIME UNIT HYDROGRAPH HYDROGRAPH HYDROGRAPH ..0-. 0. 0. 55. 59. 110. 19. 5. 43. 60. 53. 115. 17. 10. 101. 65. 48. 120. 15. 15. 129. 70. 43. 125. 14. 20. 127. 75. 39. 130. 13. 25. 111. 80. 35. 135. 11. 30. 98. 85. 32. ] 140. 10. 35. 93. 90. 29. 145. 9. 40. 84. 95. 26. 150. 8. 45. 74. 100. 23. 155. 8. 50. 65. 105. 21. 160. 0. 1 BASIN ID: 3 -- BASIN COMMENT: SUBBASIN= 81 **** STORM NO. = 1 **** DATE OR RETURN PERIOD = 100-year INCREMENT TOTAL* STORM** INCREMENT TOTAL* STORM** TIME RAINFALL EXCESS HYDROGRAPH TIME RAINFALL EXCESS HYDROGRAPH (MIN.) (IN) PRECIP (CFS) (MIN.) (IN) PRECIP (CFS) 0. 0.00 0.000 0. 105. 0.03 0.000 64. 5. 0.03 0.000 0. 110. 0.03 0.000 58. 10. 0.08 0.000 0. 115. 0.03 0.000 52. 15. 0.12 0.000 0. 120. 0.03 0.000 47. 20. 0.21 0.000 0. 125. 0.00 0.000 43. 25. 0.37 0.033 1. 130. 0.00 0.000 38. 30. 0.66 0.601 29. 135. 0.00 0.000 35. 35. 0.37 0.316 79. 140. 0.00 0.000 31. .. 40. 0.21 0.161 121. 145. 0.00 0.000 28. 45. 0.16 0.115 142. 150. 0.00 0.000 25. 50. 0.13 0.084 146. 155. 0.00 0.000 23. /'r. 55. 0.11 0.059 144. 160. 0.00 0.000 21. 60. 0.11 0.059 141. 165. 0.00 0.000 19. Page 4 100year proposed.cho ,0"--* 65. 0.11 0.059 137. 170. 0.00 0.000 17. 70. 0.05 0.006 130. 175. 0.00 0.000 15. 75. 0.05 0.007 120. 180. 0.00 0.000 14. 80. 0.03 0.000 108. 185. 0.00 0.000 8. 85. 0.03 0.000 98. 190. 0.00 0.000 5. 90. 0.03 0.000 88. 195. 0.00 0.000 4. 95. 0.03 0.000 79. 200. 0.00 0.000 2. .., 100. 0.03 0.000 71. 205. 0.00 0.000 2. * LESS ANY WATER QUALITY CAPTURE VOLUME ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 3.06 (1-HOUR RAIN = 2.65) EXCESS PRECIP. = 1.501 INCHES VOLUME OF EXCESS PRECIP = 15.05 ACRE-FEET PEAK Q = 146. CFS TIME OF PEAK = 50. MIN. INFILT.= 4.00 IN/HR DECAY =0.00180 FNINF = 0.57 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 12/ 5/2005 AT TIME 14:18 CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 ain 100-year Proposed BASIN ID: 5 -- BASIN COMMENT: SUBBASIN= 82 AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION .. (SQMI) (MI) (MI) (PCT) (FT/FT) (MIN) 0.16 0.67 0.32 2.00 0.0135 5.00 COEFFICIENT COEFFICIENT �� (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.156 0.254 THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM ( DEFAULT ) ( DEFAULT ) R= 0.06 0= 0.04 CALCULATED UNIT HYDROGRAPH .. TIME TO PEAK PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF (MIN) (CFS/SQMI) (CFS) (AF) 15.06 776.86 125.85 8.64 WIDTH AT 50 = 39. MIN. WIDTH AT 75 = 20. MIN. K50 =0.23 K75 =0.32 RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. INFILTRATION = 3.90 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.56 IN./HR. TIME UNIT TIME UNIT TIME UNIT HYDROGRAPH HYDROGRAPH HYDROGRAPH 0. 0. 50. 56. 100. 18. 5. 49. 55. 50. 105. 16. 10. 107. 60. 44. 110. 14. 15. 126. 65. 40. 115. 13. 20. 115. 70. 35. 120. 11. ,r" 25. 98. 75. 32. 125. 10. 30. 92. 80. 28. 130. 9. Page 5 l00year proposed.cho ,-, 35. 82. I85. 25. I 135. 8. 40. 72. I 90. 22. 1 140. 0. I 45. 62. I 95. 20. I 0. 0. I 1 BASIN ID: 5 -- BASIN COMMENT: SUBBASIN= B2 **** STORM N0. = 1 **** DATE OR RETURN PERIOD = 100-year INCREMENT TOTAL* STORM** INCREMENT TOTAL* STORM** .� TIME RAINFALL EXCESS HYDROGRAPH TIME RAINFALL EXCESS HYDROGRAPH (MIN.) (IN) PRECIP (CFS) (MIN.) (IN) PRECIP (CFS) 0. 0.00 0.000 0. 95. 0.03 0.000 67. " 5. 0.03 0.000 0. 100. 0.03 0.000 60. 10. 0.08 0.000 0. 105. 0.03 0.000 53. 15. 0.12 0.000 0. 110. 0.03 0.000 47. 20. 0.21 0.000 0. 115. 0.03 0.000 42. 25. 0.37 0.039 2. 120. 0.03 0.000 38. 30. 0.66 0.602 33. 125. 0.00 0.000 34. 35. 0.37 0.317 85. 130. 0.00 0.000 30. 40. 0.21 0.161 122. 135. 0.00 0.000 27. 45. 0.16 0.116 136. 140. 0.00 0.000 24. 50. 0.13 0.085 136. 145. 0.00 0.000 21. 55. 0.11 0.059 135. 150. 0.00 0.000 19. 60. 0.11 0.060 130. 155. 0.00 0.000 17. 65. 0.11 0.060 125. 160. 0.0D 0.000 15. 70. 0.05 0.007 116. 165. 0.00 0.000 9. 75. 0.05 0.007 105. 170. 0.00 0.000 6. 80. 0.03 0.000 95. 175. 0.00 0.000 4. 85. 0.03 0.000 84. 180. 0.00 0.000 3. 90. 0.03 0.000 75. 185. 0.00 0.000 2. - ,i" , * LESS ANY WATER QUALITY CAPTURE VOLUME ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 3.06 (1-HOUR RAIN = 2.65) EXCESS PRECIP. = 1.513 INCHES VOLUME OF EXCESS PRECIP = 13.07 ACRE-FEET PEAK Q = 136. CFS TIME OF PEAK = 45. MIN. INFILT.= 3.90 IN/HR DECAY =0.00180 FNINF = 0.56 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 12/ 5/2005 AT TIME 14:18 CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 rn, PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 ain 100-year Proposed ..-) BASIN ID: 4 -- BASIN COMMENT: SUBBASIN= B3 AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION (SQMI) (MI) (MI) (PCT) (FT/FT) (MIN) " 0.48 1.23 0.43 48.60 0.0116 5.00 COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.089 0.547 THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM r. ( DEFAULT ) ( DEFAULT ) R= 0.22 D= 0.84 Page 6 100year proposed.cho CALCULATED UNIT HYDROGRAPH TIME TO PEAK PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF (MIN) (CFS/SQMI) (CFS) (AF) 13.86 1849.43 889.57 25.65 WIDTH AT 50 = 16. MIN. WIDTH AT 75 = 8. MIN. K50 =0.35 K75 =0.45 RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. INFILTRATION = 3.84 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.56 IN./HR. TIME UNIT TIME UNIT TIME UNIT .- HYDROGRAPH HYDROGRAPH HYDROGRAPH 0. 0. 30. 298. 60. 35. 5. 186. 35. 209. 65. 25. '. 10. 659. 40. 146. 70. 17. 15. 873. 45. 102. 75. 12. 20. 611. 50. 72. 80. 8. 25. 426. I 55. 50. 85. 0. 1 BASIN ID: 4 -- BASIN COMMENT: SUBBASIN= B3 0. **** STORM NO. = 1 **** DATE OR RETURN PERIOD = 100-year INCREMENT TOTAL* STORM** INCREMENT TOTAL* STORM** TIME RAINFALL EXCESS HYDROGRAPH TIME RAINFALL EXCESS HYDROGRAPH .., (MIN.) (IN) PRECIP (CFS) (MIN.) (IN) PRECIP (CFS) 0. 0.00 0.000 0. 85. 0.03 0.013 214. 5. 0.03 0.000 0. 90. 0.03 0.013 164. 10. 0.08 0.022 4. 95. 0.03 0.013 129. 15. 0.12 0.047 23. 100. 0.03 0.013 105. 20. 0.21 0.083 66. 105. 0.03 0.013 87. 25. 0.37 0.211 148. 110. 0.03 0.013 72. .. 30. 0.66 0.615 364. 115. 0.03 0.013 63. 35. 0.37 0.334 728. 120. 0.03 0.013 58. 40. 0.21 0.181 974. 125. 0.00 0.000 52. 45. 0.16 0.135 939. 130. 0.00 0.000 41. 50. 0.13 0.105 822. 135. 0.00 0.000 28. .... 55. 0.11 0.079 700. 140. 0.00 0.000 19. 60. 0.11 0.079 590. 145. 0.00 0.000 13. 65. 0.11 0.079 502. 150. 0.00 0.000 9. 70. 0.05 0.028 431. 155. 0.00 0.000 6. 75. 0.05 0.028 354. 160. 0.00 0.000 4. r 80. 0.03 0.013 276. 165. 0.00 0.000 3. * LESS ANY WATER QUALITY CAPTURE VOLUME ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 3.06 (1-HOUR RAIN = 2.65) EXCESS PRECIP. = 2.143 INCHES VOLUME OF EXCESS PRECIP = 54.97 ACRE-FEET PEAK Q = 974. CFS TIME OF PEAK = 40. MIN. INFILT.= 3.84 IN/HR DECAY =0.00180 FNINF = 0.56 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 12/ 5/2005 AT TIME 14:18 CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 r- ain 100-year Proposed Page 7 AA ^ 100year proposed.cho AABASIN ID: 6 -- BASIN COMMENT: SUBBASIN= Cl AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION (SOMI) (MI) (MI) (PCT) (FT/FT) (MIN) 0.87 1.56 0.73 2.00 0.0121 5.00 AA COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) - 0.156 0.327 THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM ( DEFAULT ) ( DEFAULT ) R= 0.06 D= 0.04 AA CALCULATED UNIT HYDROGRAPH TIME TO PEAK PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF (MIN) (CFS/SQMI) (CFS) (AF) r 31.18 437.41 378.79 46.19 WIDTH AT 50 = 69. MIN. WIDTH AT 75 = 36. MIN. K50 =0.27 K75 =0.37 A. RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. INFILTRATION = 4.32 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.59 IN./HR. TIME UNIT TIME UNIT TIME UNIT HYDROGRAPH HYDROGRAPH HYDROGRAPH AA 0. 0. 105. 134. 210. 29. 5. 47. 110. 125. 215. 27. 10. 139. 115. 116. 220. 25. 15. 238. 120. 108. 225. 24. 20. 314. 125. 100. 230. 22. AA 25. 361. 130. 93. 235. 21. 30. 378. 135. 87. 240. 19. 35. 373. 140. 81. 245. 18. 40. 354. 145. 75. 250. 17. A. 45. 327. 150. 70. 255. 15. 50. 299. 155. 65. 260. 14. 55. 279. 160. 61. 265. 13. 60. 262. 165. 56. 270. 12. 65. 245. 170. 52. 275. 12. .A 70. 228. 175. 49. 280. 11. 75. 210. 180. 45. 285. 10. 80. 193. 185. 42. 290. 9. 85. 179. 190. 39. 295. 9. 90. 166. 195. 37. 300. 8. 95. 155. 200. 34. 305. 7. 100. 144. 205. 32. 310. 0. 1 BASIN ID: 6 -- BASIN COMMENT: SUBBASIN= Cl AA **** STORM NO. = 1 **** DATE OR RETURN PERIOD = 100-year AA INCREMENT TOTAL* STORM** I INCREMENT TOTAL* STORM** I TIME RAINFALL EXCESS HYDROGRAPH I TIME RAINFALL EXCESS HYDROGRAPH I ,,.^ (MIN.) (IN) PRECIP (CFS) I (MIN.) (IN) PRECIP (CFS) I I I AA Page 8 100year proposed.cho 0. 0.00 0.000 0. 180. 0.00 0.000 109. 5. 0.03 0.000 0. 185. 0.00 0.000 101. - 10. 0.08 0.000 0. 190. 0.00 0.000 94. 15. 0.12 0.000 0. 195. 0.00 0.000 88. 20. 0.21 0.000 0. 200. 0.00 0.000 82. 25. 0.37 0.023 1. 205. 0.00 0.000 76. - 30. 0.66 0.598 32. 210. 0.00 0.000 71. 35. 0.37 0.313 104. 215. 0.00 0.000 66. 40. 0.21 0.158 201. 220. 0.00 0.000 61. 45. 0.16 0.113 298. 225. 0.00 0.000 57. 50. 0.13 0.083 380. 230. 0.00 0.000 53. - 55. 0.11 0.057 439. 235. 0.00 0.000 49. 60. 0.11 0.057 473. 240. 0.00 0.000 46. 65. 0.11 0.058 487. 245. 0.00 0.000 43. 70. 0.05 0.005 485. 250. 0.00 0.000 40. 75. 0.05 0.005 471. 255. 0.00 0.000 37. - 80. 0.03 0.000 452. 260. 0.00 0.000 34. 85. 0.03 0.000 430. 265. 0.00 0.000 32. 90. 0.03 0.000 405. 270. 0.00 0.000 30. 95. '0.03 0.000 379. 275. 0.00 0.000 28. 100. 0.03 0.000 353. 280. 0.00 0.000 26. '-, 105. 0.03 0.000 326. 285. 0.00 0.000 24. 110. 0.03 0.000 302. 290. 0.00 0.000 22. 115. 0.03 0.000 280. 295. 0.00 0.000 21. 120. 0.03 0.000 261. 300. 0.00 0.000 19. 125. 0.00 0.000 242. 305. 0.00 0.000 18. 130. 0.00 0.000 225. 310. 0.00 0.000 17. 135. 0.00 0.000 209. 315. 0.00 0.000 16. 140. 0.00 0.000 194. 320. 0.00 0.000 14. 145. 0.00 0.000 181. 325. 0.00 0.000 13. 150. 0.00 0.000 168. 330. 0.00 0.000 12. 155. 0.00 0.000 156. 335. 0.00 0.000 7. 160. 0.00 0.000 146. 340. 0.00 0.000 5. 165. 0.00 0.000 135. 345. 0.00 0.000 3. 170. 0.00 0.000 126. ( 350. 0.00 0.000 2. rn- .0--, vs. 0.00 0.000 117. 355. 0.00 0.000 1. * LESS ANY WATER QUALITY CAPTURE VOLUME ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 3.06 (1-HOUR RAIN = 2.65) EXCESS PRECIP. = 1.470 INCHES VOLUME OF EXCESS PRECIP = 67.92 ACRE-FEET PEAK Q = 487. CFS TIME OF PEAK = 65. MIN. - INFILT.= 4.32 IN/HR DECAY =0.00180 FNINF = 0.59 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 12/ 5/2005 AT TIME 14:18 .. CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 ain 100-year Proposed BASIN ID: 7 -- BASIN COMMENT: SUBBASIN= C2 AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION - (SQMI) (MI) (MI) (PCT) (FT/FT) (MIN) 0.37 0.76 0.34 46.50 0.0162 5.00 .. COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.090 0.508 .. THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS o'.,, AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM — Page 9 100year proposed.cho .."^ ( DEFAULT ) ( DEFAULT ) R= 0.21 D= 0.83 CALCULATED UNIT HYDROGRAPH TIME TO PEAK PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF (MIN) (CFS/SQMI) (CFS) (AF) 10.03 2593.59 949.25 19.52 WIDTH AT 50 = 12. MIN. WIDTH AT 75 = 6. MIN. K50 =0.35 K75 =0.45 .. RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. INFILTRATION = 4.18 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.58 IN./HR. TIME UNIT TIME UNIT TIME UNIT HYDROGRAPH HYDROGRAPH HYDROGRAPH 0. 0. 25. 225. 50. 18. 5. 339. 30. 136. 55. 11. 10. 949. 35. 82. 60. 0. 15. 618. 40. 50. 0. 0. 20. 371. 45. 30. 0. 0. 1 BASIN ID: 7 -- BASIN COMMENT: SUBBASIN= C2 **** STORM NO. = 1 **** DATE OR RETURN PERIOD = 100-year INCREMENT TOTAL* STORM** INCREMENT TOTAL* STORM** ... _` TIME RAINFALL EXCESS HYDROGRAPH TIME RAINFALL EXCESS HYDROGRAPH (MIN.) (IN) PRECIP (CFS) (MIN.) (IN) PRECIP (CFS) 0. 0.00 0.000 0. 75. 0.05 0.026 184. " 5. 0.03 0.000 0. 80. 0.03 0.012 135. 10. 0.08 0.021 7. 85. 0.03 0.012 92, 15. 0.12 0.045 35. 90. 0.03 0.012 67. 20. 0.21 0.078 82. 95. 0.03 0.012 53. 25. 0.37 0.196 176. 100. 0.03 0.012 45. 30. 0.66 0.613 463. 105. 0.03 0.012 40. 35. 0.37 0.332 857. 110. 0.03 0.012 37, 40. 0.21 0.178 852. 115. 0.03 0.012 36. 45. 0.16 0.133 706. 120. 0.03 0.012 35. 50. 0.13 0.103 568. 125. 0-00 0.000 30. 55. 0.11 0.077 452. 130. 0.00 0.000 19. 60. 0.11 0.077 361. 135. 0.00 0.000 11. 65. 0.11 0.078 305. 140. 0.00 0.000 7. 70. 0.05 0.026 254. 145. 0.00 0.000 4. * LESS ANY WATER QUALITY CAPTURE VOLUME ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 3.06 (1-HOUR RAIN = 2.65) EXCESS PRECIP. = 2.092 INCHES VOLUME OF EXCESS PRECIP = 40.83 ACRE-FEET PEAK Q = 857. CFS TIME OF PEAK = 35. MIN. INFILT.= 4.18 IN/HR DECAY =0.00180 FNINF = 0.58 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 12/ 5/2005 AT TIME 14:18 CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 r PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 2^ ain 100-year Proposed " Page 10 100year proposed.Cho BASIN ID: 8 -- BASIN COMMENT: SUBBASIN= El AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION (SOMI) (MI) (MI) (PCT) (FT/FT) (MIN) 0.17 1.11 0.56 2.00 0.0099 5.00 COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.156 0.256 THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM ( DEFAULT ) ( DEFAULT ) R= 0.06 D= 0.04 CALCULATED UNIT HYDROGRAPH TIME TO PEAK PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF (MIN) (CFS/SQMI) (CFS) (AF) 24.93 438.83 75.48 9.17 WIDTH AT 50 = 68. MIN. WIDTH AT 75 = 36. MIN. K50 =0.22 K75 =0.30 RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. INFILTRATION = 4.42 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.60 IN./HR. - 0". TIME UNIT TIME UNIT TIME UNIT HYDROGRAPH HYDROGRAPH HYDROGRAPH 0. 0 75. 40. 150. 16. 5. 13 80. 37. 155. 16. III 10. 38. 85. 35. 160. 15. 15. 59. 90. 33. 165. 14. 20. 72. 95. 31. 170. 13. 25. 75. 100. 29. 175. 12. 30. 73. 105. 28. 180. 12. 35. 67. 110. 26. 185. 11. 40. 60. 115. 25. 190. 10. 45. 56. 120. 23. 195. 10. 50. 57. 125. 22. 200. 9. 55. 53. 130. 21. 205. 9. 60. 50. 135. 20. 210. 8. 65. 47. 140. 18. 215. 8. 70. 43. 145. 17. 220. 0. 1 BASIN ID: 8 -- BASIN COMMENT: SUBBASIN= El **** STORM NO. = 1 **** DATE OR RETURN PERIOD = 100-year INCREMENT TOTAL* STORM** INCREMENT TOTAL* STORM** .. TIME RAINFALL EXCESS HYDROGRAPH TIME RAINFALL EXCESS HYDROGRAPH (MIN.) (IN) PRECIP (CFS) (MIN. ) (IN) PRECIP (CFS) 0. 0.00 0.000 0. 135. 0.00 0.000 42. 5. 0.03 0.000 0. 140. 0.00 0.000 40. 10. 0.08 0.000 0. 145. 0.00 0.000 38. 15. 0.12 0.000 0. 150. 0.00 0.000 36. ^, 20. 0.21 0.000 0. 155. 0.00 0.000 34. 25. 0.37 0.020 0. 160. 0.00 0.000 32. Page 11 mwm 100year proposed.cho ....•--, 30. 0.66 0.597 9. 165. 0.00 0.000 30. 35. 0.37 0.313 28. 170. 0.00 0.000 28. 40. 0.21 0.158 51. 175. 0.00 0.000 27. ` 45. 0.16 0.112 70. 180. 0.00 0.000 25. SO. 0.13 0.082 84. 185. 0.00 0.000 24. 55. 0.11 0.056 90. 190. 0.00 0.000 22. 60. 0.11 0.057 91. 195. 0.00 0.000 21. 65. 0.11 0.057 90. 200. 0.00 0.000 20. 70. 0.05 0.004 88. 205. 0.00 0.000 19. 75. 0.05 0.004 87. 210. 0.00 0.000 18. 80. 0.03 0.000 84. 215. 0.00 0.000 17. 85. 0.03 0.000 80. 220. 0.00 0.000 16. 90. 0.03 0.000 76. 225. 0.00 0.000 15. 95. 0.03 0.000 71. 230. 0.00 0.000 14. 100. 0.03 0.000 66. 235. 0.00 0.000 13. 105. 0.03 0.000 61. 240. 0.00 0.000 12. 110. 0.03 0.000 58. 245. 0.00 0.000 7. 115. 0.03 0.000 54. 250. 0.00 0.000 5. 120. 0.03 0.000 51. 255. 0.00 0.000 3. 125. 0.00 0.000 48. 260. 0.00 0.000 2. 130. 0.00 0.000 45. 265. 0.00 0.000 1. * LESS ANY WATER QUALITY CAPTURE VOLUME ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 3.06 (1-HOUR RAIN = 2.65) EXCESS PRECIP. = 1.461 INCHES VOLUME OF EXCESS PRECIP = 13.40 ACRE-FEET PEAK Q = 91. CFS TIME OF PEAK = GO. MIN. INFILT.= 4.42 IN/HR DECAY =0.00180 FNINF = 0.60 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 12/ 5/2005 AT TIME 14:18 CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 - �� PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 ain 100-year Proposed ` BASIN ID: 10 -- BASIN COMMENT: SUBBASIN= E2 AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION (SQMI) (MI) (MI) (PCT) (FT/FT) (MIN) 0.32 0.50 0.08 58.00 0.0370 5.00 COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.085 0.579 THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM ( DEFAULT ) ( DEFAULT ) R= 0.25 D= 0.89 CALCULATED UNIT HYDROGRAPH TIME TO PEAK PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF (MIN) (CFS/SQMI) (CFS) (AF) 4.92 9186.25 2967.16 17.23 WIDTH AT 50 = 3. MIN. WIDTH AT 75 = 2. MIN. K50 =0.35 K75 =0.45 .r RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. INFILTRATION = 3.48 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.53 IN./HR. Page 12 100year proposed.cho TIME UNIT TIME UNIT TIME UNIT HYDROGRAPH HYDROGRAPH HYDROGRAPH 0. 0. 10. 498. 20. 12. 5. 2960. 15. 79. 25. 0. 1 BASIN ID: 10 -- BASIN COMMENT: SUBBASIN= E2 **** STORM NO. = 1 **** DATE OR RETURN PERIOD = 100-year INCREMENT TOTAL* STORM** INCREMENT TOTAL* STORM** TIME RAINFALL EXCESS HYDROGRAPH TIME RAINFALL EXCESS HYDROGRAPH (MIN.) (IN) PRECIP (CFS) (MIN.) (IN) PRECIP (CFS) ^ 0. 0.00 0.000 0. 65. 0.11 0.084 299. 5. 0.03 0.000 0. 70. 0.05 0.033 147. 10. 0.08 0.027 81. 75. 0.05 0.033 121. 15. 0.12 0.060 191. 80. 0.03 0.016 68. 20. 0.21 0.104 340. 85. 0.03 0.016 59. 25. 0.37 0.245 783. 90. 0.03 0.016 58. 30. 0.66 0.619 1965. 95. 0.03 0.016 57. 35. 0.37 0.339 1331. 100. 0.03 0.016 57. 40. 0.21 0.185 769. 105. 0.03 0.016 57. 45. 0.16 0.140 541. 110. 0.03 0.016 57. ... 50. 0.13 0.109 412. 115. 0.03 0.016 57, 55. 0.11 0.084 316. 120. 0.03 0.016 57. 60. 0.11 0.084 301. 125. 0.00 0.000 10. * LESS ANY WATER QUALITY CAPTURE VOLUME , ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 3.06 (1-HOUR RAIN = 2.65) EXCESS PRECIP. = 2.293 INCHES VOLUME OF EXCESS PRECIP = 39.50 ACRE-FEET PEAK Q = 1965. CFS TIME OF PEAK = 30. MIN. INFILT.= 3.48 IN/HR DECAY =0.00180 FNINF = 0.53 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 12/ 5/2005 AT TIME 14;18 CUHPF/PC RELEASE 2A (32-HIT VER) SEPTEMBER 10, 1998 PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 ain 100-year Proposed BASIN ID: 9 -- BASIN COMMENT: SUBBASIN= B4 AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION (SQMI) (MI) (MI) (PCT) (FT/FT) (MIN) r 0.38 1.01 0.31 45.77 0.0168 5.00 COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.090 0.504 THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM ( DEFAULT ) ( DEFAULT ) e". R= 0.21 D= 0.83 Page 13 100year proposed.cho �� CALCULATED UNIT HYDROGRAPH TIME TO PEAK PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF (MIN) (CFS/SQMI) (CFS) (AF) 10.76 2343.54 878.83 20.00 WIDTH AT 50 = 13. MIN. WIDTH AT 75 = 7. MIN. K50 =0.35 K75 =0.45 RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. .. INFILTRATION = 3.71 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.55 IN./HR. TIME UNIT TIME UNIT TIME UNIT HYDROGRAPH HYDROGRAPH HYDROGRAPH 0. 0. 25. 259. 50. 28. 5. 292. 30. 166. 55. 18. 10. 866. 35. 106. 60. 11. .... 15. 632. 40. 68. 65. 0. 20. 405. 45. 43. 0. 0. 1 BASIN ID: 9 -- BASIN COMMENT: SUHBASIN= 84 ma **** STORM NO. = 1 **** DATE OR RETURN PERIOD = 100-year INCREMENT TOTAL* STORM** INCREMENT TOTAL* STORM** TIME RAINFALL EXCESS HYDROGRAPH TIME RAINFALL EXCESS HYDROGRAPH (MIN.) (IN) PRECIP (CFS) (MIN.) (IN) PRECIP (CFS) 0. 0.00 0.000 0. 80. 0.03 0.012 160. 5. 0.03 0.000 0. 85. 0.03 0.012 115. 10. 0.08 0.020 6. 90. 0.03 0.012 82. 15. 0.12 0.044 30. 95. 0.03 0.012 63. 20. 0.21 0.076 73. 100. 0.03 0.012 52. 25. 0.37 0.206 162. 105. 0.03 0.012 45. 30. 0.66 0.615 429. 110. 0.03 0.012 41. 35. 0.37 0.334 806. 115. 0.03 0.012 38. 40. 0.21 0.180 843. j 120. 0.03 0.012 37. 45. 0.16 0.134 727. 125. 0.00 0.000 32. 50. 0.13 0.104 601. 130. 0.00 0.000 21. 55. 0.11 0.078 488. 135. 0.00 0.000 14. 60. 0.11 0.079 397. 140. 0.00 0.000 9. 65. 0.11 0.079 336. 145. 0.00 0.000 5. 70. 0.05 0.027 282. 150. 0.00 0.000 3. 75. 0.05 0.027 213. 155. 0.00 0.000 2. * LESS ANY WATER QUALITY CAPTURE VOLUME ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 3.06 (1-HOUR RAIN = 2.65) EXCESS PRECIP. = 2.114 INCHES '.. VOLUME OF EXCESS PRECIP = 42.27 ACRE-FEET PEAK Q = 843. CFS TIME OF PEAK = 40. MIN. INFILT.= 3.71 IN/HR DECAY =0.00180 FNINF = 0.55 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 12/ 5/2005 AT TIME 14:18 CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 ain 100-year Proposed ,0"6,. BASIN ID: 11 -- BASIN COMMENT: SUHBASIN= D1 Page 14 100year proposed.cho i� AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION (SQMI) (MI) (MI) (PCT) (FT/FT) (MIN) 0.15 0.72 0.30 2.00 0.0159 5.00 COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.156 0.252 THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM ( DEFAULT ) ( DEFAULT ) "' R. 0.06 D. 0.04 CALCULATED UNIT HYDROGRAPH TIME TO PEAK PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF (MIN) (CFS/SQMI) (CFS) (AF) 14.56 802.08 122.72 8.16 WIDTH AT 50 = 37. MIN. WIDTH AT 75 = 19. MIN. K50 =0.23 K75 =0.32 RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. INFILTRATION = 4.37 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.59 IN./HA. TIME UNIT TIME UNIT TIME UNIT HYDROGRAPH HYDROGRAPH HYDROGRAPH 0. 0. 50. 52. 100. 16. 5. 50. 55. 47. 105. 15. 10. 107. 60. 41. 110. 13. "' 15. 123. 65. 37. 115. 12. 20. 110. 70. 33. 120. 10. 25. 94. 75. 29. 125. 9. 30. 88. 80. 26. 130. 8. 35. 78. 85. 23. 135. 0. 40. 68. 90. 21. 0. 0. 45. 59. 95. 18. 0. 0. 1 BASIN ID: 11 -- BASIN COMMENT: SUBBASIN= D1 **** STORM NO. = 1 **** DATE OR RETURN PERIOD = 100-year r INCREMENT TOTAL* STORM** INCREMENT TOTAL* STORM** TIME RAINFALL EXCESS HYDROGRAPH TIME RAINFALL EXCESS HYDROGRAPH (MIN.) (IN) PRECIP (CFS) (MIN.) (IN) PRECIP (CFS) 0. 0.00 0.000 0. 90. 0.03 0.000 68. 5. 0.03 0.000 0. 95. 0.03 0.000 60. 10. 0.08 0.000 0. 100. 0.03 0.000 54. 15. 0.12 0.000 0. 105. 0.03 0.000 48. 20. 0.21 0.000 0. 110. 0.03 0.000 42. 25. 0.37 0.022 1. 115. 0.03 0.000 38. 30. 0.66 0.598 32. 120. 0.03 0.000 34. 35. 0.37 0.313 82. 125. 0.00 0.000 30. 40. 0.21 0.158 117. 130. 0.00 0.000 27. 45. 0.16 0.113 129. 135. 0.00 0.000 24. 50. 0.13 0.082 128. 140. 0.00 0.000 21. .0" 55. 0.11 0.057 126. 145. 0.00 0.000 19. 60. 0.11 0.057 122. 150. 0.00 0.000 17. Page 15 wis 100year proposed.cho ,..0—=. 65. 0.11 0.057 116. I155. 0.00 0.000 15. 70. 0.05 0.004 107. I 160. 0.00 0.000 9. 75. 0.05 0.005 97. I 165. 0.00 0.000 6. "' 80. 0.03 0.000 86. I 170. 0.00 0.000 4. 85. 0.03 0.000 77. I 175. 0.00 0.000 3. * LESS ANY WATER QUALITY CAPTURE VOLUME ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 3.06 (1-HOUR RAIN = 2.65) EXCESS PRECIP. = 1.466 INCHES ... VOLUME OF EXCESS PRECIP = 11.96 ACRE-FEET PEAK Q = 129. CFS TIME OF PEAK = 45. MIN. INFILT.= 4.37 IN/HR DECAY =0.00180 FNINF = 0.59 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 12/ 5/2005 AT TIME 14:18 CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 ain 100-year Proposed BASIN ID: 12 -- BASIN COMMENT: SUBBASIN= D2 AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION (SQMI) (MI) (MI) (PCT) (FT/FT) (MIN) 0.06 0.39 0.15 2.00 0.0171 5.00 COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.156 0.218 o. — ..••••7 THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM ( DEFAULT ( ( DEFAULT ) R= 0.06 D= 0.04 CALCULATED UNIT HYDROGRAPH TIME TO PEAK TIME OF CONCENTRATION PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF (MIN) (MIN) (CFS/SQMI) (CFS) (AF) „- 7.50 21.20 1677.00 98.94 3.15 *** NOTE . THE TIME TO PEAK IS CALCULATED BASED ON THE TIME OF CONCENTRATION PROVIDED BY THE USER, .- REPLACING THE ONE COMPUTED BY CUHPF (TP= 8.78) WIDTH AT 50 = 18. MIN. WIDTH AT 75 = 9. MIN. K50 =0.25 K75 =0.34 RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. INFILTRATION = 4.49 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.60 IN./HR. TIME UNIT TIME UNIT TIME UNIT HYDROGRAPH HYDROGRAPH HYDROGRAPH 0. 0. 25. 41. 50. 12. 5. 84. 30. 32. 55. 10. =0—, 10. 90. 35. 25. 60. 8. 15. 70. 40. 20. 65. 0. Page 16 1o0year proposed.cho ..-8, 20. 52. I45. 16. I0. 0. 1 BASIN ID: 12 -- BASIN COMMENT: SUBBASIN= D2 **** STORM NO. = 1 **** DATE OR RETURN PERIOD = 100-year INCREMENT TOTAL* STORM** INCREMENT TOTAL* STORM** TIME RAINFALL EXCESS HYDROGRAPH TIME RAINFALL EXCESS HYDROGRAPH (MIN.) (IN) PRECIP (CFS) (MIN.) (IN) PRECIP (CFS) 0. 0.00 0.000 0. 55. 0.11 0.056 61. 5. 0.03 0.000 0. 60. 0.11 0.056 53. 10. 0.08 0.000 0. 65. 0.11 0.057 48. - 15. 0.12 0.000 0. 70. 0.05 0.004 39. 20. 0.21 0.000 0. 75. 0.05 0.004 31. 25. 0.37 0.018 2. 80. 0.03 0.000 24. 30. 0.66 0.597 52. 85. 0.03 0.000 19. 35. 0.37 0.312 82. 90. 0.03 0.000 11. ` 40. 0.21 0.157 84. 95. 0.03 0.000 7. 45. 0.16 0.112 78. 100. 0.03 0.000 5. 50. 0.13 0.082 69. 105. 0.03 0.000 3. * LESS ANY WATER QUALITY CAPTURE VOLUME ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 3.06 (1-HOUR RAIN = 2.65) EXCESS PRECIP. = 1.457 INCHES VOLUME OF EXCESS PRECIP = 4.58 ACRE-FEET PEAK Q = 84. CFS TIME OF PEAK = 40. MIN. INFILT.= 4.49 IN/HR DECAY =0.00180 FNINF = 0.60 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. RATIONAL FORMULA C = 0.48 I = 5.0 INCHES/HOUR A = 37.8 ACRES Q = 91. CFS 1 U.D.F.C.D. CUHP RUNOFF ANALYSIS EXECUTED ON DATE 12/ 5/2005 AT TIME 14:18 CUHPF/PC RELEASE 2A (32-BIT VER) SEPTEMBER 10, 1998 PRINT OPTION NUMBER SELECTED FOR THIS BASIN IS 7 ain 100-year Proposed .. BASIN ID: 13 -- BASIN COMMENT: SUBBASIN= D3 AREA LENGTH OF BASIN DIST TO CENTROID IMPERV. AREA SLOPE UNIT DURATION (SQMI) (MI) (MI) (PCT) (FT/FT) (MIN) .. 0.22 0.29 0.05 41.70 0.0400 5.00 COEFFICIENT COEFFICIENT (REFLECTING TIME TO PEAK) (RELATED TO PEAK RATE OF RUNOFF) 0.092 0.431 THIS BASIN USES TRADITIONAL DRAINAGE PRACTICES FRACTION OF PERVIOUS FRACTION OF IMPERVIOUS AREA RECEIVING AREA DIRECTLY CONNECTED IMPERVIOUS DRAINAGE TO DRAINAGE SYSTEM ( DEFAULT ) ( DEFAULT ) R. 0.20 D= 0.81 CALCULATED UNIT HYDROGRAPH "-1 TIME TO PEAK PEAK RATE OF RUNOFF UNIT HYDROGRAPH PEAK VOLUME OF RUNOFF (MIN) (CFS/SQMI) (CFS) (AF) *. Page 17 100year proposed.cho 4.09 10393.54 2255.40 11.57 WIDTH AT 50 = 3. MIN. WIDTH AT 75 = 2. MIN. K50 =0.35 K75 =0.45 RAINFALL LOSSES INPUT W/ BASIN DATA MAX. PERVIOUS RET. =0.40 IN. MAX. IMPERVIOUS RET. =0.05 IN. INFILTRATION = 3.15 IN./HR. DECAY = 0.00180/SECOND FNINFL = 0.51 IN./HR. TIME UNIT TIME UNIT TIME UNIT HYDROGRAPH HYDROGRAPH HYDROGRAPH 0. 0. 10. 227. 20. 0. _ 5. 1647. 15. 31. 0. 0. 1 BASIN ID: 13 -- BASIN COMMENT: SUBBASIN= D3 ` **** STORM NO. = 1 **** DATE OR RETURN PERIOD = 100-year INCREMENT TOTAL* STORM** INCREMENT TOTAL* STORM** TIME RAINFALL EXCESS HYDROGRAPH TIME RAINFALL EXCESS HYDROGRAPH (MIN.) (IN) PRECIP (CFS) (MIN.) (IN) PRECIP (CFS) 0. 0.00 0.000 0. 65. 0.11 0.079 150. 5. 0.03 0.000 0. 70. 0.05 0.027 65. 10. 0.08 0.018 30. 75. 0.05 0.027 53. 15. 0.12 0.039 68. 80. 0.03 0.011 26. 20. 0.21 0.068 121. 85. 0.03 0.011 22. 25. 0.37 0.212 366. 90. 0.03 0.011 22. ,...' ..0-. 30. 0.66 0.617 1067. 95. 0.03 0.011 22. 35. 0.37 0.335 698. 100. 0.03 0.011 22. 40. 0.21 0.181 393. 105. 0.03 0.011 22. 45. 0.16 0.135 274. 110. 0.03 0.011 22. 50. 0.13 0.104 208. 115. 0.03 0.011 22. 55. 0.11 0.079 157. 120. 0.03 0.011 22. 60. 0.11 0.079 151. 125. 0.00 0.000 3. * LESS ANY WATER QUALITY CAPTURE VOLUME ** INCLUDES ANY WATER QUALITY CAPTURE VOLUME RELEASE FLOW TOTAL PRECIP. = 3.06 (1-HOUR RAIN = 2.65) EXCESS PRECIP. = 2.101 INCHES VOLUME OF EXCESS PRECIP = 24.32 ACRE-FEET PEAK Q = 1067. CFS TIME OF PEAK = 30. MIN. INFILT.= 3.15 IN/HR DECAY =0.00180 FNINF = 0.51 IN/HR MAX.PERV.RET.=0.40 IN. MAX.IMP.RET.=0.05 IN. as. Page 18 rY �d t k i } r� R By. Ap(' M1i ('1 r. { n S A 3� n APPENDIX Cl - Proposed SWMM Analysis 100prop.sin ,a-- 2 1 1 2 3 4 WATERSHED 1 ST. VRAIN DETENTION POND ROUTING TRIBUTARY TO ST. VRAIN RIVER 50 0 0 5.0 I 1 1 112 .., 1 2 122 1 3 132 1 4 142 1 5 152 1 6 162 + 1 7 172 1 8 182 1 9 192 1 10 1002 1 11 1012 1 12 1022 1 13 1032 O 112 101 0 5 4.0 2253. 0.011 0.0 0.0 0.016 4.0 15.0 2253. 0.011 4.0 4.0 0.035 10.0 0 122 101 0 3 0.0 1. 0.010 0.0 0.0 0.020 10.0 O 101 11 2 2 0.1 10. 0.001 0.0 0.0 0.035 0.1 0.000 0.0 27.800 193.0 0 132 102 0 5 4.0 6074. 0.012 0.0 0.0 0.016 4.0 45.0 6074. 0.012 4.0 4.0 0.030 10.0 0 142 102 0 3 0.0 1. 0.020 0.0 0.0 0.020 10.0 0 152 102 0 4 4.0 3466. 0.012 0.0 0.0 0.016 4.0 45.0 3466. 0.012 4.0 4.0 0.035 10.0 0 102 21 2 2 0.1 10. 0.001 0.0 0.0 0.035 0.1 0.000 0.0 67.000 115.0 0 21 103 0 4 25.0 2427. 0.020 4.0 4.0 0.030 3.0 45.0 2427. 0.020 4.0 4.0 0.035 10.0 /m", 0 192 103 0 3 0.0 1. 0.023 0.0 0.0 0.020 10.0 0 103 31 2 2 0.1 10. 0.001 0.0 0.0 0.035 0.1 0.000 0.0 29.900 219.0 .... 0 162 104 0 4 25.0 3682. 0.020 4.0 4.0 0.030 3.0 45.0 3682. 0.020 4.0 4.0 0.035 10.0 0 172 104 0 3 0.0 1. 0.020 0.0 0.0 0.020 10.0 O 104 41 2 2 0.1 10. 0.001 0.0 0.0 0.035 0.1 0.000 0.0 25.200 630.0 O 1012 106 0 5 4.0 2085. 0.030 0.0 0.0 0.016 4.0 45.0 2085. 0.030 4.0 4.0 0.035 10.0 0 1022 106 0 5 4.0 1303. 0.030 0.0 0.0 0.016 4.0 45.0 1303. 0.030 4.0 4.0 0.035 10.0 r 0 1032 106 0 3 0.0 1. 0.020 0.0 0.0 0.020 10.0 0 106 61 2 2 0.1 10. 0.001 0.0 0.0 0.035 0.1 0.000 0.0 36.000 63.0 O 61 105 0 3 0.0 1. 0.020 0.0 0.0 0.020 10.0 r` 0 1002 105 0 3 0.0 1. 0.020 0.0 0.0 0.020 10.0 0 182 105 0 5 4.0 3510. 0.030 0.0 0.0 0.016 4.0 45.0 3510. 0.030 4.0 4.0 0.035 10.0 0 105 51 2 2 0.1 10. 0.001 0.0 0.0 0.035 0.1 0.000 0.0 55.700 140.0 0 25 112 122 101 11 132 142 152 102 21 192 103 31 162 172 104 41 182 1002 105 51 1012 1022 1032 106 61 ENDPROGRAN Page 1 100prop.sot URBAN DRAINAGE STORM WATER MANAGEMENT MODEL - 32 BIT VERSION 1998 REVISED BY UNIVERSITY OF COLORADO AT DENVER *** ENTRY MADE TO RUNOFF MODEL *** ST. VRAIN DETENTION POND ROUTING TRIBUTARY TO ST. VRAIN RIVER as. ONUMBER OF TIME STEPS 50 OINTEGRATION TIME INTERVAL (MINUTES), 5.00 25.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH 1 ST. VRAIN DETENTION POND ROUTING TRIBUTARY TO ST. VRAIN RIVER HYDROGRAPHS FROM CUHPF MODEL ARE LISTED FOR THE FOLLOWING 13 SUBCATCHMENTS TIME(HR/MIN) 1 2 3 5 4 6 7 8 10 9 11 12 13 0 0. 0. 0. 0. 0. 0. 0 0. 0. 0. ... 0. 0. 0. 0. O 5. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. J'", 0. 0. 0. 0 10. 0. 2. 0. 0. 4. 0. 7. 0. 81. 6. 0. 0. 30. 0 15. 0. 13. 0. 0. 23. 0. 35. 0. 191. 30. 0. 0. 68. .... 0 20. 0. 36. 0. 0. 66. 0. 82. 0. 340. 73. 0. 0. 121. ... 0 25. 1. 80. 1. 2. 148. 1. 176. 0. 783. 162. 1. 2. 366. 0 30. 17. 190. 29. 33. 364. 32. 463. 9. 1965. 429. 32. 52. 1067. 0 35. 53. 369. 79. 85. 728. 104. 857. 28. 1331. ..... 806. 82. 82. 698. 0 40. 97. 494. 121. 122. 974. 201. 852. 51. 769. 843. ... 117. 84. 393. 0 45. 134. 485. 142.. 136. 939. 298. 706. 70. 541. 727. 129. 78. 274. 0 50. 160. 433. 146. 136. 822. 380. 568. 84. 412. 601. /', 128. 69. 208. Page 1 100prop.5ot i.. 0 55. 173. 376. 144. 135. 700. 439. 452. 90. 316. 488. 126. 61. 157. 1 0. 176. 322. 141. 130. 590. 473. 361. 91. 301. 397. 122. 53. 151. 1 5. 174. 278. 137. 125. 502. 487. 305. 90. 299. 336. 116. 48. 150. 1 10. 170. 241. 130. 116. 431. 485. 254. 88. 147. 282. 107. 39. 65. ... 1 15. 167. 201. 120. 105. 354. 471. 184. 87. 121. 213. 97. 31. 53. 1 20. 160. 160. 108. 95. 276. 452. 135. 84. 68. ... 160. 86. 24. 26. 1 25. 151. 127. 98. 84. 214. 430. 92. 80. 59. 115. 77. 19. 22. 1 30. 140. 99. 88. 75. 164. 405. 67. 76. 58. 82. 68. 11. 22. 1 35 130. 79. 79. 67. 129. 379. 53. 71. 57. 63. 60. 7. 22. •."'.6 1 40. 120. 64. 71. 60. 105. 353. 45. 66. 57. 52. 54. 5. 22. 1 45. 111. 50. 64. 53. 87. 326. 40. 61. 57. 45. 48. 3. 22. 1 50. 104. 41. 58. 47. 72. 302. 37. 58. 57. ... 41. 42. 2. 22. 1 55. 96. 37. 52. 42. 63. 280. 36. 54. 57. 38. 38. 0. 22. 2 0. 89. 33. 47. 38. 58. 261. 35. 51. 57. 37. 34. 0. 22. 2 5. 83. 30. 43. 34. 52. 242. 30. 48. 10. 32. 30. 0. 3. 2 10. 77. 24. 38. 30. 41. 225. 19. 45. 1. 21. 27. 0. 0. .. 2 15. 72. 17. 35. 27. 28. 209. 11. 42. 0. 14. 24. 0. 0. 2 20. 67. 12. 31. 24. 19. 194. 7. 40. 0. -' 9. 21. 0. 0. Ps.'" 2 25. 62. 8. 28. 21. 13. 181. 4. 38. 0. 5. Page 2 100prop.5ot /a. 19. 0. 0. 2 30. 58. 6. 25. 19. 9. 168. 2. 36. 0. 3. 17. 0. 0. 2 35 54. 4. 23. 17. 6. 156. 0. 34. 0. 2. 15. 0. 0. 2 40 50. 3. 21. 15. 4. 146. 0. 32. 0. 0. 9. 0. 0. 2 45. 47. 2. 19. 9. 3. 135. 0. 30. 0. 0. 6. 0. 0. 2 50. 44. 0. 17. 6. 2. 126. 0. 28. 0. 0. 4. 0. 0. 2 55. 41. 0. 15. 4. 0. 117. 0. 27. 0. 0. 3. 0. 0. .. 3 0. 38. 0. 14. 3. 0. 109. 0. 25. 0. 0. 2. 0. 0. 3 5. 35. 0. 8. 2. 0. 101. 0. 24. 0. is. 0. 0. 0. 0. 3 10 33. 0. 5. 0. 0. 94. 0. 22. 0. 0. - ..0"1-1 0. 0. 0. 3 15 31. 0. 4. 0. 0. 88. 0. 21. 0. 0. 0. 0. 0. 3 20. 29. 0. 2. 0. 0. 82. 0. 20. 0. 0. 0. 0. 0. ... 3 25. 27, 0. 2. 0. 0. 76. 0. 19. 0. 0. 0. 0. 0. .. 3 30. 25. 0. 0. 0. 0. 71. 0. 18. 0. 0. 0. 0. 0. 3 35. 23. 0. 0. 0. 0. 66. 0. 17. 0. 0. 0. 0. 0. 3 40. 22. 0. 0. 0. 0. 61. 0. 16. 0. 0. 0. 0. 0. 3 45 20. 0. 0. 0. 0. 57. 0. 15. 0. 0. 0. 0. 0. 3 50 19. 0. 0. 0. 0. 53. 0. 14. 0. 0. 0. 0. 0. 3 55 17. 0. 0. 0. 0. 49. 0. 13. 0. 0. /'-", 0. 0. 0. '. Page 3 100prop.sot ,n 4 0. 16. 0. 0. 0. 0. 46. 0. 12. 0. 0. 0. 0. 0. 4 5. 15. 0. 0. 0. 0. 43. 0. 7. 0. 0. 0. 0. 0. 4 10. 14. 0. 0. 0. 0. 40. 0. 5. 0. 0. 0. 0. 0. 1 ST. VRAIN DETENTION POND ROUTING TRIBUTARY TO ST. VRAIN RIVER WIDTH INVERT SIDE SLOPES ernOVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAN LENGTH SLOPE HORIZ TO VERT MANNING DEPTH SK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 112 101 0 5 PIPE 4.0 2253. .0110 .0 .0 .016 4.00 0 OVERFLOW 15.0 2253. .0110 4.0 4.0 .035 10.00 "" 122 101 0 3 .0 1. .0100 .0 .0 .020 10.00 0 101 11 2 2 PIPE .1 10. .0010 .0 .0 .035 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .ice .0 .0 27.8 193.0 132 102 0 5 PIPE 4.0 6074. .0120 .0 .0 .016 4.00 0 OVERFLOW 45.0 6074. .0120 4.0 4.0 .030 10.00 142 102 0 3 .0 1. .0200 .0 .0 .020 10.00 0 152 102 0 4 CHANNEL 4.0 3466. .0120 .0 .0 .016 4.00 0 .. OVERFLOW 45.0 3466. .0120 4.0 4.0 .035 10.00 102 21 2 2 PIPE .1 10. .0010 .0 .0 .035 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW - .0 .0 67.0 115.0 21 103 0 4 CHANNEL 25.0 2427. .0200 4.0 4.0 .030 3.00 0 OVERFLOW 45.0 2427. .0200 4.0 4.0 .035 10.00 '. 192 103 0 3 .0 1. .0230 .0 .0 .020 10.00 0 103 31 2 2 PIPE .1 10. .0010 .0 .0 .035 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 29.9 219.0 162 104 0 4 CHANNEL 25.0 3682. .0200 4.0 4.0 .030 3.00 0 OVERFLOW 45.0 3682. .0200 4.0 4.0 .. .035 10.00 172 104 0 3 .0 1. .0200 .0 .0 .020 10.00 0 104 41 2 2 PIPE .1 10. .0010 .0 .0 .035 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 25.2 630.0 1012 106 0 5 PIPE 4.0 2085. .0300 .0 .0 /..... .016 4.00 0 OVERFLOW 45.0 2085. .0300 4.0 4.0 Page 4 100prop.sot ,'"--. .035 10.00 1022 106 0 5 PIPE 4.0 1303. .0300 .0 .0 .016 4.00 0 OVERFLOW 45.0 1303. .0300 4.0 4.0 .035 10.00 1032 106 0 3 .0 1. .0200 .0 .0 .020 10.00 0 106 61 2 2 PIPE .1 10. .0010 .0 .0 .035 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 36.0 63.0 61 105 0 3 .0 1. .0200 .0 .0 .020 10.00 0 1002 105 0 3 .0 1. .0200 .0 .0 .020 10.00 0 182 105 0 5 PIPE 4.0 3510. .0300 .0 .0 .016 4.00 0 OVERFLOW 45.0 3510. .0300 4.0 4.0 .035 10.00 105 51 2 2 PIPE .1 10. .0010 .0 .0 .035 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 55.7 140.0 0TOTAL NUMBER OF GUTTERS/PIPES, 21 1 ST. VRAIN DETENTION POND ROUTING TRIBUTARY TO ST. VRAIN RIVER ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A. (AC) 21 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 531.8 61 106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 274.6 101 112 122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 359.7 102 132 142 152 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 531.8 103 21 192 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 771.8 104 162 172 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 788.5 105 61 1002 182 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 591.4 106 1012 1022 1032 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 274.6 112 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 194.6 122 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 165.1 132 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 120.3 142 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 307.8 152 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 .. Page 5 .44 100prop.sot 0 0 0 0 103.7 162 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 554.2 172 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 234.2 182 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 110.1 192 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 240.0 1002 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 206.7 1012 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 97.9 1022 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 37.8 1032 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 138.9 1 ST. VRAIN DETENTION POND ROUTING TRIBUTARY TO ST. VRAIN RIVER HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 25 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( 1 DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC-FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC-FT FOR SURCHARGED GUTTER TIME(HR/MIN) 112 122 101 11 132 142 152 102 21 192 103 31 162 172 104 41 1002 105 51 1012 1022 1032 106 61 0 0 5. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .0( I .0(5) .0( ) .0( ) .0( ) .0( 1 .0(S) .0( ) .0( ) 0. 0. 0. 0 0. 0. 0. 0. 0. 0. .0(S) .0( ) .0( ) .0( 1 .0(S) .0( ) .0( I .0(5) .0( ) .0( ) 0. 0. 0. 0. 0. .0( ) .0( 1 .0(S) ,0( ) .0( ) 0 10. 0. 2. 0. 0. 0. 4. 0. 0. 0. 6. .0( I .0( 1 .0(S) .0( ) .0( I .0( I .0( ) .0(5) .0( ) .0( ) 0. 0. 0. 7. 1. 1. 81. 1. 1. 0. .0O .0( ) ,0( ) .0( ) .0O .0( ) .0( ) .3(S) .0( ) .0( ) 0. 30. 0. 0. 0. Page 6 ow 1o0prop.sot /•5 .0( ) .0( ) .1(8) .0( ) .0( ) ., 0 15. 0. 13. 0. 0. 0. 23. 0. 0. 0. 30. .0( ) .0( ) .1(8) .0( ) .0( ) .0( ) .0( ) .1(S) .0( ) .0( ) .. 1. 1. 0. 35. 4. 4. 191. 3. 3. 0. .1(S) .0( ) .0( ) .0( ) .2(8) .0( ) .0( ) 1.2(8) .0( ) .0( ) 0. 68. 1. 1. 0. .0( ) .0( ) .4(S) .0( ) .0( ) 0 20. 0. 36. 2. 2. 0. 66. 0. 1. 0. 73. .0( ) .0( ) .2(S) .0( ) .0( ) .0( ) .0( ) .4(6) .0( ) .0( ) 4. 4. 0. 82. 12. 12. 340. 8. 8. .. 0. .5(6) .0( ) .0( ) .0( ) .5(S) .0( ) .0( ) 3.0(S) .0( ) .0( ) 0. 121. 2. 2. 0. .0( ) .0( ) 1.1(5) .0( ) .0( ) 0 25. 0. 80. 4. 4. 0. 148. 0. 2. 0. 162. .1( ) .0( ) .6(5) .0( ) .1( ) .0( ) .0( 1 1.1(5) .0( ) ... .0 ( ) 9. 9. 0. 176. 31. 31. 783. 17. 17. 0. 1.2(5) .0( ) .0( ) .0( ) 1.2(8) .0( ) .0( ) 6.8(5) .0( ) .�� .1( ) 0. 366. 5. 5. 0. .1( ) .0( ) 2.7(5) .0( ) .0( ) 0 30. 4. 190. 10. 10. 3. 364. 6. 5. 0. 429. .5( ) .0( ) 1.5(6) .0( ) .4( ) .0( ) .3 ( ) 2.9(5) .0( ) .0( ) 23. 23. 1. 463. 77. 77. 1965. 41. 41. 13. 3.2(S) _0( ) .1( ) .0( ) 3.1(S) .0( ) .0( ) 16.1(S) .0( ) .7( ) ^ 31. 1067. 14. 14. 0. 1.1( ) .0( ) 7.8(S) .0( 1 .0( ) 0 35. 27. 369. 24. 24. 21. 728. 38. 12. 2. 806. 1.3( ) .0( ) 3.4(8) .0( ) 1.1( ) .0( ) 1.1( ) 6.8(S) .1( ) .0( ) 53. 53. 16. 857. 171. 171. 1331. 69. 69. 61. 7.2(5) .0( ) .2( ) .0( ) 6.8(5) .0( ) .0( ) 27.3 (5) .0( ) 1.5( ) ... 80. 698. 25. 25. 0. 1.7( ) .0( ) 14.3 (S) .0( ) .0( ) 0 40. 70. 494. 45. 45 57. 974. 85 23. 6. 843. ". 2.2) ) .0( ) 6.5(S) .0( ) 1.9( ) .0( ) 2.1( ) 13.3(S) .1( ) .0( ) !'5 91. 91. 68. 852. 286. 286. 769. 86. 86. 107. Page 7 100prop.5ot ...--, 12.4(S) .0( ) .6( ) .0( ) 11.4(5) .0( ) .0( ) 34.4(51 .0( ) 2.1) ) 84. 393. 33. 33. 0. 1.8( ) .0( ) 19.0(S) .0( ) .0( 1 0 45. 113. 485. 70. 70. 95. 939. 118. 36. 14. 727. 3.0) 1 .0( ) 10.1(S) .0) ) 2.6( 1 .0( ) 2.7( ) 20.9(S) .2( ) .0( 1 125. 125. 159. 706. 382. 382. 541. 98. 98. "" 126. 17.1(S) .0( ) .9( ) .0( ) 15.3(5) .0( I .0( ) 38.8(5) .0( ) 2.3( ) 79. 274. 39. 39. 0. 1.7( ) .0( ) 22.5(5) .0( ) .0( ) 0 50. 132. 433. 94. 94. 119. 822. 132. 48. 26. 601. 4.1( I .0( ) 13.5(S) .0( ) 3.1( 1 .0( ) 2.9( ) 28.3 (S) .3( ) .0 ( ) 153. 153. 264. 568. 456. 456. 412. 106. 106. 129. 20.9(5) .0( ) 1.2( ) .0( ) 18.2(51 .0( ) .0( ) 42.1(S) .0( ) 2.3 ) 1 71. 208. 44. 44. 0. 1.6( ) .0( ) 25.2(S) .0( ) .0( ) 0 55. 141. 376. 115. 115. 131. 700. 135. 60. 40. 488. 4.3) ) .0( ) 16.5(5) .0( 1 3.4( ) .0( ) 2.9( ) 34.9(S) .4 ( ) .0( ) 174. 174. 356. 452. 514. 514. 316. 112. 112. 127. 23.7(S) .0( ) 1.5( ) .0( ) 20.5(5) .0( ) .0( ) 44.7(S) .0( ) 2.3 ( 1 63. 157. 48. 48. 0. 1.5( I .0( ) 27.5(S) .0( ) .0( ) 1 0. 154. 322. 133. 133. 135. 590. 133. 70. 54. 397. 4.5( ) .0( ) 19.1(S) .0( I 3.5( ) .0( ) 2.9( ) 40.7(5) .5( ) .0( ) "" 189. 189. 422. 361. 558. 558. 301. 118. 118. 123. 25.8(S) .0( ) 1.6( ) .0( ) 22.3(S) .0( ) .0( ) 47.0(51 .0( ) 2.3 ( 1 '.. 55 151. 52. 52. 0. 1.4( ) .0( ) 29.5(5) .0( ) .0( ) 1 5. 163. 278. 148. 148. 136. 502. 129. 79. 66. _ 336. 4.6( I .0( ) 21.3(S) 01 ) 3.6( ) .0( 1 2.8( ) 45.8(5) .5( ) .0( ) 201. 201. 461. 305. 593. 593. 299. 124. 124. 118. 2 7 4(S) .0( I 1.7( I .0( I 23.7(5) .0( ) .0( ) 49.3(S) .0( ) 2.2( ) 49. 150. 55. 55. 0. 1.3 ( ) .0( ) 31.3(S) .0( ) .0( ) 1 10. 167. 241. 161. 161 136. 431. 122. 86. 76. ,e'^ 282. 4.7( ) .0( ) 23.2(S) 0( ) 3.6( ) .0( I 2.7( ) 50.3 (5) .6( ) Page 8 100prop.s0t �.. .0( ) 210. 210. 478. 254. 617. 617. 147. 128. 128. 110. 28.6(S) .0( ) 1.7( ) .0( ) 24.7(S) .0( ) .0( ) 50.9(S) .0( ) 2.1( ) .. 42. 65. 57. 57. 0. 1.2( ) .0( ) 32.8(S) .0( ) .0( ) 1 15. 168. 201. 171. 171. 132. 354. 113. 93. 85. 213. 4.7( ) .0( ) 24.7(S) .0( ) 3.4( ) .0( ) 2.6( ) 54.1(S) .6( ) .0( ) 216. 216. 478. 184. 630. 630. 121. 131. 131. 100. 29.4(S) .0( ) 1.7( ) .0( ) 25.2(S) .0( ) .0( ) 52.0(S) .0( ) 2.0( ) 33. 53. 59. 59. 0. ... 1.1( ) .0( ) 33.8(S) .0( ) .0( ) 1 20. 166. 160. 180. 180. 124. 276. 103. 98. 92. 160. 4.6( ) .0( ) 25.9(S) .0( ) 3.2( ) .0( ) 2.4( ) 57.2(S) .7( ) ... .0( ) 218. 218. 466. 135. 630. 630. 68. 133. 133. 90. 29.8(5) .0( ) 1.7( ) .0( ) 25.2(S) .0( ) .0( ) 52.7(8) .0( ) 1.9( ) 26. 26. 60. 60. 0. 1.0( ) .0( ) 34.5(S) .0( ) .0( ) /'. 1 25. 161. 127. 186. 186. 114. 214. 93. 102. 97. 115. 4.6) ) .0( ) 26.7(S) .0( ) 2.9( ) .0( ) 2.2( ) 59.7(S) .7( ) .0) ) 219. 219. 449. 92. 621. 621. 59. 134. 134. 80. 29.9(S) .0( ) 1.7( ) .0( ) 24.81S) .0( I .0) ) 53.2(S) .0( ) 1.7( ) ... 21. 22. 61. 61. 0. .9( 1 .0( ) 35.0(8) .0( ) .0( ) 1 30. 154. 99. 190. 190. 103. 164. 83. 106. 102. .• 82. 4.5( ) .0( ) 27.3(S) .0( ) 2.7( ) .0( 1 2.0( I 61.6(5) .7( ) .0( I 218. 218. 428. 67. 604. 604. 58. 135. 135. 71. 29.8(8) .0( ) 1.6( ) .0( ) 24.2(8) .0( ) .0( ) 53.7(S) .0( ) 1.6( ) 14. 22. 62. 62. 0. .7( ) .0( ) 35.4(S) .0( 1 .0( 1 1 35. 147. 79. 192. 192. 93. 129. 74. 108. 105. 63. 4.4( I .0( ) 27.6(S) .0( ) 2.5( ) .0( I 1.9( ) 63.1(S) .7( ) .0( ) 216. 216. 404. 53. 584. 584. 57. 136. 136. 63. .. 29.5(S) .0( 1 1.6( 1 .0( ) 23.4(S) .0( ) .0( ) 54.1(8) .0( ) 1.5( ) r." 8. 22. 62. 62. 0. 6( ) .0( ) 35.6(8) .0) ) .0( 1 Page 9 100prop.5ot 1 40. 139. 64. 193. 193. 84. 105. 66. 110. 108. 52. a. 4 .3( ) .0( ) 27.8(51 .0( ) 2.4( ) .0( ) 1.7( ) 64.3 (S) .7( ) .0( ) 213. 213. 379. 45. 561. 561. 57. 137. 137. .. 56. 29.1(S) .0( ) 1.5( ) .0( ) 22.5(S) .0( ) .0( ) 54.5(S) .0( ) 1.4( ) 6. 22. 63. 63. 0. "" .5( ) .0( ) 35.8(S) .0( ) .0( ) 1 45. 133. 50. 193. 193. 76. 87. 59. 112. 110. 45. 4.1( ) .0( ) 27.8(S) .0( ) 2.2( ) .0( ) 1.6( ) 65.2(S) .7( ) .0( ) 211. 211. 353. 40. 537. 537. 57. 138. 138. 50. mm 28.8(s) .0( ) 1.4( ) .0( ) 21.5(S) .0( ) .0( ) 54.8(81 .0( ) 1.4( ) 4. 22. 63. 63. 0. .4( ) .0( ) 35.9(5) .0( ) .0( 1 1 50. 125. 41. 192. 192. 68. 72. 53. 113. 112. 41. 3.4 ( ) .0( ) 27.7(S) _0( ) 2.1( ) .0( ) 1.5( ) 65.8(S) .7( ) .0( ) 208. 208. 328. 37. 512. 512. 57. 139. 139. 44. 28.4 (S) .0( ) 1.4( ) .0( 1 20.5(S) .0( ) .0( ) 55.1(5) .0( ) 1.3( ) es 2. 22. 63. 63. 0. .3 ( 1 .0( ) 36.0(S) .0( 1 .0( ) 1 55. 103. 37. 190. 190. 62. 63. 47. 114. 113. 38. 2.8( ) .0( ) 27.4 (S) .0( ) 2.0( ) .0( ) 1.3( ) 66.3 (S) .7( ) .0) ) .. 205. 205. 305. 36. 487. 487. 57. 139. 139. 40. 28.0(5) .0( ) 1.3( ) .0( ) 19.5(5) .0( ) .0( ) 55.4 (S) .0( ) 1.2( 1 .- 1. 22. 63. 63. O. .2( ) .0( ) 36.0(S) .0( ) .0( ) 2 0. 94. 33. 188. 188. 56. 58. 42. 114. 114. 37. 2.6( ) .0( ) 27.0(5) .0( ) 1.8( 1 .0( ) 1.2( ) 66.6(S) .8( ) .0( ) 202. 202. 283. 35. 462. 462. 57. 140. 140. .. 35. 27.6(S) .0( ) 1.3( ) .0( ) 18.5(5) .0( 1 .0( ) 55.6(5) .0( ) 1.1( ) 0. 22. 63. 63. 0. .1( ) .0( ) 36.0(S) .0( 1 .0( ) 2 5. 87 30. 184. 184. 50. 52. 38. 115. 114. 32. 2 5( ) .0( 1 26.6(5) .0( ) 1.7( ) .0( ) 1.1( ) 66.9(S) .8( ) -- .0( ) 200 200. 264. 30. 437. 437. 10. 140. 140. ,...-,6 31. 27.3 (S) .0( ) 1.2( ) .0( 1 17.5(S) .0( 1 .0( 1 55.7(S) .0( 1 Page 10 e."---- 1.1( ) 100prop.sot 0. 3. 63. 63. 0. .1( ) .0( ) 35.8(8) .0( ) .0( ) 2 10. 81. 24. 181. 181. 46. 41. 34. 115. 115. 21. 2.4( ) .0( ) 26.1(S) .0( ) 1.7( ) .0( ) 1.1( ) 67.0(S) .8( ) .0( ) 197. 197. 245. 19. 412. 412. 1. 140. 140. 28. 26.9(8) .0( ) 1.2( ) .0( I 16.5(S) .0( ) .0( ) 55.5(S) .0( ) 1.0( 1 0. 0. 62. 62. 0. .1( ) .0( ) 35.6(S) .0( ) .0( 1 2 15. 75. 17. 177. 177. 41. 28. 30. 115. 115. 14. 2.3( ) .0( ) 25.5(S) .0( I 1.6( ) .0 ( ) 1.0( ) 66.9(S) .8( ) .0( ) 194. 194. 228. 11. 387. 387. 0. 139. 139. 25. 26.5(S) .0( ) 1.1( ) .0( ) 15.5(S) .0( ) .0( ) 55.3(S) .0( ) ... .9( ) 0. 0. 62. 62. 0. .0( 1 .0( ) 35.4(S) .0( ) .0( ) 2 20. 70. 12. 173. 173. 37. 19. 27. 115. 115. 9. 2.2( ) .0( ) 24.9(S1 .0( ) 1.5( 1 .0( ) .9( ) 66.8(S) .8( ) .0( ) . .. 190. 190. 213. 7. 362. 362. 0. 138. 138. 22. 26.0(S) .0( 1 1.1( ) .0( 1 14.5(S) .0 ( ) .0( ) 55.1(S) .0( ) .9( 1 0. 0. 61. 61. 0. .0( ) .0( ) 35.1(S) .0( ) .0( ) 2 25. 65. 8. 168. 168. 34. 13. 24. 114. 115. .. 5. 2.1( ) .0( ) 24.3(S) .0( ) 1.4( ) .0( ) .8( ) 66.5(S) .8( ) .0( ) 187. 187. 198. 4. 338. 338. 0. 138. 138. .- 20. 25.5(5) .0( ) 1.0( ) .0( ) 13.5(S) .0 ( ) .0( ) 54.8(51 .0( ) .8( ) 0. 0. 61. 61. 0. .0( ) .0( ) 34.8(S) .0( ) .0( ) 2 30. 61. 6. 164. 164. 31. 9. 22. 114. 114. 3. 2.0( ) .0( I 23.6(S) .0( ) 1.3( ) .0( ) .8( ) 66.2(S) .8( ) .0( ) 184. 184. 185. 2. 315. 315. 0. 137. 137. 18. 25.1(S) .0( ) 1.0( 1 .0( 1 12.6(S) .0 ( 1 .0( ) 54.6(S) .0( 1 .8( 1 0. 0. 60. 60. 0. .0( ) .0( ) 34.6(S1 .0( ) .0( ) r 2 35. 57. 4. 159. 159. 28. 6. 19. 113. 114. 2. 1.9( 1 .0( ) 22.9(S1 .0( ) 1.3( ) .0( I .7( ) 65.8(S) .8( ) .0( ) r Page 11 100prop.sot 180. 180. 172. 0. 294. 294. 0. 136. 136. 16. 24.6(S) .0( ) 1.0( ) .0( 1 11.7(5) .0( ) .0( 1 54.3(8) .0( ) .8( ) 0. 0. 60. 60. 0. .. .0( 1 .0( ) 34.3 (5) .0( ) .0( ) 2 40. 53. 3. 154. 154. 25. 4. 17. 112. 113. 0. 1.8( ) .0( ) 22.2(5) .0( 1 1.2( ) .0( ) .7( ) 65.4(S) .7( ) .0( 1 177. 177. 160. 0. 273. 273. 0. 136. 136. 12. 24.2(8) .0( ) .9( ) .0( ) 10.9(5) .0( ) .0( 1 54.0(8) .0( ) ... .7( 1 0. 0. 59. 59. 0. .0( ) .0( ) 33.9(S) .0( ) .0( ) 2 45. 49. 2. 150. 150. 23. 3. 14. 111. 112. 0. 1.8( ) .0( ) 21.6(5) .0( ) 1.1( ) .0( ) .6( ) 64.9(8) .7( ) .0( ) 174. 174. 149. 0. 255. 255. 0. 135. 135. 8. 23.7(5) .0( ) .9( ) .0( ) 10.2(8) .0( ) .0( ) 53.7(S) .0( ) .5( 1 0. 0. 59. 59. 0. .0( 1 .0( ) 33.6(S) .0( 1 .0) ) 2 50. 46. 0. 145. 145. 21. 2. 10. 111. 111. ,^., 0. 1.7( 1 .0( ) 20.9(51 .0( 1 1.1( ) .0( ) .5( 1 64.4(S) .7( ) .0( ) 171. 171. 139. 0. 237. 237. 0. 134. 134. 5. 23.3(81 .0( ) .8( ) .0( ) 9.5(5) .0( ) .0( ) 53.4(81 .0( ) .4( ) 0. 0. 58. 58. 0. .0( 1 .0( ) 33.2(51 .0( 1 .0( ) 2 55. 43. 0. 140. 140. 19. 0. 8. 110. 110. 0. 1.6( 1 .0( ) 20.2(81 .0( ) 1.0 ( ) .0 ( ) .4( ) 63.8(5) .7( ) .0( ) 168. 168. 130. 0. 221. 221. 0. 133. 133. 4. '� 22.9(5) .0( ) .8( 1 .0( ) 8.8(5) .0( ) .0( ) 53.0(5) .0( ) .4 ( 1 0. 0. 58. 58. 0. .0( 1 .0( ) 32.9(5) .0( ) .0( ) 3 0. 40. 0. 136. 136. 17. 0. 6. 109. 110. 0. 1.6( ) .0( ) 19.5(5) .0( ) 1.0( ) .0( ) .3( ) 63.3(5) .7( ) 0( 1 165. 165. 121. 0. 206. 206. 0. 132. 132. 2. 22.5(S) .0( ) .8( 1 .0( ) 8.2(S) .0( ) .0( ) 52.7(8) .0( ) .3 ( ) 0. 0. 57. 57. 0. /". .01 1 .0( ) 32.5151 .0( ) .0( ) Page 12 100prop.sot ,...., 3 5. 37. O. 131. 131. 15. 0. 4. 108. 109. 0. ..-• 1.5( ) .0( ) 18.9(5) .0( ) .9( ) .0( ) .3 ( ) 62.7(S) .7( ) .0( ) 162. 162. 113. 0. 192. 192. 0. 132. 132. 1. 22.2(5) .0( ) _8( ) .0( ) 7.7(5) .0( ) .0( ) 52.4(5) .0( ) .2( 1 0. 0. 56. 56. 0. .0( ) .0( ) 32.1(8) .0( ) .0( ) 3 10. 35. 0. 127. 127. 12. 0. 3. 106. 108. 0. 1.5( ) .0( ) 18.2(5) .0( ) .8( ) .0( ) .2( ) 62.0(5) .7( ) .0( ) 160. 160. 105. 0. 179. 179. 0. 131. 131. 1. 21.8(5) .0( ) .7( ) .0( ) 7.1(5) .0( ) .0( ) 52.015) .0( ) .2( ) 0. 0. 56. 56. 0. .0( 1 .0( ) 31.7(5) .0( 1 .0( ) 3 15. 32. 0. 122. 122. 9. 0. 2. 105. 106. 0. 1.4( ) .0( 1 17.6(S) .0( ) .7( ) .0( ) .2( ) 01.4(5) .7( ) .0( 1 .... 157. 157. 98. 0. 166. 166. 0. 130. 130. 0. 21.4(5) .0( 1 .7( 1 .0( 1 6.7(S) .0( ) .0( ) 51.7(5) .0( ) .1 ( ) ."' /'•. 0. 0. 55. 55. 0. .0( 1 .0( ) 31.4(51 .0( 1 .0( 1 3 20. 30. 0. 118. 118. 7. 0. 1. 104. 105. _ 0. 1.3( ) .0( ) 17.0(51 .0( ) .6( ) .0( ) .1( ) 60.7(S) .7 1 ) .0( ) 155. 155. 92. 0. 155. 155. 0. 129. 129. 0. 21.1(5) .0( ) .7( ) .0( ) 6.2(5) .0( ) .0( ) 51.3 (51 .0( ) .1( ) 0. 0. 54. 54. 0. .0( 1 .0( ) 31.0(S) .0( 1 .0( ) 3 25. 28. 0. 114. 114. 5. 0. 1. 103. 104. 0. 1.3 ( ) .0( ) 16.4(5) .0( ) .6( 1 .0( ) .1( ) 60.1(5) .7( ) ... .0( ) 152. 152. 86. 0. 145. 145. 0. 128. 128. 0. 20.8(3) .0( ) .6( ) .0( ) 5.8(5) .0( ) .0( 1 50.9(5) .0( ) .1( ) 0. 0. 54. 54. 0. .0( 1 .0 ( ) 30.6(5) .0( 1 .0( ) 3 30. 26. 0. 110. 110. 4. 0. 1. 102 103. 0. 1.3( ) .0( ) 15.8(3) .0( ) .5( ) .0( ) .1( ) 59.4 (5) .7( ) .0( ) 150. 150. 80. 0. 135. 135. 0. 127. 127. 0. /'"-, 20.4(5) .0( ) .6( ) .0( ) 5.4(5) .0( ) .0( ) 50.5(5) .0( ) .1( ) Page 13 100prap.5ot 0. 0. 53. 53. 0. .0( ) .0( ) 30.3(5) .0( 1 .0( ) 3 35. 24. 0. 106. 106. 3. 0. 1. 101. 102. 0. 1.2( ) .0( ) 15.3(6) .0( 1 .4( ) .0( I .1( ) 56.7(S) .7( ) .0( ) 147. 147. 74. 0. 126. 126. 0. 126. 126. 0. 20.1(S) .0( ) .6( ) .0( ) 5.0(S) .0( ) .0( ) 50.1(S) .0( ) .0( 1 0. 0. 52. 52. 0. .0( ) .0( ) 29.9(S) .0( ) .0( ) 3 40. 23. 0. 102. 102. 2. 0. 0. 100. 101. 0. 1.2( ) .0( ) 14.7(S) .0( ) .4( ) .0( ) .1( ) 58.1(6) .7( ) .0( ) 145. 145. 70. 0. 117. 117. 0. 125. 125. 0. 19.8(S) .0( ) .6( ) .0( ) 4.7(S) .0( ) .0( ) 49.8(S) .0) ) .0( I O. 0. 52. 52. 0. .0( ) .0( ) 29.5(S) .0( ) .0( 1 3 45. 21. 0. 98. 98. 2. 0. 0. 99. 100. 0. 1.1( ) .0( ) 14.2(S) .0( 1 .3( ) .0 ( ) .1( ) 57.4(6) .7( ) .0( ) 143. 143. 65. 0. 109. 109. 0. 124. 124. - .. ., 0. 19.5(S) .0( ) .5( ) .0( ) 4.4(51 .0( ) .0( ) 49.4(61 .0( ) .0( ) 0. 0. 51. 51. 0. .0( I .0( ) 29.2(S) .0( ) .0( ) 3 50. 20. 0. 95. 95. 1. 0. 0. 97. 99. 0. 1.1( ) .0( ) 13.6(S) .0( ) .3( ) .0( ) .0( ) 56.7(5) .7( ) .0( ) 141. 141. 61. 0. 102. 102. 0. 123. 123. 0. 19.2(S) .0( ) .5( ) .0( ) 4.1(S) .0( ) .0( ) 49.0(S) .0( I .0( ) 0. 0. 50. 50. 0. ... .0( ) .0( ) 28.8(5) .0( ) .0( ) 3 55. 18. 0. 91. 91. 1. 0. 0. 96. 97. 0. 1.0( ) .0( ) 13.1 (S) .0( ) .3( ) .0( ) .0( ) 56.1(S) .7( ) .0( ) 139. 139. 57. 0. 95. 95. 0. 122. 122. 0. 18.9(S) .0( ) .5( ) .0( ) 3.8(S) .0) ) .0( ) 48.6(S) .0) ) .0( I 0. 0. 50. 50. 0 .0( I .0( ) 28.5(S) .0( ) 0( ) 4 0. 17. 0. 88. 88. 1. 0. 0. 95. 96. 0. 1.0( ) .0( ) 12.6(S) .0( ) .2( ) .0( ) .0( ) 55.4(5) .7( ) .,—", .0( ) Page 14 .. 100prop.sot ,.—. 137. 137. 53. 0. 89. 89. 0. 121. 121. 0. .. 18.6(S) .0( ) .5( ) .0( ) 3.5(8) .0( ) .0( I 48.2(S) .0( ) .0( ) 0. 0. 49. 49. 0. .0( ) .0( ) 28.1(5) .0( ) .0( ) 4 5. 16. 0. 84. 84. 1. 0. 0. 94. 95. 0. 1.0( ) .0( ) 12.2(8) .0( ) .2( ) .0( ) .0( ) 54.8(S) .7( ) .0( ) r 135. 135. 49. 0. 83. 83. 0. 120. 120. 0. 18.4(81 .0( ) .5( ) .0( ) 3.3(51 .0( ) .0( ) 47.8(S) .0( ) .0( ) 0. 0. 49. 49. 0. .0( ) .0( ) 27.8(S) .0( ) .0( 1 4 10. 15. 0. 81. 81. 1. 0. 0. 93. 94. 0. .9( ) .0( ) 11.7(S) .0( 1 .2( ) .0( ) .0( ) 54.1(S) .7( ) .0( ) .. 133. 133. 46. 0. 77. 77. 0. 119. 119. 0. 18.1(8) ,0( ) .4( ) .0( ) 3.1(8) .0 ( ) .0( ) 47.3(S) .0( ) .0( ) 0. 0. 48. 48. 0. .0( ) .0( I 27.5(S) .0( 1 .0( ) 1 ..... ST. VRAIN DETENTION POND ROUTING TRIBUTARY TO ST. VRAIN RIVER *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS *** CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC-FT) (HR/MIN) 1032 1067. (DIRECT FLOW) 0 30. 1022 84. 1.8 0 40. 1012 129. 2.3 0 50. 152 135. 2.9 0 55. 142 974. (DIRECT FLOW) 0 40. 132 136. 3.6 1 5. 106 63. .1 36.0 1 55. 102 115. .1 67.0 2 10. 182 91. 1.9 1 5. 1002 1965. (DIRECT FLOW) 0 30. 61 63. (DIRECT FLOW) 1 55. 172 857. (DIRECT FLOW) 0 35. 162 478. 1.7 1 10. 192 843. (DIRECT FLOW) 0 40. 21 115. .8 2 15. 122 494. (DIRECT FLOW) 0 40. 112 168. 4.7 1 15. 105 140. .1 55.7 2 5. 104 630. .1 25.2 1 20. 103 219. .1 29.9 1 25. 101 193. .1 27.8 1 40. 51 140. (DIRECT FLOW) 2 5. ... 41 630. (DIRECT FLOW) 1 20. 31 219. (DIRECT FLOW) 1 25. 11 193. (DIRECT FLOW) 1 40. i*1 Page 15 a ttr t r^ Y Ia ra. n r APPENDIX C2 Proposed Channel Design and Water Quality Volume Calculations r 100-year flow, Cross-Section A-A Cross Section for Channel into Pond 102 Ptaalect Deseription ' " '•,_ -,- Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For: Discharge Section Data - Roughness Coefficient: 0.035 Channel Slope: 0.00500 ft/ft Normal Depth: 5.00 ft Left Side Slope: 4.00 ft/ft(H:V) Right Side Slope: 4.00 ft/ft(H:V) Bottom Width: 7.00 ft Discharge: 804.92 fr/s 5.00 ft I7.00tt V 5 M 1 Worksheet for Channel into Pond 102 Proms • Cf% Dix t. Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For: Discharge Input Data '..r Roughness Coefficient: 0.035 Channel Slope: 0.00500 ft/ft Normal Depth: 5.00 ft Left Side Slope: 4.00 ft/ft(H:V) Right Side Slope: 4.00 ft/ft(H:V) Bottom Width: 7.00 ft Results - Discharge: 804.92 ft3/s Flow Area: 135.00 ft2 Wetted Perimeter: 48.23 ft Top Width: 47.00 ft Critical Depth: 4.01 ft Critical Slope: 0.01385 ft/ft Velocity: 5.96 ft/s Velocity Head: 0.55 ft Specific Energy: 5.55 ft Froude Number: 0.62 Flow Type: Subcritical GVF Input Data Downstream Depth: 0.00 ft Length: 0.00 ft Number Of Steps: 0 GVF Output Data Upstream Depth: 0.00 ft Profile Description: Headloss: 0.00 ft Downstream Velocity: Infinity ft/s Upstream Velocity: Infinity ft/s Normal Depth: 5.00 ft Critical Depth: 4.01 ft Channel Slope: 0.00500 ft/ft 100-year flow, Cross-Section B-B Cross Section for Channel out of Pond 102 N Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For: Discharge sedtt trbaia_ Roughness Coefficient: 0.030 Channel Slope: 0.0050O ft/ft Normal Depth: 1.80 ft Left Side Slope: 4.00 ft/ft(H:V) Right Side Slope: 4.00 ft/ft(H:V) Bottom Width: 10.00 ft Discharge: 125.57 ft3/s 1.8O It 1O OO t V: s C, H 1 Worksheet for Channel out of Pond 102 arbjCBS c "ptlon _ ''"s ,14 Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For: Discharge ttpufpata Roughness Coefficient: 0.030 Channel Slope: 0.00500 ft/ft Normal Depth: 1.80 ft Left Side Slope: 4.00 ft/ft(H:V) Right Side Slope: 4.00 ft/ft(H:V) Bottom Width: 10.00 ft ResuHe ...'� .; Discharge: 125.57 ft3/s Flow Area: 30.96 ft2 Wetted Perimeter: 24.84 ft Top Width: 24.40 ft Critical Depth: 1.40 ft Critical Slope: 0.01327 ft/ft Velocity: 4.06 ft/s Velocity Head: 0.26 ft Specific Energy: 2.06 ft Froude Number: 0.63 Flow Type: Subcritical W OW Input Data Downstream Depth: 0.00 ft Length: 0.00 ft Number Of Steps: 0 OW Output Data Upstream Depth: 0.00 ft Profile Description: Headloss: 0.00 ft Downstream Velocity: Infinity ft/s Upstream Velocity: Infinity ft/s Normal Depth: 1.80 ft Critical Depth: 1.40 ft Channel Slope: 0.00500 ft/ft 100-year flow, Cross-Section C-C Cross Section for Channel into Pond 103 Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For: Discharge Se`ctioR Data Roughness Coefficient: 0.030 Channel Slope: 0.00500 ft/ft Normal Depth: 3.50 ft Left Side Slope: 4.00 ft/ft(H:V) Right Side Slope: 4.00 ft/ft(H:V) Bottom Width: 10.00 ft Discharge: 491.82 ft/s 3.50 ft --10.00 It H l� V 5 I\ H 1 Worksheet for Channel into Pond 103 — ,... Da xption .. ,� . Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For: Discharge IOW Data r . ,1 Roughness Coefficient: 0.030 Channel Slope: 0.00500 ft/ft _ Normal Depth: 3.50 ft Left Side Slope: 4.00 ft/ft(H:V) Right Side Slope: 4.00 fUft(H:V) Bottom Width: 10.00 ft Result§ . ' Discharge: 491.82 ft3/s Flow Area: 84.00 ft2 Wetted Perimeter: 38.86 ft Top Width: 38.00 ft Critical Depth: 2.91 ft Critical Slope: 0.01091 f/ft Velocity: 5.86 ft/s Velocity Head: 0.53 f( Specific Energy: 4.03 ft Froude Number: 0.69 Flow Type: Subcritical GVF Input Data Downstream Depth: 0.00 ft Length: 0.00 ft Number Of Steps: 0 GVF Output Data Upstream Depth: 0.00 ft Profile Description: Headloss: 0.00 ft Downstream Velocity. Infinity ft/s Upstream Velocity: Infinity ft/s Normal Depth: 3.50 ft Critical Depth: 2.91 ft Channel Slope: 0.00500 fUft 100-year flow, Cross-Section D-D Cross Section for Wetland Channel D-D Project Deed . : 4 ,. ,£; ..- Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For: Discharge Section Data" Roughness Coefficient: 0.045 Channel Slope: 0.02000 ft/ft Normal Depth: 1.24 ft Left Side Slope: 4.00 ft/ft(H:V) Right Side Slope: 4.00 ft/ft(H:V) Bottom Width: 70.00 ft Discharge: 478.82 ft/s • C" \\\\ / 1.24 n 70.00 tt vas Ft1 Worksheet for Wetland Channel D-D i�f0lect De86CiptWn .✓xrva`� .� '�''" � " Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For: Discharge Input Data Roughness Coefficient: 0.045 Channel Slope: 0.02000 ft/ft Normal Depth: 1.24 ft Left Side Slope: 4.00 ft/ft(H:V) Right Side Slope: 4.00 ft/ft(H:V) Bottom Width: 70.00 ft Results Discharge: 478.82 Flow Area: 92.95 ft2 Wetted Perimeter: 80.23 ft Top Width: 79.92 ft Critical Depth: 1.11 ft Critical Slope: 0.02920 ft/ft Velocity: 5.15 ft{s Velocity Head: 0.41 ft Specific Energy. 1.65 ft Froude Number: 0,84 Flow Type: Subcritical GVF Input Data ' Downstream Depth: 0.00 ft Length: 0.00 ft Number Of Steps: 0 GVF Output Data 'E?. Upstream Depth: 0.00 ft Profile Description: Headloss: 0.00 ft Downstream Velocity: Infinity ft/s Upstream Velocity: Infinity ft/s Normal Depth: 1,24 ft ... Critical Depth: 1.11 ft Channel Slope: 0.02000 ft/ft 100-year flow, Cross-Section E-E Cross Section for Wetland Channel E-E Pofelpesc" - - — Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For: Discharge — Section Data :.: • "' Roughness Coefficient: 0.045 — Channel Slope: 0.02000 ft/ft Normal Depth: 1.86 ft Left Side Slope: 4.00 ft/ft(H:V) Right Side Slope: 4.00 ft/ft(H:V) Bottom Width: 70.00 ft Discharge: 953.53 ft'/s 1.86 tt 70.00 — V. NI Ft Worksheet for Wetland Channel E-E � Proieet b ...Sa a17: `' m. v Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For: Discharge Input Data. ` A . _ Roughness Coefficient: 0.045 Channel Slope: 0.02000 ft/ft Normal Depth: 1.86 ft Left Side Slope: 4.00 ft/ft(H:V) Right Side Slope: 4.00 ft/ft(H:V) Bottom Width: 70.00 ft Results Discharge 953.53 ft/s Flow Area: 144.04 ft2 Wetted Perimeter: 85.34 ft Top Width: 84.88 ft Critical Depth: 1.73 ft Critical Slope: 0.02545 ft/ft Velocity: 6.62 Ws Velocity Head: 0.68 ft Specific Energy: 2.54 ft Froude Number: 0.90 Flow Type: Subcritical GVF Input bata^ . Downstream Depth: 0.00 ft Length: 0.00 ft Number Of Steps: 0 GVF Output 0$a Upstream Depth: 0.00 ft Profile Description: Headloss: 0.00 ft Downstream Velocity: Infinity ft/s Upstream Velocity: Infinity ft/s Normal Depth: 1.86 ft Critical Depth: 1.73 ft Channel Slope: 0.02000 ft/ft HWY66 ROADSIDE DITCH Cross Section for HWY66 CROSS-SECTION _ Project Description Flow Element: Irregular Section Friction Method: Manning Formula Solve For: Discharge Section Data Roughness Coefficient: 0.030 Channel Slope: 0.00770 ft/ft Normal Depth: 2.00 ft Elevation Range: 4904.00 to 4906.00 ft Discharge: 132.60 fN/s 2.00 ft 22.00 ft vS it WCR 28 ROADSIDE DITCH Cross Section for WCR 28 CROSS-SECTION _ Project Description Flow Element: Irregular Section Friction Method: Manning Formula Solve For: Discharge Section Data Roughness Coefficient: 0.030 Channel Slope: 0.01540 ft/ft Normal Depth: 2.00 ft Elevation Range: 4909.00 to 4911.00 ft Discharge: 905.17 R'fs 2.00 R 125.0011 V 5 p It 1 WCR11 ROADSIDE DITCH NEAR WCR 28 Cross Section for WCR 11 CROSS-SECTION NEAR WCR28 Project Description Flow Element: Irregular Section Friction Method: Manning Formula Solve For: Discharge Section Data Roughness Coefficient: 0.030 Channel Slope: 0.01400 ft/ft Normal Depth: 3.00 ft Elevation Range: 4903.00 to 4906.00 ft Discharge: 97.88 ft'/s 3.00tt I--7.00 ft --I V: 5 N. It1 WCR 11 ROADSIDE DITCH NEAR HWY66 Cross Section for WCR 11 CROSS-SECTION NEAR HWY66 Project Description Flow Element: Irregular Section Friction Method: Manning Formula Solve For: Discharge Section Data Roughness Coefficient: 0.030 Channel Slope: 0.00800 ft/ft Normal Depth: 2.00 ft Elevation Range: 4944.00 to 4946.00 ft Discharge: 152.42 ft'/s 2AOft 33.00 ft V:5 N Ft Cross Section for 5yr Street Capacity ., L_QC&t S-('►'tl t tQbt iwW ikk it r't i F. :'l:x Flow Element: Irregular Section Friction Method: Manning Formula Solve For: Discharge _ $. :k�e Roughness Coefficient: 0.015 Channel Slope: 0.01000 ft/ft Normal Depth: 0.45 ft Elevation Range: 9.50 to 10.00 ft Discharge: 11.42 ft'/s rer 0.45 ft 1725 tt V. .t 1 11 _ -� 1 Itati Cross Section for Syr Street Capacity-� _bc&I 5 to (pi.) �ZbV• j... .**tbesettOtbff �117 Flow Element: Irregular Section Friction Method: Manning Formula Solve For: Discharge Se tbtt Oata Roughness Coefficient: 0.015 Channel Slope: 0.04000 ft/ft Normal Depth: 0.45 ft Elevation Range: 9.50 to 10.00 ft Discharge: 22.84 ft3/s r,�.--- 0.45 17.35 ft v: s N 1 Cross Section for 100yr Street Capacity - teen I ?freet 4?) . /Z ow T58s Flow Element: Irregular Section Friction Method: Manning Formula Solve For: Discharge Roughness Coefficient: 0.020 Channel Slope: 0.01000 ft/ft Normal Depth: 1.00 ft Elevation Range: 9.50 to 10.50 ft Discharge: 158.66 ft3/s 840011 _ r V: 5 N H. 1 r Cross Section for 70'row;-yr one lane— NiQAt\H vo(►+OO IltnV- i}kgt iptonr_ Flow Element: Irregular Section Friction Method: Manning Formula Solve For: Discharge ;€dion Data Roughness Coefficient: 0.015 Channel Slope: 0.01000 fUft Normal Depth: 0.50 ft Elevation Range: 0.00 to 1.00 ft Discharge: 13.18 ft'/s � a.5onn i f 21.11 ft f V: 5 ≥ R 1 r•-• Cross Section for 70'row 5-yr one lane — Ntkt1p0(hood Ltvt i escriptarn . .4 f Flow Element: Irregular Section Friction Method: Manning Formula Solve For: Discharge S'ectiott Data - - ` Roughness Coefficient: 0.015 Channel Slope: 0.04000 ft/ft Normal Depth: 0.50 ft Elevation Range: 0.00 to 1.00 ft Discharge: 26.37 ft/s -7- 0.50 ft 21.11 11 V. s N R 1 r Cross Section for 70' 100yr-channel— 1\kAGJ htr^ t"nIA Pitt rertAlott :{ Flow Element: Irregular Section Friction Method: Manning Formula Solve For: Discharge Sectfott.Data Roughness Coefficient: 0.016 Channel Slope: 0.01000 ft/ft Normal Depth: 1.00 ft Elevation Range: 0.00 to 1.00 Discharge: 263.34 ft'/s - -r- 1.00 tt 103 00 ft V: 5 I \ '- H 1 r -r a•p' �", '''" ';,"3 y44, — e`y Sheet 1 of 3 .� Designer: Kevin Jennings Company: Carroll and Lange,Inc. Date: November 28,2005 Project: Bayshore Location: Pond 101 1. Basin Storage Volume la= 48.05 % A)Tributary Area's Imperviousness Ratio(i=la/100) i= f{,=4$ r r B) Contributing Watershed Area(Area) Area= 359.60 acres C) Water Quality Capture Volume(WQCV) WQCV= =.0.20.. watershed inches (WQCV=1.0*(0.91 •I`-1.19•I`+0.78.0) 0) Design Volume:Vol=(WQCV/12)•Area•1.2 Vol= 7x2.28. ` acre-feet e/ x{3'�u ..` Sheet 1 of 3 Designer: Kevin Jennings Company: Carroll and Lange,Inc. Data: November 28,2005 Project: Bayshore Location: Pond 102 1. Basin Storage Volume I,= 47.08 % ... A)Tributary Area's Imperviousness Ratio(i=I,/100) I B) Contributing Watershed Area(Area) Area= 532.00 acres C) Water Qualify Capture Volume(WQCV) WQCV ; watershed inches (WQCV=1.0`(0.91 '1'-1.19.1`+0.78'1)) D) Design Volume:Vol=(WQCV/12)'Area 1.2 Vol 1p _q:acre-feet _. � Y om^ a ��t ".ny' r .3:4q .1r, y,�f - _ a . z y, „ % .�' p` `bNl t Y id'.. ^1. e ..;5 £ ,::z :117' ;7.1 Sheet 1 of 3 ^. Designer: Kevin Jennings Company: Carroll and Lange,Inc. Date: November 28,2005 Project: Bayshore Location: Pond 103 1. Basin Storage Volume la= 45.77 % A)Tributary Area's Imperviousness Ratio(i=I,/100) B) Contributing Watershed Area(Area) Area= 240.10 acres C) Water Quality Capture Volume(WQCV) WQCV= d.19 "watershed inches (WQCV=1.0"(0.91 *V-1.19"I`+0.78'I)) D) Design Volume:Vol=(WQCV/12)*Area"1.2 Vol-s:, 4&81 1.acre-feet Sheet 1 of 3 , . Designer: Kevin Jennings Company: Carroll and Lange,Inc. Date: November 28,2005 Project: Bayshore Location: Pond 104 1. Basin Storage Volume = 45.45 % A)Tributary Area's Imperviousness Ratio 0=la/100) i= y B) Contributing Watershed Area(Area) - Area= 788.30 acres C) Water Quality Capture Volume(WQCV) WQCV= 0.19 watershed inches (WQCV=1.0*(0.91 -1.10•I`t 0.78*I)) D) Design Volume:Vol=(WQCV/12)•Area•1.2 Vol 15.30 .5 acre-feet *+k. . adh Sheet 1 of 3 Designer: Kevin Jennings Company: Carroll and Lange,Inc. Date: November 28,2005 Project: Bayshore Location: Pond 105 1. Basin Storage Volume I,= 38.50 % A)Tributary Area's Imperviousness Ratio(i=I,/100) i= B) Contributing Watershed Area(Area) Area= 317.20 acres C) Water Quality Capture Volume(WQCV) WQCV s,watershed inches (WQCV=1.0•(0.91 •1'-1.19'1`+0.78•I)) D) Design Volume:Vol=(WQCV/12)•Area•1.2 Vol= ri ei-4 acre-feet i1 IMPin to d G`+a - s ,fu&, '`^`a ,frs. y,+a . x ) 's s Y ) } V x t.,.ti`� _:r,. � "c�,�•�.�. Sheet 1 of 3 i—. Designer: Kevin Jennings Company: Carroll and Lange,Inc. Date: November 28,2005 Project: Bayshore Location: Pond 100 1. Basin Storage Volume la= 22.07 A)Tributary Area's Imperviousness Ratio 0=I,/100) 044 B) Contributing Watershed Area(Area) Area= 274.80 acres C) Water Quality Capture Volume(WQCV) WQCV= 0_J watershed inches (WQCV=1.0•(0.91.1'-1.19'1 +0.78'1)) D) Design Volume:Vol=(WQCV/12)•Area•1.2 Vol= 3.407;, acre-feet ^, i3 n r^ sa xa x4F 5t kY Ai dk i. — 4L at Pm AS RW xi a pd tN �� 4[ rd ry{ Gtl !Ay r� u# ffi APPENDIX D Copies of Graphs, Tables and Nomographs used ritl DRAINAGE CRITERIA MANUAL (V. 1) RUNOFF TABLE RO-3 Recommended Percentage Imperviousness Values Land Use or Percentage Surface Characteristics Imperviousness Business: Commercial areas 95 Neighborhood areas 85 Residential: Single-family ._ Multi-unit(detached) 60 Multi-unit (attached) 75 Half-acre lot or larger * Apartments 80 Industrial: Light areas 80 Heavy areas 90 Parks, cemeteries 5 Playgrounds 10 Schools 50 Railroad yard areas 15 Undeveloped Areas: Historic flow analysis 2 Greenbelts, agricultural 2 Off-site flow analysis 45 (when land use not defined) Streets: Paved 100 Gravel (packed) 40 Drive and walks 90 Roofs 90 Lawns, sandy soil 0 Lawns, clayey soil 0 * See Figures RO-3 through RO-5 for percentage imperviousness. Based in part on the data collected by the District since 1969, an empirical relationship between C and the percentage imperviousness for various storm return periods was developed. Thus, values for C can be determined using the following equations (Urbonas, Guo and Tucker 1990). Cq = KA + (1.31i' -1.44/2 + 1.135i-0.12) for CA ≥ 0, otherwise CA =0 (RO-6) CCD = KCD + (0.858i' - 0.78612 + 0.774i+ 0.04) (RO-7) _ CB = (CA + CCD)/2 ^ in which: i= % imperviousness/100 expressed as a decimal (see Table RO-3) -- 06/2001 RO-9 Urban Drainage and Flood Control District 37 DRAINAGE CRITERIA MANUAL (V. 1) RUNOFF - TABLE RO-5 Runoff Coefficients, C - Percentage Imperviousness Type C and D NRCS Hydrologic Soil Groups 2-yr 5-yr 10-yr 25-yr 50-yr 100-yr - 0% 0.04 0.15 0.25 0.37 0.44 0.50 5% 0.08 0.18 0.28 0.39 0.46 0.52 10% 0.11 0.21- 0.30 0.41 0.47 0.53 - 15% 0.14 0.24 0.32 0.43 0.49 0.54 20% 0.17 0.26 0.34 0.44 0.50 0.55 25% 0.20 0.28 0.36 0.46 0.51 0.56 30% 0.22 0.30 0.38 0.47 0.52 0.57 35% 0.25 0.33 0.40 0.48 0.53 0.57 40% 0.28 0.35 0.42 0.50 0.54 0.58 45% 0.31. 0.37 0.44 0.51 0.55 0.59 - 50% 0.34 0.40 0.46 0.53 0.57 0.60 55% 0.37 0.43 0.48 0.55 0.58 0.62 60% 0.41 0.46 0.51 0.57 0.60 0.63 65% 0.45 0.49 0.54 0.59 0.62 0.65 70% 0.49 0.53 0.57 0.62 0.65 0.68 75% 0.54 0.58 0.62 0.66 0.68 0.71 _ 80% 0.60 0.63 0.66 0.70 0.72 0.74 85% 0.66 0.68 0.71 0.75 0.77 0.79 90% 0.73 0.75 0.77 0.80 0.82 0.83 95% 0.80 0.82 0.84 0.87 0.88 0.89 - 100% 0.89 0.90 0.92 0.94 0.95 0.96 Type B NRCS Hydrologic Soils Group 0% 0.02 0.08 0.15 0.25 0.30 0.35 - 5% 0.04 0.10 0.19 0.28 0.33 0.38 10% 0.06 0.14 0.22 0.31 0.36 0.40 15% 0.08 0.17 0.25 0.33 0.38 0.42 20% 0.12 0.20 0.27 0.35 0.40 0.44 - 25% 0.15 0.22 0.30 0.37 0.41 0.46 30% 0.18 0.25 0.32 0.39 0.43 0.47 35% 0.20 0.27 0.34 0.41 0.44 0.48 - 40% 0.23 0.30 0.36 0.42 0.46 0.50 45% 0.26 0.32 0.38 0.44 0.48 0.51 50% 0.29 0.35 0.40 0.46 0.49 0.52 - 55% 0.33 0.38 0.43 0.48 0.51 0.54 60% 0.37 0.41 0.46 0.51 0.54 0.56 65% 0.41 - 0.45 0.49 0.54 0.57 0.59 t 70% 0.45 0.49 0.53 0.58 0.60 0.62 - 75% 0.51 0.54 0.58 0.62 0.64 0.66 80% 0.57 0.59 0.63 0.66 0.68 0.70 85% 0.63 0.66 0.69 0.72 0.73 0.75 - 90% 0.71 0.73 0.75 0.78 0.80 0.81. 95% 0.79 0.81 0.83 0.85 0.87 0.88 ^ 100% 0.89 0.90 0.92 0.94 0.95 0.96 - 06/2001 RO-11 Urban Drainage and Flood Control District 38 DRAINAGE CRITERIA MANUAL (V. 1) RUNOFF - 90 80 — 15,000 sq.It.homes I- - 70 ! / - / ' 16,000 sq.ft.homes I' 60 / i? / r - 13.000 sq.ft.homes I a 50 r / r r / yn - — / r 45/- m-)r , r p,000 sq.ft.homes 1. e 40a. - / - r - - _ r o r 30 r�. - I ' '1,000 so.ft.homes I. / I • •r / — ZO f 10 — 0 (�5 0 2 V) 6 Single Family Dwelling Units per Acre FIGURE RO-5 Watershed Imperviousness, Single-Family Residential Two-Story Houses 000I _�0 80o -�too-rr c 060 -.._.. -.-__. a •_.. _-. X50-yr -4--25-yr 0 050 -._ -- ;-e- yr t i ' ' 1-a-5-Y, 040 _- -_ __. -.-2-yr — 0.30 0 20 ! -- — 0.10 • 000 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% - Watershed Percentage Imperviousness -- FIGURE RO-6 — Runoff Coefficient, C, vs. Watershed Percentage Imperviousness NRCS Hydrologic Soil Group A 06/2001 RO-17 Urban Drainage and Flood Control District 39 RUNOFF DRAINAGE CRITERIA MANUAL (V. 1) 3.2.2 Depression Losses. Rainwater that is collected and held in small depressions and does not become part of the general surface runoff is called depression loss. Most of this water eventually infiltrates or is evaporated. Depression losses also include water intercepted by trees, bushes, other vegetation, and all other surfaces. The CUHP method requires numerical values of depression loss as inputs to calculate the effective rainfall. Table RO-6 can be used as a guide in estimating the amount of depression (retention) losses to be used with CUHP. TABLE RO-6 Typical Depression Losses for Various Land Covers (All Values in Inches) (For Use With CUHP Method) Land Cover Range in Depression (Retention) Losses Recommended Impervious: Large paved areas 0.05 - 0.15 0.1 Roofs-flat 0.1 - 0.3 0.1 Roofs-sloped 0.05 - 0.1 0.05 Pervious: Lawn grass 0.2 -0.5 0.35 Wooded areas and open fields 0.2 - 0.6 0.4 When an area is analyzed for depression losses, the pervious and impervious loss values for all pads of the watershed must be considered and accumulated in proportion to the percent of aerial coverage for each type of surface. 3.2.3 Infiltration. The flow of water into the soil surface is called infiltration. In urban hydrology much of the infiltration occurs on areas covered with grass. Urbanization can increase or decrease the total amount of infiltration. Soil type is the most important factor in determining the infiltration rate. When the soil has a large percentage of well-graded fines, the infiltration rate is low. In some cases of extremely tight soil, there may be, from a practical standpoint, essentially no infiltration. If the soil has several layers or horizons, the least permeable layer near the surface will control the maximum infiltration rate. The soil cover also plays an important role in determining the infiltration rate. Vegetation, lawn grass in particular, tends to increase infiltration by loosening the soil near the surface. Other factors affecting infiltration rates include slope of land, temperature, quality of water, age of lawn and soil compaction. As rainfall continues, the infiltration rate decreases. When rainfall occurs on an area that has little antecedent moisture and the ground is dry, the infiltration rate is much higher than it is with high antecedent moisture resulting from previous storms or land irrigation such as lawn watering. Although antecedent precipitation is very important when calculating runoff from smaller storms in non-urbanized RO-20 06/2001 Urban Drainage and Flood Control District L/ /O RUNOFF DRAINAGE CRITERIA MANUAL (V. 1) TABLE RO-7 Recommended Horton's Equation Parameters NRCS Hydrologic Infiltration (inches per hour) Decay — Soil Group Initial—f Final f0 Coefficient—a A 5.0 1.0 0.0007 B 4.5 0.6 0.0018 - C 3.0 0.5 0.0018 D 3.0 0.5 0.0018 To calculate the maximum infiltration depths that may occur at each time increment, it is necessary to integrate Equation RO-8 and calculate the values for each time increment. Very little accuracy is lost if, instead of integrating Equation RO-8, the infiltration rate is calculated at the center of each time increment. This "central" value can then multiplied by the unit time increment to estimate the infiltration depth. This was done for the four NRCS hydrologic soil groups, and the results are presented in Table RO-8. Although Tables RO-7 and RO-8 provide recommended values for various Horton equation parameters, these recommendations are being made specifically for the urbanized or urbanizing watersheds in the Denver metropolitan area and may not be valid in different meteorologic and climatic — regions. TABLE RO-8 Incremental Infiltration Depths in Inches* NRCS Hydrologic Soil Group Time in Minutes" A B C and D 5 0.384 0.298 0.201 10 0.329 0.195 0.134 15 0.284 0.134 0.096 20 0.248 0.099 0.073 - 25 0.218 0.079 0.060 30 0.194 0.067 0.052 35 0.175 0.060 0.048 40 0.159 0.056 0.045 - 45 0.146 0.053 0.044 50 0.136 0.052 0.043 55 0.127 0.051 0.042 _ 60 0.121 0.051 0.042 65 0.115 0.050 0.042 70 0.111 0.050 0.042 75 0.107 0.050 0.042 80 0.104 0.050 0.042 85 0.102 0.050 0.042 90 0.100 0.050 0.042 95 0.098 0.050 0.042 - 100 0.097 0.050 0.042 105 0.096 0.050 0.042 110 0.095 0.050 0.042 115 0.095 0.050 0.042 - 120 0.094 0.050 0.042 ^ ' Based on central value of each time increment in Horton's equation. **Time at end of the time increment. — RO-22 06/2001 urban Drainage and Flood Control District /, `t 4 STORAGE DRAINAGE CRITERIA MANUAL (V. 2) attempt to account for the effects of the WQCV on all control levels whenever it performs watershed-level drainage and flood control system master plans. 3.2 Sizing of On-Site Detention Facilities 3.2.1 Maximum Allowable Unit Release Rates for On-Site Facilities. The maximum allowable unit release rates per acre for on-site detention facilities for a number of design return periods are listed in Table SO-1. These rates apply unless other rates are recommended in a District-approved master plan. The predominant soil group for the total tributary catchment shall be used for determining the allowable release rates. Multiply the unit rates provided in Table SO-1 by the tributary catchment's area to obtain the actual design release rates in cubic feet per second (cfs). Whenever Natural Resources Conservation Service (NRCS) soil surveys are not available for the portion of a county being studied, extrapolate their types using soil investigations at the site. TABLE SO-1 Recommended Maximum Allowable Unit Flow Release Rates (cfs/acre) of Tributary Catchment Design Return Period NRCS Hydrologic Soil Group (Years) A B C & D 2 0.02 0.03 0.04 5 0.07 — 0.13 0.17 10 0.13 0.23 0.30 25 0.24 0.41 0.52 50 0.33 0.56 0.68 100 0.50 0.85 1.00 3.2.2 Empirical Equations for the Sizing of On-Site Detention Storage Volumes. Urbonas and Glidden (1983), as part of the District's ongoing hydrologic research, conducted studies that evaluated peak storm runoff flows along major drainageways. The following set of empirical equations provided preliminary estimates of on-site detention facility sizing for areas within the District. They are not intended for use when off-site inflows are present or when multi-stage controls are to be used (e.g., 10- and 100- year peak control) at the storage facility. In addition, these equations are not intended to replace detailed hydrologic and flood routing analysis, or even the analysis using the Rational Formula-based FAA method for the sizing of detention storage volumes. The District does not promote the use of these empirical equations. It does not object, however, to their use by local governments who have adopted them or want to adopt them as minimum requirements for the sizing of on-site detention for small catchments within their jurisdiction. If the District has a master plan that contains specific guidance for detention _ SO-8 06/2001 Urban Drainage and Flood Control District DRAINAGE CRITERIA MANUAL (V. 2) STORAGE storage or sizing of on-site detention facilities, those guidelines should be followed instead. The empirical equations are as follows: =K,A (SO-1) for the 100-year: (1.781 - 0.002 12 - 3.56) K100 = 900 (SO-2) for the 10-year: (0.951- 1.90) Klo 1,000 (SO-3) for the 5-year: _ (0.771 -2.65) KS 1,000 (SO-4) in which: V, = required volume where subscript i = 100-, 10-or 5-year storm, as appropriate (acre-feet) K,= empirical volume coefficient where subscript i = 100-, 10-or 5-year storm, as appropriate I= fully developed tributary catchment imperviousness (%) A =tributary catchment area (acres) Design Example 6.1 shows calculations of allowable release rate and storage requirement using empirical equations. 3.2.3 Rational Formula-Based Modified FAA Procedure. The Rational Formula-based Federal Aviation Administration (FAA) (1966)detention sizing method (sometimes referred to as the "FAA Procedure"), as modified by Guo (1999a), provides a reasonable estimate of storage volume requirements for on-site detention facilities. Again, this method provides sizing for one level of peak control only. The method may also be used for initial sizing of detention storage volumes whenever a detailed hydrograph routing design method is used. The input required for this Rational Formula-based FAA volume calculation procedure includes: A = the area of the catchment tributary to the storage facility(acres) 06/2001 SO-9 Urban Drainage and Flood Control District 5• y t2 _ .41 _ Iz APPENDIX E Excerpts from the South Weld I-25 Corridor Master Drainage Plan I. V s{ *AM a a a site a €f LEGEND �� r� ItX1itt r , �.J / . a;���� 100-YCAR iL000PUN1 Imo--' - - • ,AA V A A. plf—fOoi ROOowp \.r —� 1:17:1. /' WCR26 4. 4f //io1Ifi/(H1/0�..G�//r. avlcw/'s.qe r 6'v A. `.,Jr ' r N 5�%/i d / o� vii 5 v GENERAL NOTES P :i �•• i / 'Y���p��� %/,/ A ] uses oN.bond• B.a. map* %%p>O�'�/iv/v I i I��/ , _-.! 1,,,!•—• 1 L. �i ]s mwu ueNao, ci �w 1w1 vii r. /// > �.. /� H-../ ,,-;i4 : 1 ' `g Notional oaoeaNe vam.m Dawn (% %%/�//,-/ —�i f \s / ' A. 1929. j,�.� a maim t 6� A. Wa,Co. 190, Poole rMaaC 19]9 >/ d>L9l] 9] '-<B fMv9ek,Co. 1990,Wad 1998 / l ' IMai " '''///�/%,///�6$l/ l ! _ C. (*wit.Co.1919,Melo robed 109 %%15 / I /j�% IMEM I ...� i '� I , 1u ,%.:(9. lD /7,, .' d,✓' a %T� , r l,, (�--<r..�) fir _ to,I ow e ?A /`�' I ,I / w r '// -1 142 / / t „--•••-•-; '7.-••1).( \ : l of a 4 v '=^'J r1rmurtur ' b1 11/• • �Nrag t3:L'F / - wae22 �1! (` ry _ .��u z Al2• ii.:11: e�, ` m N- cI\ l // / • % ` a xs• c -'1193 1 c -1 i� I_ 'y• ) 1 ,, `l ! i- \ V C 1J r 4 y ,�'•-.-,- -.,---,,,---4----:,::\ v +)."'v� R I �;�; r !� ! //!+ v // �.•_ n m A� •�� ����,.4 I 1, � 6,� GqsB�^u °��/ UTIIg�asG2 y ,'"� ,1 l WCR 11 1 St_ a`l1��l ' ..I 1 / �. ISCLa). h� G 1. -jj,;1G Er °u ' I %d .. • qq IVr 'Xi Fag r3 .�'+u% r II \ ' 5 r TE£tf ...IV A 1 9YS'7 - _ — a � t ���MH R RBIDCG d % au3 d Y� k,zsyj_� WCR 16 /- , s..rt_ �* I I 1' �.S 1 N D E,, yTv ,y3r a .1_;0 •.`'� l -a; r:d �� ' y ��.._ • 0 c4 _ I ,.rel ,:/ WCR 16 d i— � al 1`. r 5 e I R J 1! I` ,` � S ' ' [ l 71 . 1 • .1-,9 1 ! 0 111 �`.. rli •— Ca fl l. ^'_ wa11s j• •as _// I r h"Hk7B r�/•�,� yE �1� 1��� +' � / i 1 1]�j 21,) .-- � II{\ fi r 1 % /�k.. , �"I4'o ._: ( ll_ti;...., .. 1l it 1 Iri I �`�''r-L ry — . l y .T ! ,. )))) I I 1 11. • • zijjkj ( kJt ter P WCR12 • r - 7;t { +,-ri i( u�'1 "st° r ei r I , l l � 1 !Ilri).11a \\ I re _ •I ( 6,- cMA s, � I � _---1/:-/1M f ,•-•:'_iia , 1a i, A . WCR 8 ,y�l 1,,,,,,,_,t,_,, '' t, \,-,..;_a71I I' & c. I . _ i 111 /,4);:<,„7„,„ i 4 I I ` rF Hx14 r1 r •'� , i 'j'- was /34;\ 'i T z3 / _ -,Y Ds I { rr r. r 19 io ,7-4/ u It -- r .• _•� 1 j /r.a a a a a a a �O INC Bsome �nrcOWELD01 .. nRc w 9NDLWNEY.CO[DBAW I-26 CORRIDOR SHEET 9m99�1° ffi>ro MASTER DRAINAGE PLAN --t_ Z:: 'm COWELD_EX_FLD ..x`cur erson Consulting Engineers, I �` � -. vwsPM9u«9] 1 semen 3/2/99 <.n„: aNu•Mma.eo.m dnkalorY �.� EEmffiv EXISTING DRAINAGE FACILITIES 4 a.P018811 9/07/99 , BAA �A�'mr^Wr=sionamYO �pBABO88O1 •^ P+aulrn-PO»um AND 100-YEAR FLOODPLAINS SHEOL • `- Stn V/MIiA n: El LEGEND t J �� I h ! _ / , . . a k a o ��BASIN BOUNDARY a /'/'� I -- / 1 / A �' i, SUBBASIN EF jwr ry . V v I /i 'r I T�p'GC�-' ��, �I• / o` `/J• PW F _CONTRIBUTING •• — . �. - " � �r4 3 / /t � -may\ N 31 M (�f I .n.i /r _ N ORIGINAL SCA20r1LE 1•_2000' wand I 1 1 $ y'' y.® � 00 4000 J' 0 @� GENERAL NOTES / Si ® • • �� _ /1. DSOS°midmost* Baas maps 4 -�••• ) 1 �l, \\Y 1.5 mInul• .visa, C I .10 lasl ti \,./V1." Npllwtal Cwdnlic Vndical Dplum .-wit, \ J�'G RI 1929. _ 4, �P F{$� r. ' A. Ed*,Co. 190,Photo mind 19)9 - / s. & r...M,Co. 1950, Reid I99d ' .� , - ' %• / "'J -, G Gonda.Co.1999,PM*embed 1919 �R • ... 1. (SHW 119) _, ••�►/lT 1�' /• L ... l JL1 ( � \ ) r' ,j 91 ,\ t, i ``//�� 1 62 . -- s�•1 I I 1510 / �� �l ZCT! � �L , ,1Vitiv I 1 I1. - e A �1 � I 1 � laic- k ,J -j /� , L__ I g' I ) � r\� Qt ` C' '1(( --, r.y li t . �/ 7.4:::;:-4-..--, Cr',-S4'2. f '-', v o vil' 6 t �r I / ;fi1�I I _ ..ts�. 1 } WCR 20 f �.I ',,,•,:. 2 �� °� � 1 2L I°"• �ap�� E'��3 - / ( I 23w ' r) • ,e '1 ' H-1.----"?'....) } —^ l zo. �` WO!IS _ rt ►��►. 1)---, 1 t _ f 1 I` 4 '�. �.Tyy, ,� � � - I�Q �I�'�, al p; r y / I • •Jl ����� v WCR l8 ,r r 1 � R saalw / 1 . _, l.� f U f A / tl � / Ir'T � t 1<l �,� 1 r - � 7 l ..'B - J 5 �� __4.....„- 1 / i - It r , ,,._.-1-„:„:. i' I {{n eti tl I d I ' a• 2B S,-,...r--Lc-;;t- IW rn i L`''eg d1�11, , . •4 ,I ' '�c p� .1- 1 \ '�5 i ; ,i ` k .i, 1 f A_.r I v 1 rz' I / . 1 1 �}jJ I I S IND E i a • � Y� & I � I F ddd / / ' ✓ ' 'v-- v 1 �� I 1 • - ,'BUCK 16 p / \ f 1 f \ y R rvd \ti,.e.e, ' \ I - 1:i- V. --/---i� b f P. FO5�, z'r lyc]« i :, . l .' . 1 , u ,+ (911W 52) "" _ / 1 1/�• t'> > /• l I -ii- '\y ����HIy�C -1 d .BUCK l4 / I 1 -(I AXE 1 ✓ ��� yy r: / 1 ^ ' (i / clef-J.,-B ASE . 3 sT aD / J1, 1 ) -r I 9 r WCR a _ - ,1 '' =>�--/"' I . t V 9, r;-.,0-C;::. f^ s ,Kuc, t T' Y .v 1O _,/ f I d- / l` :-eI ' , g _a % N i der. -C � 3.,z' ! ' 7y . / t�� , sL- I \Nr y,F v VI,A 1 = 1� arp ft �� \ i cr �� V 36 r �s �, i �'6 IiE 1 / i,/ 3 / �� 1/i. W' 111-21° / �e ...i.:—..-...,..--.1.7'.:-.:';.---,-C. I / ., • -' t • f1 _ c ice. I .•A I ,. / (f. 5 - i"[ -I- y / / t12 I p 222,� / / /,./_„0:05'ry I \i. r ., J A -,--7,2, r�� • } a 6 8 a a TSr. INC ^'n' 0Y••In G•airaatalnas COWELDOI MRC �. 9RIID000MY QICpAOO SHEET ra N091ZWaMIDICA93SBM! I-25 CORRIDOR 'W•"�e�' �"°C "`"""""' 9®tainGnsdpgearm MASTER DRAINAGE PLAN 2 rasoa,aaol COWELD_SUB CJP of 50n Consulting Engineers, lace PAZOg1]OANM 1IT anng1' w l^ 3/2/99 ev awl•War braves •& trostsaYl • �• 7 F.O.BO][TH '7 -i [0 a� arrow, 9/0)/B9 �oew< '1011 ramp� � to • 1 tn�ar,mcoRABppm SUBBASIN MAP SNEf15 r. The Master Drainage Plan contains oversized maps - Overall Stormwater Management Plan (Sheet 1 of 1 ) - Proposed Master Drainage Plan (Sheets 1 thru 6) Please see Originals in File Hello