HomeMy WebLinkAbout7811901.tiff ctichen and associates, inc.
CONSULTING ENGINEERS C ,,
SOIL&FOUNDATION 96 S ZUNI • DENVER COLORADO 80223 - 303/744 7105
ENGINEERING 1924 EAST FIRST STREET • GASPER, WYOMING 8jbf11 • 307/234-2126
r2o; r„`
' .,S,. -
't'Cr:C;rv.
7.:A1- n F. -;, _
:"ABLE CC?,TE>:rS
CCCIUSIJNS 1
2
41
r'RCPCSLD COST 7L'C: i :i' 3
SITE CONDI T IOIJS 1
EOLG I C S:-r i i <_
C
SUbSOIL t
EmbanKrnt .r agar•
�eservlJ i r 6c; ;,� 9
FfiEE I1Ai ER LEVI L q
LABORATORY TESTING 10
Swell-'Consol idatIon -jests
41 Staard i'ructe' :S t'. : .
Direct Shear rests 1 .
rlci:l�l lea Test
r r SLUE
. .
cults
ryr1 >"t ST/",,.. f
r,E'arkrent :Ur s urate ,
Embankmert (Saturated)
In -'1ace rou> :.atian ..idy
�.'eathered Claystone bedrock
i aystane Le, rocR
1 : taterl.'
Fill Placement ,
bed, I q ;terra`
TABLE OF CONTENTS (Cont'd)
EMBANKMENT I1ON I T^R I �a 27
MISCELLANEOUS 27
FIG. A-1 - NORTHGLTNN RESERVOIR, SITE '.' ICINI TY 'O'
FIG. A-2 - LOCATION OF EXPLORATORY HOLES
FIG. A-3 - EARTH^UAKE EP I CENT:'",C , 122 TO 1977
FIGS. B-1 through B- - OGS OF EXPLORATORY HOLES
FIGS. C-1 through C-9 - GRADATION TEST RESULTS
FIGS. D-1 through D-; - S"EL!-CONSOLIDATION TEST "ESULTS
FIGS. E-1 and E-2 - STANDARD PROCTOR COMPACTION CLRVES
FIGS. F-I through F-3 - DIRECT SHEAR TEST RESULTS
FIGS. G--1 through G - TR:AXIAL SHEAR TEST RESULTS
7I, H-1 - EMBANKMENT SECTIONS
FIGS. I{-2 through H-G - STABILITY ANALYSIS
TABLE I - PRESSURE TEST RESULTS
TABLE II - LABORATORY PERMEABILITY TEST RESULTS
TABLE III - SHEAR TEST RESULTS
TABLE IV - SUM'1ARY OF LABORATORY TEST RESULTS
APPENDIX I - CORE LOGS
CONCLUSIONS
(1 ) A nearly homogeneous embankment dar section with a central impervious
core of select material has been selected.
2 , A 12-inch wide supporting berm is recommended below Elevation S135.
(3 , A 20-foot deep continuous cutoff 'iiied a.si, select impervious clay
fill below the e barnkment core is recommended.
( ) A 2-foot thick, do;.nstrear, sand and gravel dr: inage blanket 1 .5 times
the hydraulic head re full reserv;;i r in 'ergth is re= ~menc'ed,
(� ) Observation ei l s Gre recommended to monitor nor'e water pressure in
the bedrock at righer embankment sections.
(6) Vertical and horizontal monuments are recommended on the embarkment
crest and on the stabilizing berm.
2 _
SCOPE
This report presents the results of a subsurface and geological
investigation for a proposed reservoir site to be located in the north-
west portion o' Ecc. 36, T. 1P, , R. 6`'Y, Jeld County, Colorado. The
location of the site is shown on the site vicini_y map, Fig. A-l . Ue
previously per or-"ed a prelinir,ary engineering geclogic and soil
`i investigation at this site and reported our findings under .;ob No. 1S,8 S2
dated starch 6, l; . The scope of the present investigation and engineer-
ing analysis is to obtain sui icient subsurface irformation to provide
final design for the riai embankment, give recommendations on foundation
treatment, investigate the suitability of the material to be excavated
from the reservoir for construction of the proposed embankment and
provide an embankment section.
A thorough geologic study of the site was made by review of published
geologic literature, surficial inspection of the general area in t-e
proximity or the reservoir site, and review of subsurface exploration.
A detailed study of the seismic history in the area and recommenda io''s
for earthquake design are also presented.
Graphic logs of the exploratory borings and laboratory test results
are included in the text of the report. Findings from the exploratory
borings , field anu laboratory tests were used in evaluating the proposed
emankment and reservoir.
Evaluation of the dikes for the settling and aeration .agoons and
settling, uike is beyond the scope of this report.
- 3 -
PROPOSED CONSTRUCTION
The proposed storage reservoir is a hillside reservoir retained by
an earth embankment dam. The reservoir will have a maximum surface area
of 155 acres and a working depth of 37 feet. Maximum operational water
level will be elevation 5159 and a minimum operation pool will be 5120.
The reservoir will have a total working storage between these elevations
of 5,350 acre-feet and a dead storage of 340 acre-feet. Maximum rate of
reservoir drawdown will be on the order of 1 foot per day.
To achieve the desired reservoir capacity, it is required to excavate
to an elevation of approximately 5120. This will require a maximum
excavation at the northwest portion of the reservoir of 37 feet. Maximum
embankment height of 53 feet will occur in the southwest portion of the
reservoir near Test Hole 29.
An earth embankment dam will completely surround the reservoir with
no tributary drainage. Therefore, no spillway is planned. Present
planning calls for a pump station to be constructed at the northwest
corier of the reservoir which will pump water from the reservoir into
the adjacent Stanley Ditch. These pumps will be installed near the
higiest elevation of the ground surface on the site.
The earth embankment dam will essentially be a homogeneous embankment
constructed of impervious material with upstream slope protection consisting
of sound rock riprap underlain by bedding material . Details of the
embankment will be discussed later.
SITE CONDITIONS
The ground surface in the area of the proposed reservoir generally
sloped down toward the south and east. At the reservoir site, the
- 4 -
ground slopes down toward the east on the northern end of the site and
toward the south on the southern portion of the site. A hill is located
at the southeast corner of the reservoir with the ground surface sloping
doom toward the reservoir in all directions from this point.
The entire reservoir area has been cultivated and was being strip-
farmed at the time of our investigation. There are numerous irrigation
laterals crossing the site. The natural drainage of the site is tributary
to Big Dry Creek, which flows in a northeasterly direction approximately
11 miles south and east of the reservoir. A small tributary drainage
flowing toward the southeast into Big Dry Creek is located anproximately
-- mile south of the reservoir. Stanley Ditch, flowing toward the east
and north, passes adjacent the reservoir at the northwest corner.
GEOLOGIC SETTING
The proposed reservoir site is located on a dissected nediment on
the western side of the Denver Basin. Extensive weathering and erosion
has removed most of the original pediment gravels , leaving colluvial and
residual soils mantling the bedrock in the area. The axis of the Denver
Basin passes just east of the site and bedrock units beneath the surface
din gently (1 to 5 degrees) co the south and southeast. A series of
noutheast-trending, high angle normal faults, with narrow horsts (unthrown
blocks) and grabens (downthrown blocks) between them, cross the area
just to the north of the proposed dam site. These fault blocks have
been tentatively mapped by Amuedo and Ivey (1975) and were substantiated
by our drilling during the preliminary investigation. The trend of
these structures is about N45°E arld the average offset of the faults is
about 175 feet.
_ 5 _
Bedrock formations encountered beneac.h the reservoir site during
this investigation and our preliminary investigation included the Arapahoe
formation, the Larar•ie formation, and the "'ox Hills Sandstone. The
reservoir will be founded on and in the lower Arapahoe formation and
upper Laramie formation. !lo bedrock outcrops were observed on the site.
Information presented concerning the bedrock was gained cror, drill holes
from our preliminary investigation, geophysical well logs , and published
geological mapping done by others.
The Laramie formation is about 600 feet thick in this area and was
encountered at depths of about 50 feet or less in most of the drill
holes. The Laramie formation is generally divided into an upper and
lower section. The upper Laramie formation consists of interbedded
cla/stone, siltstone, and occasional sandstones , with a few localized
coal beds. The top of the Laramie is an erosional surface and is
unconformably overlain by the Arapahoe formation.
The Late Cretaceous Arapahoe formation has largely been eroded away
in this area with at most about 50 feet of basal Arapahoe remaining. At
some locations, the Arapahoe has been removed completely as a result of
faulting and erosion. !There present , the Arapahoe consists of interbedded
claystones and sandstones.
Detailed geologic maps are presented in our preliminary engineer;ng
geologic and soils investigation report.
SUBSOIL INVESTIGATION
The foundation soils and bedrock in the vieirity of the proposed
dam axis were investigated by drilling 27 widely spaced exploratory
borings. Thirteen of these borings were advanced by rotary methods w; r__
- 6 -
continuous t1X core taken within the bedrock. The remaining fourteen
exploratory borings were drilled utilizing a continuous flight auger.
Because of poor core recovery within the sandstore at Test Mole 15, an
offset hole was drilled by 4-inch auger.
The borings were logged in the field during drilling and coring ,
with the soils and bedrock visually classified. Disturbed , undisturbed,
and core samples were obtained of the typical soils and bedrock and
returned to the laboratory for further classification and testing.
Standard penetration tests were performed in the auger holes and water
pressure tests were performed in the core holes to measure the coeffi-
cient of permeability. Test hole locations are shown on Figs. A-2 and
graphic logs are presented on the plan of exploratory borings , Figs. B-1
through B-3 and on the embankment profile, Fig. B-7. Detailed logs of
the core holes are presented in Appendix I .
The borrow area was investigated by drilling 23 exploratory borings
at the locations shown on Fig. A-2. Twelve of these exploratory borings
were drilled with a 10-inch diameter flight auger and eleven were drilled
utilizing a 4-inch diameter continuous flight power auger. The subsoils
were visually classified and logged in the field at the time of drilling.
Disturbed, undisturbed and bulk samples were obtained and returned to
the laboratory for additional classification and testing. graphic logs
of the exploratory borings are presented on Figs. B-4 through B-6.
Subsoil conditions will be discussed with respect to materials
underlying the embankment and materials to be removed from the reservoir.
Embankment Foundation: Exploratory borings below the proposed embankment
indicate the overburden soils are erratic with respect to depositional
- 7 -
depth. Up to 12 inches of topsoil overlie medium stiff to very stiff,
medium plastic, sandy clays. Maximum depth of overburden (of 16 feet)
was encountered in the southeast portion of the embankment alignment and
minimum overburden (of 3 feet) was encountered at the higher elevations
in the southeast and northwest portions of the alignment.
Bedrock is erratic with respect to depth and classification.
Bedrock is predominantly ciaystone with interbedded layers and lenses of
sandstone and some ciaystone-siitstone deposits. more frequent occurrence
of sandstone was encountered in the exploratory borings in the north
portion of the east and west alignments and along the north alignment.
in the southern portion of the alignment , predominantly claystone was
encountered.
The sandstone is generally non- to poorly cemented with layers and
lerses of well cemented. Tne claystone is generally weathered and
fractured near the overburden-bedrock interface and becomes harder and
more massive with depth, as indicated by the results of the standard
peretration tests, presented on Figs. D-1 through B-3 and core logs
presented in Appendix 1 .
The percentage of cure recovery and rock quality (RQD) are shown
on the logs of exploratory borings in the appendix. The RnD is a
percentage of core 4 inches or larger (determined by only natural breaks
or joint separations) of the total core run length. This is an indication
of the continuity of the rock mass. Core recovery within the claystone
bedrock was erratic, however, generally recovery was greater than 7Q,'.
The RQD within the claystones generally was 6^:a or greater with the
exceptions stated above.
- 8 -
The major exception was in Test Holes 21 , 62 and 63, where jointed and
weathered material was encountered. Core recovery in the sandstone was
generally poor, ranging from 0 to 90 percent with similar RQDs. Core
recovery within the sedimentary bedrock should not be compared with core
recovery from hard igneous and metamorphic formations.
Water Pressure Tests : dater pressure tests performed in the bedrock
generally indicate the sandstone is relatively impervious with coeffi •
cients of permeability ranging from less than 1 foot per year to a
maximum of 60 feet per year. The rate of permeability within the
sandstone is erratic and does not appear to vary with depth.
Water pressure tests were conducted in drill holes at the interfacing
of sandstone-claystone units. The tests at these locations generally
indicated a higher coefficient of permeability in the upper portions of
the bedrock. A coefficient of permeability of 2,400 feet per year was
measured in Test Hole 33 between depths 13 and 17 feet. This measurement
was taken at a contact between the claystone-sandstone. Other pressure
tests across interfacings of sandstone-claystone indicate substantially
lower coefficients of permeability, varying between 60 to 530 feet per
year.
Coefficients of permeability measured in the claystone bedrock are
also erratic and vary from 20 feet to 1 ,000 feet per year. The clay-
stone becomes less pervious with depth, as indicated by the pressure
tests performed in Test Holes 62 and 63.
Coefficients of permeability and reaches over which they were measured
are presented on the logs for the dam profile, Fig. B-7, and the detailed
core logs in Appendix I .
- 9 -
Coefficients of permeability measured in the laboratory on undisturbed
specimens from California samplers indicate coeff'cients of permeability
of less than 1 foot per year in the claystone-sandstone bedrock and
claystone bedrock. These tests support the judgment that leakage is
occurring in the joints and fractures within the claystone. Laboratory
permeability test results are presented in Table [ I . The results of the
pressure tests performed in the field are summarized in Table I . Water
pressure tests generally indicate the claystone and claystone-sandstone
interfaces become less pervious with depth.
Reservoir Borrow: Exploratory borings indicate the overburden soils
overlying bedrock are erratic vjth respect to depth. Generally, 6 to
12 inches of topsoil overlie 1 to 7 feet of stiff to very stiff, medium
plastic to plastic, sandy clay. Bedrock was encountered at depths of
2 to 7i feet. The bedrock encountered was predominantly claystone with
sorre siltstone-sandstone and some sandstone-claystone deposits. The
claystone generally becomes more plastic and harder with depth.
FREE WATER LEVEL
Free water level measured in the exploratory borings is erratic.
Slotted plastic pipe was installed in selected borings to monitor lonn-
term free water levels. These levels are presented on the logs of
exploratory borings , Figs. 3-1 through B-7. !later was encountered at
depths as shallow as 7 feet in the northwest portion of the site. "e
believe this free water is perched water from leakage in the adjacent
Stanley Canal . At other locations along the embankment alignment
and in the reservoir borrow area, water was encountered at depths it to
- 10 -
20 feet. No free water was measured in the plastic pipe installed in
Test Hole 26. The water encountered at the 11-fcot depth is adjacent to
an irrigation lateral and is more than likely perched water. Water
encountered in the bedrock within the reservoir is generally near or
below the proposed bottom excavation. We believe the water encountered
during our investigation can be removed by pumping from sumps within the
excavation.
LABORATORY TESTING
Standard property tests consisting of moisture-density, Atterberg
limits and -200 were performed on selected samples from the axis and
borrow exploration. Unconfined compression tests were performed on
selected samples of the bedrock material . Test results indicate the
claystone bedrock has unconfined compression strengths varying between
8,630 and 24,900 ps7 with an average unconfined compression strength on
the order of 16,000 psf. The standard property and unconfined compres -
sion strength test results are presented on the logs of the exploratory
borings, Figs. B-1 through B-6 and summarized on Table IV.
Gradation tests were performed on selected samples of bedrock
material . Test results typical of the sandstone bedrock are presented
on Figs. C-1 through C-5 and C-7 and C-8. Test results typical of
claystone bedrock are presented on Figs. C-4, C-5, C-6, C-3 and C-9.
The gradation test results in the sandstone bedrock indicate the sand-
size material is predominantly fine to very fine and there are medium to
large amounts of silt and clay fines.
Swell-Consolidation Tests : Swell-consolidation tests were run on typical
samples of the sandy clay overburden soil and claystone bedrock. Test
- 11 -
results, presented on Figs. D-1 through D-5 indicate the claystone
bedrock possesses low to high swell potential with maximum swelling
pressures measured of 20,000 psf. Test results of the sandy clays,
presented on rigs. D-3, D-4, and D-5, indicate the overburden soils
possess negligible to moderate swell potential with maximum swelling
pressures measured on the order of 8,000 psf.
Standard Proctor Tests : Standard Proctor tests were performed on
composite bulk samples from the 10-inch diameter caisson exploratory
borings in the reservoir area. These test results are presented on
Figs. E-1 and E-2. Maximum standard Proctors varied from 9Q.7 to
115.4 pcf with optimum moisture contents between 14 and 22.8 percent.
Direct Shear Tests : Selected specimens of the overburden clayey sands ,
claystone-sandstone and claystone bedrock were tested under direct shear
conditions to determine their shear strength parameters. Test results
presented on Fig. F-I indicate the yield shear strength for a specimen
of very clayey sandstone from Test Hole 35 at 17-foot depth. This
specimen was failed under a constant strain rate of 0.006 inches per
minute under consolidated, saturated, drained conditions.
Residual shear strength was established for claystone rock specimens
from Test Holes 61 at 14 feet and 64 at 9 feet (Figs. F-2 and F- 3) .
These represent the highly plastic and low density bedrock material
which should develop the lowest shear strength within the bedrock. The
specimen from Hole 16 was highly weathered and had a consistency of
medium stiff. Both these specimens were failed under consolidated ,
drained conditions at constant strain rate. All three failures of each
of the specimens were accomplished on the same plane in the same direction.
- 12 -
The specimen was saturated, consolidated and strained, then returned to
the original orientation , surcharged, allowed to consolidate, and sheared
again. This procedure was again repeated for the third shear failure.
Test results indicate residual shear strengths cf 21° with 2.2 kips
cohesion and 5° with 1 .3 kips cohesion.
Triaxial Shear Tests : The results of triaxial shear tests are presented
on Figs . G-1 through G-9. Because of the original consideration of con-
struction the embankment with an impervious concrete upstream face,
triaxial shear testing was accomplished under consolidated , unsaturated ,
drained and undrained conditions as well as consolidated, saturated,
undrained conditions monitoring pore pressure.
The shear envelope presented on Fig. G-1 represents the residual
shear strength of claystone bedrock from Test Hole 21 at a depth of
C `eet. This test results indicates the residual shear strength of 19°
and a cohesion of 3.3 kips per square toot.
Consolidated, undrained triaxial shear tests for the ch.y overburden
soils , presented on Figs. G-2, G-3 and G-4 indicate shear strengths of
2.6 U.2 and 13.5 kips per square foot, respectively. These specimens
were failed under a constant strain rate of 0.003 inches per minute.
Triaxial shear results presented on Figs. C-5 through " -7 were
performed on remolded composite samples from the 10-inch diameter
exrloratory borings from within the borrovi area. These specimens were
tested under consolidated, undrained, constant stress conditions. These
shear strength envelopes represent the total stress condition. Sear
strength parameters varied from an angle of internal friction of 13O
- 13 -
with a cohesion of 1 .6 kips per square foot to 250 with an angle of
internal friction of 0.5 kips per square foot, with the more plastic
material having the lower angle of internal friction.
Triaxial shear test results presented on Figs. G-S and -Q are
remolded specimens from composite samples taken from the 10- inch
exploratory borings within the reservoir area. These specimens were
tested under consolidated, saturated, undrained conditions at constant
strain rate with pore pressures monitored during testing. The stress
envelope represents the effective shear strength parameters The test
data indicates shear strength with internal friction of 23° and 0.2S cohe-
sicn, and 26° and 1 .0 kips per square foot cohesion.
Shear test results are summarized in Table III .
WATER SOLUBLE SULFATES
Selected samples of the sandy clay and claystone bedrock were
tested for water soluble sulfate content. These test results indicate
water soluble sulfates between 0.02 and 0.22 percent. Attack on concrete
by soils and waters containing water soluble sulfates in these contents
is positive, therefore, we recommend concrete placed against the natural
soils or embankment use Type II cement.
EARTHQUAKE SUSCEPTIBILITY EVALUATION
The earthquake susceptibility was evaluated based on a review of
the historic seismicity and geologic and tectonic history of the sur-
rounding area. Data in the published geologic and seismologic literature
was the primary source used in the study.
- 14 -
Historic Seismicity: The high plains of Colorado in general is an area
of relatively low seismic activity. Locations of historic earthquakes ,
taken from the U.S. Geological Survey's earthquake data file are shown
on Fig. A-3. The majority of the historic earthquakes have occurred in
the mountains to the west of the plains. An exception to this general
trend is the high concentration of earthquakes northeast of Denver. The
Northglenn Reservoir is near the northwestern boundary of this zone.
Be:ween 1382 and 1978, approximately i+0 earthquakes with magnitudes
between 2.0 and 5.3 were recorded within this area. Numerous smaller
earthquakes have also occurred in the zone. The largest earthquake,
magnitude 5.3, took place on August 9, 1967. Its epicenter was about
8 miles southeast of the dam site. The focal depth was about 3 miles.
The majority of the earthquakes in the Denver seismic zone took place
between January 1962 and November 1967. This seismic activity has been
associated with fluid injections in a disposal well at the Rocky Mountain
Arsenal , Evans (1970) . A conclusive correlation between well injections
ane earthquakes has not been made, Major and Simons (19(S9) . However,
since halting of pumping in the late 1960's, the occurrence of earthquakes
in the zone has declined markedly. The 1872 Colorado earthcuake has
been assigned to the Denver earthquake zone, which indicates seismic
activity in the area prior to fluid injections. The most recent event
was a magnitude 3.0 earthquake in the summer of 1978. The historic
record indicates that tectonic stress released in the form o; earthquakes
has periodically occurred in the Denver area over the last 100 years .
Pumping in the Arsenal well has likely been the triggering mechanism for
some of the stress releases. The Denver Seismic Zone does not coincide
- 15 -
.ith a major fault zone and surface fault ruptures have not been associated
with the earthquakes.
Considering the available evidence, it is our opinion that the
Denver Seismic Zone is a potential source of future earthquakes, however,
judging from the lack of major faults in the area , it is unlikely that
future earthquakes would exceed magnitudes greater than 5.5 to 6.0.
Faults : Two potentially capable faults/, the golden and Valmont Faults ,
have been identified in the general area by the Colorado Geological
Survey, Kirkham and Rogers (1913) . The Golden Fault, located along the
eastern flank of the Front -range about 20 miles west of the reservoir
site, is a 20-mile long, high angle reverse fault. The fault offsets
Kansan-age alluvial deposits , however, the time of last fault activity
has not been definitely established. For the purpose of our evaluation ,
we have considered the Golden Fault to be capable. The Valmont Fault is
located about 12 miles northwest of the dam site. This fault appears to
be associated witn deep basement faults along the western margin of the
Derver Basin, Davis and Weimer (1976) . The Valmont Fault offsets
Kansas-age alluvial deposits , however, the last period of movement has
not been conclusively established. For the purpose of our evaluation ,
we have considered the Valmont Fault to be oart of the basement fault
zone and to be capable.
In addition to the basement faults along the western margin of the
Denver Basin , a series of northeast-trending faults occurs southeast of
i/ A capable fault is one that is considered to have the cotential 'or
generating earthquakes. A fault is generally considereu to be capable
and should be considered in dam design if it shows evience of movement
within the last 35,000 to 100,000 years.
- 16 -
the boundary faults. These faults form a zone about 20 miles long and
5 Hiles wide. The faults described in our preliminary investigation,
March 16, 1973, job 4o. 15,882, are part of this fault system. The
faults in the system are high angle normal faults with offsets ranging
between a few tens of feet up to 500 feet. These faults dirfer from the
deep basement faults which bound the area on the west in that they
extend only about 5,000 feet into the Cretaceous shales. The faults are
igrowth faults, Davis and lleimer (1976) . Faulting was contemporaneous
with high rates of settlement resulting from deltaic deposition during
the Late Cretaceous , as indicated by their limited depth and anomalous
Cretaceous-age sediment thicknesses in the fault zone. The growth
faults have not been considered as capable faults in our evaluation.
Earthquake Design Criteria : In our opinion, considering the geology and
se"smologic history of the region, the operation base eartruake should
correspond to an intensity of VII . This design earthquake was based
upon reported intensities of the August 9, 1967 earthqake near the
Rocky Mountain Arsenal . The maximum design earthquake should correspond
to a Modified I1ercalli intensity of VIII . This earthquake is based on
what we considered to be a reasonable credible earthquake in the )enver
earthquake zone. In our opinion, this zone is the most sig i " icant
source of potential future earthquakes because of its close proximity to
the dam site and past seismic history. Our analysis indicates that
credible earthquakes associated with the Golden and Valmont Faults can
reasonably be expected to produce less intense ground shaking at the dap
site than credible earthquakes associated v.ith the Denver Zeisriic Zone.
In analyzing the erfects of earthquake shaking on the emban..ment, we
- 17 -
have selected a pseudostatic seismic coefficient of 0.05g for the
operational base earthquake and 0. 10g for the maximum design earthquake.
EM3Atdl:MENT STABILITY ANAL"S l S
Several combinations of upstream and downstream slopes were studied
by computer using the tlodified rellenius slip circle analysis to determine
the most desirable section. These studies indicate that a 3 : 1 upstream
and 2: 1 downstream combination is most desirable.
Following the decision to use a combination of 2: 1 and 3 : 1 slopes ,
further computer stability analyses were made to determine t ,e configura-
tion of the downstream drainage blankets. Downstream drainage blankets
with lengths equal to the reservoir head , 1 .5 times the reservoir head
and 2 times the reservoir head , were analyzed. Critical circles from
this analysis, showing the respective factors of safety, are presented
on rig. H-G. Factors of safety under steady-state seepage conditions
were calculated to be 1 .36, 1 .26, and 1 . 14 for the 2H, 1 .5 and P length
downstream drainage blankets , respectively. The desired Factor of
safety for steady-state seepage conditions on the downstream slope
is 1 .5. From this analysis, it is apparent that additional stabilization
is required on the downstream slope of the embankment. rai :ure Surface 1
intersects deep into the embankment, therefore a drainage banLet o{
sufficient depth to provide a safety factor greater than l ., without
additional support downstream would encroach on the select impervious
core of the embank^ent.
Various downstream berms and drainage blanket configurations were
evaluated, with a 12-foot wide berm at Elevation 5136 and a 3 : , slope
- 13 -
below this berm being selected. Stability analysis using this configuratiof
and a drainage blanket with a length 1 .5 times the hydraulic height was
performed on the embankment. A computer analysis utilizing the Modified
Fellenius slip circle method was used to find the critical `ailure
circle and factors of safety under steady-state seepage condition and
s:eady-state seepage condition with a pseudostatic earthquake loading of
O. lg horizontal acceleration. These critical failure surfaces and
computed factors of safety are presented on Fig. H-2. The factors of
safety computed are 1 .59 and 1 . 13 for the steady-state seepage condition
and the steady-state seepage condition with horizontal earthquake loading,
respectively.
The upstream portion of the maximum section of the embankment was
tested under full reservoir steady-state seepage conditions , rapid
drawdown from Elevation 5159 to 5140.5, and rapid drawdown `roil 5159 to
5122. Because of the relatively low permeability of the embankment
materials , very little effective drainage will occur durirg this drawdown.
Critical failure surfaces and factors of safety under the various conditions
are presented on FiG. H-3. Calculated factors of safety for the full
reservoir steady-state seepage condition , partial drawdown condition and
complete drawdown condition are calculated to be 2.32, 1 .4E, and 1 . 15,
respectively. These factors of safety were established by computer
using the Modified Fellenius slip circle method. The safety factor of
1 . 15 for rapid drawdown is slightly lower than generally accepted factors
of safety under these conditions. The Modified Fellenius method of
calculating stresses within the various slices of the slip circle neglects
forces between these slices and generally gives a conservative value for
- 19 -
a factor of safety. The critical circle indicated as No. 2 on the
referenced figure was checked using the Bishop method , which takes into
account forces acting between the slices within the failure circle.
Using this method under the total rapid draadown for the "a; ; ,ire plane
represented by Case 2, a safety factor of 1 .26 was calculated. since
this circle falls entirely within the embankment , which will be carefully
controlled during construction, and the more sophisticated iethod of
stability analysis indicates a factor of safety greater than 1 .2, we
believe the 3:1 upstream slope of the embankment is satisfactory.
An intermediate embankment section was studied for slope stability .
Th' s intermediate section was studied under steady-state seepage conditions
using lengths of H and 1 .51 for the drainage blanket and a horizontal
earthquake acceleration of 0. lg with the 1 .5H drainage blanket. This
study indicates that a drainage blanket of H length has a calculated
factor of safety of 1 .39 and the drainage blanket with 1 .5H has a cal -
culated safety factor of 1 .46. Generally, the accepted factor of safety
for the downstream under steady-state seepage conditions is 1 .3. Under
the steady-state seepage slope condition with a :. lg horizontal earthquake
acceleration , a safety factor of 1 . 1 was calculated. ':e: believe that
the calculated factors of safety for the downstream embankment using the
f'odified rellenius slip circle analysis are satisfactory. 7he upstream
slope of the intermediate section was also tested under full reservoir
steady-state seepage conditions and complete drawdown on the embankment.
rectors of safety were calculated of 2.65 and 1 .47 for full reservoir
anJ total embankment drawdown , respectively. Critical failure surfaces
anJ calculated factors of safety are presented on rig. H-5.
- 20 -
In overconsolidated clays and very stiff and hard claystone bedrock,
conventional slip circle analysis may not analyze the critical failure
plane. Failure can occur on a weak plane within the overconsolidated
clay or claystone bedrock. It is extremely difficult to locate these
planes of weakness in investigation and during construction, Therefore,
four planes of weakness have been assumed at the maximum section in the
lower portion of the in-place sandy clay and at the top of tie weathered
bedrock sections. These planes of failure and calculated factors of
safety are presented on Fig. H-4.
Soil parameters used in the above stability analysis are as follows :
Embankment (Unsaturated) : Jet weight = 125 pcf; internal friction = ";o;
cohesion = 0.5 kips per square foot.
Embankment (Saturated) : Saturated weight = 128. 5 pcf; coefficient or
internal friction = 23O; cohesion = 0.25 kips per square foot.
In-Place Foundation Clay: Saturated weight = 133.4 pcf; coeficient of
internal friction = 23O; cohesion = 0.25 kips per square foot .
1.e�thered Claystone Bedrock: Saturated weight = 133.0 pc` ; coef�iciant
of internal friction ; 5O; cohesion = 1 .3 kips per square coat (residual
shear strength) .
Claystone Bedrock: Saturated Height = 133. 3 pcf; angle of internal
friction = 19O; cohesion = 2.0 kips per square foot (resi.:ual shear
strength) .
SEEPAGE
t;ater pressure tests indicate larger water losses in the claystone
becrock and contacts between the claystone and sandstone. Iressure
- 21
tests in the core holes also indicate the claystore bedrock generally
becomes less pervious with depth. A review of tie cores from the ...'ay-
stone bedrock, standard property tests and laboratory permeability tests
on California samples of bedrock indicate water loss within the bedrock
is passing through joints and discontinuities. the effectke coefficient
of permeability may be reduced by closing of the joints and fractures when
the surcharge weight of the embankment is placed.
Leakage through the foundation was calculated using generalized
assumptions to deternine a magnitude of seepage loss. It was assured
water was free to enter and exit the bedrock in a horizontal direction
both upstream and downstream of the embarkment. "his assum7tion does
not account for loss in head by the water passin, through te impervious
natural clay layer at the maximum section or difference in vertical and
horizontal permeabilities. Liberal average coefficients of rermcLi ' ity
were used. One idealized condition assumed the average perr,eaLilite
from the surface of the bedrock to a depth of r;p 'eet was "" 'eft .t r
year, and below 40 feet bedrock was considered impervious. nder t..ese
assumptions , water loss was calculated to be 22 acre-feet per no'it.' ..ith
the reservoir at maximum storage level . A second calculation assa.-t!J
bedrock 2b feet below the cutoff had an average coefficient of permeability
of 200 feet per year and below that the bedrock was impervious . r 'is
calculation indicated a monthly water loss with the reservoir felt .:.,utd
be 15 acre-feet. These calculations are estimates and intended to
assess the upper order to magnitude of leakage through the bedrock.
Seepage loss through the maximum fill section of the embanknent was
calculated assuming the in -place clay was impervious with respect to the
22 -
embankment fill . The highest coefficient of permeability measured in
the laboratory of 0.0S Feet per year was used in this analysis. Cal -
culation for seepage loss at the maximum section at rull reservoir is on
the order of 0.25 cubic feet per month per lineal foot of er'bankmeHt
when steady-state seepage condition is reached. From this calculation ,
it is apparent that leakage through the embankment is negligible.
Ei13ANt.fCUT
Typical embankment sections are presented on Fig. it-l . The
configuration of the embankment was determined by stability analyses , as
discussed earlier in the report. The embankment is essentially a 10ra-
geneous , compacted earthfill section with a 20 foot deep continuous
cutoff and a downstream drainage blanket l ., times the di ference in
elevation between the blanket and maximum operating reservoir level .
When the embankment foundation is below Elevation 5136, a 1: foot wide
term .:ith a 3 :1 sloe or the downstream side has been rroviaed. -',e
depth of the cutoff trench was determined after careful stu,y of core
from foundation bedrock and water pressure tests. The downstream Jrainane
blanket length was determined by calculating the location o' the preatic
line within the embankment and stability studies under steady-state
seepage. If estimated quantities indicate sufficient material will not
be available from the reservoir excavation to construct the cownstream
supporting berm as outlined in this section, additional studies can be
made with increased drainage blanket length with possible reduction of
material in the stabilizing berm.
- 23 -
A 1% camber of the embankment is recommendec to accommodate post-
construction settlemert.
Fill Material : Selected compacted, impervious fill should be placed in
the portion of the embankment delineated on Fig. H-1 . This material
should consist of the natural on-site sandy clays , clayey sand and upper
very weathered claystone bedrock with greater than 35% passing the
:lo. 200 sieve and a plasticity index of greater than 15. Approximately
525,000 cubic yards of select impervious fill will be required. Caicuia-
d ons indicate approximately 450,000 cubic yards of overburden clay will
be available from the proposed reservoir excavation. "uie remaining
100,000 yards oc select material will come from the upper weathered
claystone. This ,All require approximately 1 foot of claystone over the
area to be excavated for incorporation into the selected ir"ervious "ill
zone. Only claystone which easily breaks down into soil si.'e nartic'cs
should be used in the impervious section.
The random fill will consist of the remaining material excavated
from the reservoir. ire believe the soil and bedrock it the pronose:�
reservoir can be excavated with conventional heavy excavati-s ee,ui'i^ert.
As the excavation becomes progressively deeper into bedrocL, it ,.ill be
necessary to rip the bedrock in order to loosen it from the rormtion.
1!e believe the bedrock can be ripped by a truck-mounted, hy.'raulical y-
operated, single tooth ripper. There may be layers or lenses o; cemented
sandstone which were not encountered in our exploration which may rccuire
drilling and shooting to excavate and obtain the size of material wiich
can be handled by conventional heavy construction equipment .
The major constraint in utilizing the claystone bedrock in the
embankment is the mechanical breaking down and compaction of the bedrock
2t; -
fragments. l:e believe most of the claystone bedrock can be broken down
by the use of disking equipment and sheepsfoot compactors. The amount
of effort required to break down and compact the bedrock is difficult to
determine prior to actual meld operations. It has been our experience
in working with sinilar materials that ripping , disking and natural
process of air slaking breaks the material to a size which can be
compacted. Large boulders of bedrock which do not break down can be
incorporated in the random portion of the embanknent provided they are
surrounded by compacted material . Nesting of larger pieces of material
should be avoided. The less desirable bedrock, consisting of the large
pieces , can be used in the fill which is required to raise the lower
level of the aeration lagoons.
Cur field and laboratory tests indicate the moisture content in the
upper natural clays varies from 3 to 10 percent below optimum moisture.
The water content in these clays is subject to variation according to
weather conditions. However , it appears addition of water to these
n-a:erials will be required. The moisture content in the claystone
Ledrock generally was li to 6 percent below optimal. This water content
is less subject to variation because of weather conditions , however,
considerable drying of this material will occur curing excavation anu
working of the material before compaction.
Fill Placement: No brush, sod, frozen material or other perishables
should be placed in the fill . The distribution of the material on tie
fill should be such as to avoid the formation of lenses or layers of
material differing substantially in characteristics from the surrounding
materials. The materials should be delivered to the fill surface at a
25 -
uniform rate and in such a quantity as to permit a satisfactory constru-
ction procedure. unnecessary concentration of travel tending to cause
ruts and uneven co,lpactian should be avoided. Before placing the
successive layer, all ruts an..' other hollows more than f inches in depth
should be removed and compacted.
After dumping the fill material on the fill surface, the material
shculd be spread by approved methods in approximately horizontal layers.
These layers should be no greater than 8 inches in thickness after
corpaction.
The moisture in each layer, while being compacted by rolling,
shculd have even distribution of moisture throughout the material of
plcs or minus 2 of optimum moisture define) by the standard Proctor
dersity test. In most cases , addition or water will be required.
Ideally, water should be added in the borrow before the material is
delivered to the embankment. If this is impractical or it is not
possible to obtain, uniform moisture contents in the borrow, ..titer may be
added on the fill surface.
'.then the moisture content and condition of each spread layer art_
satisfactory, it should be compacted to at least 9 standard ,'roctor
density with a tamping (sheepsfoot) roller. The feet of toe roller
shculd extend approximately 3 inches in clear projection iron the roller's
cylindrical surface and shall be so spaced as to provide approximately
one tamping foot for 100 square inches of roller surface. The roller
shculd be provided with cleaning bars so designed and attached as to
prevent the accumulation of material between the tamper feet. The
roller should be the type which can have its weight increased by adding
- 26 -
to the drums of uater or sand or both. The weight of the roller when
fully loaded should be not less than 4,000 pounds per lineal foot of
drL.m.
Riprap: Eighteen ices of riprap overlying 3 inches of bedding material
is recommended. This riprap should be reasonably well graded, sound,
durable rock, l3-inc maximum size, 50% larger than 12-inch size and
less than 10% smaller than 1 inch. The riprap need not be compacted ,
but should be placed to grade so the larger rock fragments are uniVormly
distributed and the smaller rock fragments serve to Fill the space
between the larger rock ^ragments in such a manner as will result in
well keyed, densely placed, uniform riprap to the full 13-inch thickness.
Becdin;; Material . Tie material to be used for bedding for riprap should
be selected pervious sand and gravel , reasonably well graded From sand
size to a maximum of u inches. At least 15% of the material should ae
larger than 2 inches , with 20 to 50 percent passing the No. + screen and
no more than 5; smaller than the No. 200 sieve. Care shoul2 be taken in
hardling and placing of the material to prevent segregation. ':o compaction
of the bedding material is required.
Downstream Sand and Gravel 31anket : The material to be used 'or the
2-foot thick sand and gravel blanket should be selected pervious material ,
reasonably well graded From sand size to li-inch. The blanket material
should be 100%,, smaller than la-inch size with 1+0 to 30 percent passing
the No. 4 screen and 15 to 40 percent passing the No. 50 screen, and
less than 5% passing the No. 200 sieve. The material should be placed
in 3 to 12-inch lifts and compacted to at least 70% relative density.
The slots or holes in the perforated pipe installed in the bedding
material should be designed so migration of filter material into the
1'7 _
pips is avoided. This pipe should discharge to a sump where collected
water can be measured and removed.
DiBANIQ1E?lT f10WITORI':G
'/e recommend slotted plastic pipe be installed to monitor the pore
water pressure in the claystone bedrock at locations where te embankment
foundation is 5130 or lower. These slotted plastic pipes should be
installed at least 30 feet into bedrock and a wate-tight seal placed
around the tube within the overburden clay material below the sand and
gravel filter blanket. The pipe should not be slotted in or above the
sealed zone. Below the seal , the plastic pipe should be surrounded by
clean sand. It may be necessary to protect the openings it the pidstic
pipe with fiber filter material . Installation of these monitoring wells
should be considered at 300 to 4100-foot Intervals . Free t,ater lee;s
should be monitored regularly during the operation of the reservoir.
1:e believe the irstallation o'' these monitoring wells is importnt
because of history oR excess pore water pressure developir,; in hard
claystone bedrock formations. if high pore water pressures are Toni
tored in these observation wells , it may be necessary to corstruct
dewatering wells near the downstream toe of the embankment i•1 the. `uture.
Vertical and horizontal moruments should be placed at 200 to rCC--
foot centers on the crest of the embankment and on the crest of the
supporting downstream berm.
MISCELLANEOUS
During construct on, a geotechnical engineer familiar ..ith the
subsoil conditions should regularly inspect the cutoff trench and
2C -
reservoir excavations . breas of highly fractured or jointed bedroci_
should be noted and evaluated. If badly jointed and fractured bedrock
is encountered at undesirable locations in the reservoir excavation , it
nay be necessary to provide a thin, impervious lining. Tl Is could be
accomplished by simply mixing the air slaked bedrock and compacting it
to C% standard Proctor density. The severity of the fractures and
joints will determine the thickness of the lining. Thicknesses Letween
12 and 24 inches should be anticipated. it is important the excavation
be inspected before air slaking of the bedrock has occurred.
All fill should be placed under the continued observati„r, of a
soils technician and soils engineer. Fill should De frequently tested
to determine standard properties, and moisture and density c` the
place materials. A thorough record of material placement should be
maintained durin, construction and suTMnarized ollo' ing con•^'c_tior or
the project.
CHE "SS::C r A,TES , IC .
7
Don ld Bressler, I .
JEE/med
REFERENCES
Amuedo and Ivey, 1375, Coal Cline Subsidence and Land Use in the Boulder-
Weld Coalfield, Boulder and Weld Counties , Colorado.
Davis, T. L. and Weimer, R. J. , 1976, Late Cretaceous growth faulting ,
Denver basin, Colorado, in Studies in Colorado Field Geology:
Colorado School Mines Prof. Contrib. 3.
Evans, U. ti. , 1970, Denver Area Earthquakes and the Rocky ,,ountain Arsenal
Disposal Well : Geol . Soc. of America, Engineering Case Histories
No. 8.
Kirkham, R. M. and Rogers , J. P. , 1978, Earthquake Potential in Colorado:
Colo. Geol . Survey Open-File Report.
Major, M. W. and Simon , R. B. , 19GS, A seismic study of the Denver (Derby)
earthquakes : Colorado School Mines :1.uart. , V. 63 , No. 1 , p. x-55,
/ -\...-/ � "_ � / � /� __ � --� \ \
,00 \ L
\ 1 ji--
Mi r -____7-__..„---- - -----____,11-\---1- -\--,... -1 \ ) ) , ,
) / -\/ \ tl \ ) , / b
u \ /I \ \ Ca)
•._._./ \ I �_
II_ �OR S , THGLENN \RESERVOIR LO(\ATION ' 'tl / i� /
II
________ _______3 I 1 ( t 7- --...' \'ILIII
..--- I N"\ 1 ; I)
- ~ / _ _ _- — _
1c.ect I On 2� tlon J ) I
J
Sect; �� Section 35 1 �--'- .7 -- -i \ / / 1 I\ \I / /j '
) (19 ../-**j I
3 $ ,
7 ML / ( ( \ \
1 \ \ \ / ice
, I / ,/ ( r------1 ,--, ----
L
/ C
..---- \\ I ) ( .5 \ L--, -"\ 1
I \ \ i \ \ f / �/ 7 M
t / < 1 �= ..
J N ` c , �\
___--x __, -- \ I 1 I \ (_ _____- ,J -----—- '1`,
\ ' \ i ( (1) ) i- - -- i
' c—— \ \ \ ) ( )7_
,----- ' \ i --, / (.C \ 1 \ - ---N )1 (
,50'x, , _ , ..1 1 )—\) /__4- �_ -�
N' 7I:"'_E"1,1 RESER\iGl ,2 tl
Zvi SITE '' ,'GtlP11TV MAP
I
Scale: 1'',---.l O00'
chen and associates, inc. 7
CONSULTING ENGINEERS
96 S ZUNI DENVER, CO 80223
Jcb Number Dote
I6 __fir' Flq
CHEN AND ASSOCIATE 'S
Consulting Soil and Foundstfne EF , 'ate*
MY 0METER ANALYSIS t Eve lNA.L""IM --- ---1
?Hot,
TIME READINSS .. S STANDARD $ERIE$gO T .. 'R S& , ±«q .141'. r>F i
•MI� OO MN IO MIII •M,M .MIA •000 •i00 •9G••O.30 •N '� •8+ '__ _• '
; _ + `4 d
I 90
-_ _-+ ___ i- _ +t t r + 3 + 4.
__+
+- -_:_r
}
y _+—__ _+ __ --_ —_ + L _ e + Z _
: =_T - _ _— , — _ __— 2+ d + j _ _ Yx _, 4
W --- ----_{- - -+ — - -- - r-+- - 4. +� + 1-I
• ++
____ _ _ + — _ '___ -- ___ _-� __:1t_I !
f i _ 2 +i1.
••• i' fftf , - �.� 1•• 4r -•3_LI_I.JI_ --1 _.!. T�:.t:: t4__-1°r,
005 000 000 0 9 03T 074 I•* t07 •A0 I'S �tp55 •AA 09e 9 YA 793 r 400l DIAMETER OF PAR•'ILE IN MILLI ETERS ' I
CLAY ,►,�f•�. TO IlLT,NON-PLASTIC' � ' —T -- —J
`rt0ARK a‘7,06161t.6S
GRAVEL 0 TO SAND 73 /0 SILT AND CLAY 27 �r10/0
LIQUID LIMIT T PLASTICITY INDEX 4
SAMPLE of Sandstone Bedrock FROM Hole 15 at denth 1161-011
I HYDROMETER ANALYSIS SIEvE ANALYSIS _ _ ___
Tim, REAOIN03 u S STANDARD SERIEB•10 T- C.EAR SSuARG 0►Qh.algW A
�MII� •Y,k SO RIN RIM 4 MIN 'Rik •'00 •50•40.30 •4 �•0 •4 e9 4 W 7 a r `
I _ _ _ _ — -' -r---- —T---y j- 0
71.
J --}--- __ --- __ ..__ •
• • _ , _r-f-« 4-
4.,,,t—____ . — — +� - ++ --- - + - t -+ -- d ,-
__t __ + +Na 40 �_ _ r + +$ + + I +4 A. 1 t 0:
T ; • .;:-i rf_.]
'°°
Af! '>.7 i '709 000 0'5 037 074 I45 511 900 '.0 !p6a •74 598 5 ail 'f7 57 I
DIAMETER OF PAR I LE IN MILLIMETERS — — �_J
LLA` a_•r' ' TO SILT,NON-PL•fT,CI --1',COOK ES
(y.1AVEL 0 % SAND 80 /0 SILT AND :LAY 70 ''''ti
0�//
I_IOi ID LIMIT -/0 PLASTICITY INDEX 7S
'" ' " Sandstone Bedrock
Fq(,M Hole 15 at denth
n"16, 125 I;RADAT!('N TEST RESULT c-, r lc:. C- 1
A
1
CHEN AND ASSOCIATES
Consulting Soil and Foundation Eng,nows
i
I NrDROMtTts ANALYSIS - SIEVE ANALv913 � ___ _- —�4
r.2( MEAD0408 U S STANDARD $LRIESec, . 'A4 S1_AOC OP64 A4R 1
l� 1+
Sr YY M
l! M PeRAR A1hr ma. •�•4o•3o
•~ _ 1 •• b- a 4 "• r3,7 - a
+- + -- -- - - --- -- �- - - Ti i 3 + + + +
Y10 —�- —'+_ -- - - - -- - __ —++ - --+---- --+ --+ - `t
:_------T_ - I;_ I 4 ;i •i
▪ ___}_ •
$ - •__ +_-_ 4 - _► __ _— __ __�___ $_ _-_+ - I + 4_
; '4,4 1;fl
_-_-_--4-
- + _+ .I.-_ } �-_ $— } t 1 .. 4
10 -- _--_4 ----- -- ---r - _
--Y _-- T -__--_ - -__- - ---- - _� _ -_- _ 4* -- ' - +4. -- - _ - -S_ —+ ---- 4-- -+-1 t+- + rI. _rj=- + ±4-, t 4+ +
0� i -- -$ - --_t___ :-.- -- _-4— -- _ 1 i + =
- ---_- + T L--_h r-tr T T DTTT t-z- -- Z+T#TTTT$ �� Z _ ., ___.4 w - . A : oo
$�'�---xa' oro COI �v oe, ON ,�� tsT t ro � t g+e •TO � m'�. I �s a, � `��'�
I DIAMETER OF EAR IDjL�E IN MiLLrAETERI% et,
C,Av a At` TO SILT ,101 PLAS11C1 ♦IRF ?WRIST U• C0iR7RT- �'�'sR"Tab.' ✓ — -^lRtFd
GRAVEL 0 0J0 SAND 49 /0 SILT AND C.LAS rl Tu
LIQUID LIMIT To PLASTICITY INDEX -'0
SAMPLE OF Sandstone Bedrock FROM Hole 15 at depth 2E -0I
r V ioMETtR ANALYSIS I $IEy_ ANA�.Y1'S
T.ME A[ADINOS T S STANDARD SIIIfS� T — C EAR ,:w AR
itiF
M▪N 4.4A soma. Perm 4 soli MR. •tdo •'oo •5o•Ao'30 •a i •' To k e r
_+--- ++ + - + +y,}-t/0L--t - --it-------t--' _ --r•
--- _ -- -L Ji} y -i ---* - -j -Al0
• + ____•_____- _- -t {- --_ T+ 4 } + p
- __ }} _ -_ _-_- _--_ _ _ . 4 - + + ♦4 A+
1 --+ - -- t +--- - -- -- __ i }- 4t} - - _ ++ - 4- + -- + -r 140 S
!0.-_-- _--_* -- --t----- +--• ♦ ++ 4 4 -t -
I- t i - • __ +- -• .- + $ I t t + s ++ 1
W�f $ {i $ I Y 4 + + } ++ 11
to
---___ = --= -- -- ------=r'__ _—_ ' 4 4 t + ..-
.-=-7 _
�— +- --_ + $ _ _ _ +4 + i + _ 0 1+-
4-
a,
FT-t- .-:IT _if--T- _1 : LLL1 `-T__ r'TTT`- f T T r TTT - �'• ' t r7 I 1 1 1 WO
DO 0O1 OOC OOt 0'• 03, ON 4S ltl tt'M0 .t ttpp31 a w f]t 0 _ SO. ',GE .t` E
D AMITER OF PAR ICLI IN MIL., E __1_14
CLAr z.A1•CI IC SILT IRON-PLAIT C' T-- —--- —�c,oRRCIS
GRAVC_ 0 50 SAND 79 /0 SILT AND CLAY 21 y
4 ��}}// pp//
L YUi0 k_1MIT -/0 PLASTICITY INDEX 7t
-n r Sandstone Bedrock FROM Hole 15 ," denth 3`' ' ^''
#16 125 GRADATION TEST RESULTS r i n r _2
A -
CHEN AND ASSOCIATES
Consulting Soil and Foundation Engiv,eons
L, NYb*OMETER ANALYSIS I SIEVE APALf".{' _ - sue --��
,
TIME R[IOIN4S •eTI u 5 STANDARD SEuIESU .f yR 'S° `P__ '=6R MIA
II; 10 MM •Y111 4 WN met •.00 *so•4°•JO •• 1a! •♦ !} ,h � 5 'A-_1'°
t.
t40 —_ - __ _ _— —_ _ _ -- _+— ___- --r-f—_ _ __ ♦_ _ + _ r __ A y4O N
- t + $ $ •$ i- f ' . n 61
101 + !/
t_ $ _ - -- - - t- = t + - x 'a �6 -I lo
- -- , t -_ + -- - - - -
t-.-- • - - - --a-- �• - - o ••as - -; 7 r rllt=—i-��t 4J$;- Ly-40°
.. I 00!--.. 0O y 009 01 05• 014 '44 21T ee 5.0 , A Vg . $IS 9 5 .4 545 •$S t 11k)
IDIAMETER OF PAR'I`LE IN MILL1'NETERS Ns
CLAY .v;aanu TO SILT IKON-FLA$TICI --11•0=k,, —t-- ✓�
riff r Crwl - CDiRR' ►7 iE v9aa7Y --�`_QOa0t S
GRAVE L 0 /0 SAND 77 /0 SILT AND CLAY �3 D
LIQUID LIMIT % PLASTICITY INDEX 00
SAMPLE OF Sandstone Bedrock FROM Hole 16 at depth 391 -,11
L4HYDROMETER ANALYSIS I SIEVE ANALYSIS _-_ _ ,7
T�1 O'NQ •ebTo u S STANDARD SERIES•p T C.EaA 9auiRE 091Cd�M21I
4O A DO MW S 46WM IMW •,00 •SO•40 30 •M ti •4 `Y' ' _ w 3 II' °
IN
_40
+---- + _— -+---- —�- --- +---- eCf
•
—-:_ _.1 t- _-_-:-_ _ ,__ __ t_ + t- -] r
= F _ ___ - __1= s- --_ t _ - _+$ - --t - : _s Iw�IL
4
_ __
_ ___ __
__
__ _ __
_ ,_
_ _ _ __ ___
I+
_ _ r : .,1.1- -: -1.
+4 •
�_*_--. -- - �___� _ =- _= w - t
-Z S--r �N• 1�•• T I1t tom- I--I?11T-1— - !1 T-4 IT7fTrf 03
-
-i, 0.* 003 00. 0,. 037 024 i45 217 t510 'I1 VS 4 I gm .' A. .a E '5' ED0
DIAMETER OF PAR ISLE IN MILLNJE'ERS �y'p�r �__
a.----
CLIP/ PL4$ 'C' TO SILT (SOW-PLAIT C) IU■ COMM] ►IN l"-�` ----- •G0 I-ES
FIN! %1 }0 I z4 R.�I raaRss +
GRAVE'- 0 % SAND 78 SILT AND CLAY 22 liC
LIQUID LIMIT % PLASTICITY IVDEX NP %
,,/,,4E., F of Sandstone Bedrock FROM Hole 16 at depth 701 -0"
#16, 125 GRADATION TEST RESULTS pia. C-3
A
I
CHEN AND ASSOCIATES
Consulting Soil and Foundation Engineer:
iiii MYDNOMEr[R ANALYSIS I IIEvE_AkALY"S1? - Rte#
DIME READINGS ►elbo u S STfNDARO SERIEtIAO T.AFB 90«aRF :"'i�+IN3?
TNR •100 •SO•40 3C •M As •• 5s }a ? " Y
SM'A 9CN9I »INN ♦WN IMW { _ - - O
i f 4 II
1
—__ —i-- __ - - - a —____90 1 -__ 4 M + + 4. A4 A
-- $ —_ — — - T + ' + JIM- t-- - -- - - _ - - S -� - ++ . + • e
70 - -- -- ---- -- t--- - -4`.--- S -71'*
a - -_ w
-y- _ --_- =--�-t- _= +$ - + ++ 1 w
---F - - +-- 40
• —
50 _ - _-_ ' - - -- ___ __+ - + + +
Z . >e
_t _� __ - - t_ - -j+ t i A : aI JQQV
_ _ II« + +i ++ .1t
30 _- ---� - � __-- _-~_ _ t f_ --"+ - - - -* -- - - __ ±-- +- _-m9.
__-_.,_=_L_-__:,_,_ _AT TT�I I - T-I--T-T YTTT I- `- "• t i241.�SSIt_ - `i_ X41-4.aIaii }_ 100
..I C+.A _'05 009 Ois 03T 0'• .45 ZIP 590 '. 39 4 A 0 Y 9 1—'�I, '.;► .p' tCP
L --
DIAMETER OF ►ARTICLE IN MILL ETERS ---1
Cllr '°`e>:'IGr TO fIV 'NON-FL 0R6LFfe9rIC1 L--__--
GRAVEL 0 TO SAND 17 /0 SILT AND (.LA,' 83 %
LIQUID LIMIT 31 % PLASTICITY INDEX 21 c,
AMPL_F o. Claystone Bedrock FROM Hole 17 at depth 291-0"
4YD OMCTEN ANALYSIS SIEVE ANALYSIS_ -_--__
.� T Na
T,[ LI RL�AO,NOS T T u S STANDARD SERIES o j CLEAR 50-.ARE DP-F0491429
MIA( 4 N 4 BYO N W ewer 4 wed MIN •!Eo •00 *so ••o•SO le* ti •< 'N w "W -3-_-S r
,---- I - -t--t- --4---__---- _ _ _ _
-- __T_ ___+'� - __Y_—Y -__ __ - �
--�-- — — + -_I� 2 +
TO,-----I------ — = T { -- ---7: -1-------+---r---- - DO
ta
-_ $ _ _____-7- -7__ _ — _-+ - -." - -+- ry-{- V
F-- _ y_ _ } -T--
t� -- - - $� -- ---- -- _ j -- - - � - -- + - ; ++---_ _ ic
t + 4 + 7 v
— — — — _ -- - --� --- - 1'0�
30 _ - __ _ __ _ -ice - +- ` + _l: _f - -- —-- -- ` _ -+-----� SO
-- - ____ - _- - ----- + 4 — — _4 —+ — .0
--- _ — I — —r - ST 7?T7 -- Z TqT_ T roo
-- __s-;-!-r rT$T----t- z Z i r Y=I-- z- -�r>>14 L-'_-_
.51 305 009 0.9 037 074 IN !i1 njj``S90 . 9 F 31 A w 9 St 9 38 "St It'' 1
DIAMETER OF ►ARfi LE IN MILLIMETERS ae
CL AT x,A@'IF TO $ILT 0000-PLASTIC)
%S'IC) G0iYtE8
G FtAV EL 0 /0 SAND 81SILT AND CLA♦ 19
L IQUID LIMIT TO PLASTICITY INDEX NP 7i
0 J FSI K -,4 Sandstone Bedrock FROM Hole 17 at depth 39'-0"
X16, 125 C=RADATION TEST RESULTS Fin. C-1
CHEN AND ASSOCIATES
Consulting Soil and Foundation Engineers
L HYDROMETER ANALYSIS ] SIEvgANALv_lia _ �— --_�_ _�1
t r•l
TIN( R[1DINOS •eI J S STIMDAMD fEI11E6r10 T L t*" S .,AMR GPe� '*oE
Sr•IY •orw •rw •Ww rIM •00 •30'•O.3C •M I•A •• M w. r
-- -- ---- --- --- - — _ + + _
TO —• _ ----_11.-
+- ---y -- _ - - ----t- - + - ti-+-lm
lii
W --- _- _ a+30 _ -+—_ _+-_ — _--__ - + -I + :_ 4-a. II
a.
40 __ - + +— -- ---4 ---4 -± }-+ 4 04i
+ - f
'— -- —_T_- —% - _ -t __+ - r --w4
---- - - 4 - -- - 1 7 4 . . .
---- - -T ••--- ♦'—�•�� 1 - - - ' • - ti r yy•--I-`Tt IL L-- — --— _. d_'.: -.4,q u. ;.
o04 008 00• 0,1 037 0'4 ,4• ZVT,A� 310 . f 63• •p 4 N ' 3w VIP n Adoe
I DIAMETER OF ►ARi1�LE IN MILLfMETEMS 4.
�i1�ps^
CL A" ,4,As Y IC. TO SILT ImOM- ICI FIR1 1Ur I COS ISE1 IT of � s" , AA''ir—�,�'^MArr%
GRAVEL Q % SAND 79 % SILT AND CLA'r 21 %
LIQUID LIMIT % PLASTICITY INDEX NP %
SAMPLE or Sandstone Bedrock FROM Hole 18 at depth 451-61
HYDROL TER ANALYSIS SIEVE ANALYSIS _-_- _ _- —_.
-yt�(p�ry,, � .�- S STANDARD SERI Cf•p —T C (Al SO..APE i1P£N�NS"if �1
alts i'Q A H et,
�Si11M •Ww mot
•loo •b0••0.30 •11 -et •4 _4p- U. •y - s --' r ,.
— -$ — -- __ - - _—��_ x - $ + ; I - _4,tc,-- - 4- - _----
- - -- -- --- - --_ -_Z - + +
-+ + --- +-- + 4 $ +
$ -- - --- - -- - - +++ + I + --
-,_4_--__.__T0 -_- -_ _ - --1 - -- - + --+ - * - - "A
+------- --- - ---- - _ _ - _ -- - -
_ +- ------4 -4_--_- — ----- -- } S ---- + - --- + _*-_ _ + -° 0
w• -- ++- _- t _- _=:___I_____- t _ _ _ _ _4.
r
s - _- - - 7-:
mil-- _ ,t -- +- ---±- -- 47-T��'°
---4- _- - --4 — ---_ - =- -t 4- 4 +
+ _ __ _ _ _ I`+ 4 +
_ _ , }
__ __- -_ __ 00
- `_-__ - _ T __ ++- _++ _ --+y_ y _11--- - _ - __ + - t +�-
��. --S_r --- t--r-T-TTn r1 -~T- _ TT 11 Liu�---c- `T- -I?7Ti� -'f- T -- I2TTTT +
O l (7CE A004 00• 01f o3? 074 141 Sri tt 310 .• VI 4 Al •34 4 34 7•r �
DIAMETER OF PAS I �E IM MILLfA1E'ERS
�t a•-F t4'�CI TC SILT wow-FLHTICI I- ----T_
�f
C.OSOLES
GRAVFL 0 % SAND 24 % SILT AND CLAY 76 '10
L IDUID LIMIT 34 % PLASTICITY INDEX 14 %
•,.-.*A PI_F rsr Claystone Bedrock FROM Hole 19 at depth °1-011
F16, 125 GRADATION TEST RESULTS Cio. C-5
a .
CHEN AND ASSOCIATES
Cons,iIting Soil and Foundation Engineers
HYDROMETER ANALYSIS $IE' C_ANA Y"i1
TwR TIME ACADINRS v S STAI/DAR0 SER�EAR° T E eR S S_raf ^r/k RD
gm •MIA /Q rw 'rw •4 N rr/ •'00 •50•40.30 •4 me •4 °r' --/" -- q _ 9 a +r 4.90
70f -- — — --z= - - - +`a` -- _ ---- --_$ -a T-Ti"a
--_= -
i i ®
4(1
w — — — — _-- -� +} + t _� r
C — z y* '+— +9 4-
-- ; .+- tear
a.
'0-_—__ + - -+ -- -- _ _ -_ - -t4_ +----- 14 i -1 of
i_
`-I_ iz _-r r --T r '
004 YS a0C 0'9 031 C'• 149 reT S!O 33t ! C 7t k .. •9 A�..`, 16,0
O
DIAMETER OF ►AR I LE IN MILLFMETER! —�
CLAY F.e!*SCI TO MO' .40•4-EL el71CI Elia �rJ�DIUM ' cwt.(' --rioti?�E T �_na ec E
(y RAVE_I_ O' 070 SAND �7 /0 SILT AND C.LA, 73 3.0
H
LIQUID '.IMIT 30 %p PLASTICITY INDEX 9 (�.Q '
SAMPLE OF Siltstone Bedrock FROM Hole 22 at depth 19 '-011
Ih ri;R0MCTE4 ANAO!IS I SIEVE ANALY$ !
9 *,ME READ'N4I! •tblo u S STANDARD IERIE5.,� /a• aa„ARI CIS^++rRS
�j '
M A 4.Ca, MINN 4 44 NW °'00 •ya••0.70 •N `S •4 +'. q 3 r
It
1 -
r :4-_ II
CI
-y--_ T- { - ♦ + + . 4-4.0!
10—••—•=7---7- [---1 _ —•
- -
+ ` $ + a
-- --- -..-;
10 a I--_ 1 - I--- -_ --- _+ 4 _ t+ ---- -. - __ _ *--r r , / h T I! I T'iT. ? 100
867.-------Z-= �• . EMI//MM -_ _ ��. . t
MD 000 Oat D! 037 07• 149 LIP TS10 I • 66Jt •q e!t 9 DI Nit t'�t
DIAMETER Or PAS I LE IN MILLFME+ER!
LLsd '+•e7"7,. IC SILT'"I0+-PL.°f7'CI ------4GGpitES
C.R.A`!F - 0 % SAND 15 % SILT AND CLAY 35 'c
I IC,II.'.0 IM I— �9 °"0 PLASTICITY INDEX 11 IS
=1r r ^F Claystone Cedrock FROM Hole 33 at depth 141 -011
116, 125 CRADATIC?N TEST RESU! T.F. r r-r
CHEN AND ASSOCIATES
Consulting Soil and Foundation Engin. r
NYDOOMETEM ANALYSIS SIEVE ANALY}
TIM[ READIN09 u S STANOARO SERIES•p I c tell S4'.AIL .1+Em. oos
7MR • 9y f� , • K
IN
olio
so Mw hMw •AOR ma
•oC •!o•w•30 •M • _ -- --- -- - - - • -I0
_- _ ___ ++} a 4 + + t . o i
90 -'
— - _- — ---- -- - — j -+ --� _I$ f + - a 1
+ +
EF---- _l_____ - --_-_-1-_-___-,- - _+- --- - - Y+ - + iF- , - , +O -1�J
70 G= — -_- - — -- ---+ --- 1=- + q - 1 1
- --- — x _ __ 4 + - A v
J _ - -_ ___ ::_—_-___I-.==
— +—_- -- —+ __ __4 +__ -- d - # - + + -}- + .♦ R
-- - - - --t- - -� - --+-- i P '.a
M-me, l --____ - --- ---+- --_ --t_-+ - -- - --+y h P + - + � +- 4+1•- a
+ + 4--t _— ___ _ __—_ —_- -- _y-y_ ___ __L4,-_ + +_ _ $ _ +__ __ +- r+ to
4
ill b ____1_—+ _ w T r---T —Z t y I$ r,
t _ 1
+ _- + _ $4- 1I + + - . i
_ - - 1.T TTTT---- 1•_- 1-- IT- T'"LTT -t Z - TIT-17r t- t� T .7:1-11-9- - -1- - {f - t _', f --,ss
Opt T "YI OOf 3,, 03' 0'" ,•9 tf? ttSOO Y •T•�jj S •AI t.5A ,R_1_ 1 _ 1:
�T'Ar 2' t�"
' DIAMETER OF ►AR ILLS 'tN M Lt., ETERS
C.iT t,PB*,: TO I,LT 'Km-►�NT,C, FUSE- 1yy PLD'7■ ; [DA7ii l.`- 1., iJs__-Ir 0RYLf3
GRAVEL 0 % SAND 78 ll70 -ALI AVE.. a LAY 22 a0
LIQUID LIMIT % PLASTICITY INDEX %
SAMPLE OF Sandstone Bedrock FROM Hole 36 at depth 40' -011
► VDMt1MQTEM ANALYSIS I SIEVE ANALYSIS __ _
osc „w �''�a[ )t[AbINOS 1 u S STINDARD lEioE6�p T GEAR S0uARE 0a"EksaiSS-`
lw% ;lest so s•l RIM 4WR WA •!b0 •,00 •50••0•30 •b I•f —Y' _ _ 1'" _---3- - r-7 7. 0
ai - _ _ + 7f tt---- + -- ---- _--_--- - ---_-- - 4---
--L_4_=77- - ++_ iii -
J `_-_ _ _ __ __ —__ _ __— _ __ -___ ___i_+__
i111t1.- 9t
Rod
0- -t--- -
M ',_7_
_ - -_-w+ Z+- - T I+ _ +
+'_
-- -- _- 4t -- -- -- - ------ -- + +$ - -+ - + 1 -
�__ }t
f- __ - _ _ _ r +_. ..._ ,- - + ,
8,,,,,_____-t"- T-T-P -'-T—rZ?TI-�>t -t-r _ Lr1 [ttt� *'Z-T7777 - TSTI-t`T pp
Js ,%k9 00S 0,9 037 0T• ,is ill n�tt SOO .5 VS •IS II St B, M TAt t'1tt
DIAMETER OF ►►RrIlLE IN MILLFMETERS�----�p _T__ -J
�CL^�T P.PL•',CI TO SILT(M0N-PLPST,C, FIN[ pIU■ I corn/TI FtM[—�7,r CpARR ____WO _IS
C RAVEL 0 q0 SAND 54 % SILT AND CLAY 46 /0
L IQJ pp��ID LIMIT -/0 PLASTICITY INDEX 7S
,..AMPLE OF Sandstone-Siltstone FROM Hole 41 at depth 24'-0"
U Bedrock Fig. C-7
#16 ,125 GRADATION TEST RESULTS
CA 2
CHEN AND ASSOCIATES
Consulting Soil and Foundation Engineers
HYDROMETER ANALYSIS [ SIEVE AW .YJ't --�� — —
y,pl TIM[ READ'NOS •tbio s 5'& 0ARD t[R [Yk i ' FA.9 5a.[.•: PEP*i}0 I
�r rr A •or•e *taw •wN riM •oo •50•40_30 •M ••tee •a 4 ? L2 : .
• Y o
fO~ - --`--_----- _--=/ ------ _ _- - ---- +$ - — + -- + - + ±eta
OM
---__ + _ + __ _ _ iJ1 '-4--
+ Ail r,
e 40 w r P + � � - sx
A __ 111} 1 - + _. . __
r 3-in# 'I
fl4L 'i1
- -- - t i = j : :
s L 'i ;cap
•
- rT_.S__ _�-T T T T_T??_ -T - Z _ *II T TT.'d- _- * _.�• I-t- Dq
00 00& T')k5 00• a's 037 0,4 4• 1I7 . 350 , • I2p 3.1 4 i• •94 • Y za , v
IDIAMETER OF PARTIGL[ IM MiIC FME TCR6 _ -__-- —-r—_�
GCar P.cf •O f LT Ir)rl-FLsfT c ►IRE I —MI010■ I COs711Ri— rust 7 r'`ARS.FY
GRAVEL 0 % SAND 61+ To SILT ANC Ci_A♦ "6 c
J
LIQUID LIMIT %p PLASTICITY INDEX NP ;t,
s*MPIe o - Sandstone Bedrock FRo. Hole 48 at depth 6' -0" to 10'-0"
L HYDROMETER ANALYSIS I SIEVE ANALY1IS --_ --- --
IrI
T !J[ AEAOIMQS v S STANDARD ICRI[s•q T - C.,CAR so„Ami ooat N¢$
.4 r ice ea 194 1t M•• •MIN i*ft •00 •50•40.30 •N •• •4 69. ,4. ` •
�__- — _ _--
- __- --Y +
_ __ _ i_ } __ _ ___ -- __— _ } _— _ ,}- - • -. 4- ” -4
+ :-- - - -- T :+ + ;t
#-- - ----+ - - - -- - .+ , i
To L
: -- --I- -�-- - - - $- E
1 /
Si _ __ _$___- _ _ }_ - - 4 w 4 a t tY y
SOY -- / 1 _TI + _ j ___ _w _—_ µ_ -r ..�
-1_ _ _ . __ . ___ + -
�+} + - + • + _4
I. -
10=_------ - - +f} __ - S -4-4 - -$- + = -- ; ;4--400
---� -7 _ZL T TI =- �T---T 7T»rrr— ` r— T T172 T-- t?-r L TT T`�------�--Lf�_i i a�*- �Q0
:Y� JfkS C10• C T 037 074 .4• 1I•,p�t 3.0 5 66!• a T• •f N Y 54 ,i f 51 t
I DIAMETER OF RARTIGL[ Is M,LLFMETERS
—
c.•4 ^ a€ 0 51LT MOM-P.•57 c' - Welt ER
;r+,,iEL 5 % SAND H 1 % SILT AND CLAY C`i rJ
'QUID LIMIT To PLASTICITY INDE t 01
,•;%IFLC C4 Claystone Bedrock FROM Hole 56 at depth 10'-0"
I
#16, 125 :RADATION TEST RESULTS rig. C
- A -
CHEN AND ASSOCIATES
Consulting Soil and Foundation Enginaors
z
I NYOMOMUTER ANALYSIS IEV ANALY1'=
TwR I CAOINCS u S STANDARD OER'ESAG 4�'- S. -444‘, ;4C, .,a
r •r'II AC r,w IRrw 4 Ai 14 I r(9t •oo •90••o•SO •A PM •• 3 '.. a • C Gr
' — — + - I— - — t� 'A -I°: t1'
- _.... __..__ _.. 4--_-_ - - -- _ ++ e + 1 4 4
-- - - - - - - ' t+ ` � Igo
t_ILL- - T---t. rT..." T 7---T,4-4TTTT~—_�I_ ;_ l_1i3t -- -- - --!: — . .�.. <_"i50
' ale f Cr43 079 ;9 09' 0'• 4A m ypAtt 990 i 3A s'9 9 9� ' ' '4', h
DAME'ER OF PART'GLE 'N M,L.FJETERS ���
CLAe 'Y.AE"C. TO SILT it07-•.AY• L' F1Rr 11M14 —rTir� r '' 1R iii CR4'
GRAVCL 0 %p SAND 6 /0 SILT AND CLAY 94 y�
LIQUID LIMi' L)9 Qfp PLASTIC ITY INDEX 33 /5
SA 4.1 PI E 4•a Claystone Bedrock FROM Composite Sample from
Holes 37 through 45
at depth 3' -0" to 131-0"
I IiYDPOs4'TCR ANALYSIS SIEVE ANA�MaIs- 9 dRE C '- --
� - � REAasS u s S'ANOARo •ER'Es'p :..FAR g,t 'N -T ---�
PAR 4 a•A Ar',L9 maw •Mill ,Mk 46o •'D0 •90'40.50 •N •R °� as �« : -_ :':,..
-
• _
. + — —
+_� _ _ 14
t0 -- - -- ♦ _-- -$- -- — + ----� - - - + - - 7T -+ -- + - + - i - L tY BBD
1p _ —+ —_ __ _ __ i_ +----__— + -4.+ __ y —+_ ++-__ + _ + i +-?- .=
+ x I+ +
} .
I
--- + _ -- _-+ --- +- -- -- -+ + -- +.+ —+4-- - + ---t ----- y-------++-4.- _ + t
+ -- + + -- -- -- - - y ----- - r f 4 4 ' - +
i_—_ ___ ` _ +- + _— - - __ __ _ _ —_ _a _ 4 __ - __ , _- 1.y�__ I ::ti- _ p —�_-a_j-:1.:_t'i MO
JOY :.Y.Y (`O9 0• 037 0L i4$ trr `'so IR �6q9s 4wT ,939 9 4'3' 'A9 '9'Ce
I DIAMETER OF PAR 'LE IN MI'_LFMETENS -- --_-- -- _ AG
le .:.•• '.,8 ' TO s'L '90 r.•9• CI u
p� --4CNN:Es
CV C._L_ 0 /0 SAND M 37 -!0 SILT AND CLAY 63 a
. Ir'I ',a l iMIT 24 TO PLASTICITY INDEX 7 �c
7-- is Tzr Claystone-Sandstone PROM Composite Sample from
• Bedrock atldepth ,1,F -end
dto7201-0"
GRADATION TEST RES UT LS
#16,125 Fig. C-9
CHEN AND ASSOCIATES
i I I Na»6-a D•, JnIt Weight = 117.9 pct
I I Na"urol Mc1•tur• Content = 13.9 percent
-.t-4--t-- ; T. i i I T 1 ,
1 1 1 1
it I I i , III ' � 11
, ± t .---f--+-++:-t--- - -- - -- t f t f
I I ; I I I
III i
I I i I II
I I
II I I I I
I
I' I i 1
I Expns iah �md�t- constant 11 1 1 1
N1 I pressure uan' vetting. I 1 I —
I
i I ! ! ! I I , I , I I I I
U i I I I I I 1
I ' ! I I I ' , i Hit
I
} , s -+ ► 1 + -- t + , I --1-- f + i I
I 1
I I I I ' I I1 I i 1 I HI
ISample of claystone ,f'rpm Hole) 17 .it Jent4 ±'9'I-i^"• I i I I i
I. I 1 . : 1— it !_ i ! , _I I . I I 1 I _ I
01 I 0 0 100
APPLIED PRESSURE — kaf
W .' "......": 41.77
I i I I I
I Natural Dry Unit Weight = 112_,n pcf
' I I
Natural MclstJre Content = 16.6 percent
I I I I I I �
I I I I
I I I } 1 I
i I_ _� I ---. I I —•--,r,
1 1 it I I I 111
I
c 2 1 1 1 I I I I 1 1 I I
o I
e— I Ali
I ! I E ans ion !under c nst t'
ln
I I I P ssure non Jetlingr !I
ra
G1 4 a 1 i— ( T
u I , , I I I I I I 1 1
' ^ 1 I I I I I I I I I` I I I I
f I I I I I I
c I I i I { I
I c
N I I I I I ;
I 43 I I I
O 2 i } i , 4 1 ( - I f 1
v I 1 1 1 1 I I I I I ' i II
i---4, # , i I I I , i I I 1
t
1 t1
Sample ofl clflystc ne ' from Hoiej 13 pt pe th 7r Ig11. I I 1 1 I
�� ..�.. - l a 111 I 11 I l l
T I IC 100
I*-Pt.,, , IP PPIF53,4RE — h •f
-- I Kr, c..,, „Ii t,r, ,1,71„4,.,f,— Tpif PpILVItT r. , 1
CHEN AND ASSOCIATES
Natural Dry Un,t Me ®nt • 113.6 pct
I Natural Mo 'tuft Centeno • 16. 1 psresnt
{- i
► � I 1 ' I ' 1 ' I
II
� •i I ! i , • II
' I
! I it • I • I Ii1 j I I
I c , HIT i ; i
I I I ,
Ili
° i Ekpans i I Under ccinstapt I ; i
, mresNre, upon wettling.I I 1 I , jI
.� I • 4 1 I • I I . I I i I '
I 1 ,
t_c_ I I I I I I i I , I I I
U i I � Hill II 1iI3 ii I ' l l i ! {
' I 1 . I , I i j I I
I I - 1 -- - I I I I! 1
H Y 1 s 14-- r- --4- 4-1" + �-4--- -+ --' 1 -�
C ii
s 11 ' I i I I I
.,amyl y of clay�tont.; 11riom Iio1q 19 f t kiel�tt I2 1I,)' . ! I i I I
I • 1 I , , I
ij '
_ . . , _ , 1 i L I i iii
i
01 l 100
APPLIED PRESSURE - kat'
Id
I , I I Natural Dry ilnit We pht - 122. 3 pct
I 4'_',_';_
II I Natural IN3'sturs Content • 1 ; .1, percent
` ! I
i I ! I I i i l 1 I I I I
I
'. I I11 ; -1--- 1 I
i I.N , ! III '
iii , t
, I I i i 1 ,
c
Ii1
X 3 4, tLJ -" x ra i • Jn one an 1
1 i ! r s• r upon we tin . I
L_J— �.-� - 1 i t t 1
i ! ' I
c ' I I I I , i ,
o I I , i , '
N ! , , ; , I �� I I I i I u ;
i I i it I I ' I
L- i ,
r_ I , I ii I ; , I i ,
i I I ! , I I ; I I
I II i , , I , II �, i I I .
3 4--i--I-4----- - I if 1 i 14 , i i 11 i , °
' H ' '
h
t Samp l le of c 1 y$tdn ; i,r!om Ho l 20 a t dept 2 t r +0' . I I ; , I
' i ° 1 i , , I
I_I _ J �.
,; , I-0 '0 IOC
0 APPLIED PRESSURE - kat'
,:I 6125 r+wrrII• Cranrvlidcr,c� Ts,* Retuits • „
r
CHEN AND ASSOCIATES
I Natural Dry Unit Weight ® 107. 1 pcf
I I I Natural Moisture Content a 1 `„ } percent
, 1
I i I I '
.o j I I I 1 1 ;LrlI I l l 1
' t
cx 1 I H f 9 11 1 I � T 1 4
,, I : I , I 1 Expans,iotl jar d��' l :onstat�t I I I I ' '
I I + I I pressures upoinl W4tt i ng. ; I I
p r I I f t I 1 + --f---4---` +—�+
I
II
[: I i , I I I � � � i i ' I I I I I I I
V1 I II I I I
O I I I , I , I I
C3 1HI I I I I i 11 I I I I I I
' _
C I
2 - i r 1 —i o c }+—— --4.-
i
�' III I I I ' I I 1 ' ' I I
I I I I I III i I I
'
I ; I l j I i I ' I i I i i II I
t I
Samp1 e of c1¢y�tOne, ifirIom l;olel 23 ?t jdeQt}l p ti '.
I ! I ,I
I I : ., I , � I I j I
i a , i l . I i
0.1 L 100
APPLIED PRESSURE — ksf
I ! l r
I I 1T I 1 {r
NOtu'oi Dry Un,t WI Qht - 11 .2 pc.
I
1 `_
I ! , NOtura! Moisture Content - ^ q percent
I j ' � � � , I I I �, 1 1
1 ; 11llI I Ic } t.-- - 4------.---_ 1 tfi . t -- } 7 f
�- I ' I iI1 I11 II
I ll {
L ' I , , „ l I0 , ! : , IL
I VII iI
s✓ i I 1 II t. Ii ill
I I : 1
J '
I I I I I I I I I I
I I I 1 I .
I
3 t .
) 4 ; t-+--- - - -1----- ---
4--� 4--f- 1 . . --}--� t 4 a r 1
Elxprnsion un41er consijant I I , I I
I , I -- rlresisure; LirsIDI 11ietting.
4 i + --- } + I 1 1 I It ------* 1 + ii 1 ,
I I i I I I II .I I I , I ! I i I
' I 1 I , I I 1 I , i
5 { l i � I t 1 i : 1 ii "1 I i I I I I I
I I
1I I 11
- 11
II t 4 ; J —�---� r } 1 11 } 1
i l , i i I i I I I
I Samnl'e oflsaidj Oa' ;Prom Halle 25i at' d.p f� - 10". I I , I ', o I 'oG
APPLIED PRESSURE - ksf
IE , 121-, Cwr:II-Conte3I!rkt on lest Rest, is
i
CHEN AND ASSOCIATES
I
I , ; S Natural Qry J,+ t Weight n- 124.5 pcf
1 I
I
t I Notu*al Iltio. etu-e i'an"ent '- 1 1 .n_ percent
6 ' i I } A t' i I
5 I I i xp r s!on under epnsta Tt i '
I
l I 1:,reS4t.re uporj wet,t i n1g. '
i
1 ', I I ,
I I I I �
1 i 1 I I I I
c2 -0---.--_o-.---.--_----,__-_ -,- } -+ —I. A. + f_•1 j' _ 4 t —t fi I ,
C I , I ; 1 \ I I I I
r3 I I II _4- I
j Ii 1 I j ' , ' I I I !
i, ^v.' \ r e a t- ---r---s— —-w---+-4-?--4+r---- \ --+-
-1I----tff
, 1
C I }s I 1 I ' ; ' I II I
u Sample of claysltone t�rom riol e1 26 4t i:epth ',2t!',--IC".
C 1 ' tee.._l21_1._ , A0
O A.I
c� APPLIED PRESSURE - kat
Ott
r-77 , I i N • life Crr -.r te Qht . 111 .3 pcf, , Natural Alo'et.,'e Content • 16.3 percent
II I I i" HIM 1 cf
I ,
II
' I I 1 I
, I I I j ' ,
ill ;I j '
l i ' I 1 ( I I I i I , :
I I ' 1 1 I v�- I ; ! + I IItff1
I 1 I H Ht
I Id1 I I I I Th-
gl i
I I ' I I I i I I I I , I I
.- 1 — : -4'---4-j-4I - ---
o
I ; -�- Add 1 5 Iona] ' e¢rhnrOs ton udder I •
N I
iv clonst n ant re sure due to wettli nd. ' , '
L 1I I I I
I I I l I I , I
-1-1------"-1.-÷-.1
--- x-1.-1 4I- -- ----*-- -1- --4 -"---4 {-�r-4-4— — I' i --r--t
Sampl of1cl y 'fi*olll'I�ale 2�' at depth cli-6',. I ;
II C '( 'nt
„' r•r^, let! Ire. ref A's .•IGt 4 ell i
1( :1 2� ,,,,, 1 Ii , -fl .) , "t • ., '— , ,4 t.
CHEN AND ASSOCIATES
—m
T
Natural Dry Unit W.,ght ® 106.6 pcf
Natural Moisture Content m 13.3 pfrcent
3
1 j '
j I I I I , j
1
.0 E paps top iu 4r cons lant ! j
I I ,
m ' , - p esiut-ei 1.p iwettin I
X 1 ' 4 } i I l t l i + t t--1.
1 .
w i ' I I i
1 l I , 1 " I
i I I i i i I i I I I I
I
I i I , I I
c i i I I 144_I l f l l
O 2 r I t t + - — --t-_____4_4_ 4
U i l 1 I i I I I I I 4 I {
I I I I , I I I
i
Ir � � j j I Ii� I I l i 1 it
4 , 4-4-1--,4- -r----1- -1—t- 47"4-1- t ---I—T 44 i
Sample of cliyt4n4 ;f}rim Holes 30 pt a th 7P q '. I i , ,
: IIIY S I 1 ,
I 0.I I I00
APPLIED PRESSURE - ksf
\ { 9 1 , Natural Dry Unit **Ant = 119.3 pct
I + I +
-�-- 4,-,4-1--______, Natural Ala store Content 1 1 , 1 percent
3
4 i
(b-------' s, f I 4 2
. I E,cpan i on and r coins an j
� '.2-z Is5hhJre
upon Iwett 1n j !
x1 t e r ¢ -------.4 t
LLI
i I Ijl
O ,
a
' I I l I I I i
a ! I I ! I I
0 2 + -1 + ` I ;
= I
I 1 I I j
I I �
IjiII I + �
I I { , I 1,
1 1 } t--. TI . . - - , } }
. II
Sample of said4 l '' If4rom Nolte 32 at dOptt 2 -0". I i
I i i ! I
01 I 0 10 '00
APPLIED PRESSURE - stet
r•16, 125 41pr!II -CSnsclick1,^-. rf'S} Res,, t+1 ri,, r`- r,
�on osite S r S..rcy rig;
Gompositer,�ple of G .z}stone p ,
r
I Bedro:K 1 rofl rh' s I : , C• , 51, -r , ! i from ilk's ,h'„', r', "'O, I ,
s r (i i
, - • , \s. crt; ir
- ern a\i c c I
C
I
I C,ics f ,,_
‘.. I u
u I \
.\, .>.• (— — - - - -- ---
71.\\I '‘ I i
c U \ i:
C) I \ -;
T I L
. \ ..
1
YL;L) I lu
29.'
�I
i,'. [. Jii H 7 r r•
,
c: L-tur E' ..cntent y _i c stur:. Con. c 't ,
r ple o" 21,4stcne ^Il
e I Composite Sarir1e ofCir stcre
te:rock f rorA-I ri - , . , , tied r o: y
,_,, - / `l E`r0 f'l I ,I Erfl �i "
I oi�Is 1 I I � :oi. ,,
- i I I L-
U
u I
Q- I 1 •I I,::: I \ :-.-
\\'
I
VI , •\ . - - . , I \\:\
I
1 f I . I
1 I I
1- 1 I
}. * +I . \ .'' ;i.7 —: s...(' \ I s ' '-- 7'.;
I LL c ' ,: I ' ' r:0. 7 \
I , , ;3.r I t-1 - ,F.
`
I _-- —r r _—__1_ - __
- T 1
�crpos i to s,, nlq cc c':vystorte *
S i 11.E .one- L- cc', 'corn IH`s �'',
} & r' 1d ' J
I
r, I I -e r O r,rr
u I O1�S
L - + iii
a I
'^ I - - +
n _ r _-- -- i 1
1 I1uC = 1 1 ,. ''
I LL 24,2
I '3, 5.6
I - ;-co - r - i
ic: - - -- 1- - - .1 -- -
ID 15 '^ ^r
of sturc ;on wen= (2)
U
sluff? _ , ,ax i m un Dry tensity (.n;11
C:10 - ('rt i-:ur Moisture Content (2)
LL Liquid Lirn;t (2)
?i - Elasticity ineex (2)
-200 = Percent Passing Io. 201 Sieve
4,
L. HN f NL) .-ASSCC c_ IATES
Crnc. I'!n1,1 ., L. rid ZULrd d t!on Fng n1 :r '-
TEST NUMBLR j 3 __� t
LOCATION Hole 35 at depth 17'-0" k " r ` ' ` ' `
HE I (HT- I'1CH 1 .CO , 1 .00 1 1 .00 ' 1 - �- !3µ
I At"ETER- I"JCS,, 1 .t.:: . 1 I ; .9/4 '�, :-r;
L.
t
W'iTEP CC'JTENT - , 9. n 9.(_, 9.9 ,
�— t—
C "vFY 'JS 'TY rCF 120. 1 520. 1 X120. 1 - _—_ _ '— — +
CLSC,_. _CAL: - Ksc 5 5 I r ,
2., ' ,.r✓ 7.5 -- 21- i
NCRMHL LCrAD - hsf 2.5 i 5.0 I 7.5 I W r
SHENP STRESS - r, f 2. �,. 1 5i
--
— �-
TYPE C SP:CI6.'1 _Ca] ifQr_nia r
— - - - - - - + +
I
SCI _ :Es : '. Sandstone Bedrock _-- — -- '' 1 I -
r
_-200=3_.- _ _ _ -_ '.1 _�_- �_ _ L___ __. __.,_ _, ._1-_
11 ?n
TvrE Cr Corisoi 'dntco1 Saturated a-- -
Drained -t ke, x l '—' '
C3nstant Strc-in Rate of - l' 7
a
---- - -- --- - -------- -- ----- --- —- ,..-...- ,..-t„ , -
-- + + + r i . - i . f . + '
. . I . , ,
r 4
i
. + + , . . t
r + - i t i
i 1 « -
t
3 ,---{ +_ . + - _ 1. - .- + 1 t - ,
L + , - - * ' ' ' } ' r
5, 2 r " , i
__
1 2 3 11 J 7
,s
1 1 „ ' 1
CHEN AND ASSOCIATES
Consulting Soil and Foundation Ergineers
TEST NUMBER 1 2 3 l L. - t - - - -1 1 ! + 4 '
LOCATION Hole 61 at depth 14'-0" —i---1 + I - ft + + + + + + 1
I + } - -- -+ + + - + + + - 1
I i l
HEIGHT- INCH 1 .00 1 .001 { _1 .00 I + + _ _ .1
DIAMETER- INCH 1 .94 1 .94 1 .94 + -+ + + 1. . I
WATER CONTENT - % i _
DRY DENSITY - ncf 98.8 g8.8 98.8 ° 5 , : 1 -a
+.+ _ _ + + + + + - + + . . 4,
CONSOL. LOAD - ksf 12.0 8.0 4.0 "' 4�_ + +
1-
NCRMAL LOAD - ksf 12.0 8.0 4.0 a) -- + + +
r3 _ + - . + + + + +
SHEAR STRESS - ksf 6.7 5.6 3.6 , 1 I 1 I I , --a
2, . 1- - + + + + - + + . ,
TYPE OF SPECIMEN Undisturbed California + f . + 4 : + + . +
Claystone bedrock 1 +� -=- - + . + + +-- + - •
SOIL DESCRIPTION I - -- , + + +
-200=99 LL=72 P1=53 0 1 1 1 , . 1 ! f
10 20
TYPE OF TEST Consolidated drained _
Horizontal Cisrlacerert
shear at constant strain ( inches x 1^-2)
rate of 0.006 in./min. All TAN 0 . 123
samples sheared on same plane, 0 21
residual strength COHESION - ksf 2-2
9 II • , II I . , I II ; 1 , "
1 I 4.____4_4.____4__ -1.---1-- -4- i----+--t--- - 4---f-_+ -+- - -+ t- t + + + +
I
in
O 4
{
4-h i
I I I
I
iI I - - -4-- } + + + t + - + + + + t - + + -- - + + -+ + -
I I
+ +
1II I i 1
0 1 i , I l i . i i
0 3 6 9 12 15
Normal Stress - ksf
i 1 6'1 25 ' - S ' ' - ,,r r , .. 4 ' T P I 1
CHEN AND ASSOCIATES
Consulting Soi I and Foundation Engineers
4
TEST NUMEER 1 2 3 4 _ 1 I I i
- +
-:- - _ _� ++ + . 1
LOCATION Hole 64 at depth 91-0" I- ' + T t + ♦ ♦ . + ♦ -
1
HEIGHT- INCH 1 .00 1 .00 1 .00 3 I i I I -�I
DIAMETER- INCH 1 ,94 1 ,94 1 .94 0 -___+ - + + I} , + + , _ _ .
WATER CONTENT - '4, 16.8 16.8 16.8 I
til + 2
.
DRY DENSITY - pcf 99.6 99.6 99.6 v 2 I - 1
- L
lit
CONSOL. LOAD - ksf 4.5 9.0 13.5 "' _ /+ �
NCRMAL LOAD - ksf 1+. 5 9.0 13.5 co - + . + + ♦
SHEAR STRESS - ksf 1 .7 2. 1 2.4
1 I f ! i , 1 �-�
TYPE OF SPECIMEN Core (NX) I
Ver '�Jeathered Cla stone_ i' + + +
SOIL DESCRIPTION � Clay stone_
- , + + . 1 + , +
-2UU=.91+ LL=3'3; P1=23 0 i , . , 1 . 1 . � yj
�F Consolidated , Drained 10 �0
TYPE TEST —� _
------- E-c.r . /o n t a 1 01 s^l a ce r^e^t
Sheared at constant strain , c -e, x 10-2)
of 0.012 in./min - All TAN 0 0.09
samples sheared on same 0 r0
plane, residual strength COHESION - ksf 1 .3
1 _�— -_ + _w_-�_ ♦ --1 + - -- + + -+ + + + } + + + _ + + + + -
-�- t 4 + - + - + + - + - ♦ + } + ♦ + ♦ + - . ♦ +-
1
6 • + _ . ♦ . ♦ , + - ♦ . + + __ 1 , 1 - + • ---1
.-- + + 4 . _ 4 +- + ♦ t ♦ - + 1 f + + + * + a-
in
. 4- + _ . + • t , 4 : + _ _ , + --1- +_ . ♦ . • i • ♦ , + -
4 +- + 4. + + + 1
41)
VI
01 2 3 1} 5 6 7 3 1 9 10 11 12 13 l� 15
Normal Stress - ksf
#16,125 :), ri.- .T ._, "1 r,\P -1 flT kE3L . J Fig. r - 3
- CHEN AND ASSOCIATES
Consulting Soil and Foundation Engineers
I I r-T 1 [
TEST NUMBER 1 2 3 4 _ -4_ + + 1 + t- t , + , ;
1
LOCATION Hole 21 at depth 8'-0" . + , t , + - , +
30 4 / 1 rt---+--{- -i--^--_ '—,
HEIGHT - INCH 4.00 4.00 `_
-- - N - + t - + + + + ,
DIAMETER - INCH 1 .94 1.94 y } +
WATER CONTENT - 14.0 15.8 0
0 I
DRY DENSITY - pcf y 20 _ --4-_-__ - _ _ -I--..-----4,--
117.6 X117.3 �
2
CONSOL. LOAD - ksf o `
- ksf 4.0 8.0 > H1 '
1 - ksf 17.0 26.0 10 — -- --1- i -- --- - 1
California I . }
TYPE OF SPECIMEN
SOIL DESCRIPTION Claystone Bedrock I 4
_--L 40:_f I = 25; -200 = 71 < <------ -_-__-_-__I___- _-
_._
_L= _- _
0 5 10 it
TYPE OF TEST Unconsolidated, Undrained,
r-,k ' ,11 � fr , .1
Constant Strain of 0.003 Ir./Min.
Residual Total Stress — T A:I 0 _, 0.34 _ - _
n
C F' S . o, - ti c f" --
! , I , , r _""'_ t—_---T—_`__-r -rte1
t--+ + +- - + , . + } + + — + . + , . . 4 . + 1
— , , , 1
I 1
,----1- --- + - + + + . - r + } , , _ . .
jco
N
41 I ! I
I
0 10 20 30 40
Norr,a' Stress - ksf
I
#16,125 ` ; , ` 1, 1
CHEN AND ASSOCIATES
Consulting Co f and Foundation Engineers
- 1C 1 T - ---- -- -- _____I
TEST NUMBER 1 7 3 4 _ J. __ , •1 . , , +
i , . , . - i
LOCATION Hole 23 at depth 41-0" + . . + , . i
T I
HEIGHT - INCH 3.85 3.95 I
DIAMETER - INCH 1 .94 1 .31 -. I i
WATER CONTENT - % r } ' } . I '
24.6 2523:4______ 4 0.
DRY DENSITY - pcf } "_____
96.9 X6.3 r� 0 I 4. �---- -fi---- ---1--.--------�—.
CONSOL. _OAD - ksf 4.0 . 8.0 ' o w j
U - L -
3 ksf 4.0 3.0- — l f
- ksf 1 �� f + Fl
3.3
TYPE OF SPECIMEN California I I
SOIL DESCRIPTION Clay (CL) Very_ Stiff } I
0 I . --__L__-__ __ . _i___1.—____ . . . _- _ _
0 5 10 1 ,'
TYPE OF '"EST Consolidated, Undrained
Constant Strain of 0.003
In./loin.
Total Stress
1
I
--� -+ -*- - . + . : - - -4-- . -+ . 4 - 1 1
I
+- + - . + . . I , _ 1
V I I 4 --i
_Y 4 I I I 1 I 1 I I 1 I , .- --•----1I
t- t _ .4- - , , a - / Shear Sttrer�g h 2.6 kips/square foot_. _I
I I
R r ,in
:TITi
3 10
',orr'.+,' Strc, <. Kam'
1
F icl. C
#16, 125 ,
• CHEN AND ASSOCIATES
Consulting Soil ana Foundation Engineers
20
TEST NUMBER 1 i 2 3 4 , I ' • 4 • 7,., -.. ' �`
• . + t
LOCATION Hole 28 at depth 4'-0" - + + + + ♦
HEIGHT - INCH 3.74 I w 15 -�
• DIAMETER - INCH 1 .94 ! + .
WATER CONTENT - % I s t + ` . ,
___L5...._3-- _ l
10 + , +
DRY DENSITY - pcf 116.0 - L.
CONSOL. LOAD - ksf , o + +
_ I.
t
3 - ksf 4,3 > +
o +
O 1 - ksf 20.7- -- 1 5 - -}_--{-- ___ --_-,
TYPE OF SPECIMEN California41
-- , + + ,
SOIL DESCRIPTION Clay Calcareous (CL) L_, ' + `
t- L----1--------i--- • - „ 1_ ,. .
10 lr
TYPE OF TEST Unconsolidated, Undrained
• Constant Strain Rate of 0.003
In./Min.
Total Stress
11
I I i --- , __r_-rte_- ---- -�---� - ---,- --.
,
' I•. 10 i 4 — Shelar, Sire gth 84Ii_ips/vgyare fooit-
4/1
a I I I
L
CD i
0 5 10 15 20
N3rn+H Stre5,, - kcf
41
/ 16, 125 ,, , , ,, rit7. -1
CHEN AND ASSOCIATES
Consulting Soil and Foundation Engineers
TEST NUMBER 1 2 3 4 _
--1 + + t + + r _ i
` t + + II + + + + . ,
LOCATION Hole 30 at depth 2 '-0" F -;__; i + +
HEIGHT - INCH 300 I 0 -�� -___4-
3.92 w
0 [_. 4 + - + + + r . 4 .
DIAMETER - INCH 1 .94 + ;
WATER CONTENT - % 14.0 0 i +
c: + + r . _
DRY DENSITY - pcf 111 .9 20 -�
kk
CONSOL. LOAD - ksf o
•� + +
it
U 3 - ksf 8.6 •_ , , _
CT 1 - ksf 35. 1 10 --
. , - . . , l +
TYPE OF SPECIMEN Undisturbed California + . _
SOIL DESCRIPTION Clay, Slightly Sandy (CL) _) `
-
, + . } . . -
Very Stiff h - --- - �
LL = 39; PI = 24;-200 = 88 0 5 10 1 '.
i,Y Al ' r a ;n
TYPE OF TEST Unconsolidated, Undrained
Constant Strain of 0.003 In./Min.
Total Stress
I
I ; I I , I , , , . T T --T-- -- .- - r
I
V
In
20 _ , I ' f —.4---- — -- — — —
_.,-_ + + - ; hear, Screpgth ,13r5+kips/scuare+foot, 4 , _+ _ _ _
0 — + + * 4 + * 4 H : :
)I
i10 f 1 l V i I I -4 1 .-----.----
a,
+
, iii i
10 20 30 40
Ncrmal Stress - ksc
41
#16, 125 - I - . - 1 , r. !,
CHEN AND ASSOCIATES
Cor,suwng soil and Founajt!on Engineer;
10 , 1 ; - -- -- _ __f_______________,
TEST NUMBER 1 2 3 4 - -1 + + i + + + •+ • . I
Composite Sample from TH's '
LOCATION 48, 50, 52, 54 and 57 + -,_ + + ( + + ' ' +
at depth 10'-0" to 15'-0" - r , + I
. + I
HEIGHT - INCH 3.99 3.97 4.00 +i p3
+ + + . _ , y + ,
DIAMETER - INCH 1 .94 1 .94 1 .94 - -- + ' + r
. + + i.1
WATER CONTENT - `r. 20.2 j 20.6 20.8 Iu,
v ,
DRY DENSITY - pcf 102.3 102.5 100.6 n 5 --- --- - `--
CONSOL. LOAD - ksf 2.9 I 5.8 8.6 0 f
0 - ksf 6.8 13.3 16. 1 .�
Cy - ksf 2.9 15.8 8.6 U I --
TYPE OF SECIMEN Remolded ,
SOIL DESCRIPTION Claystone Bedrock (CH) ,
} +
-200=98; LL=60; P1=4?_ {__ -- _ �_ _�--
- 5 10 ' '
TYPE OF TEST Consolidated, Undrained
Run at a strain rate of
0.003 in./min total stress. Tr'• " 0 0'23 _ -
0 13O
C'`-"CS ; " - - } 1 .J--- -
+- + . .
t + F i
4 y + + - - + .. + + + + + + ._ I . • 3 -
in
4 + I-- + + . + - , t + + - . + -
a'Ul -+ , t - , + T - _ -
I i
4 - _+ - r l + + . + + . - y +
4-+ I
in -f t--+ 1 + + + + 1. ' - 1
f -- - +
t �__+ _ _ + + ! •
4+
4 •
I
` + +- + t +
art—t -__ t _1 L� I -b- _ t - - -1J - j _,
0 3 6 9 12 15 1 ,
NCrr;,,a" St,-es6 - kcr
41
x'16,125 U. C . n 5
• CHEN AND ASSOCIATES
Consulting Soil and Foundction Engineers
20 I . . - 1 , --- - -------�
TEST NUMBER 1 2 3 4 --+ 1 + t • , , • '
t {
LCCATION Composite Sample from TH's 14- _ + _ 1 -
37, 39, 40, 41 , 45 @ 1-'-6 + 1
Iter--•- -1--•--_ ,- • --- - _1L2,_
HEIGHT - INCH 3.95 3.96 3.97 4
V + . + + . 4 + /
41
DIAMETER - INCH 1 .94 1 .94 1 .94 � ^
WATER CONTENT - 16.;1L 16.2 16.2 _ a
}
DRY DENSITY - pcf 10 I . -- }---
112,4 113.-2 112.5
L `
I 41 :S:L. LOAD - ksf 2.9 r 4,8 $-� e
m i
I
I n
O-1 - ksf 13.6 1 18.8 24.6 -- .- _i_ . - - ---- - -•
- I
- ,
41 TYPE OF SPECIMEN Remolded , , . i
I
I
Cla i
SOIL DESCRIPTION Sandy X (CL)
1
LL__E 19; PI = _23; -200 = Rn
Consolidated, Undrained, 0 5 10
41 xia TYPE OF TEST -
Constant Strain of 0.001 In./Mir .
Total Stress -A', + _ 0.31
41 C '-E I . __3,2____
_T___-T___ -_r-T_r.
I
Ul
J1 .
• L 1 +
m 5 i i Ir .._ --t --
0 5 10 15 20 2.5
Ncrn,.;1 StrE" ', - ksf
41
116, 125 - Fin. r-
CHEN AND ASSOCIATES
Consulting Sol I and Foundation Engineers
20 - , • , -
TEST NUMBER 1 1 2 3 4 _- . 1 - } + , + , + +
Composite Sample from TH' s - + } . t a + +
LOCATION 37, 39, 40, 53 and 45 at - ------, ` l I + + + +
depth 8' -0" to 13'-0" - + + + + + + + , , +
I 15 —t-- -
HEIGHT - INCH 3.98 4.00 3.87 4- _ f3
DIAMETER - INCH 1 .94 1 .94 1 .94 _ + + + + + + 1 + . -
WATER CONTENT - % . 16.5 16.7 16.6 v,
L
DRY DENS TY - pcf 107.7 107.2 107.5 ' 10 ---� ____`_'
CONSOL. LOAD - ksf 2.9 5.8 8.6 O
M
- ksf 3.5 18.4 22.7 .� + +
C3- - ksf 2.9 5.8 3.6
3 5 _ — -- ---
TYPE OF SPECIMEN Remolded . , , . 1 +
(CL-CH) •Claystone Bedrock + + + '
SOIL DESCRIPTION � '
-200=91+; LL=49; P I=33 O ._ - y- �_y J�_ . -
S 10
TYPE OF TEST Consolidated, Undrained ,
p ' ,1 ; C. . .
Constant strain rate of
0.003 in./rein total stress. TAN 0 .466 -
0 25°
0.5-
C'HE� i f - - - -
15 . r -.---- -- - _ _
i
_c 10 i 1 I . , i , , - - — -----,--1------- ,--1
--,- f + . 4 4 + + 1 + , + + + + 4 + +---- -I
N
,n -4- i- + t + + + + +- + 1 + + +- _ +
41 +I I I
I— . —t' --- - + +- + + - - - - I. + + I N
I
-• 5 , i ! -- - + . + +--+ -. + + _ } + - - + -
,
--- + + + t- -t - +-- - + + + + + a
i
— -t- - — -- }- --4- t -- + + - 4
0 i [5 0
Norval St*-+c*, - kcc
.:16, 125 fry , 7
CHEN AND ASSOCIATES I + I-
Consulting Soil and Foundation Engineers a 1
I!
y
TEST NUMBER 1 1 2 3 4 1 1 : 1 , , + + 4O ;
LOCATION Composite Sample from TH's
48, 50, 53 , 54, 55 @ 1 '-5' V `
HEIGHT - INCH 3.9 3.84 � 7.� + - - --- -
3.94 +
DIAMETER - INCH if ♦ 1 i _
1 .94 1 ,94 1 .94
WATER CCNTENT - % `" fll
19.6 19.0 19. 1 t .
L
DRY DENSITY - pcf 105.6 105.8 1 .5 N 5
CONSUL. LOAD - ksf o
3..31 6.34 8 8.06_ . . l - ♦ }
ksf 2.91 x.36 6.61, ' 1 t +
r }
O- 1 - ksf 6.91 12.86 15.61 2.5i .T
TYPE OF SPECIMEN Remolded , , - 4 .
+ +
SOIL DESCRIPTION Clay, Sandy (CL) .
LL = 45; PI = 29; -200 = 80
0 5 10)
TYPE OF TEST Saturated, Consolidated,
.,X '+rr',f•+ .
Undrained, Sheared at Constant
Strain Rate of 0.004 in./Mil. TA: 0 ^ l•?
o
Pore Pressure Measured, 0
Effective Stress :^Ir'l " I .'',. c t 00.2`5__
9 I ' ` ' , , - , , f , 1 - • ----, 7. - . -- ,
1. - -+ + r + + + , _ + t .
I
-_-+ + + . . . _ + r . + - . .
-+ + , + , , +_ + __ 4 - r_
, -IA- 6 i , + —t
+ + + +- , ♦ , + t + . _ + + ♦- -. + .
0
Y
L. ---, t 1 + + + , .. IIIIlIi + + 1 - + j,
N I
cu
—4- I--4,- --4,- - + , t , , ---r . 1 _ . , \,_ \- „' . . . . . -. ,
- I
0 3 6 9 12 1r, 1
Noma] Strc,,, ,-f
#16, 125 I ;,,,
CHEN AND ASSOCIATES
Consuitlrg So, and Foundation Engineers
TEST NUMBER 1 2 j 3 4 _ 4. - __ + : + . , ,
•
Composite amole from TH's t '
LOCATION 37, 45 and 47 I
._ -. +
at Depth 14'-0" to 20' -0" . . . . , . . _
HEIGHT - INCH 3.93 3.99 3.99 15 ` ' --T -�--1-- --__.--_��-_`_�
3
DIAMETER - INCH 1 .94 1 .94 1 .94 -- - . . . , . , , t . . ,
WATER CONTENT - 13.5 s . . i?
13.5 13.5 N
DRY DENSITY - pcf 114.9 112.7 113.8 L., 1D - - ---
CONSOL. LOAD - ksf 3. 1 6.4 9.3 o f : ' t ill
- ksf C. 1 10.7 12.7 > +
- ksf 2.0 2.8 3.3
—4 5, t —--- +-4 -
1
TYPE OF SPECIMEN Remolded 1 , , ! . . .
SOIL DESCRIPTION Clay-Silt (CL-ML) , sandy I
-200=63; LL=24; PI-7
5 5 to
I
TYPE OF TEST Consolidated , Undrained
,7,y
c I l ♦ r 4 I n
Constant strain rate of
pc,
0_004 in_/nin , Pnre Prassurp TA'. 0 '_-___ -_
Measured, Effective Stress 0 26°
C 1rI I . - ksf _11 .0 — - -
7.5 1 ; , _ 1—T'
-+ -t- t-- . - -- - -- -- t * . , -+ I +
--4_- + — - + - . . — , . . . , . a. —- . '
� -+ + + -+ + . -. + +- , + - 1 ,
N
-- 510 —,----4---
F I ■. _ ——�—__�--�— — ,�
L - ,__t,
' 1
TTII
0 2.5 5.0 7.5 10.0 12.5 15.0
Norri-t i Stress -- kc
tl ( 1?5 Fin. r_n
TABLE 1
RESSURE TEST RESULTS
Interval
Test Depth Length Permeability
Ho e (Feet) (Feet) (rt./7r.) Soil "yie _
15 36. 5-46.5 10.C 10 Sandstone
10 12.0-25.5 13.5 300 Claystone-Sandstone
25.5-35.5 10. ) <1 Sandstone
2 13.0-28. 5 10.5 300 Claystone
24 17.5-26.5 9.0 500 Claystone
3', 12.5-20.0 7.5 1 ,000 Claystone
33 12.5-16.0 3.5 2,400 Claystone-Sandstone
5y L.0-18.0 10.0 126 Claystone
60 10.0-20.0 10.0 300 Claystone
6` 13. 5-23.5 10.0 150 Claystone
2,,. -30.9 10.0 CO Claystone-San.jstone
62 10.0-15.0 5.0 310 Claystone-Sardstone
15.0-21 .0 6.0 200 Claystone-Sandstone
21 . 0-31 .0 10.0 220 Clays'_nne-Sandstone
31 .0-11 .0 10.0 20 Claystone
41 .3-50. 5 9.= 60 rlaystone-San:stone
63 13.0-10.0 5. 0 530 ". iaystone- indstone
1S.O-27.0 9.0 ;C Claystone sandstone
27.0-37.0 10.0 72 Claystone
37.0-47.0 10.0 32 Claystone
47.0-57. 0 10.0 28 Claystone
64 3.0-17.0 9.0 50 Claystone-Sandstone
17.0-25.0 8.0 15 Sandstone
25.0-35.C 10.0 60 Sandstone
35.0-45.0 10.0 22.0 Claystone-Sandstone
1, 125
TABLE i
LAB0RATCRY F'-OEfk i L l • TES' : 1LTS
Te5t Depth erreabi i i ty
Hole (Ft. ; Sample type (' t./ r. ) Soil Type
19 19.0 California .05 Claystone-Sandstone
29 9.0 California .005 Claystone
41 24.0 California .06 Claystone
37 , 39. 1 .5-6.0 Remolded .003 Sandy Clay
40, 41 ,
45, 47
37, 39, .0-13.0 Remolded .06 Claystone
40 , 41 ,
45
4C , 50, 10.0-15.0 Remolded <.001 Claystone
52 , 54
57
J16, 125
U
TABLE III
Page 1 of 2
SHEAR TEST RESULTS
Depth 0 C 2 Qu 2
Hole (Feet) Type of Test (Deg. ) (Lb./Ft ) (Lb./Ft ) Soil Type
16 9.0 Unconfined 19,900 Claystone
17 19.0 Unconfined 8,600 Claystone
18 15.0 Unconfined 43,600 Claystone
19 29.0 Unconfinec 8,600 Claystone
20 9.0 Unconfined 11 ,200 Claystone
21 8.0 Triaxial Shear
Residual Total
Stress 19 3,800 Claystone
21 .0 Unconfined 700 Claystone
22 9.0 Unconfined 13,700 Claystone
23 4.0 Triaxial Shear
Shear Strength 2,600 Clay
24 13.0 Unconfined 10,800 Claystone
33.0 Unconfined 13,000 Claystone
25 9.0 Unconfined 24,900 Sandy C'ay
26 19.0 Unconfined 16,300 Claystone
27 24.0 Unconfined 47,900 Claystone
23 4.0 Triaxial Shear
Shear Strength 8,200 Clay
30 2.0 Unconfined 23,500 Sandy Clay
Triaxial Shear
Shear Strength Sandy Clay
17.0 Unconfined 18,700 Claystone
31 10.0 Unconfined 10,100 Claystone
13.0 Unconfined 6,300 Claystone
#16,125
TABLE III
Pace or
ShEAR TEST RESULTS
Depth 0 C Qu
Hole (Feet) Type of Test (Deg. ) (Lb./Ft2) (Lb./ t' ) Soil Tyre
32 17.0 Unconfined 17, '00 Claystone
33 9.0 Unconfined 1 ,!:00 Claystone
11 .0 Unconfined 7,700 Claystone
34 14.0 Jnconfined 24,x00 Claystone
35 17.0 Direct Shear 30 1 ,2)0 Sandstone BLcroc[
37.0 Unconfined 2r;,"0" Claystont.
36 29.0 Unconfined C ,700 C'iysto'e
37, 39, 1 .5-6.0 "'riaxial Shear 17 3 ,230 Sandy Clay
40, 41 , "iotal Stress
45 Remolded
39, C.0-13.C Triaxial Shear 2.5 x;30 Claystone
i40, 53, "otal Stress
5 Remolded
37, 45, 14.0-20.0 Triaxial Shear 26 1 ,0)0 Sandy Clay
47 E.:fective and S. it
Stress
Remolded
4 , 50, 1 .0-5.0 Triaxial Shear 23 -?50 ' andy Clay
53, 54, Effective
55 Stress
Remolded
43, 50, 10.0-14.0 7 riaxial -.hear 13 1 ,600 Claystone
52, ,4, 'otal Stress
57 Remolded
61 14.0 Direct Sneer 21 2,230 Claystone
64 9.0 Direct Shear 5 1 ,300 qeatheree
Claystone
' I , '25
1 ! i 1 I I I I
,
I!
4- 4.1
I I I 1 I 1 I1
Lf\ O EL I I I I I I I 1 I 1 1 I I
.O C) J a)' (DI a) a), I a) a) a)i I a)' a), a)' aN a) Cl) a)I a)' (1); I
et) - c c c c c c CI c' c 1 C cl c c, c: c1
o_ 0 0 0! o O o O O O O O c 0 O O' O a ,I
r/) +1 +.+ 4I I 4-1, +I i.4 , 4-, 4-+ +-I ! 4-1 iJ 4-I 4-" .'-1 4_1'n In Cl)' Io r In Ill rn 1 r I v In+ V) Ifh (J1 U) I I
Z -0 >I -o I -0, >I v -0 I I >, >., -o' ! > >{ -0 >1 >I >I I 1
C 0 C c' 0; c' C ' r0 0 c' m rC c ro m' , RI: I
_0 I'D rp ra rp (CI •-, ro , -I •-I (C) — ._
0 N U. N NI U v' N' U U N I U' U to U U 1..);4 4 I F ' ! I 1 I I'
1- 07O I I I I
I Z '� O LLJ
W - N > I I
U N W "6- _'
^1 , VI M N M 01 ^ CO, .Cl1 I,
I— d d cD Z N I N L(\1 N ° N N I ' O3 CO N I I ^I L11 QI
J I 1 I } I i + f 1 I I I I 4 I I 1 tI f I
w 1 I'
co0 f- ZCC ! I 1 I ! ',
N W z L, I i , ! ,
Ir w4 CC
0 0 a I I I I
I I - I f + t
0 J O u I I
W W a- aNrw„
w !
Q h. - W V) I I I
,
CI
I l i I
~ - I f I !�
U > rr o w = 1
w > I I I II
O 0 zv) � ! I o o I o o
o
w I. zCrwa 1
• J Q 0M eL I- I 01 OO1en CO
CO Z 0 I ^I 1 I
A a 1 II
I
I
Z ~ 0 H ~ I 1 II
® - W o; ry' I N.. I H r-. I I NI I
_ r I
R o d N, Z O �, M N
Q J a =�" Z I I Ni Z I N Z, L11, Lf� ZI ' re)
z 0 TII ,
J W a 1 + } - I I 1 I f r I 1 } I
41 I f
.Ti CO CO O ~" ! I ! cni O I lo' col O I I .0, I I
O W p o N' O
U Q J J I I -- I M r\ r✓ M LA l
1 1111
! 1 I.
cr Z O ^I LEN M N 1 M
Q � I
z i 0 ♦•
I J W ,
N I Qcr
0 ..--- k..0 .o r` 00I I o 01 01 - C1 .o, M, -- N.
Qo N N OOl — N N - M. N. lOi N. Ol, N. —
O
Z ^I
"'
Wf O O O I
I- 0 0 0 0 0 0 0 0 0 LEN 0 0 0
a Co 0.7 0O .0 Cr01' 01 01 Ol
w I O1 r-6. LEN ul al a1 Ol
W W N M •-t M L11 N M - N
CI
1 '
I
W I
J Lrll .0 N. 0O 01
_ .- —1
I
I
I
f 1 l I I 1
I I I I�
I I I I I i I III
L ) 4- W I I I I I 1
N 0 a I I
r I I ,
~ U N G)I O N 4)I (7. 4) CI) a)I N (0 (6 4)I 4)'
J _ C I C' C j — — C C
• tp — U I C0' 0 I O I 0' 01 0 -3I 0' �I 01 �O U' U' �O �O
O 4-+
Z co ?+ > co co in, c4 .Do >, >4 >4 >4 o, to >
CDI (0 1 43 >i >I
(0 (0 C 10 (0, (D C. CI CD (0 i1
_ _ _ —i
-Oi t/@) UI Ul U U L.), U to c.) U UI V N' NI (-). t>,
I I I l
I
ZZ0W I I I I I I
ii: '
tII
I I ,
N �
N
W W X l- (r)
I I 1
H a > i_ a I I I !I
U >" oW I I 1
-
O > O o ,I 0 O
Z u) 0 O 'F'1°.41
ool 0 �,
— O LL w z W N, I I r•-• N a ),I
W Z Cr W N H — I Ol 00; N
'< m Q a_ cc
CI-
Li — — I I I --1
Ij l I
IA Q N O { I 1 �, I
Z F- I — �I �1 o ! I co ^I o
x
u W c I l L(1 Ol' , — I — I 001 O
4 J v~i =°.�I N' N I M NI M NI NI
a _ II —
z
n' 1 1 r I' + 'I i
W _ I ' I I . N `° — 11
w m . ._ OI OlltbI —I O M OI I� Lf1
x •
w o3c I _. ND• o I �; — N- oo - --
U O H J I M \O L(1 M L(1 LA ' -1' L(1, M Ltl,
a I _ I ' 11
t
}Cr I I I
�I
Jm CO
j F"' LIN I COQO I •O Ole I--- — I I .I Ii
4 _ _ M M M N . .
O W ON O' NI — CO N- Lil —I •0 h- ..0
O d> O 00 I N M
2 41
N °rI I
.� COOp N L(1I I COq0 111 �' O \O �' M' M 1 CO00
J U) a •( ivy. . I In r. ^ CO tl\ — • " ' i
u , CO 0
i- to NI — — N — — — — —
a O —i
Z2 ; 1 ' _ . , 1 . . .
_ 4- O O O CD O O CD O, O Or O O O O O O
a W -7 al co — Ol Ol W O1 cV - M, ON O-' N I
W W N N
liA
J 0 NO N N, N N N
x I
1 —
II
11
i I I I
N O a
M } I I I II
a) 1 I>1 ' I II
co J CU a) a) aU I I a)' ro a.)I a)! CU v. 5; a)' I
O. - C C C I C C C' C C CI I CI I I
O N O' O OI O U I O , UI O o oj OI I u O' II
Z V1 V1 U1 " >4 J'4 "� VI VII , VI (I >, In
>4 T >4 ?1 >I
O N MI' 0 I i r6 C O rD C N 'DI D C, ro I,
-3 L3 �: c.), C.J ' cn c.' �I , cn L)' c..> c.)1 , cn c.)1
I I I
I ! / , ! 1 t --- -1---1- ' f ' I I I; i I
Z Z o w 1
W - N
in cc mIo rn1 rni m CO o I oOll o; Icc O�
H a a Z
I
J �, } r -4-- ; 1 , t
0W I ,
N z
N I z D I I
W LWa I I
CrQ 0 CE I
W 0 C I I I
F- I {cn
Cc I ► f } 4 1 I c • 1 '
LrJ V, Q f- IL ! I I ! I
�, W x aW � i I ,
Q - W "sa I I I II
>''
o I I
U I w > x +I
, ' I } I + I , II
W o — O W N z1-O 0 M OOl I I LA,
i O O! p
ZcrW I ^ °° ��
J 0 c- c '.0 N. M'I p^I M
® LI z M cr)I- I 4- ,N; I �; _
A � � It ► ► � 4 - , , II
z - x ' m LA LA I M ' o' N I i o' LR Lry 11
OD _ W`� •
Q �' o �' O l!l LR co. — I LR' UL M M I,
d z—, �' M� M I ! ^ N NI 4-
4 ' \p M' N -..1-
4
,.., W r # f t `
z ~c I N I �, .�' N.'
I O. Ol N' ^ LO n,1,
W • I I
U O t` o -v N- Ol I I .O, O Ol, (N N, CO N I
Q �' +II I �'I M' �" M' �p I II CO I M '.O
} - I + { - f I I f
iyI I_ ^ co ^ o M Lr. rn, 1/40' I I ^ N CO I I
S I ; .O Lrl— N al' .O
SG H WO ^ N ^ NI ^ —I 1 �I _ ^. O ^I ^
z
JW
N Q cr I
'^ 1/4.0 dl I I 00 M O OO Ol O ^I N
D I- ' .' •
F !n n I I O I VA tO I LR! �-' Oi' LR �, MI L,1
ao ^ , ^I ^ ^ ^ ^ ^ ^ ^ —I
z1 I I II '
► ►
I
F O O O' CD CD CD O 0 0 CD O' b O 0
a W .' . . .
Cl al l Cl -1' 4- ON N N-' N- CD I OD. N N.^ N M N .- ..-_
W
J '.O I. CO al O N
O N N N N M M M
1 T ' II
J I ►
I I I
! I 1 I
Ln 0 aw
I I I I.
>-
I l I I I
O
to J CFI O' d 0 N I 0 O OI O I Ol O 0 I ("I 0i (p I 01
Q_ — C C C CI C C C C C I C, C C, C C
• 0 0 0 0 0' 0 O 0 0, 0 , ^ 0: 0, 0, U O' V 0' I
� I i� 1+ 4-r 4-11 4.11 4-1i
J-+ I
0 N l, Ul V L �' UI VI! •01U' in, UII ' >IV)! I >IIn I
>- >-{ > , >-' 7- -c L+I >+ > N, >4 >I C) l7 _i I TI
I r
to I (m cn ' tv' co CI •^I m! ro C4 ro to I c c l cl C I ^ ii
0 ^' t01 •— ^ 0; .— ^I a, (0 (01 (0 •— II
—) L) U, CS C) C)I N' V)' U' U H U L) Lt) V), V), l (o, U)
I I I * + I { 1 I - 4 +
F— C: 0 ' I I I I I I
Z 0 W
W — N 7
I
tr N • — M N, Lill Ol Lf'I re'i N Oll O C: s..0N --I' vC•j CO' h
(/�
�• t1. a_ Z N CO N- COi O:3 I (9 C} Gl Cl GCS Gll %.0 N N- ^ C,
I I I,
J 4 i I ► i I ' 4 I'
N
H
W W
Ce J F— I I
N W W CD Q 1
Q(-) F— LL I I I N I 1,
I
Q J J ►
W W3OO I N
N O. N Cl) I I l I I I I
i f ; t } I I f I 4iI
I
U) N '
w i li
W , i I I
H I II ; I
l l l I I _ ill
} I 1 i I 1 I t I'U /y W � _ Il I I
En _ O 0 I 0,
�_ � W 2 � SIN ' C.%
l a I I r-I l I ' I ►
W Z Cr W ..I p . M , I
,� •j o � ►- a -..TI �I N N %DI I I I II
m Z O N I I I I I I
A Q {LD O I I I 4 I
[` O CI) H
Z - u W c 0' O Ol I O COI M CI I I Cr 'o Ol L(l NI I I
- v~i c r--„i OI a i� �• • CO, G y r3 ^ a. ^•; Lr1'
•
4 J = N N I ^ I N Cl I ^I N I I N I N N,, I
Z J cr a I I ! I I I f + r f f f . ' { II
W I
W m o #--
X b. w ; - \ I c Ulf OI NI L11 I N r- - NI N' , Lr\ N' O• N I I
O v . .I
V 0 a co I on
Q J J ! - r I -7' M L!1 MI 1+ 71;1 ! (Y, I N I I I
} ! ( I 4 t i ♦• I
^ I I
F �O �O. NI• Ol O'1 • N 1/4O CO co M I a N
J I
Q ^
Q to GO O O O O- �' UN N Is--. I
Cr 2 ' (V ^ ! N N NI O-, N O ^ ^ I OI
I_ W ^ _ ^ ^ I
+ I
N •1 Cr ! I
i
DI- \ O. ♦O, Lri M O Ol oa M �D ul N O1 I I ^I
H N ^ c- (9 0 Cf\ Cr) C'- ^ Cl �' (.0 .- O I I Co �O
a o " •- N ^ ^ (y,
2 m I
CL W 0, CI 0 0 C CO 0 0 0 C 0 C LnI C 0 0 0
W W I • • •
L W O1 --} -I' -S N- r. rte. 1� C Co CA 0I ^ CO 1- Co
W ry
0 re M � i M
I
I i l j
w I'
o I
} I i I I j I I I 1
N I I I I I I ; I I
• O J a) a) a)' I m I a) a)I I a) ID a1' 01 all (DI '
.O CO - C C 1 C, I - C C I C1 C' -' C C C I C.
ID 0 O' O 1 O I U, O I O O' O 0 O O OI I O'
o_ cn 4-+ a.) a.J 4.) a) 4+I 4 I �1
• to to to' I >. N I to I , N AI NI in Vf
o 4-) "O , T I 'O A T > 'O
Z ^ C ID C ID ID ID ID I C C rail CFI Ia' i I
.-' CO /D
-O N V) L)I In U ' c.) U U N (I) I c..), -! I U il
� I f j I a` , 1 --1 I ' I }'
,I
I— CD 0 I
O W
W — N > I 1 I ''i
V V) W - - .o I i.r I N ' - I LF N M1/4C 0'1
N cc N • — W -4 01 co co ' N. (T' r- t-I M ' 0^ O'1 Q1 '
N
H • d I
N
rr J I— I I I I 'I
N W Wco Q I II
'd I
w30 = I ! 0
0 V) ' 1 1 I I I
' ' 1 i 1 { i , +-- I I I-
-t-- I
N I I I I
I
W ILI , I I j I I ,
I I
• I— 1 I I I I
U o w i I L 1
fr w > = I I 1 I 1
O - O Z I i
w- w Z I W Z CC W Cr) I
® Z O u I I I I I j I
Q a ,CC f-
I I II • } - ► II
I- O H ~▪ CO
Z - c W M Imo.) M 0l al N ^ N LA I r LA c4
.4z a =`� I N I N •^ N N I 7_1Mad
„ I"Y
Z J a , , + j
W
W CO C' I-x I
— coCA o --I ' -I- •- -?' N O t I -11 H
0 w o 2 a I I ,I • • ,I • I
✓ - o- MI 011 1� .O O O V� N I •-I 0�
I- � c'J N II M' I} M -Z' M M M .O H I
Q I I I I I J 1
cr
'
It
or I I I I
J
4 a N - — e.,1 I o .- .C
c� I- W i I ^I I CO —J�i
J w f
N C
a
ct D .- CO CO 011 CO N C1 I o M
H N MI rel
O .O r.
I
a o I I 1
I
= o,
D w 0 0 o', 0 0 0 0 0 0 ^ 0 0 0
Cl. tV it — Cr0 CO C.) I .:Y . O
wI
olal NI — ^ —
w
CO
J 7 ....1-- - - -O
.. 1 t _ -
--,--.-----r __T___ ____r__ -,--T----�- T---__-r- - r---- - '—TI
h.
Li- LLJ �� in I'
O m II ....+ r
It , I - ' ; I
Ln a) I{ I Ti >- ,
N Q l 1 a) a), Ga C� O' a) r , a) 411 , m I ' Q) I
n- O I ci c,O O O O O O U O 0 O , O O 'I
(1) ; 4-I 3.+' 4.4 i1 u 4-I Y+ �-i .µ I +' I
W in V) NI IAi U) >4 n U I in > I In
II >'- > > > >4 > -O >• >4- ' I -a >. ,
ml ro ro m m (a c 'o ro c m
0
U U U L.) Ui L Cl) U Ui ' u! (/) U'
4. -----'�---+----+--- �_--+---r--*--- ----,- �- -t + �- + —+- + ------r--�
O F- O O
-) = = OWI' I I I ,
W - CV >, O� _
cc Cl) • I I OY 6,4 Cr, CT) CO CO Lrr 61 0'1 I Cl I o) Ol
N I W QOv)II ' ' I
ID_ o_ Z '
F
I
J1 ---- -+----+-- + ---.- +- + ---00. - .4- -+--- +- + + + +- + �-t-- t--'
Lew II I
I w z �'I I I II
WccILI- `na , I LI- `• w O a I I—4- - - �
--� -,-- -- + + ++ 1. `-
_- -- -- - -+ --- r--+ -4-- _-+- '
I _-_-'+__ .--1
C/) wJ O '
W 4 w LL I,
W X < (1) I
H
Q > F d i
Q cr O N I I I ' I ' j i
r--I r I` __ - __ I
U
0 1J-1 1 , , II
O > zin -- i 'I
• O w- w z w I I I
• W L z Q. W (n ' I I I I
▪ J f 4 O a a 11 I
Cr) Z OO co~ ll i ' ' I ' I 'I
z ' II
Q a) W I I 61 .0l ' .a d ao' M d o1 I o
Q I J- a 0,' ...1" r1 MI" CO L N .-'" M M, I M M
N N rei M N - LPY N I N M li
Z J CC a I, - -
W I C0 �' I-_ II CO .O .. 6V 0 .O: , Cl .-, I OI O L1 6.
.Jy n °I • • • • I • • 4 ' N •
O , a (sp..
i M N M ' ,
O ►- o -- LA LA i �' N M .moo t�l M' M
}, a —1 --— — ----+---------- 4-+--,_ t j + --+--- - ---� - I f o —r—�,
r
I I'
I CC
{I I I I I 11
i _J ! O 61 , rY) CO i NI CO .--I c ' I I I I I
Q I Cc
II co •( — Ni , Ni : cO' , m I I II
co i, : — _ ._ .-I �. I I I
l z ! I I { II
(•D i Q ) I^ I I I I I I I II
d I D .- I r--.. 4- N L.1-‘' I + ' Pi •--I N.. I co I'
IF- ch !I N �I ^— I I `�
a O ^ ^ 1 I ! I II
I z d I 1 1{ 11iI'
I I I I i'
S I I I i .O M
I H W 10 CI O' O' I L[l OI I 01 O, a I O! I i II' W Li I M LP) r.-., n, rYy a! I re! --I-1 r� r l
tjT-
I 'l 1
!
'
W I I I ! I n
_J -- I I M1 I -1' .fl! LP LP\ ll1 I LP. ! .OI . M -I- in -I-
i
I _
13
I � I I I
I I M.I •--I ��,
iI c� I I II
n I 0 ,
v 11
4.. W I
0 a - , i'
Li-N N. r ; co i ,
01 -I ,I G) I'D Q) ,
L.L r0 - C — ,
d 0 II 0 U 1O ,
sr, 4-4 4-)
>4 sn ,
O I > -a i >.
Z I N C rJ '
-O U (1) I U
O44 I.--- - - -_-4- 4- —-T_�_--_ -a___4._--4-- -+- t 4- -4-- + - , a }----.--~--i
,
II I-- I cu
I aw I
IIw m— cv) , •
I U V) W , re-, O CO '
N 1I: cc • — CO ,
W Q O V)
1._ I °- °- '
J I I N ' fl-
II '--
J L
V) IZ t '
N IIW4 ,LL
I
sr; a
HI �. a ,
LZ ------�` .-+ --�--+---rt--+---�---r--- +---+--+—a--} -+----+ a--- +---.--+—+—'_'----+
T II (f) x
u) CI) J 1�, V'
'I Q I f v. LL l
W X Q W (/
H r— :I Q a1,
Q — W 0 I
4--� %• I I— v I i I '
O >• X I W 7 S II- I
— ^ I Z yr v II j
V — sn I
up W F. Z 0 I •
I 11
z uJ II I I I
• J (-c-) § I I I I I ,,
® /y Z C u1 II I I I
• {L I LoD U
Z - ' II • a m I
CO II I
Q - - W • • I i
k- h :i
J `: 'D Ol N
a a_ N -0
z J 1 -_ 4—_
n I
W W
x r,
Lk I m cc 1 - N ^ I M • ,
W a I
'
I
O 'D I_ :I •
N 1 , I '1
Ir 4_---4---- I
II o 3 II I I 'I CC 4 I I
2 I I ' I I i Ii
k-
2 i, z _
i-�'----4 t- -- —--k -tom--4-4.- --'4- 4-- -- 1 1
'I
0 II rr f I I I I I I I
I' , k- \ I , I I I I I in 0,I -- I' N , LfV
L44 II I —
LA
�' 1 I 1
a I I 1 1 2I
II' —
I
le} I t! ix)� p I I 01 N.
-3. N u- W
3.
I 1 1
1
- 1Jdii
i I I I I I�
APPEND 1 X 1
CORE LCCS
Hello