Loading...
HomeMy WebLinkAbout7811901.tiff ctichen and associates, inc. CONSULTING ENGINEERS C ,, SOIL&FOUNDATION 96 S ZUNI • DENVER COLORADO 80223 - 303/744 7105 ENGINEERING 1924 EAST FIRST STREET • GASPER, WYOMING 8jbf11 • 307/234-2126 r2o; r„` ' .,S,. - 't'Cr:C;rv. 7.:A1- n F. -;, _ :"ABLE CC?,TE>:rS CCCIUSIJNS 1 2 41 r'RCPCSLD COST 7L'C: i :i' 3 SITE CONDI T IOIJS 1 EOLG I C S:-r i i <_ C SUbSOIL t EmbanKrnt .r agar• �eservlJ i r 6c; ;,� 9 FfiEE I1Ai ER LEVI L q LABORATORY TESTING 10 Swell-'Consol idatIon -jests 41 Staard i'ructe' :S t'. : . Direct Shear rests 1 . rlci:l�l lea Test r r SLUE . . cults ryr1 >"t ST/",,.. f r,E'arkrent :Ur s urate , Embankmert (Saturated) In -'1ace rou> :.atian ..idy �.'eathered Claystone bedrock i aystane Le, rocR 1 : taterl.' Fill Placement , bed, I q ;terra` TABLE OF CONTENTS (Cont'd) EMBANKMENT I1ON I T^R I �a 27 MISCELLANEOUS 27 FIG. A-1 - NORTHGLTNN RESERVOIR, SITE '.' ICINI TY 'O' FIG. A-2 - LOCATION OF EXPLORATORY HOLES FIG. A-3 - EARTH^UAKE EP I CENT:'",C , 122 TO 1977 FIGS. B-1 through B- - OGS OF EXPLORATORY HOLES FIGS. C-1 through C-9 - GRADATION TEST RESULTS FIGS. D-1 through D-; - S"EL!-CONSOLIDATION TEST "ESULTS FIGS. E-1 and E-2 - STANDARD PROCTOR COMPACTION CLRVES FIGS. F-I through F-3 - DIRECT SHEAR TEST RESULTS FIGS. G--1 through G - TR:AXIAL SHEAR TEST RESULTS 7I, H-1 - EMBANKMENT SECTIONS FIGS. I{-2 through H-G - STABILITY ANALYSIS TABLE I - PRESSURE TEST RESULTS TABLE II - LABORATORY PERMEABILITY TEST RESULTS TABLE III - SHEAR TEST RESULTS TABLE IV - SUM'1ARY OF LABORATORY TEST RESULTS APPENDIX I - CORE LOGS CONCLUSIONS (1 ) A nearly homogeneous embankment dar section with a central impervious core of select material has been selected. 2 , A 12-inch wide supporting berm is recommended below Elevation S135. (3 , A 20-foot deep continuous cutoff 'iiied a.si, select impervious clay fill below the e barnkment core is recommended. ( ) A 2-foot thick, do;.nstrear, sand and gravel dr: inage blanket 1 .5 times the hydraulic head re full reserv;;i r in 'ergth is re= ~menc'ed, (� ) Observation ei l s Gre recommended to monitor nor'e water pressure in the bedrock at righer embankment sections. (6) Vertical and horizontal monuments are recommended on the embarkment crest and on the stabilizing berm. 2 _ SCOPE This report presents the results of a subsurface and geological investigation for a proposed reservoir site to be located in the north- west portion o' Ecc. 36, T. 1P, , R. 6`'Y, Jeld County, Colorado. The location of the site is shown on the site vicini_y map, Fig. A-l . Ue previously per or-"ed a prelinir,ary engineering geclogic and soil `i investigation at this site and reported our findings under .;ob No. 1S,8 S2 dated starch 6, l; . The scope of the present investigation and engineer- ing analysis is to obtain sui icient subsurface irformation to provide final design for the riai embankment, give recommendations on foundation treatment, investigate the suitability of the material to be excavated from the reservoir for construction of the proposed embankment and provide an embankment section. A thorough geologic study of the site was made by review of published geologic literature, surficial inspection of the general area in t-e proximity or the reservoir site, and review of subsurface exploration. A detailed study of the seismic history in the area and recommenda io''s for earthquake design are also presented. Graphic logs of the exploratory borings and laboratory test results are included in the text of the report. Findings from the exploratory borings , field anu laboratory tests were used in evaluating the proposed emankment and reservoir. Evaluation of the dikes for the settling and aeration .agoons and settling, uike is beyond the scope of this report. - 3 - PROPOSED CONSTRUCTION The proposed storage reservoir is a hillside reservoir retained by an earth embankment dam. The reservoir will have a maximum surface area of 155 acres and a working depth of 37 feet. Maximum operational water level will be elevation 5159 and a minimum operation pool will be 5120. The reservoir will have a total working storage between these elevations of 5,350 acre-feet and a dead storage of 340 acre-feet. Maximum rate of reservoir drawdown will be on the order of 1 foot per day. To achieve the desired reservoir capacity, it is required to excavate to an elevation of approximately 5120. This will require a maximum excavation at the northwest portion of the reservoir of 37 feet. Maximum embankment height of 53 feet will occur in the southwest portion of the reservoir near Test Hole 29. An earth embankment dam will completely surround the reservoir with no tributary drainage. Therefore, no spillway is planned. Present planning calls for a pump station to be constructed at the northwest corier of the reservoir which will pump water from the reservoir into the adjacent Stanley Ditch. These pumps will be installed near the higiest elevation of the ground surface on the site. The earth embankment dam will essentially be a homogeneous embankment constructed of impervious material with upstream slope protection consisting of sound rock riprap underlain by bedding material . Details of the embankment will be discussed later. SITE CONDITIONS The ground surface in the area of the proposed reservoir generally sloped down toward the south and east. At the reservoir site, the - 4 - ground slopes down toward the east on the northern end of the site and toward the south on the southern portion of the site. A hill is located at the southeast corner of the reservoir with the ground surface sloping doom toward the reservoir in all directions from this point. The entire reservoir area has been cultivated and was being strip- farmed at the time of our investigation. There are numerous irrigation laterals crossing the site. The natural drainage of the site is tributary to Big Dry Creek, which flows in a northeasterly direction approximately 11 miles south and east of the reservoir. A small tributary drainage flowing toward the southeast into Big Dry Creek is located anproximately -- mile south of the reservoir. Stanley Ditch, flowing toward the east and north, passes adjacent the reservoir at the northwest corner. GEOLOGIC SETTING The proposed reservoir site is located on a dissected nediment on the western side of the Denver Basin. Extensive weathering and erosion has removed most of the original pediment gravels , leaving colluvial and residual soils mantling the bedrock in the area. The axis of the Denver Basin passes just east of the site and bedrock units beneath the surface din gently (1 to 5 degrees) co the south and southeast. A series of noutheast-trending, high angle normal faults, with narrow horsts (unthrown blocks) and grabens (downthrown blocks) between them, cross the area just to the north of the proposed dam site. These fault blocks have been tentatively mapped by Amuedo and Ivey (1975) and were substantiated by our drilling during the preliminary investigation. The trend of these structures is about N45°E arld the average offset of the faults is about 175 feet. _ 5 _ Bedrock formations encountered beneac.h the reservoir site during this investigation and our preliminary investigation included the Arapahoe formation, the Larar•ie formation, and the "'ox Hills Sandstone. The reservoir will be founded on and in the lower Arapahoe formation and upper Laramie formation. !lo bedrock outcrops were observed on the site. Information presented concerning the bedrock was gained cror, drill holes from our preliminary investigation, geophysical well logs , and published geological mapping done by others. The Laramie formation is about 600 feet thick in this area and was encountered at depths of about 50 feet or less in most of the drill holes. The Laramie formation is generally divided into an upper and lower section. The upper Laramie formation consists of interbedded cla/stone, siltstone, and occasional sandstones , with a few localized coal beds. The top of the Laramie is an erosional surface and is unconformably overlain by the Arapahoe formation. The Late Cretaceous Arapahoe formation has largely been eroded away in this area with at most about 50 feet of basal Arapahoe remaining. At some locations, the Arapahoe has been removed completely as a result of faulting and erosion. !There present , the Arapahoe consists of interbedded claystones and sandstones. Detailed geologic maps are presented in our preliminary engineer;ng geologic and soils investigation report. SUBSOIL INVESTIGATION The foundation soils and bedrock in the vieirity of the proposed dam axis were investigated by drilling 27 widely spaced exploratory borings. Thirteen of these borings were advanced by rotary methods w; r__ - 6 - continuous t1X core taken within the bedrock. The remaining fourteen exploratory borings were drilled utilizing a continuous flight auger. Because of poor core recovery within the sandstore at Test Mole 15, an offset hole was drilled by 4-inch auger. The borings were logged in the field during drilling and coring , with the soils and bedrock visually classified. Disturbed , undisturbed, and core samples were obtained of the typical soils and bedrock and returned to the laboratory for further classification and testing. Standard penetration tests were performed in the auger holes and water pressure tests were performed in the core holes to measure the coeffi- cient of permeability. Test hole locations are shown on Figs. A-2 and graphic logs are presented on the plan of exploratory borings , Figs. B-1 through B-3 and on the embankment profile, Fig. B-7. Detailed logs of the core holes are presented in Appendix I . The borrow area was investigated by drilling 23 exploratory borings at the locations shown on Fig. A-2. Twelve of these exploratory borings were drilled with a 10-inch diameter flight auger and eleven were drilled utilizing a 4-inch diameter continuous flight power auger. The subsoils were visually classified and logged in the field at the time of drilling. Disturbed, undisturbed and bulk samples were obtained and returned to the laboratory for additional classification and testing. graphic logs of the exploratory borings are presented on Figs. B-4 through B-6. Subsoil conditions will be discussed with respect to materials underlying the embankment and materials to be removed from the reservoir. Embankment Foundation: Exploratory borings below the proposed embankment indicate the overburden soils are erratic with respect to depositional - 7 - depth. Up to 12 inches of topsoil overlie medium stiff to very stiff, medium plastic, sandy clays. Maximum depth of overburden (of 16 feet) was encountered in the southeast portion of the embankment alignment and minimum overburden (of 3 feet) was encountered at the higher elevations in the southeast and northwest portions of the alignment. Bedrock is erratic with respect to depth and classification. Bedrock is predominantly ciaystone with interbedded layers and lenses of sandstone and some ciaystone-siitstone deposits. more frequent occurrence of sandstone was encountered in the exploratory borings in the north portion of the east and west alignments and along the north alignment. in the southern portion of the alignment , predominantly claystone was encountered. The sandstone is generally non- to poorly cemented with layers and lerses of well cemented. Tne claystone is generally weathered and fractured near the overburden-bedrock interface and becomes harder and more massive with depth, as indicated by the results of the standard peretration tests, presented on Figs. D-1 through B-3 and core logs presented in Appendix 1 . The percentage of cure recovery and rock quality (RQD) are shown on the logs of exploratory borings in the appendix. The RnD is a percentage of core 4 inches or larger (determined by only natural breaks or joint separations) of the total core run length. This is an indication of the continuity of the rock mass. Core recovery within the claystone bedrock was erratic, however, generally recovery was greater than 7Q,'. The RQD within the claystones generally was 6^:a or greater with the exceptions stated above. - 8 - The major exception was in Test Holes 21 , 62 and 63, where jointed and weathered material was encountered. Core recovery in the sandstone was generally poor, ranging from 0 to 90 percent with similar RQDs. Core recovery within the sedimentary bedrock should not be compared with core recovery from hard igneous and metamorphic formations. Water Pressure Tests : dater pressure tests performed in the bedrock generally indicate the sandstone is relatively impervious with coeffi • cients of permeability ranging from less than 1 foot per year to a maximum of 60 feet per year. The rate of permeability within the sandstone is erratic and does not appear to vary with depth. Water pressure tests were conducted in drill holes at the interfacing of sandstone-claystone units. The tests at these locations generally indicated a higher coefficient of permeability in the upper portions of the bedrock. A coefficient of permeability of 2,400 feet per year was measured in Test Hole 33 between depths 13 and 17 feet. This measurement was taken at a contact between the claystone-sandstone. Other pressure tests across interfacings of sandstone-claystone indicate substantially lower coefficients of permeability, varying between 60 to 530 feet per year. Coefficients of permeability measured in the claystone bedrock are also erratic and vary from 20 feet to 1 ,000 feet per year. The clay- stone becomes less pervious with depth, as indicated by the pressure tests performed in Test Holes 62 and 63. Coefficients of permeability and reaches over which they were measured are presented on the logs for the dam profile, Fig. B-7, and the detailed core logs in Appendix I . - 9 - Coefficients of permeability measured in the laboratory on undisturbed specimens from California samplers indicate coeff'cients of permeability of less than 1 foot per year in the claystone-sandstone bedrock and claystone bedrock. These tests support the judgment that leakage is occurring in the joints and fractures within the claystone. Laboratory permeability test results are presented in Table [ I . The results of the pressure tests performed in the field are summarized in Table I . Water pressure tests generally indicate the claystone and claystone-sandstone interfaces become less pervious with depth. Reservoir Borrow: Exploratory borings indicate the overburden soils overlying bedrock are erratic vjth respect to depth. Generally, 6 to 12 inches of topsoil overlie 1 to 7 feet of stiff to very stiff, medium plastic to plastic, sandy clay. Bedrock was encountered at depths of 2 to 7i feet. The bedrock encountered was predominantly claystone with sorre siltstone-sandstone and some sandstone-claystone deposits. The claystone generally becomes more plastic and harder with depth. FREE WATER LEVEL Free water level measured in the exploratory borings is erratic. Slotted plastic pipe was installed in selected borings to monitor lonn- term free water levels. These levels are presented on the logs of exploratory borings , Figs. 3-1 through B-7. !later was encountered at depths as shallow as 7 feet in the northwest portion of the site. "e believe this free water is perched water from leakage in the adjacent Stanley Canal . At other locations along the embankment alignment and in the reservoir borrow area, water was encountered at depths it to - 10 - 20 feet. No free water was measured in the plastic pipe installed in Test Hole 26. The water encountered at the 11-fcot depth is adjacent to an irrigation lateral and is more than likely perched water. Water encountered in the bedrock within the reservoir is generally near or below the proposed bottom excavation. We believe the water encountered during our investigation can be removed by pumping from sumps within the excavation. LABORATORY TESTING Standard property tests consisting of moisture-density, Atterberg limits and -200 were performed on selected samples from the axis and borrow exploration. Unconfined compression tests were performed on selected samples of the bedrock material . Test results indicate the claystone bedrock has unconfined compression strengths varying between 8,630 and 24,900 ps7 with an average unconfined compression strength on the order of 16,000 psf. The standard property and unconfined compres - sion strength test results are presented on the logs of the exploratory borings, Figs. B-1 through B-6 and summarized on Table IV. Gradation tests were performed on selected samples of bedrock material . Test results typical of the sandstone bedrock are presented on Figs. C-1 through C-5 and C-7 and C-8. Test results typical of claystone bedrock are presented on Figs. C-4, C-5, C-6, C-3 and C-9. The gradation test results in the sandstone bedrock indicate the sand- size material is predominantly fine to very fine and there are medium to large amounts of silt and clay fines. Swell-Consolidation Tests : Swell-consolidation tests were run on typical samples of the sandy clay overburden soil and claystone bedrock. Test - 11 - results, presented on Figs. D-1 through D-5 indicate the claystone bedrock possesses low to high swell potential with maximum swelling pressures measured of 20,000 psf. Test results of the sandy clays, presented on rigs. D-3, D-4, and D-5, indicate the overburden soils possess negligible to moderate swell potential with maximum swelling pressures measured on the order of 8,000 psf. Standard Proctor Tests : Standard Proctor tests were performed on composite bulk samples from the 10-inch diameter caisson exploratory borings in the reservoir area. These test results are presented on Figs. E-1 and E-2. Maximum standard Proctors varied from 9Q.7 to 115.4 pcf with optimum moisture contents between 14 and 22.8 percent. Direct Shear Tests : Selected specimens of the overburden clayey sands , claystone-sandstone and claystone bedrock were tested under direct shear conditions to determine their shear strength parameters. Test results presented on Fig. F-I indicate the yield shear strength for a specimen of very clayey sandstone from Test Hole 35 at 17-foot depth. This specimen was failed under a constant strain rate of 0.006 inches per minute under consolidated, saturated, drained conditions. Residual shear strength was established for claystone rock specimens from Test Holes 61 at 14 feet and 64 at 9 feet (Figs. F-2 and F- 3) . These represent the highly plastic and low density bedrock material which should develop the lowest shear strength within the bedrock. The specimen from Hole 16 was highly weathered and had a consistency of medium stiff. Both these specimens were failed under consolidated , drained conditions at constant strain rate. All three failures of each of the specimens were accomplished on the same plane in the same direction. - 12 - The specimen was saturated, consolidated and strained, then returned to the original orientation , surcharged, allowed to consolidate, and sheared again. This procedure was again repeated for the third shear failure. Test results indicate residual shear strengths cf 21° with 2.2 kips cohesion and 5° with 1 .3 kips cohesion. Triaxial Shear Tests : The results of triaxial shear tests are presented on Figs . G-1 through G-9. Because of the original consideration of con- struction the embankment with an impervious concrete upstream face, triaxial shear testing was accomplished under consolidated , unsaturated , drained and undrained conditions as well as consolidated, saturated, undrained conditions monitoring pore pressure. The shear envelope presented on Fig. G-1 represents the residual shear strength of claystone bedrock from Test Hole 21 at a depth of C `eet. This test results indicates the residual shear strength of 19° and a cohesion of 3.3 kips per square toot. Consolidated, undrained triaxial shear tests for the ch.y overburden soils , presented on Figs. G-2, G-3 and G-4 indicate shear strengths of 2.6 U.2 and 13.5 kips per square foot, respectively. These specimens were failed under a constant strain rate of 0.003 inches per minute. Triaxial shear results presented on Figs. C-5 through " -7 were performed on remolded composite samples from the 10-inch diameter exrloratory borings from within the borrovi area. These specimens were tested under consolidated, undrained, constant stress conditions. These shear strength envelopes represent the total stress condition. Sear strength parameters varied from an angle of internal friction of 13O - 13 - with a cohesion of 1 .6 kips per square foot to 250 with an angle of internal friction of 0.5 kips per square foot, with the more plastic material having the lower angle of internal friction. Triaxial shear test results presented on Figs. G-S and -Q are remolded specimens from composite samples taken from the 10- inch exploratory borings within the reservoir area. These specimens were tested under consolidated, saturated, undrained conditions at constant strain rate with pore pressures monitored during testing. The stress envelope represents the effective shear strength parameters The test data indicates shear strength with internal friction of 23° and 0.2S cohe- sicn, and 26° and 1 .0 kips per square foot cohesion. Shear test results are summarized in Table III . WATER SOLUBLE SULFATES Selected samples of the sandy clay and claystone bedrock were tested for water soluble sulfate content. These test results indicate water soluble sulfates between 0.02 and 0.22 percent. Attack on concrete by soils and waters containing water soluble sulfates in these contents is positive, therefore, we recommend concrete placed against the natural soils or embankment use Type II cement. EARTHQUAKE SUSCEPTIBILITY EVALUATION The earthquake susceptibility was evaluated based on a review of the historic seismicity and geologic and tectonic history of the sur- rounding area. Data in the published geologic and seismologic literature was the primary source used in the study. - 14 - Historic Seismicity: The high plains of Colorado in general is an area of relatively low seismic activity. Locations of historic earthquakes , taken from the U.S. Geological Survey's earthquake data file are shown on Fig. A-3. The majority of the historic earthquakes have occurred in the mountains to the west of the plains. An exception to this general trend is the high concentration of earthquakes northeast of Denver. The Northglenn Reservoir is near the northwestern boundary of this zone. Be:ween 1382 and 1978, approximately i+0 earthquakes with magnitudes between 2.0 and 5.3 were recorded within this area. Numerous smaller earthquakes have also occurred in the zone. The largest earthquake, magnitude 5.3, took place on August 9, 1967. Its epicenter was about 8 miles southeast of the dam site. The focal depth was about 3 miles. The majority of the earthquakes in the Denver seismic zone took place between January 1962 and November 1967. This seismic activity has been associated with fluid injections in a disposal well at the Rocky Mountain Arsenal , Evans (1970) . A conclusive correlation between well injections ane earthquakes has not been made, Major and Simons (19(S9) . However, since halting of pumping in the late 1960's, the occurrence of earthquakes in the zone has declined markedly. The 1872 Colorado earthcuake has been assigned to the Denver earthquake zone, which indicates seismic activity in the area prior to fluid injections. The most recent event was a magnitude 3.0 earthquake in the summer of 1978. The historic record indicates that tectonic stress released in the form o; earthquakes has periodically occurred in the Denver area over the last 100 years . Pumping in the Arsenal well has likely been the triggering mechanism for some of the stress releases. The Denver Seismic Zone does not coincide - 15 - .ith a major fault zone and surface fault ruptures have not been associated with the earthquakes. Considering the available evidence, it is our opinion that the Denver Seismic Zone is a potential source of future earthquakes, however, judging from the lack of major faults in the area , it is unlikely that future earthquakes would exceed magnitudes greater than 5.5 to 6.0. Faults : Two potentially capable faults/, the golden and Valmont Faults , have been identified in the general area by the Colorado Geological Survey, Kirkham and Rogers (1913) . The Golden Fault, located along the eastern flank of the Front -range about 20 miles west of the reservoir site, is a 20-mile long, high angle reverse fault. The fault offsets Kansan-age alluvial deposits , however, the time of last fault activity has not been definitely established. For the purpose of our evaluation , we have considered the Golden Fault to be capable. The Valmont Fault is located about 12 miles northwest of the dam site. This fault appears to be associated witn deep basement faults along the western margin of the Derver Basin, Davis and Weimer (1976) . The Valmont Fault offsets Kansas-age alluvial deposits , however, the last period of movement has not been conclusively established. For the purpose of our evaluation , we have considered the Valmont Fault to be oart of the basement fault zone and to be capable. In addition to the basement faults along the western margin of the Denver Basin , a series of northeast-trending faults occurs southeast of i/ A capable fault is one that is considered to have the cotential 'or generating earthquakes. A fault is generally considereu to be capable and should be considered in dam design if it shows evience of movement within the last 35,000 to 100,000 years. - 16 - the boundary faults. These faults form a zone about 20 miles long and 5 Hiles wide. The faults described in our preliminary investigation, March 16, 1973, job 4o. 15,882, are part of this fault system. The faults in the system are high angle normal faults with offsets ranging between a few tens of feet up to 500 feet. These faults dirfer from the deep basement faults which bound the area on the west in that they extend only about 5,000 feet into the Cretaceous shales. The faults are igrowth faults, Davis and lleimer (1976) . Faulting was contemporaneous with high rates of settlement resulting from deltaic deposition during the Late Cretaceous , as indicated by their limited depth and anomalous Cretaceous-age sediment thicknesses in the fault zone. The growth faults have not been considered as capable faults in our evaluation. Earthquake Design Criteria : In our opinion, considering the geology and se"smologic history of the region, the operation base eartruake should correspond to an intensity of VII . This design earthquake was based upon reported intensities of the August 9, 1967 earthqake near the Rocky Mountain Arsenal . The maximum design earthquake should correspond to a Modified I1ercalli intensity of VIII . This earthquake is based on what we considered to be a reasonable credible earthquake in the )enver earthquake zone. In our opinion, this zone is the most sig i " icant source of potential future earthquakes because of its close proximity to the dam site and past seismic history. Our analysis indicates that credible earthquakes associated with the Golden and Valmont Faults can reasonably be expected to produce less intense ground shaking at the dap site than credible earthquakes associated v.ith the Denver Zeisriic Zone. In analyzing the erfects of earthquake shaking on the emban..ment, we - 17 - have selected a pseudostatic seismic coefficient of 0.05g for the operational base earthquake and 0. 10g for the maximum design earthquake. EM3Atdl:MENT STABILITY ANAL"S l S Several combinations of upstream and downstream slopes were studied by computer using the tlodified rellenius slip circle analysis to determine the most desirable section. These studies indicate that a 3 : 1 upstream and 2: 1 downstream combination is most desirable. Following the decision to use a combination of 2: 1 and 3 : 1 slopes , further computer stability analyses were made to determine t ,e configura- tion of the downstream drainage blankets. Downstream drainage blankets with lengths equal to the reservoir head , 1 .5 times the reservoir head and 2 times the reservoir head , were analyzed. Critical circles from this analysis, showing the respective factors of safety, are presented on rig. H-G. Factors of safety under steady-state seepage conditions were calculated to be 1 .36, 1 .26, and 1 . 14 for the 2H, 1 .5 and P length downstream drainage blankets , respectively. The desired Factor of safety for steady-state seepage conditions on the downstream slope is 1 .5. From this analysis, it is apparent that additional stabilization is required on the downstream slope of the embankment. rai :ure Surface 1 intersects deep into the embankment, therefore a drainage banLet o{ sufficient depth to provide a safety factor greater than l ., without additional support downstream would encroach on the select impervious core of the embank^ent. Various downstream berms and drainage blanket configurations were evaluated, with a 12-foot wide berm at Elevation 5136 and a 3 : , slope - 13 - below this berm being selected. Stability analysis using this configuratiof and a drainage blanket with a length 1 .5 times the hydraulic height was performed on the embankment. A computer analysis utilizing the Modified Fellenius slip circle method was used to find the critical `ailure circle and factors of safety under steady-state seepage condition and s:eady-state seepage condition with a pseudostatic earthquake loading of O. lg horizontal acceleration. These critical failure surfaces and computed factors of safety are presented on Fig. H-2. The factors of safety computed are 1 .59 and 1 . 13 for the steady-state seepage condition and the steady-state seepage condition with horizontal earthquake loading, respectively. The upstream portion of the maximum section of the embankment was tested under full reservoir steady-state seepage conditions , rapid drawdown from Elevation 5159 to 5140.5, and rapid drawdown `roil 5159 to 5122. Because of the relatively low permeability of the embankment materials , very little effective drainage will occur durirg this drawdown. Critical failure surfaces and factors of safety under the various conditions are presented on FiG. H-3. Calculated factors of safety for the full reservoir steady-state seepage condition , partial drawdown condition and complete drawdown condition are calculated to be 2.32, 1 .4E, and 1 . 15, respectively. These factors of safety were established by computer using the Modified Fellenius slip circle method. The safety factor of 1 . 15 for rapid drawdown is slightly lower than generally accepted factors of safety under these conditions. The Modified Fellenius method of calculating stresses within the various slices of the slip circle neglects forces between these slices and generally gives a conservative value for - 19 - a factor of safety. The critical circle indicated as No. 2 on the referenced figure was checked using the Bishop method , which takes into account forces acting between the slices within the failure circle. Using this method under the total rapid draadown for the "a; ; ,ire plane represented by Case 2, a safety factor of 1 .26 was calculated. since this circle falls entirely within the embankment , which will be carefully controlled during construction, and the more sophisticated iethod of stability analysis indicates a factor of safety greater than 1 .2, we believe the 3:1 upstream slope of the embankment is satisfactory. An intermediate embankment section was studied for slope stability . Th' s intermediate section was studied under steady-state seepage conditions using lengths of H and 1 .51 for the drainage blanket and a horizontal earthquake acceleration of 0. lg with the 1 .5H drainage blanket. This study indicates that a drainage blanket of H length has a calculated factor of safety of 1 .39 and the drainage blanket with 1 .5H has a cal - culated safety factor of 1 .46. Generally, the accepted factor of safety for the downstream under steady-state seepage conditions is 1 .3. Under the steady-state seepage slope condition with a :. lg horizontal earthquake acceleration , a safety factor of 1 . 1 was calculated. ':e: believe that the calculated factors of safety for the downstream embankment using the f'odified rellenius slip circle analysis are satisfactory. 7he upstream slope of the intermediate section was also tested under full reservoir steady-state seepage conditions and complete drawdown on the embankment. rectors of safety were calculated of 2.65 and 1 .47 for full reservoir anJ total embankment drawdown , respectively. Critical failure surfaces anJ calculated factors of safety are presented on rig. H-5. - 20 - In overconsolidated clays and very stiff and hard claystone bedrock, conventional slip circle analysis may not analyze the critical failure plane. Failure can occur on a weak plane within the overconsolidated clay or claystone bedrock. It is extremely difficult to locate these planes of weakness in investigation and during construction, Therefore, four planes of weakness have been assumed at the maximum section in the lower portion of the in-place sandy clay and at the top of tie weathered bedrock sections. These planes of failure and calculated factors of safety are presented on Fig. H-4. Soil parameters used in the above stability analysis are as follows : Embankment (Unsaturated) : Jet weight = 125 pcf; internal friction = ";o; cohesion = 0.5 kips per square foot. Embankment (Saturated) : Saturated weight = 128. 5 pcf; coefficient or internal friction = 23O; cohesion = 0.25 kips per square foot. In-Place Foundation Clay: Saturated weight = 133.4 pcf; coeficient of internal friction = 23O; cohesion = 0.25 kips per square foot . 1.e�thered Claystone Bedrock: Saturated weight = 133.0 pc` ; coef�iciant of internal friction ; 5O; cohesion = 1 .3 kips per square coat (residual shear strength) . Claystone Bedrock: Saturated Height = 133. 3 pcf; angle of internal friction = 19O; cohesion = 2.0 kips per square foot (resi.:ual shear strength) . SEEPAGE t;ater pressure tests indicate larger water losses in the claystone becrock and contacts between the claystone and sandstone. Iressure - 21 tests in the core holes also indicate the claystore bedrock generally becomes less pervious with depth. A review of tie cores from the ...'ay- stone bedrock, standard property tests and laboratory permeability tests on California samples of bedrock indicate water loss within the bedrock is passing through joints and discontinuities. the effectke coefficient of permeability may be reduced by closing of the joints and fractures when the surcharge weight of the embankment is placed. Leakage through the foundation was calculated using generalized assumptions to deternine a magnitude of seepage loss. It was assured water was free to enter and exit the bedrock in a horizontal direction both upstream and downstream of the embarkment. "his assum7tion does not account for loss in head by the water passin, through te impervious natural clay layer at the maximum section or difference in vertical and horizontal permeabilities. Liberal average coefficients of rermcLi ' ity were used. One idealized condition assumed the average perr,eaLilite from the surface of the bedrock to a depth of r;p 'eet was "" 'eft .t r year, and below 40 feet bedrock was considered impervious. nder t..ese assumptions , water loss was calculated to be 22 acre-feet per no'it.' ..ith the reservoir at maximum storage level . A second calculation assa.-t!J bedrock 2b feet below the cutoff had an average coefficient of permeability of 200 feet per year and below that the bedrock was impervious . r 'is calculation indicated a monthly water loss with the reservoir felt .:.,utd be 15 acre-feet. These calculations are estimates and intended to assess the upper order to magnitude of leakage through the bedrock. Seepage loss through the maximum fill section of the embanknent was calculated assuming the in -place clay was impervious with respect to the 22 - embankment fill . The highest coefficient of permeability measured in the laboratory of 0.0S Feet per year was used in this analysis. Cal - culation for seepage loss at the maximum section at rull reservoir is on the order of 0.25 cubic feet per month per lineal foot of er'bankmeHt when steady-state seepage condition is reached. From this calculation , it is apparent that leakage through the embankment is negligible. Ei13ANt.fCUT Typical embankment sections are presented on Fig. it-l . The configuration of the embankment was determined by stability analyses , as discussed earlier in the report. The embankment is essentially a 10ra- geneous , compacted earthfill section with a 20 foot deep continuous cutoff and a downstream drainage blanket l ., times the di ference in elevation between the blanket and maximum operating reservoir level . When the embankment foundation is below Elevation 5136, a 1: foot wide term .:ith a 3 :1 sloe or the downstream side has been rroviaed. -',e depth of the cutoff trench was determined after careful stu,y of core from foundation bedrock and water pressure tests. The downstream Jrainane blanket length was determined by calculating the location o' the preatic line within the embankment and stability studies under steady-state seepage. If estimated quantities indicate sufficient material will not be available from the reservoir excavation to construct the cownstream supporting berm as outlined in this section, additional studies can be made with increased drainage blanket length with possible reduction of material in the stabilizing berm. - 23 - A 1% camber of the embankment is recommendec to accommodate post- construction settlemert. Fill Material : Selected compacted, impervious fill should be placed in the portion of the embankment delineated on Fig. H-1 . This material should consist of the natural on-site sandy clays , clayey sand and upper very weathered claystone bedrock with greater than 35% passing the :lo. 200 sieve and a plasticity index of greater than 15. Approximately 525,000 cubic yards of select impervious fill will be required. Caicuia- d ons indicate approximately 450,000 cubic yards of overburden clay will be available from the proposed reservoir excavation. "uie remaining 100,000 yards oc select material will come from the upper weathered claystone. This ,All require approximately 1 foot of claystone over the area to be excavated for incorporation into the selected ir"ervious "ill zone. Only claystone which easily breaks down into soil si.'e nartic'cs should be used in the impervious section. The random fill will consist of the remaining material excavated from the reservoir. ire believe the soil and bedrock it the pronose:� reservoir can be excavated with conventional heavy excavati-s ee,ui'i^ert. As the excavation becomes progressively deeper into bedrocL, it ,.ill be necessary to rip the bedrock in order to loosen it from the rormtion. 1!e believe the bedrock can be ripped by a truck-mounted, hy.'raulical y- operated, single tooth ripper. There may be layers or lenses o; cemented sandstone which were not encountered in our exploration which may rccuire drilling and shooting to excavate and obtain the size of material wiich can be handled by conventional heavy construction equipment . The major constraint in utilizing the claystone bedrock in the embankment is the mechanical breaking down and compaction of the bedrock 2t; - fragments. l:e believe most of the claystone bedrock can be broken down by the use of disking equipment and sheepsfoot compactors. The amount of effort required to break down and compact the bedrock is difficult to determine prior to actual meld operations. It has been our experience in working with sinilar materials that ripping , disking and natural process of air slaking breaks the material to a size which can be compacted. Large boulders of bedrock which do not break down can be incorporated in the random portion of the embanknent provided they are surrounded by compacted material . Nesting of larger pieces of material should be avoided. The less desirable bedrock, consisting of the large pieces , can be used in the fill which is required to raise the lower level of the aeration lagoons. Cur field and laboratory tests indicate the moisture content in the upper natural clays varies from 3 to 10 percent below optimum moisture. The water content in these clays is subject to variation according to weather conditions. However , it appears addition of water to these n-a:erials will be required. The moisture content in the claystone Ledrock generally was li to 6 percent below optimal. This water content is less subject to variation because of weather conditions , however, considerable drying of this material will occur curing excavation anu working of the material before compaction. Fill Placement: No brush, sod, frozen material or other perishables should be placed in the fill . The distribution of the material on tie fill should be such as to avoid the formation of lenses or layers of material differing substantially in characteristics from the surrounding materials. The materials should be delivered to the fill surface at a 25 - uniform rate and in such a quantity as to permit a satisfactory constru- ction procedure. unnecessary concentration of travel tending to cause ruts and uneven co,lpactian should be avoided. Before placing the successive layer, all ruts an..' other hollows more than f inches in depth should be removed and compacted. After dumping the fill material on the fill surface, the material shculd be spread by approved methods in approximately horizontal layers. These layers should be no greater than 8 inches in thickness after corpaction. The moisture in each layer, while being compacted by rolling, shculd have even distribution of moisture throughout the material of plcs or minus 2 of optimum moisture define) by the standard Proctor dersity test. In most cases , addition or water will be required. Ideally, water should be added in the borrow before the material is delivered to the embankment. If this is impractical or it is not possible to obtain, uniform moisture contents in the borrow, ..titer may be added on the fill surface. '.then the moisture content and condition of each spread layer art_ satisfactory, it should be compacted to at least 9 standard ,'roctor density with a tamping (sheepsfoot) roller. The feet of toe roller shculd extend approximately 3 inches in clear projection iron the roller's cylindrical surface and shall be so spaced as to provide approximately one tamping foot for 100 square inches of roller surface. The roller shculd be provided with cleaning bars so designed and attached as to prevent the accumulation of material between the tamper feet. The roller should be the type which can have its weight increased by adding - 26 - to the drums of uater or sand or both. The weight of the roller when fully loaded should be not less than 4,000 pounds per lineal foot of drL.m. Riprap: Eighteen ices of riprap overlying 3 inches of bedding material is recommended. This riprap should be reasonably well graded, sound, durable rock, l3-inc maximum size, 50% larger than 12-inch size and less than 10% smaller than 1 inch. The riprap need not be compacted , but should be placed to grade so the larger rock fragments are uniVormly distributed and the smaller rock fragments serve to Fill the space between the larger rock ^ragments in such a manner as will result in well keyed, densely placed, uniform riprap to the full 13-inch thickness. Becdin;; Material . Tie material to be used for bedding for riprap should be selected pervious sand and gravel , reasonably well graded From sand size to a maximum of u inches. At least 15% of the material should ae larger than 2 inches , with 20 to 50 percent passing the No. + screen and no more than 5; smaller than the No. 200 sieve. Care shoul2 be taken in hardling and placing of the material to prevent segregation. ':o compaction of the bedding material is required. Downstream Sand and Gravel 31anket : The material to be used 'or the 2-foot thick sand and gravel blanket should be selected pervious material , reasonably well graded From sand size to li-inch. The blanket material should be 100%,, smaller than la-inch size with 1+0 to 30 percent passing the No. 4 screen and 15 to 40 percent passing the No. 50 screen, and less than 5% passing the No. 200 sieve. The material should be placed in 3 to 12-inch lifts and compacted to at least 70% relative density. The slots or holes in the perforated pipe installed in the bedding material should be designed so migration of filter material into the 1'7 _ pips is avoided. This pipe should discharge to a sump where collected water can be measured and removed. DiBANIQ1E?lT f10WITORI':G '/e recommend slotted plastic pipe be installed to monitor the pore water pressure in the claystone bedrock at locations where te embankment foundation is 5130 or lower. These slotted plastic pipes should be installed at least 30 feet into bedrock and a wate-tight seal placed around the tube within the overburden clay material below the sand and gravel filter blanket. The pipe should not be slotted in or above the sealed zone. Below the seal , the plastic pipe should be surrounded by clean sand. It may be necessary to protect the openings it the pidstic pipe with fiber filter material . Installation of these monitoring wells should be considered at 300 to 4100-foot Intervals . Free t,ater lee;s should be monitored regularly during the operation of the reservoir. 1:e believe the irstallation o'' these monitoring wells is importnt because of history oR excess pore water pressure developir,; in hard claystone bedrock formations. if high pore water pressures are Toni tored in these observation wells , it may be necessary to corstruct dewatering wells near the downstream toe of the embankment i•1 the. `uture. Vertical and horizontal moruments should be placed at 200 to rCC-- foot centers on the crest of the embankment and on the crest of the supporting downstream berm. MISCELLANEOUS During construct on, a geotechnical engineer familiar ..ith the subsoil conditions should regularly inspect the cutoff trench and 2C - reservoir excavations . breas of highly fractured or jointed bedroci_ should be noted and evaluated. If badly jointed and fractured bedrock is encountered at undesirable locations in the reservoir excavation , it nay be necessary to provide a thin, impervious lining. Tl Is could be accomplished by simply mixing the air slaked bedrock and compacting it to C% standard Proctor density. The severity of the fractures and joints will determine the thickness of the lining. Thicknesses Letween 12 and 24 inches should be anticipated. it is important the excavation be inspected before air slaking of the bedrock has occurred. All fill should be placed under the continued observati„r, of a soils technician and soils engineer. Fill should De frequently tested to determine standard properties, and moisture and density c` the place materials. A thorough record of material placement should be maintained durin, construction and suTMnarized ollo' ing con•^'c_tior or the project. CHE "SS::C r A,TES , IC . 7 Don ld Bressler, I . JEE/med REFERENCES Amuedo and Ivey, 1375, Coal Cline Subsidence and Land Use in the Boulder- Weld Coalfield, Boulder and Weld Counties , Colorado. Davis, T. L. and Weimer, R. J. , 1976, Late Cretaceous growth faulting , Denver basin, Colorado, in Studies in Colorado Field Geology: Colorado School Mines Prof. Contrib. 3. Evans, U. ti. , 1970, Denver Area Earthquakes and the Rocky ,,ountain Arsenal Disposal Well : Geol . Soc. of America, Engineering Case Histories No. 8. Kirkham, R. M. and Rogers , J. P. , 1978, Earthquake Potential in Colorado: Colo. Geol . Survey Open-File Report. Major, M. W. and Simon , R. B. , 19GS, A seismic study of the Denver (Derby) earthquakes : Colorado School Mines :1.uart. , V. 63 , No. 1 , p. x-55, / -\...-/ � "_ � / � /� __ � --� \ \ ,00 \ L \ 1 ji-- Mi r -____7-__..„---- - -----____,11-\---1- -\--,... -1 \ ) ) , , ) / -\/ \ tl \ ) , / b u \ /I \ \ Ca) •._._./ \ I �_ II_ �OR S , THGLENN \RESERVOIR LO(\ATION ' 'tl / i� / II ________ _______3 I 1 ( t 7- --...' \'ILIII ..--- I N"\ 1 ; I) - ~ / _ _ _- — _ 1c.ect I On 2� tlon J ) I J Sect; �� Section 35 1 �--'- .7 -- -i \ / / 1 I\ \I / /j ' ) (19 ../-**j I 3 $ , 7 ML / ( ( \ \ 1 \ \ \ / ice , I / ,/ ( r------1 ,--, ---- L / C ..---- \\ I ) ( .5 \ L--, -"\ 1 I \ \ i \ \ f / �/ 7 M t / < 1 �= .. J N ` c , �\ ___--x __, -- \ I 1 I \ (_ _____- ,J -----—- '1`, \ ' \ i ( (1) ) i- - -- i ' c—— \ \ \ ) ( )7_ ,----- ' \ i --, / (.C \ 1 \ - ---N )1 ( ,50'x, , _ , ..1 1 )—\) /__4- �_ -� N' 7I:"'_E"1,1 RESER\iGl ,2 tl Zvi SITE '' ,'GtlP11TV MAP I Scale: 1'',---.l O00' chen and associates, inc. 7 CONSULTING ENGINEERS 96 S ZUNI DENVER, CO 80223 Jcb Number Dote I6 __fir' Flq CHEN AND ASSOCIATE 'S Consulting Soil and Foundstfne EF , 'ate* MY 0METER ANALYSIS t Eve lNA.L""IM --- ---1 ?Hot, TIME READINSS .. S STANDARD $ERIE$gO T .. 'R S& , ±«q .141'. r>F i •MI� OO MN IO MIII •M,M .MIA •000 •i00 •9G••O.30 •N '� •8+ '__ _• ' ; _ + `4 d I 90 -_ _-+ ___ i- _ +t t r + 3 + 4. __+ +- -_:_r } y _+—__ _+ __ --_ —_ + L _ e + Z _ : =_T - _ _— , — _ __— 2+ d + j _ _ Yx _, 4 W --- ----_{- - -+ — - -- - r-+- - 4. +� + 1-I • ++ ____ _ _ + — _ '___ -- ___ _-� __:1t_I ! f i _ 2 +i1. ••• i' fftf , - �.� 1•• 4r -•3_LI_I.JI_ --1 _.!. T�:.t:: t4__-1°r, 005 000 000 0 9 03T 074 I•* t07 •A0 I'S �tp55 •AA 09e 9 YA 793 r 400l DIAMETER OF PAR•'ILE IN MILLI ETERS ' I CLAY ,►,�f•�. TO IlLT,NON-PLASTIC' � ' —T -- —J `rt0ARK a‘7,06161t.6S GRAVEL 0 TO SAND 73 /0 SILT AND CLAY 27 �r10/0 LIQUID LIMIT T PLASTICITY INDEX 4 SAMPLE of Sandstone Bedrock FROM Hole 15 at denth 1161-011 I HYDROMETER ANALYSIS SIEvE ANALYSIS _ _ ___ Tim, REAOIN03 u S STANDARD SERIEB•10 T- C.EAR SSuARG 0►Qh.algW A �MII� •Y,k SO RIN RIM 4 MIN 'Rik •'00 •50•40.30 •4 �•0 •4 e9 4 W 7 a r ` I _ _ _ _ — -' -r---- —T---y j- 0 71. J --}--- __ --- __ ..__ • • • _ , _r-f-« 4- 4.,,,t—____ . — — +� - ++ --- - + - t -+ -- d ,- __t __ + +Na 40 �_ _ r + +$ + + I +4 A. 1 t 0: T ; • .;:-i rf_.] '°° Af! '>.7 i '709 000 0'5 037 074 I45 511 900 '.0 !p6a •74 598 5 ail 'f7 57 I DIAMETER OF PAR I LE IN MILLIMETERS — — �_J LLA` a_•r' ' TO SILT,NON-PL•fT,CI --1',COOK ES (y.1AVEL 0 % SAND 80 /0 SILT AND :LAY 70 ''''ti 0�// I_IOi ID LIMIT -/0 PLASTICITY INDEX 7S '" ' " Sandstone Bedrock Fq(,M Hole 15 at denth n"16, 125 I;RADAT!('N TEST RESULT c-, r lc:. C- 1 A 1 CHEN AND ASSOCIATES Consulting Soil and Foundation Eng,nows i I NrDROMtTts ANALYSIS - SIEVE ANALv913 � ___ _- —�4 r.2( MEAD0408 U S STANDARD $LRIESec, . 'A4 S1_AOC OP64 A4R 1 l� 1+ Sr YY M l! M PeRAR A1hr ma. •�•4o•3o •~ _ 1 •• b- a 4 "• r3,7 - a +- + -- -- - - --- -- �- - - Ti i 3 + + + + Y10 —�- —'+_ -- - - - -- - __ —++ - --+---- --+ --+ - `t :_------T_ - I;_ I 4 ;i •i ▪ ___}_ • $ - •__ +_-_ 4 - _► __ _— __ __�___ $_ _-_+ - I + 4_ ; '4,4 1;fl _-_-_--4- - + _+ .I.-_ } �-_ $— } t 1 .. 4 10 -- _--_4 ----- -- ---r - _ --Y _-- T -__--_ - -__- - ---- - _� _ -_- _ 4* -- ' - +4. -- - _ - -S_ —+ ---- 4-- -+-1 t+- + rI. _rj=- + ±4-, t 4+ + 0� i -- -$ - --_t___ :-.- -- _-4— -- _ 1 i + = - ---_- + T L--_h r-tr T T DTTT t-z- -- Z+T#TTTT$ �� Z _ ., ___.4 w - . A : oo $�'�---xa' oro COI �v oe, ON ,�� tsT t ro � t g+e •TO � m'�. I �s a, � `��'� I DIAMETER OF EAR IDjL�E IN MiLLrAETERI% et, C,Av a At` TO SILT ,101 PLAS11C1 ♦IRF ?WRIST U• C0iR7RT- �'�'sR"Tab.' ✓ — -^lRtFd GRAVEL 0 0J0 SAND 49 /0 SILT AND C.LAS rl Tu LIQUID LIMIT To PLASTICITY INDEX -'0 SAMPLE OF Sandstone Bedrock FROM Hole 15 at depth 2E -0I r V ioMETtR ANALYSIS I $IEy_ ANA�.Y1'S T.ME A[ADINOS T S STANDARD SIIIfS� T — C EAR ,:w AR itiF M▪N 4.4A soma. Perm 4 soli MR. •tdo •'oo •5o•Ao'30 •a i •' To k e r _+--- ++ + - + +y,}-t/0L--t - --it-------t--' _ --r• --- _ -- -L Ji} y -i ---* - -j -Al0 • + ____•_____- _- -t {- --_ T+ 4 } + p - __ }} _ -_ _-_- _--_ _ _ . 4 - + + ♦4 A+ 1 --+ - -- t +--- - -- -- __ i }- 4t} - - _ ++ - 4- + -- + -r 140 S !0.-_-- _--_* -- --t----- +--• ♦ ++ 4 4 -t - I- t i - • __ +- -• .- + $ I t t + s ++ 1 W�f $ {i $ I Y 4 + + } ++ 11 to ---___ = --= -- -- ------=r'__ _—_ ' 4 4 t + ..- .-=-7 _ �— +- --_ + $ _ _ _ +4 + i + _ 0 1+- 4- a, FT-t- .-:IT _if--T- _1 : LLL1 `-T__ r'TTT`- f T T r TTT - �'• ' t r7 I 1 1 1 WO DO 0O1 OOC OOt 0'• 03, ON 4S ltl tt'M0 .t ttpp31 a w f]t 0 _ SO. ',GE .t` E D AMITER OF PAR ICLI IN MIL., E __1_14 CLAr z.A1•CI IC SILT IRON-PLAIT C' T-- —--- —�c,oRRCIS GRAVC_ 0 50 SAND 79 /0 SILT AND CLAY 21 y 4 ��}}// pp// L YUi0 k_1MIT -/0 PLASTICITY INDEX 7t -n r Sandstone Bedrock FROM Hole 15 ," denth 3`' ' ^'' #16 125 GRADATION TEST RESULTS r i n r _2 A - CHEN AND ASSOCIATES Consulting Soil and Foundation Engiv,eons L, NYb*OMETER ANALYSIS I SIEVE APALf".{' _ - sue --�� , TIME R[IOIN4S •eTI u 5 STANDARD SEuIESU .f yR 'S° `P__ '=6R MIA II; 10 MM •Y111 4 WN met •.00 *so•4°•JO •• 1a! •♦ !} ,h � 5 'A-_1'° t. t40 —_ - __ _ _— —_ _ _ -- _+— ___- --r-f—_ _ __ ♦_ _ + _ r __ A y4O N - t + $ $ •$ i- f ' . n 61 101 + !/ t_ $ _ - -- - - t- = t + - x 'a �6 -I lo - -- , t -_ + -- - - - - t-.-- • - - - --a-- �• - - o ••as - -; 7 r rllt=—i-��t 4J$;- Ly-40° .. I 00!--.. 0O y 009 01 05• 014 '44 21T ee 5.0 , A Vg . $IS 9 5 .4 545 •$S t 11k) IDIAMETER OF PAR'I`LE IN MILL1'NETERS Ns CLAY .v;aanu TO SILT IKON-FLA$TICI --11•0=k,, —t-- ✓� riff r Crwl - CDiRR' ►7 iE v9aa7Y --�`_QOa0t S GRAVE L 0 /0 SAND 77 /0 SILT AND CLAY �3 D LIQUID LIMIT % PLASTICITY INDEX 00 SAMPLE OF Sandstone Bedrock FROM Hole 16 at depth 391 -,11 L4HYDROMETER ANALYSIS I SIEVE ANALYSIS _-_ _ ,7 T�1 O'NQ •ebTo u S STANDARD SERIES•p T C.EaA 9auiRE 091Cd�M21I 4O A DO MW S 46WM IMW •,00 •SO•40 30 •M ti •4 `Y' ' _ w 3 II' ° IN _40 +---- + _— -+---- —�- --- +---- eCf • —-:_ _.1 t- _-_-:-_ _ ,__ __ t_ + t- -] r = F _ ___ - __1= s- --_ t _ - _+$ - --t - : _s Iw�IL 4 _ __ _ ___ __ __ __ _ __ _ ,_ _ _ _ __ ___ I+ _ _ r : .,1.1- -: -1. +4 • �_*_--. -- - �___� _ =- _= w - t -Z S--r �N• 1�•• T I1t tom- I--I?11T-1— - !1 T-4 IT7fTrf 03 - -i, 0.* 003 00. 0,. 037 024 i45 217 t510 'I1 VS 4 I gm .' A. .a E '5' ED0 DIAMETER OF PAR ISLE IN MILLNJE'ERS �y'p�r �__ a.---- CLIP/ PL4$ 'C' TO SILT (SOW-PLAIT C) IU■ COMM] ►IN l"-�` ----- •G0 I-ES FIN! %1 }0 I z4 R.�I raaRss + GRAVE'- 0 % SAND 78 SILT AND CLAY 22 liC LIQUID LIMIT % PLASTICITY IVDEX NP % ,,/,,4E., F of Sandstone Bedrock FROM Hole 16 at depth 701 -0" #16, 125 GRADATION TEST RESULTS pia. C-3 A I CHEN AND ASSOCIATES Consulting Soil and Foundation Engineer: iiii MYDNOMEr[R ANALYSIS I IIEvE_AkALY"S1? - Rte# DIME READINGS ►elbo u S STfNDARO SERIEtIAO T.AFB 90«aRF :"'i�+IN3? TNR •100 •SO•40 3C •M As •• 5s }a ? " Y SM'A 9CN9I »INN ♦WN IMW { _ - - O i f 4 II 1 —__ —i-- __ - - - a —____90 1 -__ 4 M + + 4. A4 A -- $ —_ — — - T + ' + JIM- t-- - -- - - _ - - S -� - ++ . + • e 70 - -- -- ---- -- t--- - -4`.--- S -71'* a - -_ w -y- _ --_- =--�-t- _= +$ - + ++ 1 w ---F - - +-- 40 • — 50 _ - _-_ ' - - -- ___ __+ - + + + Z . >e _t _� __ - - t_ - -j+ t i A : aI JQQV _ _ II« + +i ++ .1t 30 _- ---� - � __-- _-~_ _ t f_ --"+ - - - -* -- - - __ ±-- +- _-m9. __-_.,_=_L_-__:,_,_ _AT TT�I I - T-I--T-T YTTT I- `- "• t i241.�SSIt_ - `i_ X41-4.aIaii }_ 100 ..I C+.A _'05 009 Ois 03T 0'• .45 ZIP 590 '. 39 4 A 0 Y 9 1—'�I, '.;► .p' tCP L -- DIAMETER OF ►ARTICLE IN MILL ETERS ---1 Cllr '°`e>:'IGr TO fIV 'NON-FL 0R6LFfe9rIC1 L--__-- GRAVEL 0 TO SAND 17 /0 SILT AND (.LA,' 83 % LIQUID LIMIT 31 % PLASTICITY INDEX 21 c, AMPL_F o. Claystone Bedrock FROM Hole 17 at depth 291-0" 4YD OMCTEN ANALYSIS SIEVE ANALYSIS_ -_--__ .� T Na T,[ LI RL�AO,NOS T T u S STANDARD SERIES o j CLEAR 50-.ARE DP-F0491429 MIA( 4 N 4 BYO N W ewer 4 wed MIN •!Eo •00 *so ••o•SO le* ti •< 'N w "W -3-_-S r ,---- I - -t--t- --4---__---- _ _ _ _ -- __T_ ___+'� - __Y_—Y -__ __ - � --�-- — — + -_I� 2 + TO,-----I------ — = T { -- ---7: -1-------+---r---- - DO ta -_ $ _ _____-7- -7__ _ — _-+ - -." - -+- ry-{- V F-- _ y_ _ } -T-- t� -- - - $� -- ---- -- _ j -- - - � - -- + - ; ++---_ _ ic t + 4 + 7 v — — — — _ -- - --� --- - 1'0� 30 _ - __ _ __ _ -ice - +- ` + _l: _f - -- —-- -- ` _ -+-----� SO -- - ____ - _- - ----- + 4 — — _4 —+ — .0 --- _ — I — —r - ST 7?T7 -- Z TqT_ T roo -- __s-;-!-r rT$T----t- z Z i r Y=I-- z- -�r>>14 L-'_-_ .51 305 009 0.9 037 074 IN !i1 njj``S90 . 9 F 31 A w 9 St 9 38 "St It'' 1 DIAMETER OF ►ARfi LE IN MILLIMETERS ae CL AT x,A@'IF TO $ILT 0000-PLASTIC) %S'IC) G0iYtE8 G FtAV EL 0 /0 SAND 81SILT AND CLA♦ 19 L IQUID LIMIT TO PLASTICITY INDEX NP 7i 0 J FSI K -,4 Sandstone Bedrock FROM Hole 17 at depth 39'-0" X16, 125 C=RADATION TEST RESULTS Fin. C-1 CHEN AND ASSOCIATES Consulting Soil and Foundation Engineers L HYDROMETER ANALYSIS ] SIEvgANALv_lia _ �— --_�_ _�1 t r•l TIN( R[1DINOS •eI J S STIMDAMD fEI11E6r10 T L t*" S .,AMR GPe� '*oE Sr•IY •orw •rw •Ww rIM •00 •30'•O.3C •M I•A •• M w. r -- -- ---- --- --- - — _ + + _ TO —• _ ----_11.- +- ---y -- _ - - ----t- - + - ti-+-lm lii W --- _- _ a+30 _ -+—_ _+-_ — _--__ - + -I + :_ 4-a. II a. 40 __ - + +— -- ---4 ---4 -± }-+ 4 04i + - f '— -- —_T_- —% - _ -t __+ - r --w4 ---- - - 4 - -- - 1 7 4 . . . ---- - -T ••--- ♦'—�•�� 1 - - - ' • - ti r yy•--I-`Tt IL L-- — --— _. d_'.: -.4,q u. ;. o04 008 00• 0,1 037 0'4 ,4• ZVT,A� 310 . f 63• •p 4 N ' 3w VIP n Adoe I DIAMETER OF ►ARi1�LE IN MILLfMETEMS 4. �i1�ps^ CL A" ,4,As Y IC. TO SILT ImOM- ICI FIR1 1Ur I COS ISE1 IT of � s" , AA''ir—�,�'^MArr% GRAVEL Q % SAND 79 % SILT AND CLA'r 21 % LIQUID LIMIT % PLASTICITY INDEX NP % SAMPLE or Sandstone Bedrock FROM Hole 18 at depth 451-61 HYDROL TER ANALYSIS SIEVE ANALYSIS _-_- _ _- —_. -yt�(p�ry,, � .�- S STANDARD SERI Cf•p —T C (Al SO..APE i1P£N�NS"if �1 alts i'Q A H et, �Si11M •Ww mot •loo •b0••0.30 •11 -et •4 _4p- U. •y - s --' r ,. — -$ — -- __ - - _—��_ x - $ + ; I - _4,tc,-- - 4- - _---- - - -- -- --- - --_ -_Z - + + -+ + --- +-- + 4 $ + $ -- - --- - -- - - +++ + I + -- -,_4_--__.__T0 -_- -_ _ - --1 - -- - + --+ - * - - "A +------- --- - ---- - _ _ - _ -- - - _ +- ------4 -4_--_- — ----- -- } S ---- + - --- + _*-_ _ + -° 0 w• -- ++- _- t _- _=:___I_____- t _ _ _ _ _4. r s - _- - - 7-: mil-- _ ,t -- +- ---±- -- 47-T��'° ---4- _- - --4 — ---_ - =- -t 4- 4 + + _ __ _ _ _ I`+ 4 + _ _ , } __ __- -_ __ 00 - `_-__ - _ T __ ++- _++ _ --+y_ y _11--- - _ - __ + - t +�- ��. --S_r --- t--r-T-TTn r1 -~T- _ TT 11 Liu�---c- `T- -I?7Ti� -'f- T -- I2TTTT + O l (7CE A004 00• 01f o3? 074 141 Sri tt 310 .• VI 4 Al •34 4 34 7•r � DIAMETER OF PAS I �E IM MILLfA1E'ERS �t a•-F t4'�CI TC SILT wow-FLHTICI I- ----T_ �f C.OSOLES GRAVFL 0 % SAND 24 % SILT AND CLAY 76 '10 L IDUID LIMIT 34 % PLASTICITY INDEX 14 % •,.-.*A PI_F rsr Claystone Bedrock FROM Hole 19 at depth °1-011 F16, 125 GRADATION TEST RESULTS Cio. C-5 a . CHEN AND ASSOCIATES Cons,iIting Soil and Foundation Engineers HYDROMETER ANALYSIS $IE' C_ANA Y"i1 TwR TIME ACADINRS v S STAI/DAR0 SER�EAR° T E eR S S_raf ^r/k RD gm •MIA /Q rw 'rw •4 N rr/ •'00 •50•40.30 •4 me •4 °r' --/" -- q _ 9 a +r 4.90 70f -- — — --z= - - - +`a` -- _ ---- --_$ -a T-Ti"a --_= - i i ® 4(1 w — — — — _-- -� +} + t _� r C — z y* '+— +9 4- -- ; .+- tear a. '0-_—__ + - -+ -- -- _ _ -_ - -t4_ +----- 14 i -1 of i_ `-I_ iz _-r r --T r ' 004 YS a0C 0'9 031 C'• 149 reT S!O 33t ! C 7t k .. •9 A�..`, 16,0 O DIAMETER OF ►AR I LE IN MILLFMETER! —� CLAY F.e!*SCI TO MO' .40•4-EL el71CI Elia �rJ�DIUM ' cwt.(' --rioti?�E T �_na ec E (y RAVE_I_ O' 070 SAND �7 /0 SILT AND C.LA, 73 3.0 H LIQUID '.IMIT 30 %p PLASTICITY INDEX 9 (�.Q ' SAMPLE OF Siltstone Bedrock FROM Hole 22 at depth 19 '-011 Ih ri;R0MCTE4 ANAO!IS I SIEVE ANALY$ ! 9 *,ME READ'N4I! •tblo u S STANDARD IERIE5.,� /a• aa„ARI CIS^++rRS �j ' M A 4.Ca, MINN 4 44 NW °'00 •ya••0.70 •N `S •4 +'. q 3 r It 1 - r :4-_ II CI -y--_ T- { - ♦ + + . 4-4.0! 10—••—•=7---7- [---1 _ —• - - + ` $ + a -- --- -..-; 10 a I--_ 1 - I--- -_ --- _+ 4 _ t+ ---- -. - __ _ *--r r , / h T I! I T'iT. ? 100 867.-------Z-= �• . EMI//MM -_ _ ��. . t MD 000 Oat D! 037 07• 149 LIP TS10 I • 66Jt •q e!t 9 DI Nit t'�t DIAMETER Or PAS I LE IN MILLFME+ER! LLsd '+•e7"7,. IC SILT'"I0+-PL.°f7'CI ------4GGpitES C.R.A`!F - 0 % SAND 15 % SILT AND CLAY 35 'c I IC,II.'.0 IM I— �9 °"0 PLASTICITY INDEX 11 IS =1r r ^F Claystone Cedrock FROM Hole 33 at depth 141 -011 116, 125 CRADATIC?N TEST RESU! T.F. r r-r CHEN AND ASSOCIATES Consulting Soil and Foundation Engin. r NYDOOMETEM ANALYSIS SIEVE ANALY} TIM[ READIN09 u S STANOARO SERIES•p I c tell S4'.AIL .1+Em. oos 7MR • 9y f� , • K IN olio so Mw hMw •AOR ma •oC •!o•w•30 •M • _ -- --- -- - - - • -I0 _- _ ___ ++} a 4 + + t . o i 90 -' — - _- — ---- -- - — j -+ --� _I$ f + - a 1 + + EF---- _l_____ - --_-_-1-_-___-,- - _+- --- - - Y+ - + iF- , - , +O -1�J 70 G= — -_- - — -- ---+ --- 1=- + q - 1 1 - --- — x _ __ 4 + - A v J _ - -_ ___ ::_—_-___I-.== — +—_- -- —+ __ __4 +__ -- d - # - + + -}- + .♦ R -- - - - --t- - -� - --+-- i P '.a M-me, l --____ - --- ---+- --_ --t_-+ - -- - --+y h P + - + � +- 4+1•- a + + 4--t _— ___ _ __—_ —_- -- _y-y_ ___ __L4,-_ + +_ _ $ _ +__ __ +- r+ to 4 ill b ____1_—+ _ w T r---T —Z t y I$ r, t _ 1 + _- + _ $4- 1I + + - . i _ - - 1.T TTTT---- 1•_- 1-- IT- T'"LTT -t Z - TIT-17r t- t� T .7:1-11-9- - -1- - {f - t _', f --,ss Opt T "YI OOf 3,, 03' 0'" ,•9 tf? ttSOO Y •T•�jj S •AI t.5A ,R_1_ 1 _ 1: �T'Ar 2' t�" ' DIAMETER OF ►AR ILLS 'tN M Lt., ETERS C.iT t,PB*,: TO I,LT 'Km-►�NT,C, FUSE- 1yy PLD'7■ ; [DA7ii l.`- 1., iJs__-Ir 0RYLf3 GRAVEL 0 % SAND 78 ll70 -ALI AVE.. a LAY 22 a0 LIQUID LIMIT % PLASTICITY INDEX % SAMPLE OF Sandstone Bedrock FROM Hole 36 at depth 40' -011 ► VDMt1MQTEM ANALYSIS I SIEVE ANALYSIS __ _ osc „w �''�a[ )t[AbINOS 1 u S STINDARD lEioE6�p T GEAR S0uARE 0a"EksaiSS-` lw% ;lest so s•l RIM 4WR WA •!b0 •,00 •50••0•30 •b I•f —Y' _ _ 1'" _---3- - r-7 7. 0 ai - _ _ + 7f tt---- + -- ---- _--_--- - ---_-- - 4--- --L_4_=77- - ++_ iii - J `_-_ _ _ __ __ —__ _ __— _ __ -___ ___i_+__ i111t1.- 9t Rod 0- -t--- - M ',_7_ _ - -_-w+ Z+- - T I+ _ + +'_ -- -- _- 4t -- -- -- - ------ -- + +$ - -+ - + 1 - �__ }t f- __ - _ _ _ r +_. ..._ ,- - + , 8,,,,,_____-t"- T-T-P -'-T—rZ?TI-�>t -t-r _ Lr1 [ttt� *'Z-T7777 - TSTI-t`T pp Js ,%k9 00S 0,9 037 0T• ,is ill n�tt SOO .5 VS •IS II St B, M TAt t'1tt DIAMETER OF ►►RrIlLE IN MILLFMETERS�----�p _T__ -J �CL^�T P.PL•',CI TO SILT(M0N-PLPST,C, FIN[ pIU■ I corn/TI FtM[—�7,r CpARR ____WO _IS C RAVEL 0 q0 SAND 54 % SILT AND CLAY 46 /0 L IQJ pp��ID LIMIT -/0 PLASTICITY INDEX 7S ,..AMPLE OF Sandstone-Siltstone FROM Hole 41 at depth 24'-0" U Bedrock Fig. C-7 #16 ,125 GRADATION TEST RESULTS CA 2 CHEN AND ASSOCIATES Consulting Soil and Foundation Engineers HYDROMETER ANALYSIS [ SIEVE AW .YJ't --�� — — y,pl TIM[ READ'NOS •tbio s 5'& 0ARD t[R [Yk i ' FA.9 5a.[.•: PEP*i}0 I �r rr A •or•e *taw •wN riM •oo •50•40_30 •M ••tee •a 4 ? L2 : . • Y o fO~ - --`--_----- _--=/ ------ _ _- - ---- +$ - — + -- + - + ±eta OM ---__ + _ + __ _ _ iJ1 '-4-- + Ail r, e 40 w r P + � � - sx A __ 111} 1 - + _. . __ r 3-in# 'I fl4L 'i1 - -- - t i = j : : s L 'i ;cap • - rT_.S__ _�-T T T T_T??_ -T - Z _ *II T TT.'d- _- * _.�• I-t- Dq 00 00& T')k5 00• a's 037 0,4 4• 1I7 . 350 , • I2p 3.1 4 i• •94 • Y za , v IDIAMETER OF PARTIGL[ IM MiIC FME TCR6 _ -__-- —-r—_� GCar P.cf •O f LT Ir)rl-FLsfT c ►IRE I —MI010■ I COs711Ri— rust 7 r'`ARS.FY GRAVEL 0 % SAND 61+ To SILT ANC Ci_A♦ "6 c J LIQUID LIMIT %p PLASTICITY INDEX NP ;t, s*MPIe o - Sandstone Bedrock FRo. Hole 48 at depth 6' -0" to 10'-0" L HYDROMETER ANALYSIS I SIEVE ANALY1IS --_ --- -- IrI T !J[ AEAOIMQS v S STANDARD ICRI[s•q T - C.,CAR so„Ami ooat N¢$ .4 r ice ea 194 1t M•• •MIN i*ft •00 •50•40.30 •N •• •4 69. ,4. ` • �__- — _ _-- - __- --Y + _ __ _ i_ } __ _ ___ -- __— _ } _— _ ,}- - • -. 4- ” -4 + :-- - - -- T :+ + ;t #-- - ----+ - - - -- - .+ , i To L : -- --I- -�-- - - - $- E 1 / Si _ __ _$___- _ _ }_ - - 4 w 4 a t tY y SOY -- / 1 _TI + _ j ___ _w _—_ µ_ -r ..� -1_ _ _ . __ . ___ + - �+} + - + • + _4 I. - 10=_------ - - +f} __ - S -4-4 - -$- + = -- ; ;4--400 ---� -7 _ZL T TI =- �T---T 7T»rrr— ` r— T T172 T-- t?-r L TT T`�------�--Lf�_i i a�*- �Q0 :Y� JfkS C10• C T 037 074 .4• 1I•,p�t 3.0 5 66!• a T• •f N Y 54 ,i f 51 t I DIAMETER OF RARTIGL[ Is M,LLFMETERS — c.•4 ^ a€ 0 51LT MOM-P.•57 c' - Welt ER ;r+,,iEL 5 % SAND H 1 % SILT AND CLAY C`i rJ 'QUID LIMIT To PLASTICITY INDE t 01 ,•;%IFLC C4 Claystone Bedrock FROM Hole 56 at depth 10'-0" I #16, 125 :RADATION TEST RESULTS rig. C - A - CHEN AND ASSOCIATES Consulting Soil and Foundation Enginaors z I NYOMOMUTER ANALYSIS IEV ANALY1'= TwR I CAOINCS u S STANDARD OER'ESAG 4�'- S. -444‘, ;4C, .,a r •r'II AC r,w IRrw 4 Ai 14 I r(9t •oo •90••o•SO •A PM •• 3 '.. a • C Gr ' — — + - I— - — t� 'A -I°: t1' - _.... __..__ _.. 4--_-_ - - -- _ ++ e + 1 4 4 -- - - - - - - ' t+ ` � Igo t_ILL- - T---t. rT..." T 7---T,4-4TTTT~—_�I_ ;_ l_1i3t -- -- - --!: — . .�.. <_"i50 ' ale f Cr43 079 ;9 09' 0'• 4A m ypAtt 990 i 3A s'9 9 9� ' ' '4', h DAME'ER OF PART'GLE 'N M,L.FJETERS ��� CLAe 'Y.AE"C. TO SILT it07-•.AY• L' F1Rr 11M14 —rTir� r '' 1R iii CR4' GRAVCL 0 %p SAND 6 /0 SILT AND CLAY 94 y� LIQUID LIMi' L)9 Qfp PLASTIC ITY INDEX 33 /5 SA 4.1 PI E 4•a Claystone Bedrock FROM Composite Sample from Holes 37 through 45 at depth 3' -0" to 131-0" I IiYDPOs4'TCR ANALYSIS SIEVE ANA�MaIs- 9 dRE C '- -- � - � REAasS u s S'ANOARo •ER'Es'p :..FAR g,t 'N -T ---� PAR 4 a•A Ar',L9 maw •Mill ,Mk 46o •'D0 •90'40.50 •N •R °� as �« : -_ :':,.. - • _ . + — — +_� _ _ 14 t0 -- - -- ♦ _-- -$- -- — + ----� - - - + - - 7T -+ -- + - + - i - L tY BBD 1p _ —+ —_ __ _ __ i_ +----__— + -4.+ __ y —+_ ++-__ + _ + i +-?- .= + x I+ + } . I --- + _ -- _-+ --- +- -- -- -+ + -- +.+ —+4-- - + ---t ----- y-------++-4.- _ + t + -- + + -- -- -- - - y ----- - r f 4 4 ' - + i_—_ ___ ` _ +- + _— - - __ __ _ _ —_ _a _ 4 __ - __ , _- 1.y�__ I ::ti- _ p —�_-a_j-:1.:_t'i MO JOY :.Y.Y (`O9 0• 037 0L i4$ trr `'so IR �6q9s 4wT ,939 9 4'3' 'A9 '9'Ce I DIAMETER OF PAR 'LE IN MI'_LFMETENS -- --_-- -- _ AG le .:.•• '.,8 ' TO s'L '90 r.•9• CI u p� --4CNN:Es CV C._L_ 0 /0 SAND M 37 -!0 SILT AND CLAY 63 a . Ir'I ',a l iMIT 24 TO PLASTICITY INDEX 7 �c 7-- is Tzr Claystone-Sandstone PROM Composite Sample from • Bedrock atldepth ,1,F -end dto7201-0" GRADATION TEST RES UT LS #16,125 Fig. C-9 CHEN AND ASSOCIATES i I I Na»6-a D•, JnIt Weight = 117.9 pct I I Na"urol Mc1•tur• Content = 13.9 percent -.t-4--t-- ; T. i i I T 1 , 1 1 1 1 it I I i , III ' � 11 , ± t .---f--+-++:-t--- - -- - -- t f t f I I ; I I I III i I I i I II I I II I I I I I I' I i 1 I Expns iah �md�t- constant 11 1 1 1 N1 I pressure uan' vetting. I 1 I — I i I ! ! ! I I , I , I I I I U i I I I I I 1 I ' ! I I I ' , i Hit I } , s -+ ► 1 + -- t + , I --1-- f + i I I 1 I I I I ' I I1 I i 1 I HI ISample of claystone ,f'rpm Hole) 17 .it Jent4 ±'9'I-i^"• I i I I i I. I 1 . : 1— it !_ i ! , _I I . I I 1 I _ I 01 I 0 0 100 APPLIED PRESSURE — kaf W .' "......": 41.77 I i I I I I Natural Dry Unit Weight = 112_,n pcf ' I I Natural MclstJre Content = 16.6 percent I I I I I I � I I I I I I I } 1 I i I_ _� I ---. I I —•--,r, 1 1 it I I I 111 I c 2 1 1 1 I I I I 1 1 I I o I e— I Ali I ! I E ans ion !under c nst t' ln I I I P ssure non Jetlingr !I ra G1 4 a 1 i— ( T u I , , I I I I I I 1 1 ' ^ 1 I I I I I I I I I` I I I I f I I I I I I c I I i I { I I c N I I I I I ; I 43 I I I O 2 i } i , 4 1 ( - I f 1 v I 1 1 1 1 I I I I I ' i II i---4, # , i I I I , i I I 1 t 1 t1 Sample ofl clflystc ne ' from Hoiej 13 pt pe th 7r Ig11. I I 1 1 I �� ..�.. - l a 111 I 11 I l l T I IC 100 I*-Pt.,, , IP PPIF53,4RE — h •f -- I Kr, c..,, „Ii t,r, ,1,71„4,.,f,— Tpif PpILVItT r. , 1 CHEN AND ASSOCIATES Natural Dry Un,t Me ®nt • 113.6 pct I Natural Mo 'tuft Centeno • 16. 1 psresnt {- i ► � I 1 ' I ' 1 ' I II � •i I ! i , • II ' I ! I it • I • I Ii1 j I I I c , HIT i ; i I I I , Ili ° i Ekpans i I Under ccinstapt I ; i , mresNre, upon wettling.I I 1 I , jI .� I • 4 1 I • I I . I I i I ' I 1 , t_c_ I I I I I I i I , I I I U i I � Hill II 1iI3 ii I ' l l i ! { ' I 1 . I , I i j I I I I - 1 -- - I I I I! 1 H Y 1 s 14-- r- --4- 4-1" + �-4--- -+ --' 1 -� C ii s 11 ' I i I I I .,amyl y of clay�tont.; 11riom Iio1q 19 f t kiel�tt I2 1I,)' . ! I i I I I • 1 I , , I ij ' _ . . , _ , 1 i L I i iii i 01 l 100 APPLIED PRESSURE - kat' Id I , I I Natural Dry ilnit We pht - 122. 3 pct I 4'_',_';_ II I Natural IN3'sturs Content • 1 ; .1, percent ` ! I i I ! I I i i l 1 I I I I I '. I I11 ; -1--- 1 I i I.N , ! III ' iii , t , I I i i 1 , c Ii1 X 3 4, tLJ -" x ra i • Jn one an 1 1 i ! r s• r upon we tin . I L_J— �.-� - 1 i t t 1 i ! ' I c ' I I I I , i , o I I , i , ' N ! , , ; , I �� I I I i I u ; i I i it I I ' I L- i , r_ I , I ii I ; , I i , i I I ! , I I ; I I I II i , , I , II �, i I I . 3 4--i--I-4----- - I if 1 i 14 , i i 11 i , ° ' H ' ' h t Samp l le of c 1 y$tdn ; i,r!om Ho l 20 a t dept 2 t r +0' . I I ; , I ' i ° 1 i , , I I_I _ J �. ,; , I-0 '0 IOC 0 APPLIED PRESSURE - kat' ,:I 6125 r+wrrII• Cranrvlidcr,c� Ts,* Retuits • „ r CHEN AND ASSOCIATES I Natural Dry Unit Weight ® 107. 1 pcf I I I Natural Moisture Content a 1 `„ } percent , 1 I i I I ' .o j I I I 1 1 ;LrlI I l l 1 ' t cx 1 I H f 9 11 1 I � T 1 4 ,, I : I , I 1 Expans,iotl jar d��' l :onstat�t I I I I ' ' I I + I I pressures upoinl W4tt i ng. ; I I p r I I f t I 1 + --f---4---` +—�+ I II [: I i , I I I � � � i i ' I I I I I I I V1 I II I I I O I I I , I , I I C3 1HI I I I I i 11 I I I I I I ' _ C I 2 - i r 1 —i o c }+—— --4.- i �' III I I I ' I I 1 ' ' I I I I I I I III i I I ' I ; I l j I i I ' I i I i i II I t I Samp1 e of c1¢y�tOne, ifirIom l;olel 23 ?t jdeQt}l p ti '. I ! I ,I I I : ., I , � I I j I i a , i l . I i 0.1 L 100 APPLIED PRESSURE — ksf I ! l r I I 1T I 1 {r NOtu'oi Dry Un,t WI Qht - 11 .2 pc. I 1 `_ I ! , NOtura! Moisture Content - ^ q percent I j ' � � � , I I I �, 1 1 1 ; 11llI I Ic } t.-- - 4------.---_ 1 tfi . t -- } 7 f �- I ' I iI1 I11 II I ll { L ' I , , „ l I0 , ! : , IL I VII iI s✓ i I 1 II t. Ii ill I I : 1 J ' I I I I I I I I I I I I I 1 I . I 3 t . ) 4 ; t-+--- - - -1----- --- 4--� 4--f- 1 . . --}--� t 4 a r 1 Elxprnsion un41er consijant I I , I I I , I -- rlresisure; LirsIDI 11ietting. 4 i + --- } + I 1 1 I It ------* 1 + ii 1 , I I i I I I II .I I I , I ! I i I ' I 1 I , I I 1 I , i 5 { l i � I t 1 i : 1 ii "1 I i I I I I I I I 1I I 11 - 11 II t 4 ; J —�---� r } 1 11 } 1 i l , i i I i I I I I Samnl'e oflsaidj Oa' ;Prom Halle 25i at' d.p f� - 10". I I , I ', o I 'oG APPLIED PRESSURE - ksf IE , 121-, Cwr:II-Conte3I!rkt on lest Rest, is i CHEN AND ASSOCIATES I I , ; S Natural Qry J,+ t Weight n- 124.5 pcf 1 I I t I Notu*al Iltio. etu-e i'an"ent '- 1 1 .n_ percent 6 ' i I } A t' i I 5 I I i xp r s!on under epnsta Tt i ' I l I 1:,reS4t.re uporj wet,t i n1g. ' i 1 ', I I , I I I I � 1 i 1 I I I I c2 -0---.--_o-.---.--_----,__-_ -,- } -+ —I. A. + f_•1 j' _ 4 t —t fi I , C I , I ; 1 \ I I I I r3 I I II _4- I j Ii 1 I j ' , ' I I I ! i, ^v.' \ r e a t- ---r---s— —-w---+-4-?--4+r---- \ --+- -1I----tff , 1 C I }s I 1 I ' ; ' I II I u Sample of claysltone t�rom riol e1 26 4t i:epth ',2t!',--IC". C 1 ' tee.._l21_1._ , A0 O A.I c� APPLIED PRESSURE - kat Ott r-77 , I i N • life Crr -.r te Qht . 111 .3 pcf, , Natural Alo'et.,'e Content • 16.3 percent II I I i" HIM 1 cf I , II ' I I 1 I , I I I j ' , ill ;I j ' l i ' I 1 ( I I I i I , : I I ' 1 1 I v�- I ; ! + I IItff1 I 1 I H Ht I Id1 I I I I Th- gl i I I ' I I I i I I I I , I I .- 1 — : -4'---4-j-4I - --- o I ; -�- Add 1 5 Iona] ' e¢rhnrOs ton udder I • N I iv clonst n ant re sure due to wettli nd. ' , ' L 1I I I I I I I l I I , I -1-1------"-1.-÷-.1 --- x-1.-1 4I- -- ----*-- -1- --4 -"---4 {-�r-4-4— — I' i --r--t Sampl of1cl y 'fi*olll'I�ale 2�' at depth cli-6',. I ; II C '( 'nt „' r•r^, let! Ire. ref A's .•IGt 4 ell i 1( :1 2� ,,,,, 1 Ii , -fl .) , "t • ., '— , ,4 t. CHEN AND ASSOCIATES —m T Natural Dry Unit W.,ght ® 106.6 pcf Natural Moisture Content m 13.3 pfrcent 3 1 j ' j I I I I , j 1 .0 E paps top iu 4r cons lant ! j I I , m ' , - p esiut-ei 1.p iwettin I X 1 ' 4 } i I l t l i + t t--1. 1 . w i ' I I i 1 l I , 1 " I i I I i i i I i I I I I I I i I , I I c i i I I 144_I l f l l O 2 r I t t + - — --t-_____4_4_ 4 U i l 1 I i I I I I I 4 I { I I I I , I I I i Ir � � j j I Ii� I I l i 1 it 4 , 4-4-1--,4- -r----1- -1—t- 47"4-1- t ---I—T 44 i Sample of cliyt4n4 ;f}rim Holes 30 pt a th 7P q '. I i , , : IIIY S I 1 , I 0.I I I00 APPLIED PRESSURE - ksf \ { 9 1 , Natural Dry Unit **Ant = 119.3 pct I + I + -�-- 4,-,4-1--______, Natural Ala store Content 1 1 , 1 percent 3 4 i (b-------' s, f I 4 2 . I E,cpan i on and r coins an j � '.2-z Is5hhJre upon Iwett 1n j ! x1 t e r ¢ -------.4 t LLI i I Ijl O , a ' I I l I I I i a ! I I ! I I 0 2 + -1 + ` I ; = I I 1 I I j I I � IjiII I + � I I { , I 1, 1 1 } t--. TI . . - - , } } . II Sample of said4 l '' If4rom Nolte 32 at dOptt 2 -0". I i I i i ! I 01 I 0 10 '00 APPLIED PRESSURE - stet r•16, 125 41pr!II -CSnsclick1,^-. rf'S} Res,, t+1 ri,, r`- r, �on osite S r S..rcy rig; Gompositer,�ple of G .z}stone p , r I Bedro:K 1 rofl rh' s I : , C• , 51, -r , ! i from ilk's ,h'„', r', "'O, I , s r (i i , - • , \s. crt; ir - ern a\i c c I C I I C,ics f ,,_ ‘.. I u u I \ .\, .>.• (— — - - - -- --- 71.\\I '‘ I i c U \ i: C) I \ -; T I L . \ .. 1 YL;L) I lu 29.' �I i,'. [. Jii H 7 r r• , c: L-tur E' ..cntent y _i c stur:. Con. c 't , r ple o" 21,4stcne ^Il e I Composite Sarir1e ofCir stcre te:rock f rorA-I ri - , . , , tied r o: y ,_,, - / `l E`r0 f'l I ,I Erfl �i " I oi�Is 1 I I � :oi. ,, - i I I L- U u I Q- I 1 •I I,::: I \ :-.- \\' I VI , •\ . - - . , I \\:\ I 1 f I . I 1 I I 1- 1 I }. * +I . \ .'' ;i.7 —: s...(' \ I s ' '-- 7'.; I LL c ' ,: I ' ' r:0. 7 \ I , , ;3.r I t-1 - ,F. ` I _-- —r r _—__1_ - __ - T 1 �crpos i to s,, nlq cc c':vystorte * S i 11.E .one- L- cc', 'corn IH`s �'', } & r' 1d ' J I r, I I -e r O r,rr u I O1�S L - + iii a I '^ I - - + n _ r _-- -- i 1 1 I1uC = 1 1 ,. '' I LL 24,2 I '3, 5.6 I - ;-co - r - i ic: - - -- 1- - - .1 -- - ID 15 '^ ^r of sturc ;on wen= (2) U sluff? _ , ,ax i m un Dry tensity (.n;11 C:10 - ('rt i-:ur Moisture Content (2) LL Liquid Lirn;t (2) ?i - Elasticity ineex (2) -200 = Percent Passing Io. 201 Sieve 4, L. HN f NL) .-ASSCC c_ IATES Crnc. I'!n1,1 ., L. rid ZULrd d t!on Fng n1 :r '- TEST NUMBLR j 3 __� t LOCATION Hole 35 at depth 17'-0" k " r ` ' ` ' ` HE I (HT- I'1CH 1 .CO , 1 .00 1 1 .00 ' 1 - �- !3µ I At"ETER- I"JCS,, 1 .t.:: . 1 I ; .9/4 '�, :-r; L. t W'iTEP CC'JTENT - , 9. n 9.(_, 9.9 , �— t— C "vFY 'JS 'TY rCF 120. 1 520. 1 X120. 1 - _—_ _ '— — + CLSC,_. _CAL: - Ksc 5 5 I r , 2., ' ,.r✓ 7.5 -- 21- i NCRMHL LCrAD - hsf 2.5 i 5.0 I 7.5 I W r SHENP STRESS - r, f 2. �,. 1 5i -- — �- TYPE C SP:CI6.'1 _Ca] ifQr_nia r — - - - - - - + + I SCI _ :Es : '. Sandstone Bedrock _-- — -- '' 1 I - r _-200=3_.- _ _ _ -_ '.1 _�_- �_ _ L___ __. __.,_ _, ._1-_ 11 ?n TvrE Cr Corisoi 'dntco1 Saturated a-- - Drained -t ke, x l '—' ' C3nstant Strc-in Rate of - l' 7 a ---- - -- --- - -------- -- ----- --- —- ,..-...- ,..-t„ , - -- + + + r i . - i . f . + ' . . I . , , r 4 i . + + , . . t r + - i t i i 1 « - t 3 ,---{ +_ . + - _ 1. - .- + 1 t - , L + , - - * ' ' ' } ' r 5, 2 r " , i __ 1 2 3 11 J 7 ,s 1 1 „ ' 1 CHEN AND ASSOCIATES Consulting Soil and Foundation Ergineers TEST NUMBER 1 2 3 l L. - t - - - -1 1 ! + 4 ' LOCATION Hole 61 at depth 14'-0" —i---1 + I - ft + + + + + + 1 I + } - -- -+ + + - + + + - 1 I i l HEIGHT- INCH 1 .00 1 .001 { _1 .00 I + + _ _ .1 DIAMETER- INCH 1 .94 1 .94 1 .94 + -+ + + 1. . I WATER CONTENT - % i _ DRY DENSITY - ncf 98.8 g8.8 98.8 ° 5 , : 1 -a +.+ _ _ + + + + + - + + . . 4, CONSOL. LOAD - ksf 12.0 8.0 4.0 "' 4�_ + + 1- NCRMAL LOAD - ksf 12.0 8.0 4.0 a) -- + + + r3 _ + - . + + + + + SHEAR STRESS - ksf 6.7 5.6 3.6 , 1 I 1 I I , --a 2, . 1- - + + + + - + + . , TYPE OF SPECIMEN Undisturbed California + f . + 4 : + + . + Claystone bedrock 1 +� -=- - + . + + +-- + - • SOIL DESCRIPTION I - -- , + + + -200=99 LL=72 P1=53 0 1 1 1 , . 1 ! f 10 20 TYPE OF TEST Consolidated drained _ Horizontal Cisrlacerert shear at constant strain ( inches x 1^-2) rate of 0.006 in./min. All TAN 0 . 123 samples sheared on same plane, 0 21 residual strength COHESION - ksf 2-2 9 II • , II I . , I II ; 1 , " 1 I 4.____4_4.____4__ -1.---1-- -4- i----+--t--- - 4---f-_+ -+- - -+ t- t + + + + I in O 4 { 4-h i I I I I iI I - - -4-- } + + + t + - + + + + t - + + -- - + + -+ + - I I + + 1II I i 1 0 1 i , I l i . i i 0 3 6 9 12 15 Normal Stress - ksf i 1 6'1 25 ' - S ' ' - ,,r r , .. 4 ' T P I 1 CHEN AND ASSOCIATES Consulting Soi I and Foundation Engineers 4 TEST NUMEER 1 2 3 4 _ 1 I I i - + -:- - _ _� ++ + . 1 LOCATION Hole 64 at depth 91-0" I- ' + T t + ♦ ♦ . + ♦ - 1 HEIGHT- INCH 1 .00 1 .00 1 .00 3 I i I I -�I DIAMETER- INCH 1 ,94 1 ,94 1 .94 0 -___+ - + + I} , + + , _ _ . WATER CONTENT - '4, 16.8 16.8 16.8 I til + 2 . DRY DENSITY - pcf 99.6 99.6 99.6 v 2 I - 1 - L lit CONSOL. LOAD - ksf 4.5 9.0 13.5 "' _ /+ � NCRMAL LOAD - ksf 1+. 5 9.0 13.5 co - + . + + ♦ SHEAR STRESS - ksf 1 .7 2. 1 2.4 1 I f ! i , 1 �-� TYPE OF SPECIMEN Core (NX) I Ver '�Jeathered Cla stone_ i' + + + SOIL DESCRIPTION � Clay stone_ - , + + . 1 + , + -2UU=.91+ LL=3'3; P1=23 0 i , . , 1 . 1 . � yj �F Consolidated , Drained 10 �0 TYPE TEST —� _ ------- E-c.r . /o n t a 1 01 s^l a ce r^e^t Sheared at constant strain , c -e, x 10-2) of 0.012 in./min - All TAN 0 0.09 samples sheared on same 0 r0 plane, residual strength COHESION - ksf 1 .3 1 _�— -_ + _w_-�_ ♦ --1 + - -- + + -+ + + + } + + + _ + + + + - -�- t 4 + - + - + + - + - ♦ + } + ♦ + ♦ + - . ♦ +- 1 6 • + _ . ♦ . ♦ , + - ♦ . + + __ 1 , 1 - + • ---1 .-- + + 4 . _ 4 +- + ♦ t ♦ - + 1 f + + + * + a- in . 4- + _ . + • t , 4 : + _ _ , + --1- +_ . ♦ . • i • ♦ , + - 4 +- + 4. + + + 1 41) VI 01 2 3 1} 5 6 7 3 1 9 10 11 12 13 l� 15 Normal Stress - ksf #16,125 :), ri.- .T ._, "1 r,\P -1 flT kE3L . J Fig. r - 3 - CHEN AND ASSOCIATES Consulting Soil and Foundation Engineers I I r-T 1 [ TEST NUMBER 1 2 3 4 _ -4_ + + 1 + t- t , + , ; 1 LOCATION Hole 21 at depth 8'-0" . + , t , + - , + 30 4 / 1 rt---+--{- -i--^--_ '—, HEIGHT - INCH 4.00 4.00 `_ -- - N - + t - + + + + , DIAMETER - INCH 1 .94 1.94 y } + WATER CONTENT - 14.0 15.8 0 0 I DRY DENSITY - pcf y 20 _ --4-_-__ - _ _ -I--..-----4,-- 117.6 X117.3 � 2 CONSOL. LOAD - ksf o ` - ksf 4.0 8.0 > H1 ' 1 - ksf 17.0 26.0 10 — -- --1- i -- --- - 1 California I . } TYPE OF SPECIMEN SOIL DESCRIPTION Claystone Bedrock I 4 _--L 40:_f I = 25; -200 = 71 < <------ -_-__-_-__I___- _- _._ _L= _- _ 0 5 10 it TYPE OF TEST Unconsolidated, Undrained, r-,k ' ,11 � fr , .1 Constant Strain of 0.003 Ir./Min. Residual Total Stress — T A:I 0 _, 0.34 _ - _ n C F' S . o, - ti c f" -- ! , I , , r _""'_ t—_---T—_`__-r -rte1 t--+ + +- - + , . + } + + — + . + , . . 4 . + 1 — , , , 1 I 1 ,----1- --- + - + + + . - r + } , , _ . . jco N 41 I ! I I 0 10 20 30 40 Norr,a' Stress - ksf I #16,125 ` ; , ` 1, 1 CHEN AND ASSOCIATES Consulting Co f and Foundation Engineers - 1C 1 T - ---- -- -- _____I TEST NUMBER 1 7 3 4 _ J. __ , •1 . , , + i , . , . - i LOCATION Hole 23 at depth 41-0" + . . + , . i T I HEIGHT - INCH 3.85 3.95 I DIAMETER - INCH 1 .94 1 .31 -. I i WATER CONTENT - % r } ' } . I ' 24.6 2523:4______ 4 0. DRY DENSITY - pcf } "_____ 96.9 X6.3 r� 0 I 4. �---- -fi---- ---1--.--------�—. CONSOL. _OAD - ksf 4.0 . 8.0 ' o w j U - L - 3 ksf 4.0 3.0- — l f - ksf 1 �� f + Fl 3.3 TYPE OF SPECIMEN California I I SOIL DESCRIPTION Clay (CL) Very_ Stiff } I 0 I . --__L__-__ __ . _i___1.—____ . . . _- _ _ 0 5 10 1 ,' TYPE OF '"EST Consolidated, Undrained Constant Strain of 0.003 In./loin. Total Stress 1 I --� -+ -*- - . + . : - - -4-- . -+ . 4 - 1 1 I +- + - . + . . I , _ 1 V I I 4 --i _Y 4 I I I 1 I 1 I I 1 I , .- --•----1I t- t _ .4- - , , a - / Shear Sttrer�g h 2.6 kips/square foot_. _I I I R r ,in :TITi 3 10 ',orr'.+,' Strc, <. Kam' 1 F icl. C #16, 125 , • CHEN AND ASSOCIATES Consulting Soil ana Foundation Engineers 20 TEST NUMBER 1 i 2 3 4 , I ' • 4 • 7,., -.. ' �` • . + t LOCATION Hole 28 at depth 4'-0" - + + + + ♦ HEIGHT - INCH 3.74 I w 15 -� • DIAMETER - INCH 1 .94 ! + . WATER CONTENT - % I s t + ` . , ___L5...._3-- _ l 10 + , + DRY DENSITY - pcf 116.0 - L. CONSOL. LOAD - ksf , o + + _ I. t 3 - ksf 4,3 > + o + O 1 - ksf 20.7- -- 1 5 - -}_--{-- ___ --_-, TYPE OF SPECIMEN California41 -- , + + , SOIL DESCRIPTION Clay Calcareous (CL) L_, ' + ` t- L----1--------i--- • - „ 1_ ,. . 10 lr TYPE OF TEST Unconsolidated, Undrained • Constant Strain Rate of 0.003 In./Min. Total Stress 11 I I i --- , __r_-rte_- ---- -�---� - ---,- --. , ' I•. 10 i 4 — Shelar, Sire gth 84Ii_ips/vgyare fooit- 4/1 a I I I L CD i 0 5 10 15 20 N3rn+H Stre5,, - kcf 41 / 16, 125 ,, , , ,, rit7. -1 CHEN AND ASSOCIATES Consulting Soil and Foundation Engineers TEST NUMBER 1 2 3 4 _ --1 + + t + + r _ i ` t + + II + + + + . , LOCATION Hole 30 at depth 2 '-0" F -;__; i + + HEIGHT - INCH 300 I 0 -�� -___4- 3.92 w 0 [_. 4 + - + + + r . 4 . DIAMETER - INCH 1 .94 + ; WATER CONTENT - % 14.0 0 i + c: + + r . _ DRY DENSITY - pcf 111 .9 20 -� kk CONSOL. LOAD - ksf o •� + + it U 3 - ksf 8.6 •_ , , _ CT 1 - ksf 35. 1 10 -- . , - . . , l + TYPE OF SPECIMEN Undisturbed California + . _ SOIL DESCRIPTION Clay, Slightly Sandy (CL) _) ` - , + . } . . - Very Stiff h - --- - � LL = 39; PI = 24;-200 = 88 0 5 10 1 '. i,Y Al ' r a ;n TYPE OF TEST Unconsolidated, Undrained Constant Strain of 0.003 In./Min. Total Stress I I ; I I , I , , , . T T --T-- -- .- - r I V In 20 _ , I ' f —.4---- — -- — — — _.,-_ + + - ; hear, Screpgth ,13r5+kips/scuare+foot, 4 , _+ _ _ _ 0 — + + * 4 + * 4 H : : )I i10 f 1 l V i I I -4 1 .-----.---- a, + , iii i 10 20 30 40 Ncrmal Stress - ksc 41 #16, 125 - I - . - 1 , r. !, CHEN AND ASSOCIATES Cor,suwng soil and Founajt!on Engineer; 10 , 1 ; - -- -- _ __f_______________, TEST NUMBER 1 2 3 4 - -1 + + i + + + •+ • . I Composite Sample from TH's ' LOCATION 48, 50, 52, 54 and 57 + -,_ + + ( + + ' ' + at depth 10'-0" to 15'-0" - r , + I . + I HEIGHT - INCH 3.99 3.97 4.00 +i p3 + + + . _ , y + , DIAMETER - INCH 1 .94 1 .94 1 .94 - -- + ' + r . + + i.1 WATER CONTENT - `r. 20.2 j 20.6 20.8 Iu, v , DRY DENSITY - pcf 102.3 102.5 100.6 n 5 --- --- - `-- CONSOL. LOAD - ksf 2.9 I 5.8 8.6 0 f 0 - ksf 6.8 13.3 16. 1 .� Cy - ksf 2.9 15.8 8.6 U I -- TYPE OF SECIMEN Remolded , SOIL DESCRIPTION Claystone Bedrock (CH) , } + -200=98; LL=60; P1=4?_ {__ -- _ �_ _�-- - 5 10 ' ' TYPE OF TEST Consolidated, Undrained Run at a strain rate of 0.003 in./min total stress. Tr'• " 0 0'23 _ - 0 13O C'`-"CS ; " - - } 1 .J--- - +- + . . t + F i 4 y + + - - + .. + + + + + + ._ I . • 3 - in 4 + I-- + + . + - , t + + - . + - a'Ul -+ , t - , + T - _ - I i 4 - _+ - r l + + . + + . - y + 4-+ I in -f t--+ 1 + + + + 1. ' - 1 f -- - + t �__+ _ _ + + ! • 4+ 4 • I ` + +- + t + art—t -__ t _1 L� I -b- _ t - - -1J - j _, 0 3 6 9 12 15 1 , NCrr;,,a" St,-es6 - kcr 41 x'16,125 U. C . n 5 • CHEN AND ASSOCIATES Consulting Soil and Foundction Engineers 20 I . . - 1 , --- - -------� TEST NUMBER 1 2 3 4 --+ 1 + t • , , • ' t { LCCATION Composite Sample from TH's 14- _ + _ 1 - 37, 39, 40, 41 , 45 @ 1-'-6 + 1 Iter--•- -1--•--_ ,- • --- - _1L2,_ HEIGHT - INCH 3.95 3.96 3.97 4 V + . + + . 4 + / 41 DIAMETER - INCH 1 .94 1 .94 1 .94 � ^ WATER CONTENT - 16.;1L 16.2 16.2 _ a } DRY DENSITY - pcf 10 I . -- }--- 112,4 113.-2 112.5 L ` I 41 :S:L. LOAD - ksf 2.9 r 4,8 $-� e m i I I n O-1 - ksf 13.6 1 18.8 24.6 -- .- _i_ . - - ---- - -• - I - , 41 TYPE OF SPECIMEN Remolded , , . i I I Cla i SOIL DESCRIPTION Sandy X (CL) 1 LL__E 19; PI = _23; -200 = Rn Consolidated, Undrained, 0 5 10 41 xia TYPE OF TEST - Constant Strain of 0.001 In./Mir . Total Stress -A', + _ 0.31 41 C '-E I . __3,2____ _T___-T___ -_r-T_r. I Ul J1 . • L 1 + m 5 i i Ir .._ --t -- 0 5 10 15 20 2.5 Ncrn,.;1 StrE" ', - ksf 41 116, 125 - Fin. r- CHEN AND ASSOCIATES Consulting Sol I and Foundation Engineers 20 - , • , - TEST NUMBER 1 1 2 3 4 _- . 1 - } + , + , + + Composite Sample from TH' s - + } . t a + + LOCATION 37, 39, 40, 53 and 45 at - ------, ` l I + + + + depth 8' -0" to 13'-0" - + + + + + + + , , + I 15 —t-- - HEIGHT - INCH 3.98 4.00 3.87 4- _ f3 DIAMETER - INCH 1 .94 1 .94 1 .94 _ + + + + + + 1 + . - WATER CONTENT - % . 16.5 16.7 16.6 v, L DRY DENS TY - pcf 107.7 107.2 107.5 ' 10 ---� ____`_' CONSOL. LOAD - ksf 2.9 5.8 8.6 O M - ksf 3.5 18.4 22.7 .� + + C3- - ksf 2.9 5.8 3.6 3 5 _ — -- --- TYPE OF SPECIMEN Remolded . , , . 1 + (CL-CH) •Claystone Bedrock + + + ' SOIL DESCRIPTION � ' -200=91+; LL=49; P I=33 O ._ - y- �_y J�_ . - S 10 TYPE OF TEST Consolidated, Undrained , p ' ,1 ; C. . . Constant strain rate of 0.003 in./rein total stress. TAN 0 .466 - 0 25° 0.5- C'HE� i f - - - - 15 . r -.---- -- - _ _ i _c 10 i 1 I . , i , , - - — -----,--1------- ,--1 --,- f + . 4 4 + + 1 + , + + + + 4 + +---- -I N ,n -4- i- + t + + + + +- + 1 + + +- _ + 41 +I I I I— . —t' --- - + +- + + - - - - I. + + I N I -• 5 , i ! -- - + . + +--+ -. + + _ } + - - + - , --- + + + t- -t - +-- - + + + + + a i — -t- - — -- }- --4- t -- + + - 4 0 i [5 0 Norval St*-+c*, - kcc .:16, 125 fry , 7 CHEN AND ASSOCIATES I + I- Consulting Soil and Foundation Engineers a 1 I! y TEST NUMBER 1 1 2 3 4 1 1 : 1 , , + + 4O ; LOCATION Composite Sample from TH's 48, 50, 53 , 54, 55 @ 1 '-5' V ` HEIGHT - INCH 3.9 3.84 � 7.� + - - --- - 3.94 + DIAMETER - INCH if ♦ 1 i _ 1 .94 1 ,94 1 .94 WATER CCNTENT - % `" fll 19.6 19.0 19. 1 t . L DRY DENSITY - pcf 105.6 105.8 1 .5 N 5 CONSUL. LOAD - ksf o 3..31 6.34 8 8.06_ . . l - ♦ } ksf 2.91 x.36 6.61, ' 1 t + r } O- 1 - ksf 6.91 12.86 15.61 2.5i .T TYPE OF SPECIMEN Remolded , , - 4 . + + SOIL DESCRIPTION Clay, Sandy (CL) . LL = 45; PI = 29; -200 = 80 0 5 10) TYPE OF TEST Saturated, Consolidated, .,X '+rr',f•+ . Undrained, Sheared at Constant Strain Rate of 0.004 in./Mil. TA: 0 ^ l•? o Pore Pressure Measured, 0 Effective Stress :^Ir'l " I .'',. c t 00.2`5__ 9 I ' ` ' , , - , , f , 1 - • ----, 7. - . -- , 1. - -+ + r + + + , _ + t . I -_-+ + + . . . _ + r . + - . . -+ + , + , , +_ + __ 4 - r_ , -IA- 6 i , + —t + + + +- , ♦ , + t + . _ + + ♦- -. + . 0 Y L. ---, t 1 + + + , .. IIIIlIi + + 1 - + j, N I cu —4- I--4,- --4,- - + , t , , ---r . 1 _ . , \,_ \- „' . . . . . -. , - I 0 3 6 9 12 1r, 1 Noma] Strc,,, ,-f #16, 125 I ;,,, CHEN AND ASSOCIATES Consuitlrg So, and Foundation Engineers TEST NUMBER 1 2 j 3 4 _ 4. - __ + : + . , , • Composite amole from TH's t ' LOCATION 37, 45 and 47 I ._ -. + at Depth 14'-0" to 20' -0" . . . . , . . _ HEIGHT - INCH 3.93 3.99 3.99 15 ` ' --T -�--1-- --__.--_��-_`_� 3 DIAMETER - INCH 1 .94 1 .94 1 .94 -- - . . . , . , , t . . , WATER CONTENT - 13.5 s . . i? 13.5 13.5 N DRY DENSITY - pcf 114.9 112.7 113.8 L., 1D - - --- CONSOL. LOAD - ksf 3. 1 6.4 9.3 o f : ' t ill - ksf C. 1 10.7 12.7 > + - ksf 2.0 2.8 3.3 —4 5, t —--- +-4 - 1 TYPE OF SPECIMEN Remolded 1 , , ! . . . SOIL DESCRIPTION Clay-Silt (CL-ML) , sandy I -200=63; LL=24; PI-7 5 5 to I TYPE OF TEST Consolidated , Undrained ,7,y c I l ♦ r 4 I n Constant strain rate of pc, 0_004 in_/nin , Pnre Prassurp TA'. 0 '_-___ -_ Measured, Effective Stress 0 26° C 1rI I . - ksf _11 .0 — - - 7.5 1 ; , _ 1—T' -+ -t- t-- . - -- - -- -- t * . , -+ I + --4_- + — - + - . . — , . . . , . a. —- . ' � -+ + + -+ + . -. + +- , + - 1 , N -- 510 —,----4--- F I ■. _ ——�—__�--�— — ,� L - ,__t, ' 1 TTII 0 2.5 5.0 7.5 10.0 12.5 15.0 Norri-t i Stress -- kc tl ( 1?5 Fin. r_n TABLE 1 RESSURE TEST RESULTS Interval Test Depth Length Permeability Ho e (Feet) (Feet) (rt./7r.) Soil "yie _ 15 36. 5-46.5 10.C 10 Sandstone 10 12.0-25.5 13.5 300 Claystone-Sandstone 25.5-35.5 10. ) <1 Sandstone 2 13.0-28. 5 10.5 300 Claystone 24 17.5-26.5 9.0 500 Claystone 3', 12.5-20.0 7.5 1 ,000 Claystone 33 12.5-16.0 3.5 2,400 Claystone-Sandstone 5y L.0-18.0 10.0 126 Claystone 60 10.0-20.0 10.0 300 Claystone 6` 13. 5-23.5 10.0 150 Claystone 2,,. -30.9 10.0 CO Claystone-San.jstone 62 10.0-15.0 5.0 310 Claystone-Sardstone 15.0-21 .0 6.0 200 Claystone-Sandstone 21 . 0-31 .0 10.0 220 Clays'_nne-Sandstone 31 .0-11 .0 10.0 20 Claystone 41 .3-50. 5 9.= 60 rlaystone-San:stone 63 13.0-10.0 5. 0 530 ". iaystone- indstone 1S.O-27.0 9.0 ;C Claystone sandstone 27.0-37.0 10.0 72 Claystone 37.0-47.0 10.0 32 Claystone 47.0-57. 0 10.0 28 Claystone 64 3.0-17.0 9.0 50 Claystone-Sandstone 17.0-25.0 8.0 15 Sandstone 25.0-35.C 10.0 60 Sandstone 35.0-45.0 10.0 22.0 Claystone-Sandstone 1, 125 TABLE i LAB0RATCRY F'-OEfk i L l • TES' : 1LTS Te5t Depth erreabi i i ty Hole (Ft. ; Sample type (' t./ r. ) Soil Type 19 19.0 California .05 Claystone-Sandstone 29 9.0 California .005 Claystone 41 24.0 California .06 Claystone 37 , 39. 1 .5-6.0 Remolded .003 Sandy Clay 40, 41 , 45, 47 37, 39, .0-13.0 Remolded .06 Claystone 40 , 41 , 45 4C , 50, 10.0-15.0 Remolded <.001 Claystone 52 , 54 57 J16, 125 U TABLE III Page 1 of 2 SHEAR TEST RESULTS Depth 0 C 2 Qu 2 Hole (Feet) Type of Test (Deg. ) (Lb./Ft ) (Lb./Ft ) Soil Type 16 9.0 Unconfined 19,900 Claystone 17 19.0 Unconfined 8,600 Claystone 18 15.0 Unconfined 43,600 Claystone 19 29.0 Unconfinec 8,600 Claystone 20 9.0 Unconfined 11 ,200 Claystone 21 8.0 Triaxial Shear Residual Total Stress 19 3,800 Claystone 21 .0 Unconfined 700 Claystone 22 9.0 Unconfined 13,700 Claystone 23 4.0 Triaxial Shear Shear Strength 2,600 Clay 24 13.0 Unconfined 10,800 Claystone 33.0 Unconfined 13,000 Claystone 25 9.0 Unconfined 24,900 Sandy C'ay 26 19.0 Unconfined 16,300 Claystone 27 24.0 Unconfined 47,900 Claystone 23 4.0 Triaxial Shear Shear Strength 8,200 Clay 30 2.0 Unconfined 23,500 Sandy Clay Triaxial Shear Shear Strength Sandy Clay 17.0 Unconfined 18,700 Claystone 31 10.0 Unconfined 10,100 Claystone 13.0 Unconfined 6,300 Claystone #16,125 TABLE III Pace or ShEAR TEST RESULTS Depth 0 C Qu Hole (Feet) Type of Test (Deg. ) (Lb./Ft2) (Lb./ t' ) Soil Tyre 32 17.0 Unconfined 17, '00 Claystone 33 9.0 Unconfined 1 ,!:00 Claystone 11 .0 Unconfined 7,700 Claystone 34 14.0 Jnconfined 24,x00 Claystone 35 17.0 Direct Shear 30 1 ,2)0 Sandstone BLcroc[ 37.0 Unconfined 2r;,"0" Claystont. 36 29.0 Unconfined C ,700 C'iysto'e 37, 39, 1 .5-6.0 "'riaxial Shear 17 3 ,230 Sandy Clay 40, 41 , "iotal Stress 45 Remolded 39, C.0-13.C Triaxial Shear 2.5 x;30 Claystone i40, 53, "otal Stress 5 Remolded 37, 45, 14.0-20.0 Triaxial Shear 26 1 ,0)0 Sandy Clay 47 E.:fective and S. it Stress Remolded 4 , 50, 1 .0-5.0 Triaxial Shear 23 -?50 ' andy Clay 53, 54, Effective 55 Stress Remolded 43, 50, 10.0-14.0 7 riaxial -.hear 13 1 ,600 Claystone 52, ,4, 'otal Stress 57 Remolded 61 14.0 Direct Sneer 21 2,230 Claystone 64 9.0 Direct Shear 5 1 ,300 qeatheree Claystone ' I , '25 1 ! i 1 I I I I , I! 4- 4.1 I I I 1 I 1 I1 Lf\ O EL I I I I I I I 1 I 1 1 I I .O C) J a)' (DI a) a), I a) a) a)i I a)' a), a)' aN a) Cl) a)I a)' (1); I et) - c c c c c c CI c' c 1 C cl c c, c: c1 o_ 0 0 0! o O o O O O O O c 0 O O' O a ,I r/) +1 +.+ 4I I 4-1, +I i.4 , 4-, 4-+ +-I ! 4-1 iJ 4-I 4-" .'-1 4_1'n In Cl)' Io r In Ill rn 1 r I v In+ V) Ifh (J1 U) I I Z -0 >I -o I -0, >I v -0 I I >, >., -o' ! > >{ -0 >1 >I >I I 1 C 0 C c' 0; c' C ' r0 0 c' m rC c ro m' , RI: I _0 I'D rp ra rp (CI •-, ro , -I •-I (C) — ._ 0 N U. N NI U v' N' U U N I U' U to U U 1..);4 4 I F ' ! I 1 I I' 1- 07O I I I I I Z '� O LLJ W - N > I I U N W "6- _' ^1 , VI M N M 01 ^ CO, .Cl1 I, I— d d cD Z N I N L(\1 N ° N N I ' O3 CO N I I ^I L11 QI J I 1 I } I i + f 1 I I I I 4 I I 1 tI f I w 1 I' co0 f- ZCC ! I 1 I ! ', N W z L, I i , ! , Ir w4 CC 0 0 a I I I I I I - I f + t 0 J O u I I W W a- aNrw„ w ! Q h. - W V) I I I , CI I l i I ~ - I f I !� U > rr o w = 1 w > I I I II O 0 zv) � ! I o o I o o o w I. zCrwa 1 • J Q 0M eL I- I 01 OO1en CO CO Z 0 I ^I 1 I A a 1 II I I Z ~ 0 H ~ I 1 II ® - W o; ry' I N.. I H r-. I I NI I _ r I R o d N, Z O �, M N Q J a =�" Z I I Ni Z I N Z, L11, Lf� ZI ' re) z 0 TII , J W a 1 + } - I I 1 I f r I 1 } I 41 I f .Ti CO CO O ~" ! I ! cni O I lo' col O I I .0, I I O W p o N' O U Q J J I I -- I M r\ r✓ M LA l 1 1111 ! 1 I. cr Z O ^I LEN M N 1 M Q � I z i 0 ♦• I J W , N I Qcr 0 ..--- k..0 .o r` 00I I o 01 01 - C1 .o, M, -- N. Qo N N OOl — N N - M. N. lOi N. Ol, N. — O Z ^I "' Wf O O O I I- 0 0 0 0 0 0 0 0 0 LEN 0 0 0 a Co 0.7 0O .0 Cr01' 01 01 Ol w I O1 r-6. LEN ul al a1 Ol W W N M •-t M L11 N M - N CI 1 ' I W I J Lrll .0 N. 0O 01 _ .- —1 I I I f 1 l I I 1 I I I I� I I I I I i I III L ) 4- W I I I I I 1 N 0 a I I r I I , ~ U N G)I O N 4)I (7. 4) CI) a)I N (0 (6 4)I 4)' J _ C I C' C j — — C C • tp — U I C0' 0 I O I 0' 01 0 -3I 0' �I 01 �O U' U' �O �O O 4-+ Z co ?+ > co co in, c4 .Do >, >4 >4 >4 o, to > CDI (0 1 43 >i >I (0 (0 C 10 (0, (D C. CI CD (0 i1 _ _ _ —i -Oi t/@) UI Ul U U L.), U to c.) U UI V N' NI (-). t>, I I I l I ZZ0W I I I I I I ii: ' tII I I , N � N W W X l- (r) I I 1 H a > i_ a I I I !I U >" oW I I 1 - O > O o ,I 0 O Z u) 0 O 'F'1°.41 ool 0 �, — O LL w z W N, I I r•-• N a ),I W Z Cr W N H — I Ol 00; N '< m Q a_ cc CI- Li — — I I I --1 Ij l I IA Q N O { I 1 �, I Z F- I — �I �1 o ! I co ^I o x u W c I l L(1 Ol' , — I — I 001 O 4 J v~i =°.�I N' N I M NI M NI NI a _ II — z n' 1 1 r I' + 'I i W _ I ' I I . N `° — 11 w m . ._ OI OlltbI —I O M OI I� Lf1 x • w o3c I _. ND• o I �; — N- oo - -- U O H J I M \O L(1 M L(1 LA ' -1' L(1, M Ltl, a I _ I ' 11 t }Cr I I I �I Jm CO j F"' LIN I COQO I •O Ole I--- — I I .I Ii 4 _ _ M M M N . . O W ON O' NI — CO N- Lil —I •0 h- ..0 O d> O 00 I N M 2 41 N °rI I .� COOp N L(1I I COq0 111 �' O \O �' M' M 1 CO00 J U) a •( ivy. . I In r. ^ CO tl\ — • " ' i u , CO 0 i- to NI — — N — — — — — a O —i Z2 ; 1 ' _ . , 1 . . . _ 4- O O O CD O O CD O, O Or O O O O O O a W -7 al co — Ol Ol W O1 cV - M, ON O-' N I W W N N liA J 0 NO N N, N N N x I 1 — II 11 i I I I N O a M } I I I II a) 1 I>1 ' I II co J CU a) a) aU I I a)' ro a.)I a)! CU v. 5; a)' I O. - C C C I C C C' C C CI I CI I I O N O' O OI O U I O , UI O o oj OI I u O' II Z V1 V1 U1 " >4 J'4 "� VI VII , VI (I >, In >4 T >4 ?1 >I O N MI' 0 I i r6 C O rD C N 'DI D C, ro I, -3 L3 �: c.), C.J ' cn c.' �I , cn L)' c..> c.)1 , cn c.)1 I I I I ! / , ! 1 t --- -1---1- ' f ' I I I; i I Z Z o w 1 W - N in cc mIo rn1 rni m CO o I oOll o; Icc O� H a a Z I J �, } r -4-- ; 1 , t 0W I , N z N I z D I I W LWa I I CrQ 0 CE I W 0 C I I I F- I {cn Cc I ► f } 4 1 I c • 1 ' LrJ V, Q f- IL ! I I ! I �, W x aW � i I , Q - W "sa I I I II >'' o I I U I w > x +I , ' I } I + I , II W o — O W N z1-O 0 M OOl I I LA, i O O! p ZcrW I ^ °° �� J 0 c- c '.0 N. M'I p^I M ® LI z M cr)I- I 4- ,N; I �; _ A � � It ► ► � 4 - , , II z - x ' m LA LA I M ' o' N I i o' LR Lry 11 OD _ W`� • Q �' o �' O l!l LR co. — I LR' UL M M I, d z—, �' M� M I ! ^ N NI 4- 4 ' \p M' N -..1- 4 ,.., W r # f t ` z ~c I N I �, .�' N.' I O. Ol N' ^ LO n,1, W • I I U O t` o -v N- Ol I I .O, O Ol, (N N, CO N I Q �' +II I �'I M' �" M' �p I II CO I M '.O } - I + { - f I I f iyI I_ ^ co ^ o M Lr. rn, 1/40' I I ^ N CO I I S I ; .O Lrl— N al' .O SG H WO ^ N ^ NI ^ —I 1 �I _ ^. O ^I ^ z JW N Q cr I '^ 1/4.0 dl I I 00 M O OO Ol O ^I N D I- ' .' • F !n n I I O I VA tO I LR! �-' Oi' LR �, MI L,1 ao ^ , ^I ^ ^ ^ ^ ^ ^ ^ —I z1 I I II ' ► ► I F O O O' CD CD CD O 0 0 CD O' b O 0 a W .' . . . Cl al l Cl -1' 4- ON N N-' N- CD I OD. N N.^ N M N .- ..-_ W J '.O I. CO al O N O N N N N M M M 1 T ' II J I ► I I I ! I 1 I Ln 0 aw I I I I. >- I l I I I O to J CFI O' d 0 N I 0 O OI O I Ol O 0 I ("I 0i (p I 01 Q_ — C C C CI C C C C C I C, C C, C C • 0 0 0 0 0' 0 O 0 0, 0 , ^ 0: 0, 0, U O' V 0' I � I i� 1+ 4-r 4-11 4.11 4-1i J-+ I 0 N l, Ul V L �' UI VI! •01U' in, UII ' >IV)! I >IIn I >- >-{ > , >-' 7- -c L+I >+ > N, >4 >I C) l7 _i I TI I r to I (m cn ' tv' co CI •^I m! ro C4 ro to I c c l cl C I ^ ii 0 ^' t01 •— ^ 0; .— ^I a, (0 (01 (0 •— II —) L) U, CS C) C)I N' V)' U' U H U L) Lt) V), V), l (o, U) I I I * + I { 1 I - 4 + F— C: 0 ' I I I I I I Z 0 W W — N 7 I tr N • — M N, Lill Ol Lf'I re'i N Oll O C: s..0N --I' vC•j CO' h (/� �• t1. a_ Z N CO N- COi O:3 I (9 C} Gl Cl GCS Gll %.0 N N- ^ C, I I I, J 4 i I ► i I ' 4 I' N H W W Ce J F— I I N W W CD Q 1 Q(-) F— LL I I I N I 1, I Q J J ► W W3OO I N N O. N Cl) I I l I I I I i f ; t } I I f I 4iI I U) N ' w i li W , i I I H I II ; I l l l I I _ ill } I 1 i I 1 I t I'U /y W � _ Il I I En _ O 0 I 0, �_ � W 2 � SIN ' C.% l a I I r-I l I ' I ► W Z Cr W ..I p . M , I ,� •j o � ►- a -..TI �I N N %DI I I I II m Z O N I I I I I I A Q {LD O I I I 4 I [` O CI) H Z - u W c 0' O Ol I O COI M CI I I Cr 'o Ol L(l NI I I - v~i c r--„i OI a i� �• • CO, G y r3 ^ a. ^•; Lr1' • 4 J = N N I ^ I N Cl I ^I N I I N I N N,, I Z J cr a I I ! I I I f + r f f f . ' { II W I W m o #-- X b. w ; - \ I c Ulf OI NI L11 I N r- - NI N' , Lr\ N' O• N I I O v . .I V 0 a co I on Q J J ! - r I -7' M L!1 MI 1+ 71;1 ! (Y, I N I I I } ! ( I 4 t i ♦• I ^ I I F �O �O. NI• Ol O'1 • N 1/4O CO co M I a N J I Q ^ Q to GO O O O O- �' UN N Is--. I Cr 2 ' (V ^ ! N N NI O-, N O ^ ^ I OI I_ W ^ _ ^ ^ I + I N •1 Cr ! I i DI- \ O. ♦O, Lri M O Ol oa M �D ul N O1 I I ^I H N ^ c- (9 0 Cf\ Cr) C'- ^ Cl �' (.0 .- O I I Co �O a o " •- N ^ ^ (y, 2 m I CL W 0, CI 0 0 C CO 0 0 0 C 0 C LnI C 0 0 0 W W I • • • L W O1 --} -I' -S N- r. rte. 1� C Co CA 0I ^ CO 1- Co W ry 0 re M � i M I I i l j w I' o I } I i I I j I I I 1 N I I I I I I ; I I • O J a) a) a)' I m I a) a)I I a) ID a1' 01 all (DI ' .O CO - C C 1 C, I - C C I C1 C' -' C C C I C. ID 0 O' O 1 O I U, O I O O' O 0 O O OI I O' o_ cn 4-+ a.) a.J 4.) a) 4+I 4 I �1 • to to to' I >. N I to I , N AI NI in Vf o 4-) "O , T I 'O A T > 'O Z ^ C ID C ID ID ID ID I C C rail CFI Ia' i I .-' CO /D -O N V) L)I In U ' c.) U U N (I) I c..), -! I U il � I f j I a` , 1 --1 I ' I }' ,I I— CD 0 I O W W — N > I 1 I ''i V V) W - - .o I i.r I N ' - I LF N M1/4C 0'1 N cc N • — W -4 01 co co ' N. (T' r- t-I M ' 0^ O'1 Q1 ' N H • d I N rr J I— I I I I 'I N W Wco Q I II 'd I w30 = I ! 0 0 V) ' 1 1 I I I ' ' 1 i 1 { i , +-- I I I- -t-- I N I I I I I W ILI , I I j I I , I I • I— 1 I I I I U o w i I L 1 fr w > = I I 1 I 1 O - O Z I i w- w Z I W Z CC W Cr) I ® Z O u I I I I I j I Q a ,CC f- I I II • } - ► II I- O H ~▪ CO Z - c W M Imo.) M 0l al N ^ N LA I r LA c4 .4z a =`� I N I N •^ N N I 7_1Mad „ I"Y Z J a , , + j W W CO C' I-x I — coCA o --I ' -I- •- -?' N O t I -11 H 0 w o 2 a I I ,I • • ,I • I ✓ - o- MI 011 1� .O O O V� N I •-I 0� I- � c'J N II M' I} M -Z' M M M .O H I Q I I I I I J 1 cr ' It or I I I I J 4 a N - — e.,1 I o .- .C c� I- W i I ^I I CO —J�i J w f N C a ct D .- CO CO 011 CO N C1 I o M H N MI rel O .O r. I a o I I 1 I = o, D w 0 0 o', 0 0 0 0 0 0 ^ 0 0 0 Cl. tV it — Cr0 CO C.) I .:Y . O wI olal NI — ^ — w CO J 7 ....1-- - - -O .. 1 t _ - --,--.-----r __T___ ____r__ -,--T----�- T---__-r- - r---- - '—TI h. Li- LLJ �� in I' O m II ....+ r It , I - ' ; I Ln a) I{ I Ti >- , N Q l 1 a) a), Ga C� O' a) r , a) 411 , m I ' Q) I n- O I ci c,O O O O O O U O 0 O , O O 'I (1) ; 4-I 3.+' 4.4 i1 u 4-I Y+ �-i .µ I +' I W in V) NI IAi U) >4 n U I in > I In II >'- > > > >4 > -O >• >4- ' I -a >. , ml ro ro m m (a c 'o ro c m 0 U U U L.) Ui L Cl) U Ui ' u! (/) U' 4. -----'�---+----+--- �_--+---r--*--- ----,- �- -t + �- + —+- + ------r--� O F- O O -) = = OWI' I I I , W - CV >, O� _ cc Cl) • I I OY 6,4 Cr, CT) CO CO Lrr 61 0'1 I Cl I o) Ol N I W QOv)II ' ' I ID_ o_ Z ' F I J1 ---- -+----+-- + ---.- +- + ---00. - .4- -+--- +- + + + +- + �-t-- t--' Lew II I I w z �'I I I II WccILI- `na , I LI- `• w O a I I—4- - - � --� -,-- -- + + ++ 1. `- _- -- -- - -+ --- r--+ -4-- _-+- ' I _-_-'+__ .--1 C/) wJ O ' W 4 w LL I, W X < (1) I H Q > F d i Q cr O N I I I ' I ' j i r--I r I` __ - __ I U 0 1J-1 1 , , II O > zin -- i 'I • O w- w z w I I I • W L z Q. W (n ' I I I I ▪ J f 4 O a a 11 I Cr) Z OO co~ ll i ' ' I ' I 'I z ' II Q a) W I I 61 .0l ' .a d ao' M d o1 I o Q I J- a 0,' ...1" r1 MI" CO L N .-'" M M, I M M N N rei M N - LPY N I N M li Z J CC a I, - - W I C0 �' I-_ II CO .O .. 6V 0 .O: , Cl .-, I OI O L1 6. .Jy n °I • • • • I • • 4 ' N • O , a (sp.. i M N M ' , O ►- o -- LA LA i �' N M .moo t�l M' M }, a —1 --— — ----+---------- 4-+--,_ t j + --+--- - ---� - I f o —r—�, r I I' I CC {I I I I I 11 i _J ! O 61 , rY) CO i NI CO .--I c ' I I I I I Q I Cc II co •( — Ni , Ni : cO' , m I I II co i, : — _ ._ .-I �. I I I l z ! I I { II (•D i Q ) I^ I I I I I I I II d I D .- I r--.. 4- N L.1-‘' I + ' Pi •--I N.. I co I' IF- ch !I N �I ^— I I `� a O ^ ^ 1 I ! I II I z d I 1 1{ 11iI' I I I I i' S I I I i .O M I H W 10 CI O' O' I L[l OI I 01 O, a I O! I i II' W Li I M LP) r.-., n, rYy a! I re! --I-1 r� r l tjT- I 'l 1 ! ' W I I I ! I n _J -- I I M1 I -1' .fl! LP LP\ ll1 I LP. ! .OI . M -I- in -I- i I _ 13 I � I I I I I M.I •--I ��, iI c� I I II n I 0 , v 11 4.. W I 0 a - , i' Li-N N. r ; co i , 01 -I ,I G) I'D Q) , L.L r0 - C — , d 0 II 0 U 1O , sr, 4-4 4-) >4 sn , O I > -a i >. Z I N C rJ ' -O U (1) I U O44 I.--- - - -_-4- 4- —-T_�_--_ -a___4._--4-- -+- t 4- -4-- + - , a }----.--~--i , II I-- I cu I aw I IIw m— cv) , • I U V) W , re-, O CO ' N 1I: cc • — CO , W Q O V) 1._ I °- °- ' J I I N ' fl- II '-- J L V) IZ t ' N IIW4 ,LL I sr; a HI �. a , LZ ------�` .-+ --�--+---rt--+---�---r--- +---+--+—a--} -+----+ a--- +---.--+—+—'_'----+ T II (f) x u) CI) J 1�, V' 'I Q I f v. LL l W X Q W (/ H r— :I Q a1, Q — W 0 I 4--� %• I I— v I i I ' O >• X I W 7 S II- I — ^ I Z yr v II j V — sn I up W F. Z 0 I • I 11 z uJ II I I I • J (-c-) § I I I I I ,, ® /y Z C u1 II I I I • {L I LoD U Z - ' II • a m I CO II I Q - - W • • I i k- h :i J `: 'D Ol N a a_ N -0 z J 1 -_ 4—_ n I W W x r, Lk I m cc 1 - N ^ I M • , W a I ' I O 'D I_ :I • N 1 , I '1 Ir 4_---4---- I II o 3 II I I 'I CC 4 I I 2 I I ' I I i Ii k- 2 i, z _ i-�'----4 t- -- —--k -tom--4-4.- --'4- 4-- -- 1 1 'I 0 II rr f I I I I I I I I' , k- \ I , I I I I I in 0,I -- I' N , LfV L44 II I — LA �' 1 I 1 a I I 1 1 2I II' — I le} I t! ix)� p I I 01 N. -3. N u- W 3. I 1 1 1 - 1Jdii i I I I I I� APPEND 1 X 1 CORE LCCS Hello