Loading...
HomeMy WebLinkAbout20130558.tifffr PREPARED FOR: PLAINS AAP TAMPA LOADING FACILITY LOCATED ON LAND IN SECTION 17, TOWNSHIP 2N, RANGE 63W OF THE 6TH P.M., EAST OF THE BNSF RAILROAD DRAINAGE REPORT PREPARED BY: BASELINE ENGINEERING CORPORATION 700 12TH STREET # 220 GOLDEN, COLORADO 80401 NOVEMBER 26, 2012 JOB #PL 191 BASELINE Engineering • Planning • Surveying a013.- 055,g • PREPARED FOR: PLAINS AAP TAMPA LOADING FACILITY LOCATED ON LAND IN SECTION 17, TOWNSHIP 2N, RANGE 63W OF THE 6TH P.M., EAST OF THE BNSF RAILROAD DRAINAGE REPORT PREPARED BY: BASELINE ENGINEERING CORPORATION 700 12TH STREET # 220 GOLDEN, COLORADO 80401 NOVEMBER 26, 2012 JOB #PL 191 ASELINE Engineering Planning • Surveying :%Ttii}iDnill I hereby certify that this report for the drainage design of Plains AAP Tampa Transload Facility was prepared by me (or under my direct supervision) in accordance with the previsions of the Weld County storm drainage criteria for the owners thereof." Noah Nemmers P.E. State of Colorado No. 39820 3 Baseline Engineering Corp. 700 12th St. Suite 220 Golden CO 80401 Contents General Location and Description 5 Location 5 Description of Property 5 Drainage Basin and Sub -Basin 5 Major Basin Description 5 Sub -Basin Description 6 Drainage Design Criteria 9 Development Criteria Reference and Constraints 9 Hydrological Criteria 9 Hydraulic Criteria 11 Drainage Facility Design 12 General Concept 12 Specific Details 13 Conclusions 14 Compliance with Weld County Code 14 Drainage Concept 14 APPENDIX 15 A. SOILS MAP 16 B. RAINFALL DATA 17 C. HEC-HMS CALCULATIONS AND OUTPUT (HISTORIC) 18 D. HEC-HMS CALCULATIONS AND OUTPUT (PROPOSED) 19 E. RATIONAL METHOD CALCULATIONS (PROPOSED) 20 F. HYDRAULIC COMPUTATIONS 21 G. HISTORIC DRAINAGE PLAN 22 H. PROPOSED DRAINAGE PLAN 23 4 General Location and Description Location i. All that part of the Section 17, Township 2 North, Range 63 West of the 6th Principal Meridian, Lying Southerly of the Burlington Northern Santa Fe Railroad Right of Way, County of Weld, State of Colorado ii. The site is adjacent to the east side of Weld County Road 398, also known as the 1-76 Frontage Road. iii. No major drainageways or irrigation facilities are present on the site. iv. The site is bordered to the west by a Burlington Northern Mainline Railroad. All other surrounding properties are undeveloped agricultural land. The closest municipal entity is Keenesburg located to the south. Description of Property i. The property encompasses 356.6 Acres ii. Existing ground cover for the on -site basin consists of native grasses and low brush. Soil type is primarily Type C (Osgood Sand). Type A (Valent Sand) and Type D (Loup-Boel Lomy Sand) are also present. Larger concentrations of Type A and Type B soils are located directly upstream and make up the majority of the upstream (off -site) basins. iii. No open channels are present on the site with the exception of roadside swales along County Road 398 and BNSF railway. The property proposed for development is currently owned by Plains Marketing LP. iv. The property will be developed as an intermodal facility for transportation of petroleum products via both truck and rail. Facilities to be installed include gravel roads and parking lots, permanent structures, loading facilities, and a unit -train loop track with connections to the existing BNSF mainline railroad. v. No irrigation facilities are present on or within 200' of the site. vi. Ground water characteristics were not available at the time this report was written. Any dewatering required during construction will need to be properly permitted through CDPHE. Drainage Basin and Sub -Basin Major Basin Description i. No Weld County Master Drainage Plan exists for this basin. ii. The major basin is bounded approximately by Interstate 76 to the west and north, Lost Creek to the east, and CO Rd. 18 to the south. Offsite basins flow to two existing culverts adjacent to the property that convey storm runoff under the BNSF Railway that forms the westerly boundary of the site. These off -site flows are then routed through the site flowing easterly along with the undeveloped flows from this property. All flows sheet flow to the east. 5 iii. No FEMA defined 100 year floodplains/floodways are present in this area. iv. See Drainage Maps for contours. Off -site basins were defined based on a USGS 7.5 Minute Quadrangle Map for the area titled "TAMPA QUADRANGLE". On -Site basins and the conveyance structures for the off -site basins were defined based on ground topography surveyed using GPS and conventional survey methods. Sub -Basin Description i. Historically the site receives offsite flows from the west via culverts under the existing BNSF railroad. The site drains to the east at grades from 2-10%. All flows are transmitted overland east to Lost Creek. Offsite flows from properties to the north and south are negligent. ii. Historic sub -basins were modeled using HEC-HMS and the parameters for those basins are as follows: Basin OS1 is 0.392 square miles (251 acres) and has an imperviousness of less than 1% consisting of the County Road and BNSF track along the eastern border. The average basin slope is 1.3%. For the HEC-HMS model an SCS Curve number of 61 was selected based on a hydrologic soil type of "B" with "Fair" conditions for Pasture or Rangeland. Flows from this basin are conveyed easterly and flow on -site by means of an existing 24" concrete culvert under the BNSF mainline. Basin OS2 is 0.334 square miles (204 acres) and has an imperviousness of less than 1% consisting of the County Road and BNSF track along the eastern border. The average basin slope is 1.6%. For the HEC-HMS model an SCS Curve number of 61 was selected based on a hydrologic soil type of "B" with "Fair" conditions for Pasture or Rangeland. Flows from this basin are conveyed easterly and flow on-sitem by means of an existing 6'x4' concrete box culvert under the BNSF mainline. Basin H1 is 0.582 square miles (356 acres) this basin represents the undeveloped conditions of the site with an imperviousness of less than 1%. The average basin slope is 1.5%. For the HEC-HMS model an SCS Curve number of 79 was selected based on a hydrologic soil type of "C" with "Fair" conditions for Pasture or Rangeland. Flows from this basin are conveyed downstream by sheet flow. This Basin was also modeled as Basin P1 to simulate the runoff from the basin in proposed conditions. This model was used as a check to determine the appropriate detention basin size in conjunction with the UDFCD spreadsheet using the Hydrograph method. Detailed HEC-HMS Calculations and Output for the 5, 10, 25, 50, and 100- yr storm frequencies can be found in the appendix. Properties to the north and south of the project site contribute a negligent amount of flow. iii. Proposed sub -basins are described as follows: Basin 1 is 8.19 acres and is located in the southwest corner of the site. This basin will remain undeveloped with the exception of the loop track connections to the BNSF mainline and the switches for inbound and outbound rail traffic. This basin receives offsite flows from an existing 6'x4' concrete box culvert under the BNSF mainline. The box culvert conveys off -site flows from Basin OS2 as described above, these flows will continue to flow through Basin 1 and will bypass the proposed detention basin. The culvert proposed under the loop track in Basin 1 (Culvert B) has been sized to convey the bypass flow from Basin OS2 which will then flow offsite. Basin 2 is 49.0 acres adjacent to the west property line and the BNSF right of way. It contains the vehicular entrance to the site and a gravel lot for truck parking. The remaining portions of the basin will be undeveloped. Flows are transmitted overland and via swales to Culvert "D", where it is ultimately conveyed to Basin 7 and detained before outfalling east of the loop track. Basin 3 is 5.83 acres located at the south end of the site, in the triangle formed by three switches for the proposed loop track. Flows are transmitted under the rail bed via Culvert "E" and then offsite via overland flow. Basin 4 totals 37.26 acres and is located at the south end of the loop track. It will remain undeveloped with the exception of the railbed that forms its western and southern boundary. Flows will primarily run overland and be transmitted under the track via Culvert "G" where they will flow overland offsite. Basin 5 is 45.13 acres adjacent to the west property line & the BNSF right of way and contains the majority of all structural and mechanical development. Features to be installed include an administration building, operations and welfare building, meter skids, inbound manifold, gravel parking area, and two 150' diameter storage tanks. Flows from this basin will be collected in a swale adjacent to the loop track and conveyed to Culvert "J", which flows into Basin 7 and is detained before outfalling east of the loop track. Basin 6 is 17.34 acres adjacent to the west property line & BNSF right of way. It will remain undeveloped except for the proposed loop track and a portion of the proposed bad order track. Flows from this basin will be collected in a swale adjacent to the proposed loop track and conveyed to Culvert "K", which outfalls to Basin 7 and is detained before outfalling east of the loop track. Basin 7 is 85.78 acres located inside the loop track and will remain undeveloped except for the rail loop and the proposed detention pond. Runoff from Basins 2, 5, and 6 will join with flows from this basin and will be transmitted overland and to swales adjacent to the rail loop and conveyed to the proposed detention pond. The detention pond outlet structure connects to Culvert "I", which will transmit all detained flows from the pond under the rail loop and off site via overland flow to the east. The loop track forms the eastern boundary of this basin and also acts as the weir for the detention pond. Basin 8 is 21.01 acres located in the southeast corner of the proposed loop and will remain undeveloped except for track features. Flows will be conveyed overland to Culvert "H" where they will pass under the track and flow offsite. Basin 9 is 65.45 acres adjacent to the north and east property lines and will remain undeveloped. Off -site flows from Basin OS1 as described above will continue to flow through Basin 9 and will bypass the proposed detention basin. 0 U In total there is only a 7% imperviousness proposed with the improvements and much of the conveyance is done through long overland flows both in rail -side channels and sheet flow across undisturbed rangeland. Detailed Rational Method calculations for the 5, 10, 25, 50, and 100-yr storm frequencies for these basins can be found in the appendix. Drainage Design Criteria Development Criteria Reference and Constraints i. No previous drainage studies are known to exist for the property. ii. In the historic condition all flows travel overland from west to east. The proposed rail loop will interrupt those flows from the southernmost existing culvert. These flows will be collected via swales and a culvert and transmitted through the loop as required to bypass the upstream flow. Flows from the northernmost existing culvert will proceed through the site uninhibited in the proposed condition. The proposed buildings, mechanical areas, and gravel roads and parking areas were accounted for in the proposed site impervious calculations, as shown in the appendices. Hydrological Criteria i. Precipitation frequency for this site was determined using Colorado Precipitation Frequency Data from NOAA's Website. Using the site specific estimating tool for the sites coordinates yielded the following output from NOAA Atlas 2 data: Map Precipitation (Inches) Intensity (In/Hr) 2 -year, 6 -hour 1.25 0.21 2 -year, 24 -hour 1.69 0.07 100 -year, 6 -hour 3.21 0.54 100 -year, 24 -hour 3.81 0.16 Design storm rainfall amounts for the 5, 10, 25, 50, and 100 year frequencies were generated from this data using Hydraflow software. IDF Curves generated from this data along with detailed tables and NOAA Atlas 2 Isopluvial Maps for each of the design storms can be found in the appendix under the "Rainfall Data". This data and the 1 -hour point 9 rainfall that was generated was used in calculating the runoff in the Rational Method forms as well as the basis for each of the storms developed in the HEC-HMS models. Intensity Value Results are shown below: Intensity Values Period 5 10 15 20 25 30 35 40 45 50 55 60 2 3.04 2.42 2.02 1.74 1.54 1.38 1.25 1.15 1.06 0.99 0.93 0.87 5 4.62 3.67 3.07 2.65 2.34 2.10 1.91 1.75 1.62 1.51 1.41 1.33 10 5.82 4.63 3.87 3.34 2.95 2.65 2.40 2.21 2.04 1.90 1.78 1.67 25 7.18 5.71 4.78 4.12 3.64 3.26 2.96 2.72 2.52 2.34 2.19 2.07 50 8.35 6.64 5.55 4.79 4.23 3.79 3.45 3.16 2.92 2.72 2.55 2.40 100 9.39 7.46 _ 6.24 5.39 4.75 4.26 3.87 3.55 3.29 3.06 2.87 2.70 ii. The 5, 10, and 100 year storm recurrence intervals for this site were analyzed per Weld County specification. The 25 and 50 year storm recurrence intervals were analyzed to satisfy BNSF requirements. iii. For basins less than 160 acres the Rational Method was used to determine peak runoff. For basins larger than 160 acres the Hydrologic Modeling Program HEC-HMS was used. HEC-HMS was primarily used on the off -site runoff and for comparison of the site runoff conditions between existing and proposed conditions. Basins OS1 and O52 were routed to the BNSF railway. Beyond the railway each basin was linked to a reach and combined with the flow on -site from H1 in the historic condition and P1 in the proposed. The flows from each the off -site reaches and on -site runoff have been combined in a junction that notes the accumulation of flows. A summary of each of these computed flows for the 5, 10, 25, 50, and 100-yr storm frequencies can be found in the appendix along with an output graph and hydrograph output. A runoff summary is noted on the Historic Basin map. The Rational Method was used exclusively for the developed site basins being that they are all less than 160 acres. Spreadsheet results for Rational Method calculations can be found in the appendix and a runoff summary is noted on the Proposed Basin map. iv. Detention calculations were performed using the UDFCD's UD- Detention v2.31 spreadsheet along with the existing and proposed HEC- HMS conditions. v. All offsite flows will be routed through and around the proposed loop track. The detention pond will convey the developed flows from within the loop track and proposed facility. Flows overtopping the pond will ultimately overtop the loop track although only in storms much greater than the 100-yr. Hydraulic Criteria i. A swale is proposed to follow the path of the rail loop to collect runoff as it is transmitted via culverts and overland flow. These swales will be trapezoidal in section with 4:1 side slopes and a 2 foot wide bottom. They will follow the typical grade of the proposed track at 0.50% An analysis of a typical swale section was performed using Hydraflow. The results indicate a 4 foot deep swale with the section outlined above will carry 209 cfs, or over one half of the 100 yr design flow for the entire site. The low point of this swale will be at the east side of the track loop, where the detention pond is located. Culverts were also modeled using Hydraflow. Each culvert was sized to easily pass the 100-yr flow with minimal head on the upstream end of the pipe. The exception to this is Culvert "I" which was sized based on the specific head in the detention pond at the 100-yr storage elevation. Calculations for the swale around the loop track as well as each of the culverts identified on the drainage plan and construction drawings can be found in the appendix. ii. The detention pond was sized based on the 10-yr and 100-yr inflow hyrographs developed using HEC-HMS for Basins 2, 5, 6, and 7. The basins are noted in the HEC HMS Pond model as P2, P5, P6, and P7. The junction of these flows for the 10yr and 100yr frequency was used as the input for the UD Detention sizing based on the hydrograph method. Released rates used for this sizing were 0.30 CFS/Acre for the minor storm and 1 CFS/Acre for the major storm based on Type C soil for the contributing area. The detention outlet structure was designed using the UDFCD's UD- Detention v2.31 spreadsheet. The proposed structure will be as described in the spreadsheet as Routing Order #3, a rectangular box with WQ orifice plate on the front and a single stage open grate on the 11 top. The grate elevation is 4803.00, the 100-yr pond surface (storage) elevation is 4803.00. The ultimate overflow weir elevation occurs at the loop track itself with an elevation of 4805, the loop track elevation provides an additional 2 feet of freeboard beyond the 100-yr storage volume. The triple 24" have been sized to pass the maximum release rate of 1 cfs/acre or 197.25 CFS for the developed site. See the appendices for all detention storage sizing, outlet calculations, and stage storage tables for the proposed detention pond. iii. The Water Quality outlet will be an orifice plate affixed to the front of the outlet structure. A plate with a single row of 3 holes approximately 1" each in size has been selected. Calculations for the orifice plate opening sizing can be found in the appendices. iv. Culverts will convey flows under the proposed rail loop. RCP with Manning's n -value of 0.12 is the pipe material that has been selected. Diameter and slope vary as needed to convey the 100yr peak flows as shown in the appendices. HGLs and EGLs were calculated using Hydraflow software. Refer to the appendices for results of those calculations. v. No underground drainage systems will be installed as part of this project. vi. Native seed will be applied to any disturbed areas as a means of permanent erosion control. All culvert and detention outlet points will be protected by rip rap. The outlet for the detention pond has been designed with a low tailwater basin to provide additional erosion and sediment control as well as to dissipate the outflow from the pipe. vii. Only methods approved in the Weld County code or the UDFCD's Criteria Manual were used for this analysis. Drainage Facility Design General Concept i. Wherever possible, the historic drainage patterns for the site have been preserved. The proposed railroad loop will interrupt the on -site flows in the center of the site. A combination of swales and culverts will be employed to divert water along and through the railbeds to a detention pond at the east side of the interior loop. It is anticipated that flows north, south, and east of the proposed railroad loop will remain in the historic condition. Flows west of and within the loop will generally flow 12 to the east where they will be captured and diverted to the proposed detention pond. An outlet structure will drain the pond to culverts under the loop, returning those flows to the historic pattern. ii. Offsite flows will bypass the site and remain at the historic condition and flow path. iii. The appendices contain copies of all calculations, models, and resources referenced in previous sections that were used in the creation of this analysis. iv. Hydraulic structures present in this design include culverts, swales, and the detention pond outlet structure mentioned in previous sections. No other structures are anticipated for this project. Specific Details i. A maintenance road will be constructed adjacent to each side of the railroad grade, per BNSF specifications for industrial track. This road will also be used for maintenance and access to drainage facilities. The side slopes of the detention pond have been designed to be gradual so that it may be accessed from the west. In addition the following design considerations have been considered for maintenance purposes: • A micropool has been provided. • A design slope of at least 3% in the vegetated bottom of the basin has been provided to help maintain the appearance of the turf grass in the bottom of the basin and reduce the possibility of saturated areas that may produce unwanted species of vegetation and mosquito breeding conditions. Verify slopes during construction, prior to vegetation. • Trash rack sizing recommendations have been implemented per UDFCD. • Access has been provided to the outlet and micropool for maintenance purposes. • Access to the well screen has been provided. • A hard -bottom (concrete) micropool has been provided that allows for removal of sediment. ii. The improvements noted are subject to a Use By Special Review (USR) approval as well as Grading Permit and Building Permit applications through Weld County. Railroad improvements are subject to BNSF approval. 13 Conclusions Compliance with Weld County Code i. This drainage design conforms to all applicable Weld County codes and regulations. Drainage Concept i. This drainage design will be effective in controlling damage due to storm runoff for all storms up to and including the 100 year event. Off -site flows will bypass much of the proposed improvements and flow downstream along the historic flow path. On -site flows will be detained and released at a controlled rate. Water quality is included for the minor storm to trap sediment and debris. Due to the vast size of the basin and the fact that the improvements only represent a small percentage of imperviousness (7.4%) much of the runoff within the site will infiltrate before getting to the detention pond. What does not infiltrate will be detained and released at a controlled rate. ii. The proposed development will not impact any existing Weld County Master Drainage Plan recommendations. iii. No approval from offsite jurisdictions is required for this project. iv. References 1. Urban Storm Drainage Criteria Manual, Volumes 1-3; Urban Drainage and Flood Control District, Denver, CO. June 2001 (Revised April 2008). 2. Weld County Storm Drainage Criteria Addendum to the Urban Strom Drainage Criteria Manuals Volumes 1,2, and 3. Weld County Code Article XI and Appendix 8L. Weld County Public Works Department, Greeley, CO. October 2006 14 APPENDIX 15 A. SOILS MAP 16 Web Soil Survey Page 1 of 2 •�r L • Contact Us I Download Soils Data I Archived Soil Surveys I Soil Survey Status j Glossary Preferences I link I Logout i Help Area of Interest (AOI) IView Soil Information By Use: All Uses �I Soil Map Soil Data Explorer Shopping Cart (Free) Printable Version1 Add to Shopping Cartl Intro to Soils Sultabilities and Limitations for Use C) Search Properties and Qualities Ratings Open *111 Clow NI Soil Chemical Properties Calcium Carbonate (CaCO3) Cation -Exchange Capacity (CEC-7) Effective Cation -Exchange Capacity (ECEC) Electrical Conductivity (EC) Gypsum pH (1 to 1 Water) Sodium Adsorption Ratio (SAR) Soil Erosion Factors K Factor, Rock Free K Factor, Whole Soil T Factor Wind Erodibility Group Wind Erodibility Index Soil Physical Properties Available Water Capacity Available Water Supply, 0 to 100 cm Available Water Supply, 0 to 150 cm Available Water Supply, 0 to 25 cm Available Water Supply, 0 to 50 cm Bulk Density, 15 Bar Bulk Density, One -Tenth Bar Bulk Density, One -Third Bar Linear Extensibility Liquid Limit Organic Matter Percent Clay Percent Sand Percent Silt Plasticity Index Saturated Hydraulic Conductivity (Ksat) Soil Properties and Qualities Ecolog cal Site Assessment Soil Reports Map - Hydrologic Soil Group PCNn. bi _ 11121 Suia (riot to scale) Tables — Hydrologic Soil Group — Summary By Map Unit Summary by Map Unit — Weld County, Colorado, Southern Part (CO618) Map unit symbol Map unit name Rating Acres in AOI 14 Colby loam, 0 to 1 8 130.8 percent slopes 15 Colby loam, Ito 3 B percent slopes 16 Colby loam, 3 to 5 B percent slopes 18 Colby-Adena loams, 3 to 9 percent scopes 25 Haverson loam, 0 to I percent slopes 26 Haverson loam, 1 to 3 B percent slopes 35 Loup-Boel loamy sands, D 0 to 3 percent slopes 39 Nunn loam, 0 to 1 percent slopes 44 Olney loamy sand, 1 to 3 percent slopes 45 Olney loamy sand, 3 to 5 percent slopes 46 Olney fine sandy loam, 0 B B C B B B Percent of AOI 2.2% 351 1 5.8% 12 0 0.2% 11-4 0.2% 177.3 2.9% 50.8 0.8% 552 0.9% 124 7 2.10/0 342.2 5 7% 420 2 7.0% 228.3 3.8% http://websoilsurvey.nres.usda.gov/app/WebSoilSutvey.aspx 7/9/2012 Web Soil Survey Page 2 of 2 Saturated Hydraulic Conductivity (Ksat), Standard Classes to 1 percent slopes Surface Texture 47 Olney fine sandy loam, 1 B 421.0 7.0% to 3 percent slopes Water Content, 15 Bar 49 Osgood sand, 0 to 3 C 1,298.8 21.6°/0 percent slopes Water Content, One -Third Bar 69 Valent sand, 0 to 3 A 438 4 7.3% percent slopes (i) ® Soil Qualities and Features 70 Valent sand, 3 to 9 A 1,510.6 25.1% percent slopes AASHTO Group Classification (Surface) 72 Vona loamy sand, 0 to 3 B 11.1 0.2% percent slopes Depth to a Selected Sod Restrictive Layer 79 Weld percent loam, 1 to 3 C 443.1 7.4% ent slopes Depth to Any Soil Restrictive Layer Totals for Area of Interest 6,027.1 100.0% Drainage Class e Description — Hydrologic Soil Group Frost Action Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are Frost -Free Days thoroughly wet, and receive precipitation from long -duration storms. Hydrologic Soil Group The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, BID, and C/0). The groups are defined as follows: View Description View Rating Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate view Options ® ® Map F Table 17 Description of F Rating Rating Options r Detailed Description Advanced Options © /m Aggregation Dominant Cond tion Method of water transmission Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink -swell potential, soils that have a high water table, soils that have a claypan or day layer at or near the surface, and sods that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and Component Percent Cutoff the second is for undrained areas. Only the soils that In their natural condition are in group D are assioned to dual classes. Tie -break Rule Lower Rating Options — Hydrologic Soil Group Higher Aggregation Method: Dominant Cond tion View Description] View Rating Component Percent Cutoff: None Specified Tie -break Rule: Higher Map Unit Name Parent Material Name Representative Slope Unified Soil Classification (Surface) (V(I Water Features FOIA I Accessibility Statement I Privacy Policy I Non -Discrimination Statement Information Quality I USA.gov I White House http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx 7/9/2012 B. RAINFALL DATA 17 Colorado Precipitation Frequency Data -- OUTPUT PAGE Precipitation Frequency Data Output z O 0 CO H 0 0 v N 0 0 U N LI Weathor Service r4 re C O li1 re I Z N 0 L C 0 U N 0 •I W ro o O N y C a el CO CC O 4-1 to U a O r O 4 O !.1 w O f:. z y n. z Eo t: o O 1I 11 LI O O >. i� CO �'. 713-1669 a m Spring, MD 20910 1325 East-West N O O 0 rl tri O z C Na http://hdsc.nws.noaa.gov/cgi-bin/hdsc/na3.perl?plat=+40.138010&q Ion= -104.458261 &submit=Submit Hydraflow IDF Report Page 1 of 1 Return Period (Yrs) Equation Coefficients (FHA) -- B D E (N/A) 1 0.0000 0.0000 0.0000 -------- 2 29.7317 10.7000 0.8283 -------- 3 0.0000 0.0000 0.0000 --- -- 5 451970 10.7000 0.8283 10 56.9861 10 7000 0.8283 25 70.2965 10.7000 0.8283 ------- 50 81.7054 10.7000 0.8283 - - 100 C \Usersbnnem 91.8465 rs%DesktonVeenesburg 10.7000 0 8283 - - Intensity = B / (Tc + D)AE Return PeriodL6o (Yrs) Intensity Values (inlhr) 5 min 10 15 20 25 30 35 40 45 1 50 66 1 0.00 0.00 0.00 0.00 0.00 0.00 0 00 0.00 0.00 0.00 0.00 0.00 2 3.04 2.42 2.02 1.74 1.54 1.38 1.25 1.15 1.06 0.99 0.93 0.87 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 5 4.62 3.67 3.07 2.65 2.34 2.10 1.91 1.75 1.62 1.51 1.41 1.33 10 5.82 4.63 3.87 3.34 2.95 2.65 2.40 2.21 2.04 1.90 1.78 1.67 25 7.18 5.71 4.78 4.12 3 64 3.26 2.96 2.72 2.52 2.34 2.19 2.07 50 8.35 6.64 5.55 4.79 4.23 3 79 3.45 3 16 2.92 2.72 2.55 2.40 100 9.39 7.46 6.24 5.39 4.75 4.26 3.87 3.55 3.29 3.06 2.87 2.70 Tc= time inmi tes MinTct5 IDF file: Keenesburg.IDF d V 0 Storm Sewer L } 1 0 r O O ,1 r O O N r L L } L L } } 1O O N la N O O O r Ir L C c O O V: r O N r O O co O O co O 0 O O N O O 1-- O O Co O O (O O O Ti O 0 O O co O O O O N O to to O U, 10 v' O Nr a) M O Cr) U, N O N 1.0 r O r to O C E a) E I= Hydraflow Storm Sewers Extension or or t1/4 �'4. 1 — - . -- -__ 1 _ 1 •I 6 ' 1 ' I I ' ' g L S `•—��-1 I • I i�• 7 1 _L-3 11• • ; 44 y 1 1 r r- - .........t = L- 1 J -�-------_-.. ♦, 1 I 1 t a 1 I 1 / ‘ 1 1 t I V Tf 1 /1 , { , t / z • iy , � 1 t i3. •1 - 1• 1 :. 1 - .......•• IA III a .4 iii .ii coirsin �.,r ,� 7-- _� 4444t • �sy_ -r--- • Ta - 111113 -$ S y 4 _ - ` I i tT f �3, • !q r , y,. - �-� �� i t�L . ..... or :&jf±: -_`_y IS l �` � t ` (.a a>s 1JJJ)))1 Yom^ ni - a cc - CD ca 1 C----.. - — = - - _ '• Y n as g 's '1-- s Y----1---- - +J 1 I 1 1 • 1 1 1 A' I s 1 ( ' 1 I 1 1 1 I I 1 1 1 1 1 •II E 1 1 1 t 1 1 I Ls i 61 ft nt If g 1. _ 1 1 " I • is g I •1 • I I 1 4 1 t L 4 , T �.. a1 r T = ..�-----t -- •� • — U. .• , I 1 jN4I ` 111 1 r. -- - 1 1 .1 _ - I f 1 t f .n a, n - -.� tom_ J s L- a --r - ��_- - it' al •• ilea r • �:•��_= - - _ 1 Ill I I 17St I . a 1 ~$ \� 11.13 to f • y ��` _R .. ., a Qii eel o 1 ., �t j t illt ,r t ,- � t t •s \J _-- _ iz+ . c J 8 �� Cal•1 ' 1� 1 , 1 I i _i • ..----." -, --- _- to a t s ,..._„_...-..........r.-1 � , -� �� _.�- - ' 1 '. -T----s-- 1 • I li • • 1 t 11 `ZS 1 3. ZS -1•- t 1 •r..... -4 q p. I �• 7rc 1 • 1 t if1 1 1 t _ .,o 1 ' 1 t 1 _t j 1 t t i 1 .i t 1 t , i �. A. •� / , 1 a. -� I B. vs, _ . I i. ,.1 - .. , ,— r-� �, _. , ,� 1;�� - x . •' •• -r I -11'fielib; 4 + ('� k-, r rte„ 1 a . it ill' '. a!�j } ii lin I toe f - it I •J a 2,� s 1- - _ 1 Rte- • 1 � „ I Q1 Q -o I -,1 .1 . r_q 1 O I se f .. C. HEC-HMS CALCULATIONS AND OUTPUT (HISTORIC) Appendix A CN Tables SCS TR-55 Table 2-2c — Runoff curve numbers for other agricultural lands' Cover description Curve numbers for hydrologic soil group Cover type and hydrologic condition Hydrologic condition A B C D Pasture, grassland, or range — continuous forage for graving.2 Meadow — continuous grass, protected from grazing and generally mowed for hay. Poor 68 79 86 89 Fair 49 69 79 84 Good 39 61 74 80 — 30 58 71 78 Brush — brush -weed mixture with brush the major clement.' Woods — grass combination (orchard or tree farm).5 Woods.6 Farmsteads — buildings, lanes, driveways, and surrounding lots. Poor 48 67 77 83 Fair 35 56 70 77 Good 304 48 65 73 Poor 57 73 82 86 Fair 43 65 76 82 Good 32 58 72 79 Poor 45 66 77 83 Fair 36 60 73 79 Good 304 55 70 77 59 74 82 86 Average runoff condition, and I, = 0.2S. 2 Poor: <50% ground cover or heavily grazed with no mulch. Fair: 50 to 75% ground cover and not heavily grazed. Good: >75% ground cover and lightly or only occasionally grazed. 3 Poor <50% ground cover. Fair: 50 to 75% ground cover. Good: >75% ground cover. 4 Actual curve number is less than 30; use CN=30 for runoff computations. ' CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture. 6 Poor Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil. 117 rANDARD FORM SF -2 - DEVELOPED Time of Concentration 11/26/2012 O O r V O o O O O O H1 TLAG= 06' 1 0 = 059 OS1 TL,G = 0.6' 1 6 = 0 97 OS2 TLAG = 0.6' 1 1 = 0 68 o r U in r o Ln r o 0 15 J Q U it E. O (D r J Q u Z `a LL C 2 M Ci V rn O (D TRAVEL TIME (Ti) _ ^ C_ N E v 25.3 co (0 N co J N^ W n r co r N- r O r Land Surface (10) Grassed Waterway Grassed Waterway Grassed Waterway --O o on in r 150 O to r W O \ 0O J 0 to r 0 M r 0 (D r LENGTH Ft. (7) a) co N- N 6,338 in co V o CO M f--- N J Q ..� P W Z W d 0 .� O\ v 0 in r 0 co r 0 to N _ p LENGTH Ft (4) 500 O O LU 500 �, U (0) in r O � r O in r 0 Z Q ‹C H Q U 0 ^ N Q N Q 356.00 O CD r N 214.00 Ca 1 < CO 0 DESIGN BASIN (1) r 2 r (n 0 (Ni (1) 0 HEC-HMS Tc BASELINE Engineering • Planning • Surveying MEETING MINUTES Date: By Baseline Employee: Attendants: Project: RE: Subject/Topics Covered/Items Discussed: I Follow UP? LS = 0.34 * (0.728 - 0:00546 * P) where: * (AJ(S0.5)0.2 (Equation 3-6) Ls = Snyder's standard lag time, hours P = Percent urbanization, or the percentage of the watershed that is commercial, industrial, residential, institutional, and otherwise developed. Percent urbanization is not the same as the percent impervious. A = Area of watershed, acres S = Slope of the main channel, feet/fee:t in Ls = 0.3Y* (07726) *g35C O.OISo.sr W 1.21 NES aS 1 LS$ d.�y x (p.-,m)`2S, t(0I.'7T= Lis was 'f thii9 x (0.12 .11) = l.ocl N25' t'Se"D AS A CKct1tl . Lessee V a Lv€ USW OP-/ O•`xTc WAS us€t • CCo J 0 f 1 (Ts LZ alb I Ir 1_t 0 i I 1 LI i f 03 11:1 LL NEC -HMS HISTORIC MODEL INPUT PERAMETERS Basin Area (MI2) SCS Cuvre Number Imperviousness % Snyder Lag (HR) Peaking Coefficient H1 0.582 74 0.6 0.59 0.6 OS1 i 0.392 61 a 0.6 0.97 0.8 OS2 0.334 61 0.6 0.68 0.8 Basin Model "Historic" Subbasin H1 OS1 OS2 Current as of 27 November 2012 at 15:06:10 Snyder Tp 0.59 0.97 0.68 Snyder Cp 0.6 0.80 0.80 Junction "Junction -H1" Results for Run "5YR FRE() STM" 160 3 0 20 10 0 50� I r\ 1 1 1 1 1 1 1 1 \ \ 1 out 01.00 0100 03:00 a:CO 05:00 Run:5YR FRED ST ElementJUNC110t411 ResultOutflow — — — Run:5YR FREQ ST ElementH1 Resul:Oufliccw Run:5YR FREQ ST Element REACH -0S1 TO H1 Resufl:Outflow —. — Run:5YR FREQ ElemeetREACH-082 TO Hi ResuftOutflow 06c0 01Jan2013 Project: Plains Simulation Run: 5YR FREQ STMJunction: Junction -H1 Start of Run: 01Jan2013, 00:00 Basin Model: Historic End of Run: 01Jan2013, 06:00 Meteorologic Model: 5yr Compute Time: 27Nov2012, 08:06:12 Control Specifications: Minor Date Time Inflow (CFS) from H1 Inflow (CFS) from Realrtfk (CFS) Sffc1rnll 9fuM# (CFS) 4 to H1 01Jan2013 00:00 0.0 0.0 0.0 0.0 01Jan2013 00:15 0.0 0.0 0.0 0.0 01Jan2013 00:30 0.0 0.0 0.0 0.0 01Jan2013 00:45 0.1 0.0 0.0 0.1 01Jan2013 01:00 0.1 0 0 0.0 0.1 01Jan2013 01:15 0.1 0.0 0.0 0 2 01Jan2013 01:30 0.2 0.0 0.0 0.2 01Jan2013 01:45 0.2 0.0 0.1 0.3 01Jan2013 02:00 0.2 0.1 0.1 0.3 01Jan2013 02:15 0.2 0.1 0.1 0.4 01Jan2013 02:30 0 2 0.1 0.1 0.4 01Jan2013 02:45 0.4 0.1 0.1 0.7 01Jan2013 03:00 1.5 0 1 0.1 1.8 01Jan2013 03:15 7.7 0.1 0.1 7.9 01Jan2013 03:30 25.1 0.2 0.1 25.4 01Jan2013 03:45 46.3 0.2 0.3 46.8 01Jan2013 04:00 53.4 0.4 0 6 54.3 01Jan2013 04:15 46.1 0.7 1 0 47.8 01Jan2013 04:30 36.0 1.2 1.7 38.9 01Jan2013 04:45 28.2 2.0 2.6 32.9 01Jan2013 05:00 23.3 2.9 3.5 29.6 01Jan2013 05:15 20.2 3 5 3.7 27.5 01Jan2013 05:30 18.0 3.8 3 3 25.2 01Jan2013 05:45 16.3 3.7 2.8 22.7 01Jan2013 06:00 14.8 3.3 2.5 20.6 Project: Plains Simulation Run: 10YR FREQ STM Start of Run: 01Jan2013, 00:00 Basin Model: Historic End of Run: 01Jan2013, 06:00 Meteorologic Model: 10yr Compute Time: 27Nov2012, 08:06:11 Control Specifications: Minor Storm Hydrologic Element Drainage (MI2) Area Peak (CFS) DischargleTime of Peak Volume (AC -FT) H1 0.582 116.3 01Jan2013, 04:00 14.6 OS1 0.392 19.7 01 Jan2013, 04:30 2.7 Reach-OS1 to H1 0.392 19.6 01Jan2013, 05:30 2.0 OS2 0.334 20.6 01Jan2013, 04:00 2.5 Reach-OS2 to H1 0.334 20.6 01Jan2013, 05:00 2.0 Junction -H1 1.308 117.7 01Jan2013, 04:00 18.5 Junction "Junction -H1" Results for Run "10YR FREQ STM" 120 100 80 I 60 0 40 20 0 - 1 1 1 - 1 I 1 1 1 1 \ 1 1 \ \ \ NNN / • / / / I / / / \ 00:00 0100 02:00 03:00 Run:10YR FREQ STM Element:JUNCTION-H1 Result:0utflow Run:10YR FREQ STM Element:H1 Result:0utflow Run:10YR FREQ STM Element:REACH-OS1 TO H1 Result:0utflow — - — Run:10YR FREQ STM Element:REACH-OS2 TO H1 Result:0utflow 04:00 05:00 06:00 01Jan2013 Project: Plains Simulation Run: 10YR FREQ STMJunction: Junction -H1 Start of Run: 01Jan2013, 00:00 Basin Model: Historic End of Run: 01Jan2013, 06:00 Meteorologic Model: 10yr Compute Time: 27Nov2012, 08:06:11 Control Specifications: Minor Date Time Inflow (CFS) from H1 Inflow (CFS) from Reabik (CFS) Sfrc1rnHR a ft1t€62 (CFS) to H1 01Jan2013 00:00 0.0 0.0 0.0 0.0 01Jan2013 00:15 0.0 0.0 0.0 0 0 01Jan2013 00:30 0.0 0.0 0.0 0.0 01Jan2013 00:45 0.1 0.0 0 0 0.1 01Jan2013 01:00 0.1 0.0 0.0 0.1 01Jan2013 01:15 0.2 0 0 0.0 0.2 01Jan2013 01:30 0.2 0.0 0.0 0.3 01Jan2013 01:45 0.2 0.0 0.1 0.3 01Jan2013 02:00 0.2 0.1 0.1 0.4 01Jan2013 02:15 0.3 0.1 01 0,5 01Jan2013 02:30 0.3 0.1 0.1 0.6 01Jan2013 02:45 0.6 0.1 0 1 0.9 01Jan2013 03:00 5.6 0 2 0 1 5.9 01Jan2013 03:15 26.0 0.2 0.2 26.3 01Jan2013 03:30 67.6 0.2 0.2 68.0 01Jan2013 03:45 108.4 0.3 0 4 109.0 01Jan2013 04:00 116.3 0.6 0.8 117.7 01Jan2013 04:15 96.4 1.4 2.2 100.0 01Jan2013 04:30 73.0 4 3 7 0 84.3 01Jan2013 04:45 55.4 9.6 15.0 80.0 01Jan2013 05:00 44.1 15.3 20.6 79.9 01Jan2013 05:15 37.1 19.1 19.9 76.1 01Jan2013 05:30 32.1 19.6 14.8 66.4 01Jan2013 05:45 28.2 16.8 10.1 55.1 01Jan2013 06:00 25.1 13.2 7.8 46.1 Project: Plains Simulation Run: 25YR FREQ STM Start of Run: 01Jan2013, 00:00 Basin Model: Historic End of Run: 01Jan2013, 06:00 Meteorologic Model: 25yr Compute Time: 27Nov2012, 08:06:11 Control Specifications: Minor Storm Hydrologic Element Drainage (MI2) Area Peak (CFS) DischargeTime of Peak Volume (IN) H1 0.582 186.0 01Jan2013, 04:00 0.76 OS 1 0.392 43.9 01Jan2013, 04:15 0.28 Reach-OS1 to H1 0.392 43.8 01Jan2013, 05:15 0.21 OS2 0.334 47.8 01Jan2013, 04:00 0.30 Reach-OS2 to H1 0.334 47.5 01Jan2013, 05:00 0.24 Junction -H1 1.308 188.1 01Jan2013, 04:00 0.46 Junction "Junction -H1' Results for Run "25YR FREQ STM" 200 180 160 140 120 00 0 I 80 60 40 20 0 1 1 1 \ 1 - 1 1 1 _ ♦ 1 1 1 -- 1 1 \ \ r i` N - . \ /- 1 00.00 0100 02.00 03:00 Run:25YR FREQ STM Element:JUNCTION-H1 Result:Outflow — — — Run:25YR FREQ STM Element:H1 Result:Outflow Run:25YR FREQ STM Element:REACH-0S1 TO H1 Result:Outflow — - — • Run:25YR FREQ STM Element:REACH-OS2 TO H1 Result:Outflow 04:00 05:00 06:00 01Jan2013 Project: Plains Simulation Run: 25YR FREQ STMJunction: Junction -H1 Start of Run: 01Jan2013, 00:00 Basin Model: Historic End of Run: 01Jan2013: 06:00 Meteorologic Model: 25yr Compute Time: 27Nov2012, 08:06:11 Control Specifications: Minor Date Time Inflow (CFS) from H1 Inflow (CFS) from Rea til (CFS) fl•donFfRb (CFS) 1t 4 to H1 01Jan2013 00:00 0.0 0.0 0.0 0.0 01Jan2013 00:15 0.0 0.0 0 0 0.0 01 Jan2013 00:30 0.1 0 0 0.0 0.1 01Jan2013 00:45 0.1 0 0 0.0 0.1 01Jan2013 01:00 0.2 0.0 0.0 0.2 01Jan2013 01:15 0.2 0.0 0.0 0.2 01Jan2013 01:30 0.3 0.0 0.0 0.3 01Jan2013 01:45 0.3 0.1 0.1 0.4 01Jan2013 02:00 0 3 0.1 0.1 0.5 01Jan2013 02:15 0.3 0.1 0.2 0.6 01Jan2013 02:30 0.4 0.2 0.2 0.7 01Jan2013 02:45 1.6 0.2 0.2 2.0 01Jan2013 03:00 14.0 0.2 0.2 14.4 01Jan2013 03:15 53.4 0.2 0.2 53.8 01Jan2013 03:30 121.2 0.2 0.2 121.7 01Jan2013 03:45 180.2 0.4 0.4 181.0 01Jan2013 04:00 186.0 0.8 1 3 188.1 01Jan2013 04:15 150.8 3.4 5.7 159.9 01Jan2013 04:30 112.3 11.3 19.2 142.8 01Jan2013 04:45 84.3 24.2 37.6 146.0 01Jan2013 05:00 66.5 36.8 47.5 150.9 01Jan2013 05:15 55.8 43.8 42.5 142.1 01Jan2013 05:30 48.2 42.5 29.2 119.9 01Jan2013 05:45 42.3 34.6 18.8 95.7 01Jan2013 06:00 37.7 25.9 14.0 77.6 Project: Plains Simulation Run: 50YR FREQ STM Start of Run: 01Jan2013, 00:00 Basin Model: Historic End of Run: 01Jan2013, 06:00 Meteorologic Model: 50yr Compute Time: 27Nov2012, 08:11:58 Control Specifications: Major Storm Hydrologic Element Drainage (MI2) Area Peak (CFS) DischargeTime of Peak Volume (IN) H1 0.582 260.4 01Jan2013, 03:50 0.99 OS1 0.392 69.7 01Jan2013, 04:15 0.42 Reach-OS1 to H1 0.392 69.6 01Jan2013, 05:15 0.33 OS2 0.334 76.5 01Jan2013, 04:00 0.44 Reach-OS2 to H1 0.334 76.1 01Jan2013, 05:00 0.37 Junction -H1 1.308 261.5 01Jan2013, 03:50 0.63 Junction "Junction -H1" Results for Run "50YR FREQ STM" 300 250 200 2 150 0 100 50 0 00 00 _ 1 1 _ 1 1 1 1 \ 1 - /- ' \ / / / S' // 7 A - \ f i 0100 02 00 0300 Run:50YR FREQ STM Element:JUNCTION-H1 Result:Outflow — — — Run:50YR FREQ STM Element:H1 Result:Outflow Run:50YR FREQ STM Element:REACH-OS1 TO H1 Result:Outflow — - — Run:50YR FREQ STM Element:REACH-OS2 TO H1 Result:Outflow 04:00 05:00 06:00 01Jan2013 Project: Plains Simulation Run: 50YR FREQ STMJunction: Junction -H1 Start of Run: 01Jan2013, 00:00 Basin Model: Historic End of Run: 01Jan2013, 06:00 Meteorologic Model: 50yr Compute Time: 27Nov2012, 08:11:58 Control Specifications: Majc Date Time Inflow (CFS) from H1 Inflow (CFS) from Re (CFS) ik®Sf'l-ctoiHRle (CFS) t to H1 01Jan2013 00:00 0 0 0.0 0 0 0.0 01Jan2013 00:05 0.0 0.0 0 0 0.0 01Jan2013 00:10 0.0 0 0 0 0 0.0 01Jan2013 00:15 0.0 0 0 0 0 0.0 01Jan2013 00:20 0.0 0.0 0.0 0.0 01Jan2013 00:25 0.0 0.0 0.0 0.0 01Jan2013 00:30 0 1 0.0 0.0 0.1 01Jan2013 00:35 0 1 0.0 0 0 0.1 01Jan2013 00:40 0.1 0.0 0 0 0.1 01Jan2013 00:45 0.1 0 0 0 0 0.1 01Jan2013 00:50 0.2 0 0 0.0 0.2 01Jan2013 00:55 0 2 0.0 0 0 0.2 01Jan2013 01:00 0.2 0.0 0.0 0 2 01Jan2013 01:05 0.2 0.0 0.0 0.2 01Jan2013 01:10 0.2 0.0 0.0 0.2 01Jan2013 01:15 0.2 0 0 0.0 0.2 01Jan2013 01:20 0.2 0 0 0.0 0.3 01Jan2013 01:25 0.3 0 0 0.0 0.3 01Jan2013 01:30 0.3 0.0 0.0 0.3 01Jan2013 01:35 0.3 0.0 0.1 0.4 01Jan2013 01:40 0 3 0 0 0.1 0.4 01Jan2013 01:45 0.3 0.1 0.1 0.5 01Jan2013 01:50 0.3 0.1 0.1 0.5 01Jan2013 01:55 0.3 0 1 0.1 0.5 01Jan2013 02:00 0.3 0.1 0.1 0.5 Page 1 Date Time Inflow (CFS) from H1 Inflow (CFS) from Reakrtf(SffctmFfRbaO1n4 (CFS) (CFS) to H1 01Jan2013 02:05 0.3 0.1 0.1 0.6 01Jan2013 02:10 0.3 0.1 0.1 0.6 01Jan2013 02:15 0.3 0 1 0.2 0.6 01Jan2013 02:20 0.4 0 1 0.2 0.7 01Jan2013 02:25 0.4 0 2 0.2 0.7 01Jan2013 02:30 0.4 0.2 0.2 0.7 01Jan2013 02:35 0.4 0.2 0.2 0.8 01Jan2013 02:40 0.6 0.2 0.2 1.0 01Jan2013 02:45 1.5 0.2 0.2 1.9 01Jan2013 02:50 4.0 0.2 0.2 4.4 01 Jan2013 02:55 9 3 0.2 0 2 9.7 01Jan2013 03:00 18.7 0.2 0.2 19.1 01Jan2013 03:05 33.0 0.2 0.2 33.4 01Jan2013 03:10 52.6 0.2 0.2 53.0 01Jan2013 03:15 77.2 0.2 0.2 77.7 01Jan2013 03:20 106.1 0.2 0.2 106.6 01Jan2013 03:25 138.1 0.2 0.2 138.6 01Jan2013 03:30 171.9 0.3 0.2 172.4 01Jan2013 03:35 204.5 0.3 0.3 205.1 01Jan2013 03:40 231.9 0 3 0.4 232.6 01Jan2013 03:45 251.1 0.4 0.5 252.0 01Jan2013 03:50 260.4 0 5 0.6 261.5 01Jan2013 03:55 259.3 0.6 0.9 260.9 01Jan2013 04:00 249.3 1.0 1.6 251.8 01Jan2013 04:05 232.5 1.7 2.9 237.2 01Jan2013 04:10 212.3 3.1 5.4 220.7 01Jan2013 04:15 192.0 5.3 9.4 206.7 01Jan2013 04:20 173.7 8.5 15.2 197.4 01Jan2013 04:25 157.0 13.0 23.2 193.2 01Jan2013 04:30 141.8 18.9 33.2 193.9 01Jan2013 04:35 128.2 25.9 44.3 198.3 Page 2 Date Time Inflow (CFS) from H1 Inflow (CFS) from Realttfi (CFS) ftc1mFf a0ftn (CFS) to H1 01Jan2013 04:40 116.2 33.3 55.0 204.5 01Jan2013 04:45 105.7 40.8 64.4 210.9 01Jan2013 04:50 96.7 48.1 71.4 216.3 01Jan2013 04:55 89.1 54.8 75.5 219.4 01Jan2013 05:00 82.6 60.6 76.1 219.4 01Jan2013 05:05 77.1 65.2 73.6 215.9 01Jan2013 05:10 72.2 68.3 68.4 208.9 01Jan2013 05:15 67.9 69.6 61.4 199.0 01Jan2013 05:20 64.0 69.3 53.4 186.7 01Jan2013 05:25 60.5 67.4 45.6 173.5 01Jan2013 05:30 57.3 64.1 38.9 160.3 01Jan2013 05:35 54.4 59.7 33.4 147.4 01Jan2013 05:40 51.7 54.5 29.0 135.2 01Jan2013 05:45 49.3 49.1 25.4 123.7 01Jan2013 05:50 47.0 43.9 22.6 113.6 01Jan2013 05:55 45.0 39.5 20.5 105.0 01Jan2013 06:00 43.1 35.7 18.8 97.7 Page 3 Project: Plains Simulation Run: 100YR FREQ STM Start of Run: 01Jan2013, 00:00 Basin Model: Historic End of Run: 01Jan2013, 06:00 Meteorologic Model: 100yr Compute Time: 27Nov2012, 09:00:45 Control Specifications: Major Storm Hydrologic Element Drainage (MI2) Area Peak (CFS) DischargeTime of Peak Volume (AC -FT) H1 0.582 333.6 01Jan2013, 03:50 39.8 OS1 0.392 100.4 01Jan2013, 04:15 12.6 Reach-OS1 to H1 0.392 100.2 01Jan2013, 05:15 9.9 OS2 0.334 109.0 01Jan2013, 04:00 11.2 Reach-OS2 to H1 0.334 108.6 01Jan2013, 04:55 9.6 Junction -H1 1.308 335.0 01Jan2013, 03:50 59.4 Junction "Junction -H1" Results for Run "100YR FREQ STM" 350 300 250 200 I U 0 150 100 50 0 1 1 1 1 1 1 /- j-\\ ,, ` \ ' /' 'i 00:00 01.00 02:00 03:00 Run:100YR FREQ STM Element:JUNCTION-H1 Result:Outflow Run:100YR FREQ STM Element:H1 Result:Outflow Run:100YR FREQ STM Element:REACH-OS1 TO H1 Result:Outflow — - — • Run:100YR FREQ STM Element:REACH-OS2 TO H1 Result:Outflow 04:00 05:00 06:00 01Jan2013 Project: Plains Simulation Run: 100YR FREQ STMUunction: Junction -H1 Start of Run: 01Jan2013, 00:00 Basin Model: Historic End of Run: 01Jan2013, 06:00 Meteorologic Model: 100yr Compute Time: 27Nov2012, 08:11:54 Control Specifications: Majc Date Time Inflow (CFS) from H1 Inflow (CFS) from Realrtil (CFS) ffcImH wtOS2 to (CFS) H1 01Jan2013 00:00 0.0 0.0 0.0 0.0 01Jan2013 00:05 0.0 0 0 0.0 0.0 01Jan2013 00:10 0 0 0.0 0.0 0.0 01Jan2013 00:15 0.0 0.0 0.0 0.0 01Jan2013 00:20 0 0 0.0 0.0 0.0 01Jan2013 00:25 0.0 0.0 0.0 0.0 01Jan2013 00:30 0.1 0.0 0.0 0.1 01Jan2013 00:35 0.1 0.0 0.0 0.1 01Jan2013 00:40 0.1 0.0 0.0 0.1 01Jan2013 00:45 0.2 0.0 0.0 0.2 01Jan2013 00:50 02 0.0 0.0 0.2 01Jan2013 00:55 0.2 0.0 0 0 0.2 01Jan2013 01:00 0.2 0.0 0.0 0.2 01Jan2013 01:05 0.2 0.0 0.0 0.2 01Jan2013 01:10 0.3 0.0 00 03 01Jan2013 01:15 0.3 0.0 0.0 0.3 01Jan2013 01:20 0.3 0.0 00 03 01Jan2013 01:25 0.3 0.0 0.0 0.3 01Jan2013 01:30 0.3 0.0 0.0 0.4 01Jan2013 01:35 0.3 0.0 0.1 0.4 01Jan2013 01:40 0.3 0.0 0.1 0.5 01Jan2013 01:45 0.4 0.1 0.1 0.5 01Jan2013 01:50 0.4 0.1 0.1 0.6 01Jan2013 01:55 0.4 0 1 0.1 0.6 01Jan2013 02:00 0.4 0.1 0 1 0.6 Page 1 Date Time Inflow (CFS) from H1 Inflow (CFS) from Realrtila+Sftc1cnFRe (CFS) te/S2 to (CFS) H1 01Jan2013 02:05 0.4 0 1 0 2 0.7 01Jan2013 02:10 0.4 0.1 0.2 0.7 01Jan2013 02:15 0.4 0 2 0 2 0.7 01Jan2013 02:20 0.4 0.2 0 2 0.8 01Jan2013 02:25 0.4 0 2 0.2 0.8 01Jan2013 02:30 0.5 0.2 0.2 0.9 01Jan2013 02:35 0.5 0.2 0.2 0.9 01Jan2013 02:40 1.0 0.2 0.2 1.4 01Jan2013 02:45 2.7 0.2 0 2 3.2 01Jan2013 02:50 7.3 0 2 0 2 7.7 01Jan2013 02:55 16.1 0.2 0.2 16.6 01Jan2013 03:00 30.5 0.2 0.2 31.0 01Jan2013 03:05 51.3 0.3 0.2 51.8 01Jan2013 03:10 78.5 0.3 0.2 79.0 01Jan2013 03:15 111.4 0.3 0 2 111.9 01Jan2013 03:20 148.7 0 3 0.3 149.2 01Jan2013 03:25 188.8 0.3 0 3 189.3 01Jan2013 03:30 230.1 0 3 0 3 230.7 01Jan2013 03:35 269.4 0 3 0 3 270.1 01Jan2013 03:40 301.8 0 4 0 4 302.6 01Jan2013 03:45 323.8 0 4 0 6 324.8 01Jan2013 03:50 333.6 0 6 0 8 335.0 01Jan2013 03:55 330.7 0.9 1 4 333.1 01Jan2013 04:00 316.9 1.7 2 9 321.5 01Jan2013 04:05 295.2 3.2 5 6 304.0 01Jan2013 04:10 269.2 5.6 10.2 285.1 01Jan2013 04:15 243.5 9.4 17.1 270.0 01Jan2013 04:20 220.2 14.7 26.5 261.4 01Jan2013 04:25 199.0 21.8 38.7 259.5 01Jan2013 04:30 179.9 30.7 53.2 263.8 01Jan2013 04:35 162.7 40.9 68.9 272.4 Page 2 Date Time Inflow (CFS) from H1 Inflow (CFS) from Re ttilSfr-drn (CFS) aelnftefs2 (CFS) to H1 01Jan2013 04:40 147.4 51.7 83.5 2827 01Jan2013 04:45 134.1 62.4 95.7 292.3 01Jan2013 04:50 122.7 72.6 104.4 299.7 01Jan2013 04:55 112.9 81.8 108.6 303.3 01Jan2013 05:00 104.5 89.6 108.2 302.3 01Jan2013 05:05 97.3 95.5 103.6 296.4 01Jan2013 05:10 91.0 99.1 95.6 285.7 01Jan2013 05:15 85.3 100.2 85.3 270.9 01Jan2013 05:20 80.3 99.0 74.0 253.2 01Jan2013 05:25 75.6 95.6 63.0 234.2 01Jan2013 05:30 71.5 90.4 53.6 215.5 01Jan2013 05:35 67.7 83.8 46.0 197.5 01Jan2013 05:40 64.2 76.3 39.9 180.4 01Jan2013 05:45 61.1 68.5 35.0 164.5 01Jan2013 05:50 58.3 61.2 31.1 150.5 01Jan2013 05:55 55.6 54.9 28.0 138.6 01Jan2013 06:00 53.3 49.5 25.7 128.4 Page 3 D. HEC-HMS CALCULATIONS AND OUTPUT (PROPOSED) Detention Pond H C%) 0 in CC LL CC O r C = CC C 0 ca E C!) Pond Hydrograph Basin Model: E D O co U) o L - Q O O >' C L._O 0 r i/i • • C Q) 0 O co 2 L_ 05 '� a O _ O Cn O O N +' +-� C O o U O O O O O th O O co- 1111 C C Cc CC U t 4 a) t O (3 C CL CO W 00 It N N Cr; 0 CV - 0 N > 0 Z N O E H a) -131 E 0 awnloA co 4 co N co (-Nil N r r - O ,--- Time of Peak 01Jan2013, 04:00 01Jan2013, 04:20 01Jan2013, 04:00 01Jan2013, 03:40 01Jan2013, 04:00 Peak Discharge (CFS) Cr) CO M N CO r O7 CO r N- N r r CO N- Drainage Area (MI2) O CO r O CD co O O O N- O O t- N O d N - co O CO O Hydrologic Element N- CL N CL 10 CL CO CL Detention Pond Junction "Detention Pond" Results for Run "10YR FREQ STM" 8 7 6 50 w 40 U _0 LI 30 20 10 0 / \ / I I \ \ I I-\ / • -teN �'�-\ ` \ \ ---...,,,,... / .....,. m prip ,c - - _-..-._. =r. G 1 00:00 01:00 02:00 03:00 Run:10YR FREQ STM Element:DETENTION POND Result:Outflow — — — Run:10YR FREQ STM Element:P7 Result:Outflow Run:10YR FREQ STM Element:P2 Result:Outflow — - — Run:10YR FREQ STM Element:P5 Result:Outflow — - - — Run:10YR FREQ STM Element: P6 Result:Outflow 04:00 05:00 06:00 01Jan2013 Detention Pond O co O C W O c O o O (6 2 a_ Q) - 0 V O q) Q • _ W O) O O L C Oo C p O C) a• — Q) Es 46co D) C u) I. O D (Si >, — O) = (/) O 0 -0 EN O N C (D r 0_ W 0 CC 0 o N N ,- 00 •0 O V CO N Z CD C r - O O •-, O a.. d CO NJ r O 3 2 O E Q -) F- O O a) C C g E tt o o U (t CC -0 - W CO O O r O N O 'ict O f` O CA O r CO to CD CO CO CO O r - (NI O O a O N O co O co O it O it O -t O O it O '�T O it O -4• O to O r O O O O O O O r O r O N O N O CO O 00 O CY) O CO O qzt O \I- O 'fit O O O O O O O O O O r O r- O r O N O N O CO O CO O C) O CO O O O O 000 O r- r- O N O C') O 't O LC) O (f) O r-- O N O N O I� O I` O co O O O O O O r O O a N O O O CO O O O Vt O O O to O• O O O r- O O r r- O O N r 0 01:30 O V r- O O tf) r O O O N O O r- N 0 O N N 0 01Jan2013 01Jan2013 01Jan2013 01Jan2013 01Jan2013 01Jan2013 01Jan2013 CO r O N C CO r 0 co r O N C CI r- 0 01Jan2013 01Jan2013 01Jan2013 01Jan2013 01Jan2013 01Jan2013 s M N CD CO co CI) N r- IC) r-. N Cr) 4 CO r In CD (6 CO r- Cn N- r- CD N- CO N--; N- d N6 CO N- LO 0O 0O CO r- O N N C7 N O (3) r N- f� r (N CD r O Lb r r - 4 r - t` O C? r CO N O IC) N- (3) O N r- N- N r (N ON r CD r CO c- In r- N c NCO c c 'tt r- CO c N N c r - c r t O CD t....) O r- O r C.D CO C.D�' V' O r- CD d r N-- N- r C31 0O r- 17.8 r- 1.0 r- r - r ti 0O CO C0 Cr) UC) d' 4 (3) C7 L.0 M CO CO O CO isT O O t` O N r— r- N CO CO O CD CO co N- r r r r- N- r N CO r CO r- 14.1 0 N r (3) C3) r— Cp CO (0 0O U) O (6 LO 0O O N r- CO N it t CO co 4 rr N- N co CO 'It CO O CO 34.7 N N O c,ico (N CO r 0) ti CO r- Co CO U) C.0 6 CD (6 N' (.0 O co N O 02:40 O U) N O O O 695 O O r- CO O O N C7 O O CO CO O O 4 CO O O UC) CO O O 0 4 O 04:10 04:20 O CO d" O O 'Cr d' O O U) 4 O O O Lb O O r CI) O O N In O O CO Cn O 05:40 O 1.0 LC) O 01Jan2013 01Jan2013 01Jan2013 I 01Jan2013 01Jan2013 co r O N C CT3 r 0 01Jan2013 01Jan2013 01Jan2013 01Jan2013 co r O (N C (0 r 0 I01Jan2013 01Jan2013 01Jan2013 01Jan2013 01Jan2013 01Jan2013 01Jan2013 co r - O N C CB r 0 01Jan2013 01Jan2013 2 a cC o o r C X C O co E C!) Pond Hydrograph tj a) .o L a. E 3 O C v ' Basin Mode O O O O O (O O O M co r r O O N N C C R3 RI --) --) r r O 0 C C CC 0 Cr O 6 t o R5 ID Cn Li op N N O O N r O N > O Z N N Q) E i- a) a E O O E LL 0 ' O r 1"-- U') U) CO N N N j Q Time of Peak 01Jan2013, 04:00 01Jan2013, 04:20 01Jan2013, 04:00 01Jan2013, 03:40 01Jan2013, 03:50 Peak Discharge (CFS) N 0) O d' 'it ti d' co ti N L) • Q) N- Drainage Area (MI2) O Nr cCO r O CO N- O O O N. O O r N O O N— CO CO O Hydrologic Element N CL N D- U) 0_ CO Q- Detention Pond Junction "Detention Pond" Results for Run "100YR FREQ STM" 200 180 160 140 120 41i 100 Q E 80 60 40 20 0 / / \ \\N„....„,.. / ° \ P ` - •7\-- • /‘‘vf2 . / _\ • 0000 01:00 0200 03:00 Run:100YR FREQ STM Element:DETENTION POND Result:Outflow — — — Run:100YR FREQ STM Element:P7 Result:Outflow Run:100YR FREQ STM Element:P2 Result:Outflow — - — Run:100YR FREQ STM Element:P5 Result:Outflow — - - — Run:100YR FREQ STM Element:P6 Result:Outflow 0400 05 00 06.00 01Jan2013 Detention Pond C s o o (� C D O 'O C5 O oc LL U • O O O I- CI_ C C 0 CU O E Basin Model: Start of Run: 2 End of Run: co N N O N r - O O z N O E I- a) Q E O U O r CO 1` O 'fit 1` O N In NN CO 1` CO (3) N O o O O N O CO O ict O In o In O CO O O O CD O 1` O CO O CO O 1` O CO O O O O O O O r O N O N O CO O 't O Nr O In O If) O In 6 CO O CO O CO O O O O O O O O O r O r O N O CO O CO O O O U) O U O CO O CO O O O O O r O N O CO O In O (.O O CO O 0) O O r O r r r r-- r r r N 1--- o O a O O N-- O O O N O O O CO'Cr O O O a O O LC) co O O O r O O r r O O N r O O CO r O O ¶t r O O In r O O O N O O r N O O N N O 01Jan2013 01Jan2013 01Jan2013 01Jan2013 01Jan2013 CO r 0 N C CZ r 0 01Jan2013 01Jan2013 01Jan2013 CO r 0 N C CZ r 0 01Jan2013 01Jan2013 01Jan2013 01Jan2013 01Jan2013 C.O co O CO (C 4 r- U7 Ni Co O) a) U) (D U) a) CO N CO r O N r U) r a) r CO a) co O r tt C7 N r U) F` v- r N R r r r CO CO O 11) CO Cb a U) r CO Nt (C) N- CO N CO co CO O co IT. Cb N O r r N U7 U') CO N. r N ice - r r CO N CO I` N CO N N CC) N U) Ni r O (C) C O CO CT N U) N Lt). N U) N U? N d' N Ch N r N O N t� O O r N Ni N U) 0) O r N O r 29.7 CC) a) co CO CO 4 47.4 43.2 U7 6 CO CO (D N CO O r CO r CO rLr).(N! r O) CO ch N CO CO O (0 CD O C° O r O N CO U) 'Cr O r 0) O r ' t tt N U) r (` CO 40.4 N O ist N co CO CO Co CO CO CO N 22.9 U) Cb r N U) r CO Ni r O r' r CD a) r CO CO r N N U)• ) U) O CO r U7 Uj (NI CO N CO CO CO N N CO N N a) 92.7 CO CO CO N t` CC) N a) N N CO it a) r CO CO r U) N r CO r r "Cr r• r r N O r- 000000000 C'O N O it N O U) N O O C) O r C7 a N C7 O CO CO O mot C7 O U) C7 O 04:00 O r 4 O O N O O C7 4 O O Ct 4 O O U) 4 O 05:00 O r 6 O O N U) O O CO U7 co O Nt U) O O U) U) O 01Jan2013 01Jan2013 01Jan2013 01Jan2013 01Jan2013 co r O C C13 r 0 01Jan2013 co r O C Cd r 0 01Jan2013 01Jan2013 co r O C CII r 0 01Jan2013 01Jan2013 01Jan2013 01Jan2013 01Jan2013 01Jan2013 CO r O C 03 r 0 01Jan2013 co r O C Cl r 0 co r O C CCS r 0 Reach -081 to P1 r r 0 isk Junction -P1 Reach -052 to P1 co O as` • O HEC-HMS PROPOSED MODEL INPUT PERAMETERS Basin Area (MI2) SCS Curve Number Imperviousness % Snyder Lag (HR) Peaking Coefficient P 1 0.582 74 7.1 0.59 0.6 OS1 0.392 61 0.6 0.97 0.8 OS2 0.334 61 0.6 0.68 0.8 Basin Model "Proposed" Subbasin P1 OS1 OS2 Snyder Tp 0.59 0.97 0.68 Current as of 27 November 2012 at 07:01:26 Snyder Cp 0.6 0.80 0.80 Project: Plains Developed Simulation Run: 5YR FREQ STM Start of Run: 01Jan2013, 00:00 Basin Model: Proposed End of Run: 01Jan2013, 06:00 Meteorologic Model: 5yr Compute Time: 27Nov2012, 08:17:08 Control Specifications: Minor Storm Hydrologic Element Drainage (MI2) Area Peak (CFS) DischargeTime of Peak Volume (AC -FT) P1 0.582 70.4 01Jan2013, 04:00 9.8 OS1 0.392 3.8 01Jan2013, 04:30 0.7 Reach-OS1 to H1 0.392 3.8 01Jan2013, 05:30 0.4 OS2 0.334 3.9 01Jan2013, 04:10 0.6 Reach-OS2 to H1 0.334 3.9 01Jan2013, 05:10 0.4 Junction -H1 1.308 71 3 01Jan2013, 04:00 10.6 Junction "Junction -H1" Results for Run "5YR FREQ STM" 80 70 60 50 ki 40 0 u_ 30 20 10 0 1 \ - t 1 ---\. 1 \ . N. -- .. -�_'�.�..... --- -a.�^0+V��:_ 0000 01:00 02:00 03:00 Run:5YR FREQ STM Element:JUNCTION-H1 Result:Outflow — — — Run:5YR FREQ STM Element:P1 Result:Outflow Run:5YR FREQ STM Element:REACH-OS1 TO H1 Result:Outflow — - — Run:5YR FREQ STM Element:REACH-OS2 TO H1 Result:Outflow 04:00 05:00 06:00 01Jan2013 Project: Plains Developed Simulation Run: 5YR FREQ STMJunction: Junction -H1 Start of Run: 01Jan2013, 00:00 Basin Model: Proposed End of Run: 01Jan2013, 06:00 Meteorologic Model: 5yr Compute Time: 27Nov2012, 08:17:08 Control Specifications: Mina 01Jan2013 00:00 0.0 0.0 0.0 0.0 01Jan2013 00:10 0.0 0.0 0.0 0.0 01Jan2013 00:20 0.2 0.0 0 0 0.2 01Jan2013 00:30 0.5 0.0 0.0 0.5 01Jan2013 00:40 0.8 0.0 0.0 0.8 01Jan2013 00:50 1.1 0 0 0.0 1.1 01Jan2013 01:00 1.3 0.0 0.0 1.3 01Jan2013 01:10 1.6 0 0 0.0 1.6 01Jan2013 01:20 1.8 0.0 1.8 01Jan2013 01:30 10.0 2.0 0.0 0.0 2.0 01Jan2013 01:40 2.1 0.0 0.0 2.2 01Jan2013 01:50 2.2 0 0 0.1 2.3 01Jan2013 02:00 2.3 0.1 0.1 2.4 01Jan2013 02:10 2.3 0 1 0.1 2.5 01Jan2013 02:20 2 5 0.1 0.1 2.7 01Jan2013 02:30 2.8 0 1 0.1 3 0 01Jan2013 02:40 3.8 0.1 0.1 4.1 01Jan2013 02:50 6.4 0 1 0 1 6.7 01Jan2013 03:00 10.9 0.1 0.1 11.2 01Jan2013 03:10 17.9 0.1 0.1 18.2 01Jan2013 03:20 28.4 0 1 0 1 28.7 01Jan2013 03:30 43.6 0 2 0.1 43.9 01Jan2013 03:40 60.1 0.2 0 2 60.5 01Jan2013 03:50 70.3 0 3 0 3 70.9 01Jan2013 04:00 70.4 0 4 0.6 71.3 Page 1 01 Jan2013 04:10 62.7 0.6 0.8 64.1 01 Jan2013 04:20 53.0 0 8 1.1 54.9 01Jan2013 04:30 44.5 1.2 1.5 47.2 01 Jan2013 04:40 37.4 1.7 2.2 41.3 01 Jan2013 04:50 32.0 2 2 2.9 37.1 01 Jan2013 05:00 28.1 2.8 3.5 34.4 01 Jan2013 05:10 25.2 3.3 3.9 32.4 01 Jan2013 05:20 23.0 3.7 3.8 30.5 01 Jan2013 05:30 21.1 3.8 3.4 28.3 01 Jan2013 05:40 19.5 3.8 3.0 26.2 01 Jan2013 05:50 18.0 3 5 2.6 24.2 01 Jan2013 06:00 16.8 3 3 2.5 22.6 Page 2 Project: Plains Developed Simulation Run: 10YR FREQ STM Start of Run: 01Jan2013, 00:00 Basin Model: Proposed End of Run: 01Jan2013, 06:00 Meteorologic Model: 10yr Compute Time: 27Nov2012, 08:17:07 Control Specifications: Minor Storm Hydrologic Element Drainage (MI2) Area Peak (CFS) DischargeTime of Peak Volume (AC -FT) P1 0.582 138.7 01Jan2013, 03:50 18.0 OS1 0.392 19.7 01Jan2013, 04:20 2 7 Reach-OS1 to H1 0.392 19.7 01Jan2013, 05:20 1 9 OS2 0.334 21.8 01 Jan2013. 04:10 2 5 Reach-OS2 to H1 0.334 21.5 01Jan2013, 05:10 2.0 Junction -H1 1.308 139.5 01Jan2013, 03:50 22.0 Junction "Junction -H1" Results for Run"10YR FREQ STM" 160 140 120 100 80 60 40 20 0 0000 \ . 1 1 \ \ \ 1 1 N re � -• S N -- ,. 01:00 02:00 03:00 Run:10YR FREQ STM Element:JUNCTJON-H1 Result:Outflow Run:10YR FREQ STM Element:P1 Result:Outflow Run:10YR FREQ STM Element:REACH-OS1 TO H1 Result:Outflow — - — Run:10YR FREQ STM Element:REACH-OS2 TO H1 Result:Outflow 04:00 05:00 06:00 01Jan2013 Project: Plains Developed Simulation Run: 10YR FREQ STMJunction: Junction -H1 Start of Run: 01Jan2013, 00:00 Basin Model: Proposed End of Run: 01Jan2013, 06:00 Meteorologic Model: 10yr Compute Time: 27Nov2012, 08:17:07 Control Specifications: Mino Date Time Inflow (CFS) from P1 Inflow (CFS) from Retittfk (CFS) Sfrdrnl In}t v2 to (CFS) H1 01Jan2013 00:00 0.0 0.0 0.0 0 0 01Jan2013 00:10 0.0 0.0 0.0 0.0 01Jan2013 00:20 0.2 0.0 0.0 0.2 01Jan2013 00:30 0.6 0.0 0.0 0.6 01Jan2013 00:40 1.0 0.0 0.0 1.0 01Jan2013 00:50 1.3 0.0 0.0 1 3 01Jan2013 01:00 1.7 0.0 0.0 1.7 01Jan2013 01:10 1.9 0.0 0.0 1.9 01Jan2013 01:20 2.2 0 0 0.0 2.2 01Jan2013 01:30 2.4 0.0 0 0 2.5 01Jan2013 01:40 2.6 0.0 0 1 2.7 01Jan2013 01:50 2.8 0.0 0 1 2.9 01Jan2013 02:00 2.8 0.1 0 1 3.0 01Jan2013 02:10 2.9 0.1 0.1 3.1 01Jan2013 02:20 3.1 0 1 0.1 3.3 01Jan2013 02:30 3.5 0 1 0 1 3.8 01Jan2013 02:40 4.9 0.1 0.1 5.2 01Jan2013 02:50 8.8 0.2 0.1 9.1 01Jan2013 03:00 17.4 0.2 0.2 17.7 01Jan2013 03:10 33.3 0.2 0.2 33.6 01Jan2013 03:20 57.8 0.2 0.2 58.2 01Jan2013 03:30 90.2 0.2 0 2 90.6 01Jan2013 03:40 121.7 0.2 0.3 122.2 01Jan2013 03:50 138.7 0 3 0.5 139.5 01Jan2013 04:00 136.0 0.5 0.8 137.3 Page 1 Date Time Inflow (CFS) from P1 Inflow (CFS) from Reafrtil (CFS) frcIo1l fut (CFS) 4 to H1 01Jan2013 04:10 119.2 0.9 1 3 121.4 01Jan2013 04:20 99.5 1.8 2.8 104.1 01Jan2013 04:30 82.5 4.0 6 5 93.0 01Jan2013 04:40 68.4 7.4 12.0 87.9 01Jan2013 04:50 57.6 11.5 17.4 86.5 01Jan2013 05:00 49.8 15.3 21.0 86.1 01Jan2013 05:10 44.0 18.3 21.5 83.9 01Jan2013 05:20 39.5 19.7 19.0 78.2 01Jan2013 05:30 35.7 19.4 14.9 70.0 01Jan2013 05:40 32.5 17.6 11.4 61.4 01Jan2013 05:50 29.8 15.1 9.1 54.0 01Jan2013 06:00 27.5 13.0 7.7 48.2 Page 2 Project: Plains Developed Simulation Run: 25YR FREQ STM Start of Run: 01Jan2013, 00:00 Basin Model: Proposed End of Run: 01Jan2013, 06:00 Meteorologic Model: 25yr Compute Time: 27Nov2012, 08:17:08 Control Specifications: Minor Storm Hydrologic Element Drainage (MI2) Area Peak (CFS) DischargeTime of Peak Volume (AC -FT) P1 0.582 214.3 01Jan2013, 03:50 27.4 OS1 0.392 44.4 01Jan2013, 04:20 5.8 Reach-OS1 to H1 0.392 44.2 01Jan2013, 05:20 4.3 OS2 0.334 48.7 01Jan2013, 04:00 5.3 Reach-OS2 to H1 0.334 48.6 01Jan2013, 05:00 4.4 Junction -H1 1.308 215.3 01Jan2013, 03:50 36.1 Junction "Junction -H1" Results for Run "25YR FREQ STM" 200 150 50 0 1 1 1 1 1 1 1 1 1 N \1 \ \ \ ._ /pi •. 00.00 01:00 02:00 03:00 Run:25YR FREQ STM Element:JUNCTION-H1 Result:Outflow — — — Run:25YR FREQ STM Element:P1 Result:Outflow Run:25YR FREQ STM Element:REACH-OS1 TO H1 Result:Outflow — - — Run:25YR FREQ STM Element:REACH-OS2 TO H1 Result:Outflow 04:00 05:00 06:00 01Jan2013 Project: Plains Developed Simulation Run: 25YR FREQ STMJunction: Junction -H1 Start of Run: 01Jan2013, 00:00 Basin Model: Proposed End of Run: 01Jan2013, 06:00 Meteorologic Model: 25yr Compute Time: 27Nov2012, 08:17:08 Control Specifications: Minc Date Time Inflow (CFS) from P1 Inflow (CFS) from ReabflOSfrctrnl1Rlea (CFS) ia}tOS4 to H1 (CFS) 01Jan2013 00:00 0.0 0.0 0 0 0.0 01Jan2013 00:10 0.1 0.0 0.0 0.1 01Jan2013 00:20 0.3 0.0 0.0 0.3 01Jan2013 00:30 0 7 0.0 0.0 0.7 01Jan2013 00:40 1.2 0.0 0 0 1.2 01Jan2013 00:50 1 7 0.0 0.0 1.7 01Jan2013 01:00 2 1 0.0 0.0 2.1 01Jan2013 01:10 2.5 0.0 0.0 2.5 01Jan2013 01:20 2 8 0.0 0.0 2.9 01Jan2013 01:30 3 1 0.0 0.0 3.2 01Jan2013 01:40 3.4 0.0 0.1 3.5 01Jan2013 01:50 3.5 0.1 0.1 3.7 01Jan2013 02:00 3.6 0.1 0.1 3.8 01Jan2013 02:10 3 6 0.1 0.1 3.9 01Jan2013 02:20 3 8 0 1 0.2 4.1 01Jan2013 02:30 4 3 0.2 0.2 4.6 01Jan2013 02:40 6.0 0.2 0.2 6.3 01Jan2013 02:50 12.0 0.2 0.2 12.4 01Jan2013 03:00 27.2 0.2 0.2 27.6 01Jan2013 03:10 55.6 0.2 0.2 56.0 01Jan2013 03:20 96.8 0.2 0.2 97.2 01Jan2013 03:30 146.8 0.2 0.2 147.3 01Jan2013 03:40 192.1 0.3 0.3 192.7 01Jan2013 03:50 214.3 0 4 0.6 215.3 01Jan2013 04:00 207.0 0.8 1.1 208.9 Page 1 Date Time Inflow (CFS) from P1 Inflow (CFS) from RealrtflaSf (CFS) cIo1Uba (CFS) gaS2 to H1 01Jan2013 04:10 179.6 1 8 3.0 184.4 01Jan2013 04:20 148.6 4.8 8.2 161.6 01Jan2013 04:30 122.4 10.8 18.4 151.6 01Jan2013 04:40 100.9 19.4 31.5 151.9 01Jan2013 04:50 84.6 28.8 42.9 156.3 01Jan2013 05:00 73.0 37.1 48.6 158.6 01Jan2013 05:10 64.5 42.6 46.9 154.0 01Jan2013 05:20 57.9 44.2 39.1 141.2 01Jan2013 05:30 52.3 41.8 29.3 123.4 01Jan2013 05:40 47.7 36.4 21.4 105.5 01Jan2013 05:50 43.7 30.4 16.6 90.8 01Jan2013 06:00 40.4 25.5 13.9 79.8 Page 2 Project: Plains Developed Simulation Run: 50YR FREQ STM Start of Run: 01Jan2013, 00:00 Basin Model: Proposed End of Run: 01Jan2013, 06:00 Meteorologic Model: 50yr Compute Time: 27Nov2012, 08:17:08 Control Specifications: Major Storm Hydrologic Element Drainage (M!2) Area Peak (CFS) DischargeTime of Peak Volume (AC -FT) P1 0.582 287.0 01Jan2013, 03:50 35.1 OS1 0.392 69.7 01Jan2013, 04:15 8.8 Reach-OS1 to H1 0.392 69.6 01Jan2013, 05:15 6.8 OS2 0.334 76.5 01Jan2013, 04:00 7.8 Reach-OS2 to H1 0.334 76.1 01Jan2013, 05:00 6.7 Junction -H1 1.308 288.1 01Jan2013, 03:50 48.6 Junction "Junction -H1" Results for Run "50YR FREQ STM" 3 0 U- 300 250 200 150 100 50 0 - 1 1 1 1 1 1 1` 1 \ \_ / -- \\ -. 1 I III /; _-, ,.,, 1 1 I_ 00 00 01:00 02:00 03:00 Run:50YR FREQ STM Element:JUNCTION-H1 Result:Outflow — — — Run:50YR FREQ STM Element: P1 Result:Outflow Run:50YR FREQ STM Element:REACH-0S1 TO H1 Result:Outflow — - — • Run:50YR FREQ STM Element:REACH-OS2 TO H1 Result:Outflow 04:00 05:00 06:00 01Jan2013 Project: Plains Developed Simulation Run: 50YR FREQ STMJunction: Junction -H1 Start of Run: 01Jan2013, 00:00 Basin Model: Proposed End of Run: 01Jan2013, 06:00 Meteorologic Model: 50yr Compute Time: 27Nov2012, 08:17:08 Control Specifications: Majc Date Time Inflow (CFS) from P1 Inflow (CFS) from Reaktfl (CFS) fl-ctim EfRb a6lubt&SAZ (CFS) to H1 01Jan2013 00:00 0.0 0 0 0 0 0.0 01Jan2013 00:05 0.0 0.0 0.0 0.0 01Jan2013 00:10 0.1 0.0 0.0 0.1 01Jan2013 00:15 0.2 0.0 0.0 0.2 01Jan2013 00:20 0.3 0.0 0.0 0.3 01Jan2013 00:25 0.5 0.0 0.0 0.5 01Jan2013 00:30 0.8 0.0 0.0 0.8 01Jan2013 00:35 1.0 0.0 0.0 1.0 01Jan2013 00:40 1.3 0.0 0.0 1.3 01Jan2013 00:45 1.6 0 0 0.0 1.6 01Jan2013 00:50 1.8 0.0 0.0 1.8 01Jan2013 00:55 2.0 0.0 0.0 2.0 01Jan2013 01:00 2.2 0.0 0.0 2.2 01Jan2013 01:05 2.4 0.0 0.0 2.4 01Jan2013 01:10 2.6 0.0 0.0 2 6 01Jan2013 01:15 2.8 0 0 0.0 2.8 01Jan2013 01:20 3.0 0.0 0.0 3.0 01Jan2013 01:25 3.1 0.0 0.0 3.2 01Jan2013 01:30 3.3 0.0 0.0 3.3 01Jan2013 01:35 3.4 0.0 0.1 3.5 01Jan2013 01:40 3.6 0 0 0.1 3.7 01Jan2013 01:45 3.7 0.1 0 1 3.8 01Jan2013 01:50 38 01 0.1 39 01Jan2013 01:55 3.8 0.1 0.1 4.0 01Jan2013 02:00 3.8 0 1 0.1 4.1 Page 1 Date Time Inflow (CFS) from P1 Inflow (CFS) from Re airtik®Sfittcni-fRb (CFS) aebterist2 (CFS) to H1 01Jan2013 02:05 3.9 0.1 0 1 4.1 01Jan2013 02:10 3.9 0.1 0.1 4.2 01Jan2013 02:15 4.0 0.1 0.2 4 3 01Jan2013 02:20 4.2 0.1 0.2 4 5 01Jan2013 02:25 4.4 02 0.2 48 01Jan2013 02:30 4.7 0.2 0.2 5.1 01Jan2013 02:35 5.3 0.2 0.2 5.7 01Jan2013 02:40 6.6 0.2 0 2 7.0 01Jan2013 02:45 9 3 0.2 0.2 9.7 01Jan2013 02:50 14.5 0.2 0.2 14.9 01 Jan2013 02:55 23.1 0.2 0 2 23.5 01Jan2013 03:00 36.1 0.2 0 2 36.5 01Jan2013 03:05 54.0 0.2 0.2 54.4 01Jan2013 03:10 76.8 0.2 0 2 77.2 01Jan2013 03:15 103.9 0.2 0 2 104.3 01Jan2013 03:20 134.5 0.2 0 2 134.9 01Jan2013 03:25 167.4 0.2 0.2 167.9 01Jan2013 03:30 201.6 0.3 0.2 202.1 01Jan2013 03:35 234.3 0.3 0.3 234.8 01Jan2013 03:40 261.1 0.3 0.4 261.8 01Jan2013 03:45 279.2 0.4 0.5 280.1 01Jan2013 03:50 287.0 0.5 0.6 288.1 01Jan2013 03:55 284.0 0.6 0.9 285.6 01Jan2013 04:00 271.8 1.0 1.6 274.3 01Jan2013 04:05 252.8 1 7 2.9 257.4 01Jan2013 04:10 230.2 3.1 5.4 238.6 01Jan2013 04:15 207.9 5.3 9.4 222.6 01Jan2013 04:20 187.7 8 5 15.2 211.4 01Jan2013 04:25 169.4 13.0 23.2 205.6 01Jan2013 04:30 152.8 18.9 33.2 204.9 01Jan2013 04:35 137.9 25.9 44.3 208.0 Page 2 Date Time Inflow (CFS) from P1 Inflow (CFS) from RealriilSffctoi (CFS) fRettni4 (CFS) to H1 01Jan2013 04:40 124.7 33.3 55.0 213.1 01Jan2013 04:45 113.3 40.8 64.4 218.5 01Jan2013 04:50 103.5 48.1 71.4 223.1 01Jan2013 04:55 95.2 54.8 75.5 225.5 01Jan2013 05:00 88.1 60.6 76.1 224.8 01Jan2013 05:05 82.0 65.2 73.6 220.8 01Jan2013 05:10 76.7 68.3 68.4 213.4 01Jan2013 05:15 72.0 69.6 61.4 203.0 01Jan2013 05:20 67.7 69.3 53.4 190.4 01Jan2013 05:25 63.9 67.4 45.6 176.9 01Jan2013 05:30 60.4 64.1 38.9 163.3 01Jan2013 05:35 57.2 59.7 33.4 150.3 01Jan2013 05:40 54.3 54.5 29.0 137.8 01Jan2013 05:45 51.7 49.1 25.4 126.2 01Jan2013 05:50 49.3 43.9 22.6 115.8 01Jan2013 05:55 47.1 39.5 20.5 107.1 01Jan2013 06:00 45.1 35.7 18.8 99.6 Page 3 Project: Plains Developed Simulation Run: 100YR FREQ STM Start of Run: 01Jan2013, 00:00 Basin Model: Proposed End of Run: 01Jan2013, 06:00 Meteorologic Model: 100yr Compute Time: 27Nov2012, 08:17:07 Control Specifications: Major Storm Hydrologic Element Drainage (MI2) Area Peak (CFS) DischardeTime of Peak Volume (AC -FT) P1 0.582 361.2 01Jan2013, 03:50 44.4 OS1 0.392 100.4 01Jan2013, 04:15 12.6 Reach-OS1 to H1 0.392 100.2 01Jan2013, 05:15 9.9 OS2 0.334 109.0 01Jan2013, 04:00 11.2 Reach-OS2 to H1 0.334 108.6 01Jan2013, 04:55 9.6 Junction -H1 1.308 362.6 01Jan2013, 03:50 63.9 Junction "Junction -H1" Results for Run "100YR FREQ STM" 400 350 300 250 4 200 3 0 E_ 150 100 50 0 r , A. 1 1 1 1 1 V 1 1 1 1 \ / It J " / " \ . /"" � \ 00.00 01:00 02:00 03.00 Run:100YR FREQ STM Element:JUNCTION-H1 Result:Outflow — — — Run:100YR FREQ STM Element:P1 Result:Outflow Run:100YR FREQ STM Element:REACH-OS1 TO H1 Result:Outflow — - — Run:100YR FREQ STM Element:REACH-OS2 TO H1 Result:Outflow 04:00 05:00 06:00 01Jan2013 Project: Plains Developed Simulation Run: 100YR FREQ STNUunction: Junction -H1 Start of Run: 01Jan2013, 00:00 Basin Model: Proposed End of Run: 01Jan2013, 06:00 Meteorologic Model: 100yr Compute Time: 27Nov2012, 08:17:07 Control Specifications: Majo Date Time Inflow (CFS) from P1 Inflow (CFS) from ReakctflaSftdmFfReaOu4OS2 (CFS) (CFS) to H1 01Jan2013 00:00 0.0 0.0 0.0 0.0 01Jan2013 00:05 0.0 0.0 0 0 0.0 01Jan2013 00:10 0 1 0.0 0 0 0.1 01Jan2013 00:15 0.2 0.0 0 0 0.2 01Jan2013 00:20 0.3 0.0 0.0 0.3 01Jan2013 00:25 0.6 0.0 0 0 0.6 01Jan2013 00:30 0.9 0.0 0.0 0.9 01Jan2013 00:35 1.2 0.0 0 0 1.2 01Jan2013 00:40 1 5 0.0 0.0 1.5 01Jan2013 00:45 1.8 0.0 0 0 1.8 01Jan2013 00:50 2.1 0.0 0 0 2.1 01Jan2013 00:55 2.3 0.0 0.0 2.3 01Jan2013 01:00 2.6 0.0 0.0 2.6 01Jan2013 01:05 2.8 0.0 0.0 2.8 01Jan2013 01:10 3.0 00 00 3.0 01Jan2013 01:15 3.2 0.0 0 0 3.2 01Jan2013 01:20 3.4 0.0 0.0 3.4 01Jan2013 01:25 3.5 0.0 0.0 3.6 01Jan2013 01:30 3.7 0.0 0.0 3.8 01Jan2013 01:35 3.9 0.0 0.1 4.0 01Jan2013 01:40 4.1 0.0 0.1 4.2 01Jan2013 01:45 4.2 0.1 0 1 4.4 01Jan2013 01:50 4.3 0.1 0 1 4.5 01Jan2013 01:55 4.4 0.1 0 1 4.6 01Jan2013 02:00 4.4 0.1 0.1 4.7 Page 1 Date Time Inflow (CFS) from P1 Inflow (CFS) from ReattfieSfrdenF (CFS) aClnuiecSR to (CFS) H1 01Jan2013 02:05 4.5 0.1 0.2 4.8 01Jan2013 02:10 4.6 0.1 0.2 4.9 01Jan2013 02:15 4.7 0.2 0.2 5.1 01Jan2013 02:20 4.9 0.2 0.2 5.3 01Jan2013 02:25 5.2 0.2 0.2 5.6 01Jan2013 02:30 5.6 0.2 0.2 6.0 01Jan2013 02:35 6.2 0.2 0.2 6.6 01Jan2013 02:40 7.9 0.2 0.2 8.4 01Jan2013 02:45 11.8 0.2 0.2 12.2 01Jan2013 02:50 19.2 0.2 0.2 19.6 01Jan2013 02:55 31.5 0.2 0.2 32.0 01Jan2013 03:00 49.8 0 2 0.2 50.2 01Jan2013 03:05 74.3 0.3 0.2 74.8 01Jan2013 03:10 104.8 0.3 0.2 105.3 01Jan2013 03:15 140.1 0.3 0.2 140.6 01Jan2013 03:20 179.0 0.3 0.3 179.5 01Jan2013 03:25 219.9 0.3 0.3 220.4 01Jan2013 03:30 261.5 0.3 0.3 262.1 01Jan2013 03:35 300.6 0.3 0.3 301.3 01Jan2013 03:40 332.2 0.4 0.4 333.0 01Jan2013 03:45 353.1 0.4 0.6 354.1 01Jan2013 03:50 361.2 0.6 0.8 362.6 01Jan2013 03:55 356.3 0.9 1.4 358.6 01Jan2013 04:00 340.2 1.7 2.9 344.7 01Jan2013 04:05 316.0 3.2 5.6 324.8 01Jan2013 04:10 287.7 5.6 10.2 303.6 01Jan2013 04:15 259.9 9.4 17.1 286.4 01Jan2013 04:20 234.7 14.7 26.5 275.9 01Jan2013 04:25 211.8 21.8 38.7 272.3 01Jan2013 04:30 191.2 30.7 53.2 275.1 01Jan2013 04:35 172.7 40.9 68.9 282.4 Page 2 Date Time Inflow (CFS) from P1 Inflow (CFS) from RettilSfrcloiF (CFS) FO1n}tOS2 (CFS) to H1 01Jan2013 04:40 156.3 51.7 83.5 291.5 01Jan2013 04:45 142.0 62.4 95.7 300.2 01Jan2013 04:50 129.7 72.6 104.4 306.7 01Jan2013 04:55 119.2 81.8 108.6 309.6 01Jan2013 05:00 110.1 89.6 108.2 307.9 01Jan2013 05:05 102.4 95.5 103.6 301.4 01Jan2013 05:10 95.6 99.1 95.6 290.3 01Jan2013 05:15 89.5 100.2 85.3 275.1 01Jan2013 05:20 84.0 99.0 74.0 257.0 01Jan2013 05:25 79.1 95.6 63.0 237.7 01Jan2013 05:30 74.6 90.4 53.6 218.7 01Jan2013 05:35 70.6 83.8 46.0 200.4 01Jan2013 05:40 66.9 76.3 39.9 183.0 01Jan2013 05:45 63.6 68.5 35.0 167.0 01Jan2013 05:50 60.5 61.2 31.1 152.8 01Jan2013 05:55 57.7 54.9 28.0 140.6 01Jan2013 06:00 55.2 49.5 25.7 130.4 Page 3 E. RATIONAL METHOD CALCULATIONS (PROPOSED) DEVELOPED DATE: 11/27/2012 0 r j U 0 to 0 0 0 0 to 0 0 to 0 CO U") 0 CO to 0 r LC) 0 Or ln 0 to 0 r to O O U 0 to CV U O Uo V' 0 It 0 It V 0 CO V 0 r� V 0 cO V 0 v V 0 to d' 0 v 0 to 0 r� CO 0 r�r-- CO 0 CO 0 NOOr- 't 0 0 C 0 coC7 0 C0r` 0 C) 0 CO M 0 to N to N 0 CO N 0 N CO 0 O N 0 CO N 0 to N 0 co N 0 to N o c0 N c::; in -1 v0000 to r to r co r M N 0C0 op r 0000 to r co r tr) r N- r 0 J Q Q HWO O CC Q H Q— O r cc; O C c) c,) coCrcnrn0 0O cO N M tri 'Cr r` r co t7 O r r Nr 65.45 0 0 O 334.99 c 0 O 0 O n 0 O o O O O 0 p O 0) r O O CO O N N O . r r.N ' t N. 2.78 NCO N CO r 20.95 0 M '.p PAVED ROOF AREA AREA UNDEVELOPED GRAVEL 0.90 0.75 0.15 1- 0.35 N �f O O to O to O to O GRAVEL (AC) YARD/ LANDSCAPE ;AC) U O . O r. 00 •c1' O . d C� cO r co O O �' co to 4 r- CO N C) 0O CO O) r to In CO co r M o p • M O to N O r --O CO O 6 O to O ti N- O O CO O N CO O C7 CO O n Q O �Q' r `O 00 c---) 0 Q CO O O CO O O CO O) o 0 M 0 CD O 0 O 0 O 0 O PAVED AREA (AC) 0 O 0 O "- O Z I_ 0 Z W r N CO •c LC) co r� co O LAND USE: 5 -YEAR COEFF. 10 -YEAR COEFF. 25 -YEAR COEFF. 50 -YEAR COEFF. 100 -YEAR COEFF. ZC n- Z i CC a. } wmz W r w m DESIGN BASIN c N CO 'Cr 10 CO r_ CO O) TOTAL STUDY AREA t t, ii°. $ QD m Z Z < 0 1- 1- J W C.) C.) D LLIWUU _1 W O O < = CC CC U U � a- rime of Concentration DATE: 11/27/2012 o o r o 0 U) 6 0 U) 0 0 U) 0 CO U) 0 CO U) 0 r U) 0 O in 0 r LO 0 O ID 0 ( 1 (+ 7.j v I iT, _, .... ti M o in U 0.44 0.44 0.44 co v o 0.47 co v 0 v v 0 0.45 0.44 U) N U N CO 0 N CO 0 N CO 0 N '4 0 0 7 0 O) M 0 N co 0 CO M 0 N- ce) 0 o r o in N 0 U) N 0 CD r 0 CO N 0 O N 0 CO r 0 ID r 0 CD r 0 U) r 0 J Q v LL « N- 1.0 O 0 O N ct r CO CO 74.5 55.0 77.5 46.6 co CO r tc CHECK (URBANIZED BASINS) tc=(L/180)+10 Min. (15) r U7 r CO Co N IC: M r CO N r ' r r (N CD Ln r CO O N Co Co r 29.4 TOTAL LENGTH (14) r LL6 2938 co ,-- CO O 512 2052 N O a - CD co 0) r 0) CO r r CO CO ill - M • Q 2 « r v 50.7 0) OO r 40.7 r co CO 74.5 0 In 77.5 46.6 co co r TRAVEL TIME (T,) _ C H — r r c0 r N r N N cr) 0.4 N N 4 N CO r O Ni V N Co r 'c7 C3) 0) J t/) 'a" a up 0 Co 0 U) 0 In 0 Co 0 U) 0 co 0 N 0 0.5 Land Surface (10) Tillage/Field LT a) cr)co CO ii co ii a) ca Tillage/Field Tillage/Field Tillage/Field Tillage/Field CT m CD ' CO ZZwm ~ Q 0 J C.)O W Y O O J W Q' Q Q = a a U U > — U o to o U; 5.0 5.0 5.0 5.0 5.0 O U; 50 w a O o 00 J O 0 '- r O 0 CO r 0 0 r r o 0 O r a 0 U) r o 0 O r O 0 coO r O 0 (N 0 0 O r LENGTH Ft. (7) r 'itr M (N in N `_ CN In • U) r Ni tO M �- r C) OD Co 2,982 H '- CD 2 37.7 35.7 r N co N Ln co N N co 38.3 U) Ln co 30.4 C O co J Q ~ P W z 5 �" ' W a �. O o in J o O-- r r 0 O OD r O O r r O O 0 r O O co r O 6 O r O O co r O O O N .c1/40 O" O r LENGTH Ft (4) O 0 U) r O U) 500 500 500 500 r O LO 500 r O Le SUB -BASIN DATA N U M U) r O 0.15 (0 r O 0.23 O N 0 CO r 0 U) r 0 CD r 0 L.0 r O Q _ W U Nco Q O r O OCO Vco co 'CCa 28.08 o) r 4 V C7 r CO a) O r O N 65.45 _ V) I QW 0 DESIGN BASIN (1) r (N Co 4 U) CD N CO Q) Plains Tampa SF -1,2 and 3Developed.xls o — �Z 0 "WM. PROJECT NAME Plains Tampa DATE 11/27/2012 PROJECT NUMBER PL191 P. (1 -Hour Rainfall), 1.4 CALCULATED BY CHECKED BY NJN 0 Y x Q 2 w N CV TRAVEL TIME UIUI �, N (sdl) AIIDO13A o `�' (u) HION31 PIPE (ii!) 3ZIS 3dld (%) 3dO1S n (sp)MOId NOIS30 a =- F.. w r- w (510)MO1d 13381S a (%) 3d01S 4.-- T TOTAL RUNOFF (SJD) 0 (nliu!) I N (JC) (a.a): - "2: - kiwi) >3 0 DIRECT RUNOFF (sly) 0 F --. 8 N s n t - N W o Q 17 45 571 7 70 (JUUUI) a, o u) )n O) N CO n O) N N O in O) n O 0 78 (3C)V.3 N .- Q r- O) O Q co Q) a0 r en n d Q co 2 O) (UIUI) al cD 5072 I o 4075 74 48 5501 a n � Q ro rn '0 dd300 ddONfl L-7-) _ 0 15 0 15 91. 0 an N p 0 20 m 0 N 0 ' 0 0 0 (DV) V• t13NV rn to O o Q 583 co O N ' Q 1734 to Oa� O) •- O N 65 45 NISVS NOIS34 M- 8 N 8 in 8 Q 8 to 8 700 8 w 8 °) INIOd NOIS30 N — O,m.1OO,, Q if) CO n ap O) 3NI1 W8O1S -- `" O w Z 0 BASELINE STANDARD FORM SF -3 - DEVELOPED STORM DRAINAGE DESIGN - RATIONAL METHOD 10 YEAR EVENT PROJECT NAME. Plains Tampa = •. I i I ' PROJECT NUMBER'. P1191 P, (1•Hour Rainfall) 1 .65 CALCULATED BY MJW CHECKED BY: NJN up cc a W ce N N TRAVEL TIME (u!w) it — T (sd1) A1.1 00 -13A o 5 (u) HION31 0 PIPE (t1!) 3ZIS 3dld 0-3 C (%) 3dO1S R =- (slD)MO13 NOIS3a 1 w cL `° (slo)MOld 1332ILS cn (%) 9d01S ;cr. TOTAL RUNOFF (s1p) C) R (14/11!) I c:, (De) (d. a):x a (ulw)32 0 DIRECT RUNOFF (sp) y� 0 co cn 1371 N m n t0 0 N O G W 8 50 33 76 0 N O N u) (NM) I'-- w w .- : .-- � N 232 o r ^ ^ o .- 1 97 092 (0e)V.0 N — OD c.`,'„ O M G) v .- N 03,' N '�., aD K c`) 7 N co v in fD cp 2 MW) D1 a2 50.72 106 92 40.75 (O C) [ 74 48 55.01 [ 77 49 4664 ma' Ih ao (ll.J Ad30`7 33ONM:l 1n " 0.25 N 0o0000 N cv M N co N 0 26 025 (w) V3ZIV a r °O 0 0 v CO n 28 08 45 13 17 34 CO O, rn e- O N 65 45 NISt/8 NOIS3a M 8 ' '- g (-4 g r; 4 00 o a, 8 o g 8 co g o 1NIOd NOIS3a N ._ , C) .7 cn co N co rn 3NI1 W?l OiS -- `" STANDARD FORM SF -3 DEVELOPED STORM DRAINAGE DESIGN - RATIONAL METHOD 25 YEAR EVENT P, (1•Hour Rainfall) m a m rn N J Faa3 a W 2z wClar Z Z Zj: Om o F- FO 1 OOLLTw as<o O O wZ REMARKS 1-- w w Ir F-' (sdS) 0 A11DO13A (u) HION31 (1.1!) 3ZIS 3dld 00 (O/O) 3dO1S (sjJ)MO13 NOIS3a (sio)MOld 133b1S N- l°/a) 9d01S TOTAL RUNOFF (sp) b ch (i41u!) I itst (De) (d.a)x (Ulw)32 0 DIRECT RUNOFF (sp) b Q) 725 2577 r- to cn O) A N O C N in 6310 N O) 28 47 (i4N!) W N- N N 'qI -- 273 2 95 CMo -- 225 � .- 251 00 (De)d..7 I:: ,(p a h cp to in N cnin V S 2422 (Ulw) 02 50.72 106 92 40.75 W to C) [ 74 48 ZE)en Ls, in [ 77 49 4664 6) CO en cr,0 Ad300 JdONfl _ 0.37 0 37 C') 0 042 d 0000 C'ol )) M co en 037 (0V) V3NV ,a O) co 0 0 rir0 2 in 28 08 45 13 17 34 co 0 o) •- 0 N 65 45 NISt/8 NJIS3a M `" 8 0 0 4 00 0 0 0 00 0 0 0 INIOd NJIS3a v ._ 7 r rCO N- ao a 3NI1 W?lo1S STANDARD FORM SF -3 DEVELOPED STORM DRAINAGE DESIGN - RATIONAL METHOD 50 YEAR EVENT Z J W P, (1•Hour Rainfall) m a A rn of _I �a3 aW2z w }Z my 2 z pm CU o o e o0Tw as<o O O wZ REMARKS 2 F- J L1.1 Q F- F - w w N (sd1) 0 A110O13A (u) HION31 (t1!) 3ZIS 3dld (a/a) 3dO1S (s1J)MO1d NOIS3a (sio)MOld 133b1S (a/O) 3d01S 00 N TOTAL RUNOFF (s1p) b (h (i41u!) I (:, (De) (d.a)x (uiw)32 0 DIRECT RUNOFF (sp) J.� V v 962 CO N R A r 01 44 47 C1 Cr M 0 O> 8373 M (p N 37 89 014/1-10 I.� 0 ((8 N N .- o Cr) o� M o N 2 52 o -- 281 1 32 ( De)V.0 _ N �+ (O M in N in N co V r O0 N N O, O.- N7 (en C ro N (Ulw) Dj CS 50.72 106 92 40.75 CU to C) [ 74 48 5501 [ 77 49 4664 0 n ap C, °'0 dd3O0 ddONM:l `" 0.44 o 0 v 0 CO 0 o 0 CO 0 c 0 045 044 (0b') V3NV a a' 0° o o vin co 28 08 45 13 17 34 (o rn — O O N 65 45 NISV8 NOIS3a M 0 ' '- 0 N 0 r•i 4 00 0 'n 00 co 00 r� g0 an 0 0, INIOd NOIS3a v ._ . (7 'r 01 (o r ao rn 3NI1 W?lo1S STANDARD FORM SF -3 - DEVELOPED STORM DRAINAGE DESIGN - RATIONAL METHOD 100 YEAR EVENT Z -J W I 0 a a p- c J a d cc wm a D Z Z U U W W c a a 0 'etZ O — REMARKS 2 I- w Q w a w w F- P- 0 (u!w) 21 .- N (sdi) c AllOOl3n On o, HION3l (RI!) 3ZIS 3dld (°/0) 3d01S (slD)MOId NOIS30 (sd3)MOId 1332i1S (°/°) 3d01S TOTAL RUNOFF (543) o en (J4/u!) c (3e) (V.0)3 • (u!w)a; o DIRECT RUNOFF (543) O at " to IN 4471 t') o 56 63 55 87 25.72 109 14 N 49.47 (11y/u!) I pp 3.05 N co .- U) ch 3.79 235 2,89 o (Ni N N N M 1.51 (3c)d.0 N- - R CN `r' R N 293 1494 r. r1 (N cc °� (0 I- 'S cD 0 N. N M (ulw) 31 w 50-72 N O o o 40 75 36.08 74.48 _ O v, in 77.49 4664 138 39 000 dd3O0 ddONn21 " 0'ro 6 050 0.50 0.53 0.53 0 0 o o 050 (ov) d3ad `- 0 co 0 °' to 0 co 4513 A r - 0) C)) o N 65 45 NIS`d8 NOIS30 M " 00 '— 00 N 3 00 4 00 0 "' 00 W 7.00 0 °o 0 °) INIOd NOIS30 oil — N rn v in co r` °o m 3NIl lAP:IaLS F. HYDRAULIC COMPUTATIONS 21 DETENTION VOLUME BY THE HYDROGRAPH METHOD Project: Tampa Plains Basin ID: On -site Design Information Ilnputli Max Allowable Peak Outflow Tune to Peak Outflow Op -out • Tp-out • Minor Storage Volume (cubic ti ) 159,525 Minor Stotarle Volume (acre -1t ) 3.66 MINOR MAJOR 50 10 197 25 490 480 cis minutes Major Storage Volume (cubic fl ): 272,424 Ma pr Storage Volume (acte•f1) 6. 10 MINORJe.Q. 2-. 6•. OR 10•year) EVENT MAIORJe.g. 2b-, 60. or 100•year EVENT Time minutes pnpi,t) Inflow hydrugraph Cfs (Inpuli Outflow Rising My OS (output) lncrem Volume atre-fl (cut pat) 000 Storage Volume sue -ft (out`ui) 000 Inflow hydrograph cis (.npu1) Outflow Rising Hy cts (c,.1`u1) Inc'em Volume acse•fl ((NON!) 000 Storage Volume aue-fl (qu!pu!) 000 0 000 000 000 000 10 010 010 000 000 010 010 000 000 20 020 020 000 000 030 030 000 000 30 040 040 000 000 010 070 000 000 40 070 0 70 000 000 100 1.00 000 0 00 50 _ 090 090 000 000 140 1.40 000 000 60 - i to 1 10 0 00 000 170 1.70 000 000 TO 130 1 30 000 000 200 2.00 000 000 80 _ 150 1 SO 000 000 220 220 000 000 90 _ 160 1 60 000 000 250 250 000 000 100 160 180 000 000 760 260 0 00 000 110 _ 160 1 80 000 000 7 10 2 70 000 000 120 160 180 000 000 200 2 80 000 000 130 190 190 000 000 290 290 000 000 140 2 10 2 10 000 000 3 20 120 000 000 150 230 2 30 000 000 3 Cd 360 000 000 160 300 380 000 000 600 600 000 000 170 6 70 6 70 000 000 1460 14 60 000 000 160 190 12 50 12 50 0 00 000 3150 32 50 000 000 21 50 21 50 000 000 014 59 90 59 90 000 000 200 34 30 24 12 014 95 CO 8219 018 018 210 5110 2533 035 050 13740 6630 071 089 220 66 ec 20 53 0 55 105 174 00 90 4 t 1 15 204 230 75 10 27 74 0 65 1 70 101 50 94 52 134 338 240 76 10 28.95 0 65 215 16900 98 63 126 4 63 250 71 30 30 15 0 57 2.92 113 40 102 73 0 97 5 61 260 6740 31 36 0 43 334 147 50 106 84 056 6 17 270 5010 32.57 025 359 11770 11095 009 625 260 38 80 31 77 0 07 166 88 10 66 10 000 6 25 290 79 10 29 10 000 3 66 65 00 65 00 000 6 25 300 7370 2370 000 366 5060 5080 000 625 310 1090 1990 000 366 4310 4310 000 825 320 17 70 17 70 000 368 3760 37 60 000 6 25 330 1670 1620 000 366 3370 3370 000 625 340 1500 15 00 000 366 3080 30 80 000 6 25 350 1410 1410 000 368 2840 2840 000 625 380 13 70 1320 000 366 26 00 26 00 000 6 25 370 17 30 12 30 000 366 2360 23 60 000 6 25 380 390 11 40 11 40 000 366 71 20 21 20 000 6 25 10 50 10 50 0 00 366 1880 1860 000 8 25 400 960 960 000 366 1640 1640 000 625 410 420 670 670 000 366 1400 1400 000 625 180 780 000 366 It 60 1160 000 625 430 690 6 90 000 366 920 920 000 6 25 440 600 600 000 366 680 660 000 625 450 510 510 000 366 440 440 0.00 625 460 420 420 000 366 700 700 000 625 470 330 3 30 000 366 000 000 0.00 8 25 460 740 240 000 366 000 000 000 625 490 500 150 150 000 368 0 00 IN/A eN/A IN/A 510 SN/A IN/A 520 IN/A IN/A 530 , IN/A IN/A 540 IN/A IN/A 550 IN/A IN/A 560 IN/A /N/A 570 IN/A ON/A 580 IN/A IN'A 590 IN/A IN/A 600 $N1/4 IN/A 610 awn /N/A 620 'NIA IN/A 630 IN/A IN/A 640 /N/A IN/A 650 _ IN/A IN/A 660 MIA IN/A 670 IN/A IN/A 680 IN/A IN/A 690 IN/A IN/A 700 IN/A IN/A 710 'NIA IN/A 720 /N/A IN1A 730 IN/A IN/A 740 _ I N/A IN/A 350 300 250 200 150 100 Inflow Hydrograph vs. Outflow Hydrograph nrnerwc lion tails on Ins rK•ssinn limb of Inflow hydrogsph) 0 50 0 u` OOO OOO °CC- vc c' 00o000000000000DA8 f ?J 00 90 170 1:0 160 210 240 270 300 330 360 TIME Iminules) -•- rrr, Islam Hyd.•grsph rate OUSn Hyd.v w' wpr I.m....,.:,:tIrt • Ua,:. F o rate % -out NOTE: THIS IS A FIRST APPROXIMATION ONLY Tp-out Tmir UtJ•Detention V231.Ftali Silo,Itydrograph 11127/2012, 8.37 MN STAGE -STORAGE SIZING FOR DETENTION BASINS Project: Basin ID: Design Information (Input): Stage -Storage Relationship: Du 4 if: r WI Skip <•• r• lit shit I Check Basin Sha e Width of Basin Bottom. W = ight Triangle OR... Length of Basin Bottom, L = !les Triangle OR Dam Side -slope (11 V), 4 = Rectangle OR Circle / Ellipse X OR Irregular (Use Ovende values in cells G32 G52) Storage Requirement from Sheet 'Modified FAA: Storage Requirement from Sheet 'Hydrograph': Storage Requirement from Sheet 'Full -Spectrum': MINOR 3.66 MAJOR acre -ft 6.25 acre -ft acre -ft Labels for WOCV, Minor, & Major Storage Stages (input) Water Surface Elevation ft (input) Side Slope (H V) ft/ft Below El Surface Area at Stage 1t2 User Overate Volume Below Stage ft3 (output) Surface Area at Stage acres (output) Volume Below Stage acre -ft (output) Target Volumes for WQCV, Minor, & Major Storage Volumes (for goal seek) 4799 00 (input) 0 0 000 0 000 4800 00 61,656 30,828 1 415 0 708 Minor 4801 10 125.018 133,499 2 870 3.065 3.660 4802 00 133.303 • 249,743 3 060 5.733 4803 00 141.813 387.301 3 256 3 593 8.891 6 250 Major 4803.60 156,499 476,795 - 10 946 #N/A r #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A _ - #N/A #N/A #N/A #N/A #N /A #N/A #N/A #N/A #N/A #N/A - #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #NIA - #N/A #N/A #N/A #N/A #N/A #N/A #N/A - #N/A #N/A #N/A #N/A #N/A #N/A _4 #NIA _ #N/A #N/A #N/A #N/A #N/A #N/A #N/A _ #N/A #N/A ti #N/A #N/A _ *N/A #N1A #N/A #N/A #N/A #N/A #N/A #N/A _ #N/A #N/A #N/A #N/A • #N1A #N/A w #N/A #N/A #N/A #N/A #N/A #N/A I _ #NIA #N/A I — #N/A UD-Detention_v2 31 -Full Site . Basin 11/27/2012, 9:37 AM STAGE -STORAGE SIZING FOR DETENTION BASINS Project: Basin ID: 4804 00 4803 50 4803.00 4802 50 4802.00 4801.50 4801.00 4800.50 4800.00 4799.50 STAGE -STORAGE CURVE FOR THE POND 4799.00 +- 0.00 2.00 a/ 4.00 6.00 Storage (acre-feet) 8.00 10.00 12.00 UD-Detention v2.31 -Full Site , Basin 11/27/2012, 9:37 AM STAGE -DISCHARGE SIZING OF THE WATER QUALITY CAPTURE VOLUME (VI/QCV) OUTLET 2 C N 0 0 a 4 C A 6 0 V m O •N 0 4 0. g V 9 O 8 8 • 11 • NN • E U 0 i' 0 o n r v g Vot2Egi▪ U t z 6 - y• i 3 O o t,co 0 - y q _p O Val t 0.w ! O J U a c � O 7 5 C q A' Q. 0i O 0 C a a s 0000 0400 a000 0000 O 0 9 ?1 000011•000- 9 V • P a r K b a n 0 0 U 3f i H ➢ ■ u 0 ‹Xc2V'0 q C - 4 O a�oaS,YC cwrow Orr O O O c c o 0 u u p■ u n U UQ j< a 4 an • u ' m E ^l " 5 o. mz.g ♦ it N u 4' a Z j - • A J o O O T a 0 u ▪ A r2GGr a c d tz ' - 2 c c O. ,. j u u O C om a; 0 Q rt q a O Water Quality Capture Volume gg10+^ ^'«<a 0 0 0 0 0 0 izzz I co S U, 11 al M t c oc —mot a a a < « < < a < < < a a c a < < a a < < < < < a < a < < < < < < z z` z z« z z? 2 2 z z 3.- z z z z z L z z z 2 2 z 2 z 2 2 lit �- -----�-yam —. N Fes•+- —-r— -- 3._. N _p cr 4 a eue •H10.. w-1 i !aoo3 ;d 000000 —i— I— $ ! -- r-•. •--t ! UiiiiiUUtiilititflfltt UU tUt tU t 0000gZLittc•iliiriziiiitiiii44t4‘iL�z 000000 0 0 n 00 O 8 i 0 0 0 0 8 tl < < 4 4 < 4 2zz2 2 z <<<4< 23 < < 4 4 < < 4 < < < < < 4 < 4 < < yiiiyy ‹c‹1‹‹‹‹44‹‹4‹‹.(15‹544‹c‹‹<‹‹‹4‹< << < _C < < < < < 4 < < < < a««'.'.L7«tittatC4ittiif► C `«7«««z«««t 11/2712012. 9:37 AM UD-Detentaao_v2 31 -Full Site , WQCV 11/27/2012. 9:37 AM STAGE -DISCHARGE SIZING OF THE WATER QUALITY CAPTURE VOLUME (WQCV) OUTLET w Plains Tam V U) STAGE -DISCHARGE CURVE FOR THE WQCV OUTLET STRUCTURE (7t910 ION) eieig Discharge (cfs) RESTRICTOR PLATE SIZING FOR CIRCULAR VERTICAL ORIFICES Project: Tampa Plains Basin ID: Site x Sizing the Restrictor Plate for Circular Vertical Orifices or Pipes (Input) Water Surface Elevation al Design Depth PipeNerticai Orifice Entrance Invert Elevation Required Peak Flow through Onfice at Design Depth PipeNetical Orifice Diameter (inches) Orifice Coefficient Full -flow Capacity (Calculated) Full -flow area Half Central Angle in Radians Full -flow capacity Calculation of Orifice Flow Condition Half Central Angle (0<Theta<3 1416) Fiow area Top width of Orifice (inches) Height from Invert of Orifice to Bottom of Plate (feet) Elevation of Bottom of Plate Resultant Peak Flow Through Orifice at Design Depth Width of Equivalent Rectangular Vertical Orifice Elev: WS = Elev: Invert = Q= Dia= Co = Af Theta = Of = Percent of Design Flow = Theta = AID = To = Yo = Elev Plate Bottom Edge = Qa_ PI Vertical Orifice #2 Vertical Orifice 4.803 80 4.799 00 267.00 860 0 75 40.34 3.14 2878 100% 1.91_ , _ 28.58 i 81.07 4.78 - 4.803.78 287.0 Equivalent Width = 5.98 feel feet c$s inches sq rad cis red sgft inches feet feet cis feet UD-Detention_v2 31 -Full Site , Restrictor Plate 11/27/2012, 9:37 AM STAGE -DISCHARGE SIZING OF THE WEIRS AND ORIFICES (INLET CONTROL) Project: Basin ID: Current Routing Order is 13 Design Information (Input): Circular Opening: OR Rectangular Opening • f ft r • ► It nor • in v0 Rog•f ON.r+1 (Sundudl WO I I •1 Diameter in Inches Width in Feel Length (Height for Vertical) Percentage of Open Area After Trash Rack Reduction Onfice Coefficient Weir Coefficient Orifice Elevation (Bottom for Vertical) Calculation of Collection Capacity: Net Opening Area (after Trash Rack Reduction) OPTIONAL. User-Overide Nei Opening Area Penmeter es Weir Length OPTIONAL: User•Overide Weir Length as = = LorH= % open = C, E• A.= = 28 00 ••It •JI Nies Ohio, •: •• M 'Lji •I --- r-- f. f• s2 Honz 01 Vert s t Mont 02 Vert 800 598 6.00 4 78 100 100 0 50 0 75 3 40 4801 00 4 799 00 48.00 28.58 Top Elevation of Vertical Orifice Opening, Top = Center Elevation of Vertical Onfice Opening, Cen ft ft 4803 78 4801 39 I ,riches ft ft ft sq ft sq. II Routing 3: Single Stage - Water flows through WQCV plate and #1 horizontal opening into #1 vertical opening. This flow will be applied to culvert sheet (#2 vertical & horizontal openings is not used). Horizontal Orifices Vertical Orifices Labels for WQCV, Minor. 6 Major Storage W S Elevations (input) Water Surface Elevation ft Oinked) WOCV Plate/Riser Flow cfs lUser•finkeol %1 Honz 11 Horiz Weir Orifice Flow Flow cfs cfs (output) (output) *2 Honz *2 Honz Weir Onfice Flow Flow cfs cfs (output) (output, *1 Vert Collection Capacity cfs (output) #2 Vert Total Collection Collection Capacity Capacity cfs cfs (cutout) {outp.it) Target Volumes for WOCV, Minor, & Major Storage Volumes (•n► for post seek) 4799 00 0 00 000 000 0.00 000 0 00 0 00 0 00 4800 00 0 05 000 000 0.00 0.00 25 45 0.00 0 05 480110 009 301 6091 0.00 0.00 7744 0.00 310 4802 00 0 11 95 20 192 60 0.00 000 132 22 0 00 95 31 4803 00 0 13 269 27 272 38 000 0.00 203 57 0 00 0 00 203.57 251.05 4803 60 0 14 399 11 310 56 0 C0 0.00 251 05 ON/A RNA *NIA MN/A RUA MIA 0 00 MN/A /NIA *WA %WA *N/A MIA #NIA 0 00 MN/A ON/A *WA SN/A ON/A *WA *N/A 000 *N/A #N/A *WA *NIA MN/A *NIA *NIA 0 00 MN/A #N/A *NIA *NIA MN/A MN/A MWA 0 00 *N/A *N/A *NIA *NIA ON/A MIA SN/A 000 ON/A #N/A 1N/A *WA MWA *WA SIN/A 000 MN/A ON/A *NIA • MWA ON/A SN/A ON/A 0 00 oN/A tIN/A *WA *WA ON/A AIN/A ON/A 0 00 *N/A MWA *NIA *NIA 4 MA *NIA MN/A v 0 00 ON/A %NIA MWA SN/A ON/A SN/A #N/A 0 00 ON/A *WA *NIA *WA ON/A #N/A MIA 0 00 MN/A #N/A SN/A MWA ON/A 1N/A ON/A 000 *N/A ANA MN/A ON/A MWA #N/A 1N/A 0 00 fIN/A *WA *N/A #N/A *WA *N/A MN/A 0 00 %NIA ON/A *N/A %N/A MWA ON/A I MN/A 0 00 %N/A *N/A ON/A #N/A *N/A MN/A li ON/A 0 00 ON/A ON/A *N/A *NIA ON/A MN/A *NIA 0 00 ON/A ttN/A /WA *NIA NN/A *N/A ItN/A 000 ON/A ON/A ON/A %N/A #N/A *NIA MIA 000 *NIA *NIA *N/A *NIA ON/A *WA *WA 000 *NIA *NIA *NIA *N/A • *WA ON/A SN/A *NIA %N/A *NIA 000 IIN/A MWA 11N/A *WA 0 00 %NIA *NIA MN/A *WA AN/A *WA *NIA 0 00 *NIA *N/A *NIA *N/A *WA ON/A #N/A 0 00 %NIA #N/A *WA MWA *WA *N/A *N/A 0 00 MN/A ON/A 'MIA 1N/A ON/A MIA MWA 000 ON/A %N/A *WA--� *N/A %WA ON/A MWA 0 00 MN/A MWA SN/A *N/A *NIA oN/A *NIA 0 00 *N/A SWA *WA SN/A *NIA ON/A *WA 0 00 ON/A oN/A *WA *WA *WA 0N./A SN/A 000 MN/A %N/A *N/A -: *WA MIA ON/A - OW0 00 ON/A #WA *WA *WA *WA ON!A *NU 000 %NIA ON/A *NIA *WA SN/A MWA *WA 000 %NIA *NIA MWA *WA *WA *WA *NIA 000 MN/A 1N/A 1N/A *WA *NIA *NIA MWA 0 00 _ MIA #N/A ON/A *WA *WA *WA *WA 0 00 *WA #WA ON/A *WA *NIA *WA I *WA 0 00 'NIA UD-Detention_v2 31 -Full Site , Outlet 11/27/2012, 9.37 AM STAGE -DISCHARGE SIZING OF THE WEIRS AND ORIFICES (INLET CONTROL) Project: Basin ID: STAGE -DISCHARGE CURVE FOR THE OUTLET STRUCTURE 4804 4803 5 4803 Stage (feet, elev.) 4802 5 4802 4801.5 4801 4800.5 4800 4799 5 4799 • 0 50 100 150 200 Discharge (cfs) 300 UD-Detention_v2 31 -Full Site , Outlet 11127/2012, 9:37 AM STAGE -DISCHARGE SIZING OF THE OUTLET CULVERT (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS) Project: Basin ID: Status: Culvert Data is valldl Design Information (Input); Circular Culvert Barrel Diameter in Inches Circular Culvert Inlet Edge Type (choose from pull -down list) OR: Box Culvert Barrel Height (Rise) in Feet Box Culvert Barrel Wdth (Span) in Feel Box CulvertInlet Edge Type (choose from pull -down list) Number of Barrels Inlet Elevation at Culvert Invert Outlet Elevation at Culvert Invert Culvert Length in Feel Manning's Roughness Bend Loss Coefficient Exit Loss Coefficient Design Information (calculated Entrance 1 oss Coefficient Friclion Loss Coefficient Sum of All Loss Coefficients Orifice Inlet Condition Coefficient Minimum Energy Condition Coefficient Calculations of Culvert Capacity (output): Oa M en, IV let .•tin• wan • „ 41 Ili l • Square End with Hoadwall] Height (Rise) • Width (Span) • 350 500 15 1 Bent var90 Deg t3t•t wa'i No= = Oder r. L= n= Ku= K, _ K„ • Kis K,• C• • KEin„ • 2 4795 00 4797 00 200.0 0 0130 000 1 00 020 1 17 2 37 1 03 0 05 n ft .N'''. . I•.0.. n etev n e!ev ft Water Surface Elevation From Sheet "Basin' (ft., linked) Taltwator Surface Elevation It (Input if known) Culvert Inlet -Control Ftowrato efs (output) Culvert Outlet -Control Ftowrate cis (output) Flowrate Into Culvert From Sheet "Outlet" (cis, linked) Controlling Culvert Flowrate eft► (output) Inlet Equation Used (output) 4799.00 000 30 20 124 16 0.00 0.00 Mm Energy Eqn 4800.00 000 84 S0 164 88 0.05 0.05 Regression Eqn 4801.10 000 162 80 184 44 3.10 3.10 Regression Eqn 4802.00 000 236 20 217 76 95.31 95.31 Regression Eqn 4803.00 000 314 40 259 43 203.57 203.57 Regression Eqn 4803.60 000 356 60 261 93 251.05 251.05 Regression Eqn 0.00 000 000 000 IN/A IN/A No Flow MS < intea 0.00 000 000 000 IN/A IN/A No Flow (WS < inlet), 0.00 000 000 000 IN/A INIA No Flow (WS c oriel) 0.00 000 000 000 IN/A /NIA No Flow MS < inlet) 0.00 000 000 000 IN/A ■NIA No Flow MS < Intel) 0.00 000 000 000 IN/A IN/A No Flow (WS < inlet) 0.00 000 000 000 IN/A INIA No Flaw (WS < inlet) 0.00 000 000 000 IN/A IN/A No Flow (WS < inlet) 0.00 000 0 CO 0 00 IN/A IN/A No Flow (WS < inlet) 0.00 000 000 000 IN/A INfA No Flow (WS < inie%L 0.00 000 000 000 INIA IN►A No Flow (WS < inlet) 0.00 000 000 000 IN/A 'NIA No Flow MS < inlet) 0.00 000 000 000 INIA IN/A No Flow (WS < Inlet) 0.00 000 000 000 IN/A IN/A No Flow (WS < inlet) 0.00 000 000 000 INIA IN/A No Flow MS < inlet) 0.00 000 0.00 000 INIA IN/A No Flow (WS < inlet) 0.00 000 000 000 INIA IN/A No Flow (WS < inlet) 0.00 000 000 0 DO IN/A IN/A No Flow (WS < inlet) 0.00 000 000 000 IN/A IN/A No Flow (WS < inlet) 0.00 000 000 000 IN/A IN/A No Flow (WS < inlet) 0.00 000 000 000 IN/A IN/A No Flow (WS < inlet), 0.00 000 000 000 *NIA IN/A No Flow (WS < inlet) 0.00 000 000 000 IN/A *NIA No Flow (WS < inlet) 0.00 000 000 000 IN/A IN/A No Flow (WS < inlet) 0.00 000 000 000 IN/A INWA No Flow (WS < inlet) 0 00 000 000 0.00 ■N/A :MIA No Flow (WS < inlet) 0.00 000 0 OD 000 IN/A INCA No Flow (WS < inlet) 0.00 0 00 000 000 IN/A /NIA No Flow (WS < inlet) 0.00 000 000 000 IN/A IN/A No Flow (WS < inlet) 0.00 000 000 000 IN/A IN/A No Flow MS < inlet) 0.00 0.00 000 000 IN/A IN/A No Flow (WS < inlet) 0.00 000 000 000 IN/A IN/A No Flow (WS < Inlet) 0.00 000 000 000 IN1A IN/A No Flow (WS < inlet) 0.00 000 0 OD 0.00 IN/A 'NIA No Flow (WS < inlet) 0.00 000 000 000 INIA 'NIA No Flow (WS < inlet) 0.00 000 000 000 INIA IN/A No Flow (WS < inter) 0.00 000 000 000 IN/A IN/A No Flow (WS < Intel) 0.00 _ 000 000 000 IN/A IN/A No Flow (WS < inset) UD-Detenhon v2 31 -Full Srte . Culvert 11/27/2012, 9:37 AM D •f in STAGE•DISCHARGE SIZING OF THE OUTLET CULVERT (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS) Project Basin ID - 4804 00 4803 50 4803 00 4802.50 4802 00 4801 50 4801 00 4800.50 4800 00 4799.50 4799 00 0 00 STAGE -DISCHARGE CURVE FOR THE FINAL OUTLET PIPE CULVERT 50 00 100 00 150 00 200 00 250 00 300 00 Discharge (cfs) UD•Detenlion v2 31•FuII Site , Culvert 11O7/2012. 9:37 AM STAGE -DISCHARGE SIZING OF THE SPILLWAY Project: Plains Tampa Basin ID: ZUCTIPOr Design Information (input): Bottom Length of Weir Angle of Side Slope Weir Elev for Weir Crest Coef for Rectangular Weir Coef for Trapezoidal Weir Calculation of Spillway Capacity (output): L= Angle EL Crest = CW = C, _ 280 00 89.71 4,803 20 3 00 2.52 feet degrees feet Water Surface Elevation ft (linked) Rect Weir Flowrate cfs (Output) Triangle Weir Flowrate cfs (output) Total Spillway Release cfs (output) Total Pond Release cfs (Output) 4799.00 0 00 0 00 0 00 0 00 4800 00 0 00 0.00 0.00 0 05 4801.10 000 000 000 310 4802.00 0 00 0.00 0.00 95.31 4803 00 0 00 0 00 0 00 203 57 4803 60 212 51 50 38 262 89 513 94 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A UD-Detention_v2.31-Full Site , Spillway 11/27/2012, 9:37 AM STAGE -DISCHARGE SIZING OF THE SPILLWAY Project: Plains Tampa Basin ID: STAGE -STORAGE -DISCHARGE CURVES FOR THE POND Stage (feet, elev.) 0 4804 4803 5 4803 4802 5 4802 4801.5 4801 4800 5 4800 4799 5 4799 0 Storage (Acre -Feet) 4 6 100 200 300 400 Pond Discharge (cfs) 8 10 12 600 • PONDSTORAOE J UD-Detention_v2.31-Full Site , Spillway 11/27/2012, 9:37 AM RESERVOIR ROUTING THROUGH THE DETENTION POND d a C f0 ft ten W of C O (13 a) N N O) C_ E f6 U) C co ... C O U n� co v U ti O O Reservoir Characteristics a N -. vO o—iPo O J ual N V -- g$O0erQ M-mtA Y. tii NotoctD2IDAItAltZ441tOztO I.. Pt &ZZ G. re, zl.77z7.7 «<««< LZ Z V/Nfl <<-««««<<<<4<<<_<_<<<<< 7.77 t Y r—ZZZZZZ_Zz777.7 u It IT a a n tt 7tit it n It u 77.7.7_777.77 ti 3t >: A .m a I! a l •... 0 `0v+Nr.m O we� `oo O j O w O — c0 O w t- `r —Mfn O w o r}— O. �w oc O1 w otemipast`ei ?T -t x < Z7_ :t < 4 < Z7.77. 41. < a < it < Yt < ZZZ z, < x! < xt < ZZ u < It < 277 in < it < n < 7.7_ZZ < it < u < t < ZZ7.777 r < tt < 'tt < 'n < n < ae < 27777.77777.7.7.77. u < t < r < u-. < u < u < a. < t. < t: < tt < * < :t < x < r. + .D o O up CD r (D n tog C`t 556.672 n ^ a�i O tj a? CV• r- #N/A #N/A #N/A <<<< it at ?t #N/A <<<< it 2t ti #N/A < >Z ViN# #N/A #N/A < It < 3t < it �I < V/N# <<<..45.<4$ it it it VIN# #NJA <<<<< :f it: ;t it it #N/A < it cNv ° O -Moo CD t�D u, OO1 Nit fl It 774.602 953.590 << zZ it #N/A < Z 3L #N/A <<<<< zzzzz it it it it Zr #N/A <<<< zzz It it 3Y 1Z 3t V/N# <<<<$< zzzzzzz It 2t St t it it V/N# <<<< zzzz U it 3t it #NIA < z it V/N# < z at #N/A << zz i2 it #NIA < z it #N/A < z 3! N j wf V O N Pe,M 249.743 t,.) c")«< it it 7t #NIA #NJA < it V/N# <<<<< it it 3t it it #N/A <<<<<<< it -it it it It it #N /A <<<<<<<<<< it *tit 3t Zt ?t #NJA #N/A C 7L #N/A 1N/A C a C t Outflow O, cfs OOO; o o ri Q) 203.57 51394 a< zzzzzz2z ;t ii c<g« it tt It tt it 2t #NIA 5..««<<Qaa zzzzz it tt t! is it V/N# V/N# zzzzz it tt it St it #N/A #N/A < z it V/N# ««< zzzz_ it it it tt V/N# z it #N'A ¢ z it VIN# #N/A UNIA « zz it It Stage St, Feet 4,799 00 O O CO7 to v o •- 0 a) v 4,802 00 O O 0 a7 v 4,803 60 O O O o O O O O O O O O O O O O O O O O O O O O C7 O O O O O O O O O O O O O 0 O O O O 0 O O O O O O O O O O O O O O O O O O O O O O O O O 0 O O O O O O O O O O O O O O U O O O O O O O O CD O O O O O O O O CD O O J O O C3 O O O O O HYDROGRAPH ROUTING 4 K 0 4 N • 4 t8 • • 8 N 8 8 S viO O O vi c O (sp) MOl j 8 8 h a C Time (minutes) 11/27/2012, 9:37 AM UD-Detention_v2.31-Full Site , Routing •.e.M.�� • Anna fMA<I e. SIV130 GNU N0LLN3t30 ONY MOM ad HO Mfg IWO 7¢ 0618101 11 N0IW3S OMOVOI Vdrlv1 A1NfI0J ail. rs ¢� a -. /'''.v ( M ' 1 p I;Ma ? P v I • eat aawono tmoo • et wa 191M wa a. SOWS 1A11kiI11OVd 3 •II•ti N I I 3 l 3 Sd 8� � v �•w 4aNn na t TIV SNIVId lb A. a�Id� 1100/.JS70 cool DM vtijArs a2-1 igiaf SI flgn1I3 I (•J g I'!O 5 d j M t O I III if f f+ •O��tY It hill O I I I 6 =�•••• !at h (lb's 19 i n' l t� x2ax$ 1 A IV g ygi re a 4 I i e l � T4 � 4 ? 4 • l r!.1 0,8 hi o � r ►.ors � i 44 co Z O z C Z8< 1 Iii' !� "� • zVce z ca o x g ,: i II ,�r' I L 9 P Po Yi Itli g' 8 I FF'. 1j ggif L 1.k �k T.� 'k & 1 8 z z2a ��-" l= # V -!!- ■.o... R il'CC Ir az i -, Eg2i' .................f.....• , 12" $0.1 ao Eilsilllitillikt6X a &J QI gRiIl Int <ilspliiaorpoil 1 § a k i I. II e) 4 OM v 14.1.1thi4 li i I II g a gI t' it it E ` 9il ll e ! 8 C•a X11 II it 0 3 b • 1 R •M ¢5 �j 5 6 _ VI! i�. - •' Di! 1 I ga a 14 ii11 D. gvgv _•/ %__ V- 4.riiggii � li . '4 g 1 It s. gi L., ! _ ! L gill V N - •-..•.N WN -ne ZL a [ tia19,/,‘ t fl 4i\s5..ox..a•a-0 0 anv A •J.d :6%\ fl Wiea1A N Culvert Report Hydraflow Express Extension for AutoCADO Civil 3D® 2012 by Autodesk, Inc CULVERT B Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in) Shape Span (in) No. Barrels n -Value Culvert Type Culvert Entrance Coeff. K,M,c,Y,k Embankment Top Elevation (ft) Top Width (ft) Crest Width (ft) Uri U11 4841 Do 4838.00 4bJ6 LC 4837 CO 483600 483800 483400 4833 00 = 4834.30 = 100.00 = 0.40 = 4834.70 = 18.0 = Circular = 18.0 = 1 = 0.012 = Circular Concrete = Square edge w/headwall (C) = 0.0098, 2, 0.0398, 0.67, 0.5 = 4840.90 = 35.00 = 35.00 CULVERT 8 Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft) Highlighted Qtotal (cfs) Qpipe (cfs) Qovertop (cfs) Veloc Dn (ft/s) Veloc Up (ft/s) HGL Dn (ft) HGL Up (ft) Hw Elev (ft) Hw/D (ft) Flow Regime Tuesday, Nov 27 2012 = 0.00 = 12.54 = 0.00 = 1.25 = 1.25 = 0.00 = 3.11 = 3.11 = 4834.72 = 4835.12 = 4835.27 = 0.38 = Inlet Control FM L^ ��,141r 1 weaclterer J 0 10 20 Cicalae Culvert 30 40 HGL 60 80 70 Embank 80 80 100 110 1:0 130 140 Reach lei 630 530 3X0 230 C 30 Culvert Report Hydraflow Express Extension for AutoCAD® Civil 3D® 2012 by Autodesk, Inc. CULVERT D Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in) Shape Span (in) No. Barrels n -Value Culvert Type Culvert Entrance Coeff. K,M,c,Y,k Embankment Top Elevation (ft) Top Width (ft) Crest Width (ft) 4123 OD 411 00 II; = 4820.30 = 86.00 = 0.23 = 4820.50 = 18.0 = Circular = 18.0 = 1 = 0.012 = Circular Concrete = Square edge w/headwall (C) = 0.0098, 2, 0.0398, 0.67, 0.5 = 4825.00 = 35.00 = 35.00 CULVERT C Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft) Highlighted Qtotal (cfs) Qpipe (cfs) Qovertop (cfs) Veloc Dn (ft/s) Veloc Up (ft/s) HGL Dn (ft) HGL Up (ft) Hw Elev (ft) Hw/D (ft) Flow Regime Tuesday, Nov 27 2012 = 0.00 = 44.71 = (dc+D)/2 = 0.58 = 0.58 = 0.00 = 0.53 = 0.69 = 4821.19 = 4821.23 = 4821.24 = 0.49 = Outlet Control I1_ Culvert Report Hydraflow Express Extension for AutoCAD® Civil 3D® 2012 by Autodesk, Inc. CULVERT E Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in) Shape Span (in) No. Barrels n -Value Culvert Type Culvert Entrance Coeff. K,M,c,Y,k Embankment Top Elevation (ft) Top Width (ft) Crest Width (ft) tier it 42500 Cl 00 On 00 a82t00 462100 '20.00 4119.00 4119.00 411.00 4118.00 41600 = 4816.00 = 80.00 1.38 = 4817.10 18.0 = Circular 18.0 1 = 0.012 = Circular Concrete = Square edge w/headwall (C) = 0.0098, 2, 0.0398, 0.67, 0.5 = 4824.50 = 50.00 = 50.00 CULVERT E Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft) Highlighted Qtotal (cfs) Qpipe (cfs) Qovertop (cfs) Veloc Dn (ft/s) Veloc Up (ft/s) HGL Dn (ft) HGL Up (ft) Hw Elev (ft) Hw/D (ft) Flow Regime 1 l MOM CleMt1 r,1 0 10 20 CircmerG tver 30 60 SO 70 6^ 100 110 120 Reach It) Tuesday, Nov 27 2012 = 0.00 = 10.30 = (dc+D)/2 = 1.03 = 1.03 = 0.00 = 0.88 = 2.94 = 4816.94 = 4817.48 = 4817.61 = 0.34 = Inlet Control Hs Dept it 7W 610 690 a IC 190 2.10 110 D90 -010 .1.10 -2 10 Culvert Report Hydraflow Express Extension for AutoCAD® Civil 3D® 2012 by Autodesk, Inc CULVERT G Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in) Shape Span (in) No. Barrels n -Value Culvert Type Culvert Entrance Coeff. K,M,c,Y,k Embankment Top Elevation (ft) Top Width (ft) Crest Width (ft) bo �.o IOC 1.0 = 4800.50 = 170.00 = 0.59 = 4801.50 = 18.0 = Circular = 18.0 = 1 = 0.012 = Circular Concrete = Square edge w/headwall (C) = 0.0098, 2, 0.0398, 0.67, 0.5 = 4816.00 = 78.00 = 78.00 (ULA l G Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft) Highlighted Qtotal (cfs) Qpipe (cfs) Qovertop (cfs) Veloc Dn (ft/s) Veloc Up (ft/s) HGL Dn (ft) HGL Up (ft) Hw Bev (ft) Hw/D (ft) Flow Regime Tuesday, Nov 27 2012 = 0.00 = 40.09 = (dc+D)/2 = 4.01 = 4.01 = 0.00 = 2.80 = 4.42 = 4801.63 = 4802.27 = 4802.62 = 0.74 = Inlet Control Culvert Report Hydraflow Express Extension for AutoCAD® Civil 3D® 2012 by Autodesk, Inc CULVERT H Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in) Shape Span (in) No. Barrels n -Value Culvert Type Culvert Entrance Coeff. K,M,c,Y,k Embankment Top Elevation (ft) Top Width (ft) Crest Width (ft) A(:2., lg. 4 'L,7 Ct C 1.; 1h0 17D 1eo 19l) rarcuin, CA, t.c; = 4799.80 = 140.80 = 0.71 = 4800.80 = 18.0 = Circular = 18.0 = 1 = 0.012 = Circular Concrete = Square edge w/headwall (C) = 0.0098, 2, 0.0398, 0.67, 0.5 = 4811.00 = 78.00 = 78.00 'IGL CULVERT H Embark Calculations Qmin (cfs) Qmax (cfs) Tailwater lwater Elev (ft) Highlighted Qtotal (cfs) Qpipe (cfs) Qovertop (cfs) Veloc Dn (ft/s) Veloc Up (ft's) HGL Dn (ft) HGL Up (ft) Hw Elev (ft) Hw/D (ft) Flow Regime Tuesday, Nov 27 2012 = 0.00 = 34.00 = 0.00 = 3.40 = 3.40 = 0.00 = 4.94 = 4.18 = 4800.42 = 4801.50 = 4801.81 = 0.67 = Inlet Control Reath (1') • • Culvert Report Hydraflow Express Extension for AutoCAD® Civil 3D® 2012 by Autodesk, Inc. CULVERT I Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in) Shape Span (in) No. Barrels n -Value Culvert Type Culvert Entrance Coeff. K,M,c,Y,k Embankment Top Elevation (ft) Top Width (ft) Crest Width (ft) Elev (ft) 4806 00 4805.00 4804 00 450300 4802 00 4801 00 4800 cc 4799 00 4798 00 4797 00 4796 00 = 4797.00 = 110.00 = 0.91 = 4798.00 = 24.0 = Circular = 24.0 = 3 = 0.012 = Circular Concrete = Square edge w/headwall (C) = 0.0098, 2, 0.0398. 0.67, 0.5 = 4805.00 = 78.00 = 78.00 CULVERT I Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft) Highlighted Qtotal (cfs) Qpipe (cfs) Qovertop (cfs) Veloc Dn (ft/s) Veloc Up (ft/s) HGL Dn (ft) HGL Up (ft) Hw Elev (ft) Hw/D (ft) Flow Regime Tuesday, Nov 27 2012 = 59.10 = 197.25 = 0.00 = 59.10 = 59.10 = 0.00 = 8.31 = 7.34 = 4798.41 = 4799.59 = 4800.90 = 1.45 = Inlet Control Pow Depm (RI 5.00 700 600 500 400 Inlet conic• 3 00 200 1 00 0 G 0 10 20 Circular Culvert 30 40 50 60 HGL 70 60 Embank 90 100 110 12:' 130 14: 150 Reach (ft) .100 -200 Culvert Report Hydraflow Express Extension for AutoCAD® Civil 3D® 2012 by Autodesk, Inc. CULVERT J Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in) Shape Span (in) No. Barrels n -Value Culvert Type Culvert Entrance Coeff. K,M,c,Y,k Embankment Top Elevation (ft) Top Width (ft) Crest Width (ft) A, an Oc 4822 00 4121 00 48to x 01900 411100 411100 = 4818.00 = 163.00 = 0.92 = 4819.50 = 18.0 = Circular = 18.0 = 1 = 0.012 = Circular Concrete = Square edge w/headwall (C) = 0.0098, 2, 0.0398, 0.67, 0.5 = 4825.00 = 135.00 = 135.00 CULVERT J Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft) Highlighted Qtotal (cfs) Qpipe (cfs) Qovertop (cfs) Veloc Dn (ft/s) Veloc Up (ft/s) HGL Dn (ft) HGL Up (ft) Hw Elev (ft) Hw/D (ft) Flow Regime RNM 1U 210 Tuesday, Nov 27 2012 = 0.00 = 55.87 = (dc+D)/2 = 5.59 = 5.59 = 0.00 = 3.67 = 4.98 = 4819.21 = 4820.41 = 4820.89 = 0.92 = Inlet Control Mn Cr:" n 260 350 250 $40 050 -050 -ISO 410 Culvert Report Hydraflow Express Extension for AutoCAD® Civil 3D® 2012 by Autodesk, Inc CULVERT K Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in) Shape Span (in) No. Barrels n -Value Culvert Type Culvert Entrance Coeff. K,M,c,Y,k Embankment Top Elevation (ft) Top Width (ft) Crest Width (ft) 418 LC 417 CC 016% 415 CC n. = 4816.90 = 79.00 = 0.76 = 4817.50 = 18.0 = Circular 18.0 1 = 0.012 = Circular Concrete = Square edge w/headwall (C) = 0.0098, 2, 0.0398, 0.67, 0.5 = 4822.00 = 50.00 = 50.00 CULVERT K Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft) Highlighted Qtotal (cfs) Qpipe (cfs) Qovertop (cfs) Veloc Dn (ft/s) Veloc Up (ft/s) HGL Dn (ft) HGL Up (ft) Hw Elev (ft) Hw/D (ft) Flow Regime Tuesday, Nov 27 2012 = 0.00 = 25.72 = 0.00 = 2.57 = 2.57 = 0.00 = 4.67 = 3.83 = 4817.42 = 4818.11 = 4818.35 = 0.57 = Inlet Control r1.. :: e;J? f1 +Incer701 r- 10 is Coco et Culvert JL 40 HGL 50 60 Embank 0 6? 1r. .IO 120 a50 350 ?ft 150 0% Z% 1 6J G. HISTORIC DRAINAGE PLAN 22 asocaeMIll.o..- • ftinlim(i • necu4 d fl *mot o fl . cc lilt lout lad ON ___• euIgaiId • kt+wevi P't N aCOP 39YN(YM0 3i OiSiH kL lI3VJ ONIOVO1 ddWbl dVV SNIVid 3NIl3SdS MVP a ISMS NfN J ass AlNno3 013* 3LV0 rteOlkiVabd NOUd4a53o 1.09,438 a i e I i t • • • • I 1 I I 1 1 1 1 1 1 1 . C., I- - zec iX_a W U rob d • • • • • • • • • • M • • • • • • • • • ,` • • • • • • • • • • • ,, ` ♦ • ♦ ,, •• a a E F SUMMARY TABLE Cr o v ppO o O a> I)) 50- YR r-- ai to al tD N• 260.4 co O I Ni r: b to V V• — N 1 r` ai O M t0 O N — 5-YR M M to 0 z SQUARE MILES ONi M CNI O> D M lr") in 666 AREA ACRES N 204 356 N I H1 I O I p Y o 03 I) 03 t0 cat 3/4 L ♦ ♦ ♦ ♦ ♦ ` I ♦ I ♦ • I I 1 1 I 1 I 1 1 , • S. O C.0 O O W • • • • • poq. Auma• fly 60:ff Ot t16L/ti/I( t.O %Don atouoc Juois$\06o4O.a\ou•ead uoaanr n ruoy I$t\3n Dkneald\ M H. PROPOSED DRAINAGE PLAN 24 RUNOFF SUMMARY TABLE O S^ 8�oa p�oj�' in on Col Q•�e�v* lin st 0 o in (, 0 N co U CO O rrj 0 Ln 0 n i 0 al 0 - M U) 0 n-- in O rn 0 Q 01 0O in 0 co pp Q� 0 tO r� 0 tT r` O a in 0 N -- tf) I O p in .- N O O u O O N en N O O r-. CO N O to -' N rn O int� N6 Q1 N O 0O N O v 17 45 0.25 tO N O N. an 0 O 1n N O O^ N.: I Ln en O 50.70 0.15 en O O co cc'2O O co O a r - v rn O a in a rn 74.50 0.20 co O a O en en 74.50 0.15 tO a a t0 to v 138.30 0.15 BASIN AREA Tc Ch m 0 a rn O N e Y M rn rn e • N v co r- N M C in CO h tO Of Case Name: FLAiN) AAP IArP LoADir7c CACIL /TY Case Number: Date: I I " 16 - 1 % Weld County Public Works Use by Special Review (USR) and Site Plan Review (SPR) Drainage Report Outline The following checklist is to be utilized as guidance, and may not be all inclusive. Other concerns not included in this checklist may arise during the review process. NOTE: A HARDCOPY OF THE DRAINAGE REPORT AND CONSTRUCTION DRAWINGS MUST BE SUBMITTED TO PUBLIC WORKS FOR REVIEW. Comment Headings IncludedNot IncludedWA All reports shall be typed on 8-1I2" x 11" paper and bound. Drawings (24" x 36") shall be Included. The drawings shall be bound within the report or included within a pocket attached inside the back cover of the report. The report shall be a stand-alone document and therefore all important reference material, supporting documents, and calculations shall be copied and Included within the report appendix. The report shall include a cover letter presenting the drainage design for review and shall be prepared or supervised by an engineer licensed in Colorado. Only original documents sealed in ink will be accepted. The sealed report shall contain a certification sheet as follows: "I hereby certify that this report for the drainage design of (Insert Name of Project) was prepared by me (or under my direct supervision) In accordance with the provisions of the Weld County storm drainage criteria for the owners thereof." The Drainage Report is stamped, signed, and dated by a registered P.E. licensed to practice in the State of Colorado. All submitted construction plan sheets are stamped, signed, and dated by a registered P.E. licensed to practice in the State of Colorado. The following items at a minimum should be discussed In the Drainage Report narrative and should be supported with maps and calculations in the Appendix. Include a copy of this checklist with the Drainage Report submittal. I. General Location and Description A. Location 1. Township, Range, Section, '/.-Section. 2. Local streets within and adjacent to the development. 3 Major open channels, lakes, streams, irrigation and other water resource facilities within and adjacent to proposed project site. 4 Names of surrounding developments including jurisdiction (municipalities). B. Description of Property 1. Area in acres. 2. Ground cover and soil types. -11,55 7 , , 3. Major open channels and property ownership.; t ,, , ,_ .• 4. General project description. Page 1 of 5 C:'Documents end Settings'Jcranstem5Local SettingstTemporary Internet Files\Content.Outlook\SYBLARTB\USR-SPR Drainage Report Checklist.docx Case Name: Pc A' N 5 ABP Case Number. Date: 6 Irrigation facilities and facility ownership information within 200 ft. of property. 6. Groundwater characteristics (where applicable). II. Drainage Basins and Sub -Basins A. Major Basin Description 1. Reference to Weld County Master Drainage Plan(s) where applicable. 2. Major basin drainage characteristics. 3 Identification of all FEMA-defined 100 -year floodplains and floodways affecting the property. 4 On -site & offsite contours at minimum 2 -ft vertical intervals are to be included on the Drainage Report drawings. B. Sub -Basin Description 1 Historic drainage patterns on the subject property and adjacent properties. 2. Off -site drainage flow patterns and impacts on the subject property (minimum 200 ft outside property boundary, or until no further off -site contributing flow area is encountered). III. Drainage Design Criteria A. Development Criteria Reference and Constraints 1. Discussion of previous drainage studies (i.e. project master plans) for the subject property that influence or are influenced by the proposed drainage design for the site. 2. Discussion of site constraints such as slopes, streets, utilities, existing structures, irrigation ditches, and the site plan impacts on the proposed drainage plan. B. Hydrological Criteria 1 Identify design rainfall amounts and source of design storm depth information, NOAA Atlas, UD&FCD maps, etc. ' 2 Identify design storm recurrence intervals. Reference the appropriate information in the Appendix. 3 Identify runoff calculation method(s) and any computer models. Include summaries of the routing and accumulation of flows at all identified design points for minor and major storm runoff. Reference the results in the Appendix. 4 Identify detention discharge and storage calculation methods and computer models. Reference the results in the Appendix. 6 Discuss of off -site flows will be routed around the proposed site or over the spillway for the 100-yr developed condition. , C. Hydraulic Criteria 1 Identify conveyance capacities from County references and any computer models. 2 Identify detention outlet type. Include a summary of the 100 -year water surface elevation, spillway/overflow facility. Reference the appendix for the calculations. Include summaries of the detention storage sizing and provide a stage -storage table/curve identifying water quality storage, 100 - rage z or 5 C:\Documents and SettingsllcranstemLLocal Settings\Temporary Internet Files\Content.Outlook\SYBLART8\USR-SPR Drainage Report Checklist.docx Case Name: ?LA' "IS 4:\P.r Case Number: Date: yr detention pond storage, and 1 ft of freeboard. Reference the calculations in the Appendix. ✓ 3 Identify water quality outlet configuration. Reference the calculations In the Appendix. 4 Identify culverts including diameter, type, and slope. Reference the calculations in the Appendix. 6 Identify storm sewer inlets, manholes, etc. Reference the calculations in the Appendix. 6. Discussion of permanent erosion control features. 7. Discussion and justification of criteria or calculation methods (for water quality, check dams, drop structures, rundowns, etc.) used that are not presented in Weld County CODE. j IV. Drainage Facility Design A. General Concept 1. Discussion of concept and typical on -site drainage patterns. I 2 Discussion of compliance with off -site runoff considerations and constraints. 3 Discussion of the content of all tables, charts, figures, or drawings In the report. 4 Discussion of anticipated hydraulic structures (channels, pipes, rundowns, etc.). B. Specific Details 1 Discussion of maintenance access and aspects of the design. Include a maintenance plan. V 2 Provide copies of CDPHE, CAFO, DRMS, or State Engineer's permit applications where applicable. V. Conclusions A. Compliance with the Weld County CODE 1. Statement of whether or not the design will meet Weld County Code. y B. Drainage concept 1. Effectiveness of drainage design to control damage from storm runoff. 2. Influence of proposed development on any applicable Weld County Master Drainage Plan recommendations. / 3 Identification of and Intent to obtain written approval of affected irrigation company or other property owner(s). Weld County may require that the applicant provide evidence that offsite impacted jurisdictions have been notified of the proposed plans. / 4 Reference all criteria and technical resources utilized. The Appendices should Include at a minimum the following Information. The Drainage Report should be a standalone document and needs to Include copies of all pertinent references used In the generation of the Drainage Report. VI. Appendices A. Hydrologic Computations Page 3 of 5 C:ADowments and Settingsicranslemtocal Settingsvtemporary Internet Files \Content.Outlook\SYBIART8\USR-SPR Drainage ReportChecklist.docx Case Name: Case Number Date: 1 Vicinity Map showing location of the site in relation to surrounding area. Show the approximate boundaries of the site. 2 FIRMette showing location of the site in relation to the FEMA mapped floodplains/floodways. Show the approximate boundaries of the site. r 3 Soil Survey Information/Map showing soil types and soil hydrologic groups for the project site. 4 Rainfall Maps with the project location identified. Maps can be from UDFCD or NOAA as applicable. 5. Land use assumptions regarding adjacent properties. 6. Initial and major storm runoff computations at specific design points. (5- yr, 10-yr, and 100-yr) 7. Historic and fully developed runoff computations at specific design points. 6 Computer model input and output. Include model files and/or spreadsheets on a CD-ROM to be attached to the Drainage Report. , B. Hydraulic Computations 1. Culvert sizing. Provide computations showing slope, pipe size, material, invert elevations, 100 -year energy grade line (EGL,00), and hydraulic profile. v' 2. Storm inlet sizing. 3 Swale or channel sizing. The calculations need to show stability calculations for unvegetated and vegetated conditions. , 4 Riprap or other revetment design. The calculations need to include design for bedding and geo-fabric. 'i N • 5 Pond area/volume capacity and outlet sizing. Show calculations for the 100 -year water surface elevations and overflow facilities. i 6. Orifice plate, spillway, and pond outlet sizing. 7. Include computations for permanent erosion control features. 6 Any computer model input and output. Include model files and/or spreadsheets on a CD-ROM to be attached to the Drainage Report. C. 24 x 36 Maps 1. Historic Drainage Basin Map. Show drainage basin boundaries (on -site and off -site), 2 ft on -site and off -site drainage boundaries, design points, historic flow path, flow path length, and flow path slope. t 2 Fully Developed Drainage Basin Map. Show drainage basin boundaries (on -site and off -site), 2 ft on -site and off -site drainage boundaries, design points, developed flow path, flow path length, and flow path slope. Show drainage easement including metes and bounds description around all drainage related features. Show any other drainage easements that may exist on the project site. v 3. Construction Drawings showing location, sizing, and details for all storm sewers, open channels, culverts, cross -pans, and other appurtenances. Include cross sections of swales and open channels. 4. Construction Drawings showing location of detention facilities and outlet works. Include the 100 -year water surface elevations, overflow facilities, and labels for pond volume and discharge. 5 Grading Plan showing existing and proposed contours. Identify the lowest opening elevation of buildings showing that they are above the 100 -year water surface elevations of channels, swales, streets, ponds, or other drainage facilities. 6. Erosion and Sediment Control Plan showing all BMPs to be utilized on - site. Include typical installation details, installation notes, and maintenance notes for all BMPs to be utilized on the project site. Page 4 of 5 C:\Documents and Settingslxranslem\Local Settings\Temporary Internet Files \Content.Outlook\SYBLART8\USR-sPR Drainage Report Checklist.docx Case Name: PLAINS A -R? Case Number: Date: 7. Detail sheets for pond outlet, orifice plate, trash rack, spillway configuration, riprap, culverts, channels, etc. 8. All culverts are to be Identified and profiled in the Construction Drawings with slope, pipe size, material, invert elevations, 100 -year energy grade line (EGL1c0), and hydraulic profile. L g On all Construction Drawings show the location of all existing and proposed utilities and identify the utility as existing or proposed. , - 10. The elevations of manhole and inlet inverts are identified and profiled. ) ..r 11 Miscellaneous hydraulic structures/features are shown on the Construction Drawings. v Page 5 of 5 C:tDocuments and SettIngsMcranslemLLocal Setlings\Temporary Internet Files \Content.Outlook\SYBLART8\USR-SPR Drainage Report Checklist.docx Hello